

Obesity, adipokines and cancer: An update

Journal:	Clinical Endocrinology
Manuscript ID:	Draft
Manuscript Type:	6 Requested Review
Date Submitted by the Author:	n/a
Complete List of Authors:	LEE, CHI HO; University of Hong Kong, Queen Mary Hospital, Hong Kong, Department of Medicine Woo, YC; University of Hong Kong, Queen Mary Hospital, Department of Medicine Wang, Yu; University of Hong Kong, Department of Pharmacology; University of Hong Kong , Research Centre of Heart, Brain, Hormone and Healthy Aging; University of Hong Kong , State Key Laboratory of Pharmaceutical Biotechnology YEUNG, CY; University of Hong Kong, Queen Mary Hospital, Department of Medicine Xu, Aimin; University of Hong Kong, Queen Mary Hospital, Department of Medicine; University of Hong Kong, Department of Pharmacology; University of Hong Kong , Research Centre of Heart, Brain, Hormone and Healthy Aging; University of Hong Kong, State Key Laboratory of Pharmaceutical Biotechnology Lam, Karen; University of Hong Kong, Queen Mary Hospital, Department of Medicine; University of Hong Kong, Queen Mary Hospital, Department of Pharmaceutical Biotechnology Lam, Karen; University of Hong Kong, Queen Mary Hospital, Department of Medicine; University of Hong Kong, Queen Mary Hospital, Department of Medicine; University of Hong Kong, Queen Mary Hospital, Department of Medicine; University of Hong Kong, Queen Mary Hospital, Research Centre of Heart, Brain, Hormone and Healthy Aging; University of Hong Kong, Queen Mary Hospital, State Key Laboratory of Pharmaceutical Biotechnology
Key Words:	Adipokines < Hormones/related: < Adipose tissue, Adiponectin < Hormones/related: < Adipose tissue, Leptin < Hormones/related: < Adipose tissue

SCHOLARONE[™] Manuscripts

1	Title:
2	Obesity, adipokines and cancer: An update
3	
4	Authors:
5	*CH Lee ¹ , YC Woo ¹ , Y Wang ^{2,3,4} , CY Yeung ¹ , A Xu ^{1,2,3,4} , KSL Lam ^{1,3,4}
6	¹ Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong
7	Kong
8	² Department of Pharmacology & Pharmacy, University of Hong Kong, Hong Kong
9	³ Research Centre of Heart, Brain, Hormone and Healthy Aging, University of Hong
10	Kong, Hong Kong
11	⁴ State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong,
12	Hong Kong
13	
14	Corresponding Author:
15	Professor Karen Lam, Department of Medicine, University of Hong Kong, Queen
16	Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong, China
17	Tel.: +852 2255-4783
18	Fax.:+852 2816-2863
19	Email: <u>ksllam@hku.hk</u>
20	
21	Keywords (MeSH):
22	Adipokines, Obesity, Cancer
23	
24	Word Count: 4818 words
25	

26 Abstract

27	Obesity causes dysfunction of adipose tissue, with resultant chronic inflammation and
28	adverse interplay of various adipokines, sex steroids and endocrine hormones. All
29	these drive tumourigenesis and explain the epidemiological link between obesity and
30	cancer. Over the past decade, the associations among obesity, adipokines and cancer
31	have been increasingly recognized. Adipokines and their respective signaling
32	pathways have drawn much research attention in the field of oncology and cancer
33	therapeutics. This review will discuss the recent advances in the understanding of the
34	association of several adipokines with common obesity-related cancers, and the
35	clinical therapeutic implications.
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	

51 Introduction

52

53	Tackling obesity is a growing challenge. The increasing prevalence of obesity
54	worldwide does not just propel the upsurge of incident diabetes, metabolic syndrome
55	and cardiovascular diseases, but also of incident cancers. A meta-analysis, involving
56	282137 incident cases from prospective observational studies, had shown that
57	increased body mass index (BMI) was associated with a higher risk of both common
58	and less common cancers. (1) Increased risks of incident cancers by 6 to 59%,
59	involving oesophageal adenocarcinoma, leukaemia, non-Hodgkin lymphoma, colon,
60	thyroid and renal cancers, were associated with every increment of 5 kg/m ^{2} in BMI
61	above normal in both sexes. In men, significant positive associations were also noted
62	with rectal cancer and malignant melanoma. In women, positive associations were
63	found with endometrial, gallbladder, pancreatic and post-menopausal breast cancers
64	as well. (1) In fact, Calle et al had estimated that in the United States, obesity
65	contributed to 14% of all cancer mortality in men and 20% of those in women. (2) In
66	UK, a recent population-based cohort study involving 166955 subjects with cancer,
67	suggested that BMI was associated with 17 out of 22 cancers studied. Furthermore, it
68	also estimated that every unit of population-wide increment in BMI would lead to an
69	addition of 3790 UK subjects developing one of the ten common obesity-related
70	cancers annually. (3) In Asian-Pacific populations, a meta-analysis also showed that
71	every increment of 5 units in BMI above 18.5 kg/m ² was associated with an increase
72	in cancer mortality by 1.09 for all cancers. (4) In Chinese, although the overall
73	prevalence of obesity is lower than the west, even when Asian-Pacific BMI cut-offs
74	are used (5), obesity has also been demonstrated as an independent predictor of
75	incident cancers. In a community-based cohort of 2895 Hong Kong Chinese subjects

76	aged 25 to 74 recruited from the general population, over a median follow-up of 16
77	years, 209 (7.2%) of them developed cancers. Baseline waist circumference, an
78	indicator of central adiposity, independently predicted incident cancers with a
79	standardized odds ratio of 1.19 (95% CI 1.02 – 1.40; $p = 0.031$) even after adjustment
80	for age of subjects. (6) All these suggested that the association between obesity and
81	cancer was consistent across populations worldwide. In fact, in Asian-Pacific
82	populations, the association between increased BMI and breast cancer was even
83	stronger, in both pre- and post-menopausal women, than in populations of North
84	America, Europe and Australia. (1) Recent meta-analyses also suggested that both
85	pre- and post-menopausal breast cancer patients who were obese had poorer overall
86	survival regardless of when BMI was ascertained. (7) Furthermore, in men, obesity
87	increased the risk of prostate cancer specific mortality as well as biochemical
88	recurrence. (8) Taken together, cumulative epidemiological evidence would suggest
89	that overweight or obese subjects are not just at increased risk of cancer development:
90	in those who have developed cancers, obese patients also tend to have worse
91	prognosis.

92

93 Preclinical studies have provided insights into the pathogenic mechanisms linking 94 obesity and cancer. While several molecular pathways have been proposed, all of 95 them actually stem from a dysfunctional adipose tissue, with ultimate creation of a 96 microenvironment that favours tumour development. (9, 10) In obesity, coupled with 97 the expansion in adipose tissue mass are increases in tissue hypoxia, inflammation 98 and insulin resistance. Furthermore, the delicate interplay among obesity-associated 99 sex hormones, insulin growth factor 1 (IGF1) and the various adipokines further 100 contributes to enhanced inflammatory signaling, angiogenesis, cellular proliferation

101 and ultimately, carcinogenesis. In this review, we will focus on the role of adipokines

102 in the development of various cancers in the context of obesity.

103

104 Adipokines in obesity-related cancer development

105

106 The adipose tissue is a complex, highly active endocrine organ. It is integrally 107 involved in carcinogenesis via dysregulated secretion of various adipokines, which 108 are polypeptide cytokines produced by white adipose tissue, either exclusively or 109 substantially, and can act both locally and systemically. (11, 12) These adipokines 110 have been implicated in cancer development and progression through their effects on 111 insulin resistance, lipolysis and various inflammatory pathways. (9) In the context of 112 obesity, the hypertrophic expansion of adipose tissue induces local hypoxia, 113 inflammatory activation and reactive angiogenesis, changes which favour 114 tumourigenesis. Some of the proinflammatory adipokines, such as interleukin-6 (IL-6) 115 and leptin, have been shown to stimulate cancer stem cells, which are stromal cells 116 with tumourigenic potential, leading to increased tumour growth and survival. (10) On 117 the other hand, cancer cells are known to stimulate lipolysis in the cancer-associated 118 adipocytes, the delipidation of which is followed by their differentiation to a 119 fibroblast-like phenotype with increased secretion of proinflammatory cytokines such 120 as IL-6 and plasminogen activator inhibitor-1 (PAI-1). (10) Thus the interaction of the 121 cancer-associated adipocytes with their neighbouring cancer cells creates a tumour 122 permissive microenvironment which would support cancer growth, progression and 123 metastases. (10) 124

125	To date, more than 15 adipokines have been reported in the literature to be associated
126	with cancers and this list is still growing. (11, 13) While the circulating levels of
127	majority of pro-inflammatory adipokine levels, like leptin (Table 1), IL-6 and tumour
128	necrosis factor alpha (TNF- α), are increased in cancers, some adipokines like
129	adiponectin are protective against tumourigenesis and its serum levels are usually
130	decreased in the cancer patients. (11) (Table 1) We previously demonstrated that, in a
131	Chinese community cohort in Hong Kong, subjects who developed cancers also had
132	higher baseline levels of C-reactive protein, IL-6, soluble tumour necrosis factor
133	receptor 2 (a surrogate marker of TNF- α activity) and lipocalin 2. (6)
134	
135	New insights into the role of specific adipokine in various obesity-related cancers
136	
137	Adiponectin
138	Adiponectin is one of the most abundant adipokines secreted by adipocytes. It is
139	secreted into the circulation as three oligomeric complexes, including trimer,
140	hexamer, and high molecular weight (HMW) multimer. Among them, HMW
141	adiponectin is the major active form mediating the insulin sensitizing effect of this
142	adipokine. (14) Adiponectin has been shown to modulate the biological actions of
143	several growth factors, including platelet-derived growth factor BB, basic fibroblast
144	growth factor, and heparin-binding epidermal growth factor-like growth factor,
145	through specific binding of these growth factors in an oligomerization dependent
146	manner, with HMW adiponectin being able to bind all three growth factors. (15)
147	These in vitro findings suggest that adiponectin, especially HMW adiponectin, can
148	exert its anti-proliferative action by reducing the bioavailability of these growth
149	factors at a pre-receptor level. The biosynthesis and secretion of these oligomers by

150	adipocytes are tightly controlled by molecular chaperones in the endoplasmic
151	reticulum. (14) In the context of obesity, both the intracellular assembly and the
152	secretion of the HMW adiponectin are impaired. (14) The resultant
153	hypoadiponectinaemia in obesity both directly and indirectly promotes
154	carcinogenesis. Adiponectin acts through two main receptors AdipoR1 and AdipoR2,
155	both of which were reported to be expressed in several cancer cells in vitro and in
156	vivo. (9, 16) Binding of adiponectin to these receptors impact on downstream
157	signaling pathways (Figure 1) including the activation of AMP-activated protein
158	kinase (AMPK) and ceramidase activities, and the inhibition of phosphatidylinositol
159	3-kinase, wingless type protein (Wnt) / β -catenin, extracellular regulated kinase 1 or 2
160	(ERK1/2), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, signal
161	transducer and activator of transcription (STAT3), and nuclear factor κB (NF- κB).
162	(16) Furthermore, there are emerging data on the role of T-cadherin, an adiponectin-
163	binding protein, which docks adiponectin to responsive tissues, as demonstrated in the
164	heart, muscle and vasculature(17). While both in vivo and in vitro studies had shown
165	that T-cadherin inhibited tumour cell proliferation and invasiveness(18), there have
166	also been a few studies suggesting that it may promote tumour angiogenesis. (17)
167	Nevertheless, hypoadiponectinaemia in general increases fatty acid and protein
168	synthesis (and hence promotes cell growth), proliferation, and DNA-mutagenesis, and
169	inhibits cell cycle arrest and apoptosis. (16) Furthermore, hypoadiponectinaemia also
170	indirectly affects tumorigenesis via several mechanisms. Firstly, insulin resistance is
171	increased, with resultant elevation in insulin and bioavailable IGF1 levels, which
172	enhance tumour cellular proliferation. Secondly, as adipocytes constitute one of the
173	predominant stromal cell types in the tumour microenvironment, adiponectin could
174	act as a stromal factor that helps balance the local redox and metabolism. (19) Finally,

175	hypoadiponectinaemia exerts pro-inflammatory effects via enhancing the production
176	of various proinflammatory cytokines including TNF- α and IL-6, further contributing
177	to the tumour permissive microenvironment that facilitates tumourigenesis. (9, 10)
178	
179	Adiponectin and breast cancer
180	The association between adiponectin and breast cancer risk depends on menopausal
181	status. Conflicting data have been reported regarding the association in pre-
182	menopausal women. Macis et al. reported that low serum adiponectin levels predicted
183	incident breast neoplastic events independently of age and BMI in pre-menopausal
184	women (20). However, in a recent meta-analysis involving 4249 breast cancer cases
185	and including those studied by Macis et al (20), the inverse association between serum
186	adiponectin level and breast cancer risk did not reach statistical significance in
187	premenopausal women (relative risk 0.72; 95% CI $0.30 - 1.72$) (21). On the other
188	hand, two large meta-analyses demonstrated clearly a consistent inverse association in
189	post-menopausal women (21-23), with every increment of 3ug/ml in adiponectin level
190	corresponding to a 5% risk reduction in post-menopausal breast cancer. (21)
191	
192	Breast cancer is one of the most common hormone-dependent cancers, and its positive
193	correlation with obesity, especially in post-menopausal women, is explained, at least
194	in part, by the increase in aromatase activity in the expanded adipocyte tissue. On the
195	other hand, in vitro studies from our group had demonstrated that, adiponectin
196	inhibited cell proliferation and induced apoptosis of human breast cancer cell-lines,
197	independent of the presence of the estrogen receptor. (19, 24) Furthermore, in
198	MMTV-polyomavirus middle T antigen (MMTV-PyVT) transgenic mice with
199	reduced adiponectin expressions, hypoadiponectinaemia promoted mammary

200	tumourigenesis by down-regulation of phosphatase and tensin homolog (PTEN)
201	activity. (25) In addition, treatment with recombinant adiponectin reduced mammary
202	tumourigenesis in nude mice through suppressing the Wnt / glycogen synthase kinase
203	(GSK)-3 β / β -catenin pathway. Increased β -catenin activity correlated significantly
204	with worse prognosis. (24) These preclinical data have provided mechanistic insight
205	on the association between hypoadiponectinaemia and biologically aggressive tumour
206	phenotype observed in patients with breast cancer. (26)
207	
208	Adiponectin and prostate cancer
209	In vitro studies demonstrated that adiponectin down-regulated STAT3 signaling and
210	inhibited cell growth and proliferation of both androgen independent and androgen
211	dependent metastatic prostatic cancer cells. (27) However, the association between
212	adiponectin and prostate cancer remains inconclusive, partly due to the scarcity of
213	data. (28) While some evidence suggested that adiponectin was not related to overall
214	prostate cancer risk, there were also data showing that patients with
215	hypoadiponectinaemia suffer from more aggressive, metastatic and fatal prostate
216	cancer. (16, 27) However, a recent nested case-control cohort did not find such an
217	association in 272 cases with aggressive prostate cancer. (29)
218	
219	Adiponectin and gastrointestinal cancers
220	Adiponectin has also been implicated in tumourigenesis of various gastrointestinal
221	cancers. (30)
222	
223	Hypoadiponectaemia increased the risk of Barrett's esophagus, which is more
224	prevalent in obese individuals and is closely associated with the development of

225	esophageal adenocarcinoma. Recently, in vitro studies found that adiponectin could
226	decrease the invasion and migration of esophageal cancer cell lines OE33 via the
227	activation of protein tyrosine phosphatase 1B and, consequently, the inhibition of
228	leptin-induced janus kinase (JAK) signaling. (31) In gastric cancer, adiponectin
229	receptor AdipoR1 expression was associated with a better disease prognosis. Firstly,
230	negative immunostaining for adipoR1 in tumour cells was significantly higher in
231	patients with lymphatic metastases. Secondly, survival analysis revealed a longer
232	survival in those with positive adipoR1 expression. (32) In hepatocellular carcinoma,
233	hypoadiponectinaemia increased the risk of hepatic adenoma formation in animal
234	studies. When adiponectin-knockout mice were fed a choline-deficient L-amino-acid-
235	defined diet for 24 weeks, they developed more severe non-alcoholic steatohepatitis
236	and also more liver tumours compared to the wild type mice. (33) Liver cancer
237	microarray studies also demonstrated an inverse relationship between adiponectin
238	expression and tumour size, suggesting a role of adiponectin in suppressing the
239	proliferation and de-differentiation of liver cancer. (34) In pancreatic cancer, in-vitro
240	studies also suggested the role of adiponectin in suppressing the proliferation of
241	pancreatic cell lines via its impact on the NF-κB pathway. (30)
242	
243	In the context of colorectal cancer, animal studies had shown that mice lacking
244	adiponectin gene and its receptor, AdipoR1 or AdipoR2 were predisposed to
245	colorectal polyp formation on high fat diet. (35) Furthermore, it was postulated that
246	hypoadiponectinaemia led to increased activity of c-Jun N-terminal kinase (JNK), an
247	oncogene that was abnormally elevated in colorectal cancer. (36) Through signaling
248	pathways involving AMPK and mammalian target of rapamycin (mTOR),
249	hypoadiponectinaemia also promoted colorectal cancer cell growth and inhibited

250	G1/S cell cycle arrest.	(30) A recent meta-analys	sis demonstrated that an inverse
-----	-------------------------	---------------------------	----------------------------------

association between adiponectin and colorectal cancer, among studies with

- 252 prospective design (OR 0.716; 95% CI 0.606 0.847). (37)
- 253

254 Adiponectin and other cancers

255 Previous epidemiological studies showed discrepant results on the association

between adiponectin and endometrial cancer. (27) Some suggested

257 hypoadiponectaemia increased the risk of endometrial cancer independent of other

conventional risk factors including BMI, especially in those younger than 65 years

259 old. (16) A recent prospective cohort involving 167 incident endometrial cancer cases

260 had shown, however, that the association between hypoadiponectaemia and

261 endometrial cancer risk depended upon the use of menopausal hormonal therapy.

262 Inverse association between adiponectin and endometrial cancer, which remained

significant even after adjustment for estradiol levels and BMI, was only observed in

women not on menopausal hormonal therapy, suggesting that adiponectin might

265 influence cancer risk through mechanisms other than estrogen-mediated endometrial

266 proliferation. (38) In fact, adiponectin might exert its anti-cancer effect via the NF-κB

signaling pathway to suppress vascular endothelial growth factor (VEGF) expression.

268 (27) Furthermore, in vitro studies also showed its suppression of endometrial cancer

cell proliferation via enhancing the expression of the adaptor molecule LKB1, which

270 is required for adiponectin-involved activation of AMPK. (39)

271

The association between adiponectin and renal cancer remains inconclusive. A recent case-control study involving 187 cases of renal cell carcinoma has even shown higher adiponectin levels in renal cell cancer cases. (40) Previous studies suggested that

275	AdipoR2 was downregulated in renal cancer tumour tissue, and hence the protective
276	effect of adiponectin might have also been attenuated. (16, 27) Contrary to the above
277	findings, it has also been suggested that adiponectin might be employed as a
278	biomarker for renal cell cancer progression, as both total and high molecular weight
279	oligomers were demonstrated to be higher in patients with localized disease than those
280	with metastatic clear cell carcinoma, the commonest subtype of renal cell carcinoma.
281	(16, 41)
282	
283	Differentiated thyroid carcinoma, which included papillary thyroid carcinoma, was
284	inversely associated with serum adiponectin levels. (42) In addition to the
285	development of incident thyroid cancer, serum adiponectin levels also had implication
286	in its prognosis. Patients with papillary thyroid carcinoma were more likely to have
287	multicentric tumours, or tumours with extrathyroidal invasion and higher TNM stage
288	if their tumour tissues were negative for both AdipoR1 and AdipoR2 expressions.
289	(43)
290	

291 With regard to haematological malignancies, the associations with adiponectin are 292 heterogeneous. Inverse associations had been reported between serum adiponectin 293 levels and risks of incident myelodysplastic syndrome, myeloproliferative disease, 294 childhood myeloblastic leukaemia, monoclonal gammopathy of undetermined 295 significance, multiple myeloma and chronic lymphocytic leukaemia. (16) This is in 296 keeping with the notion that adiponectin inhibited proliferation of cells of myeloid 297 lineage. Furthermore, adiponectin might prevent myeloma risk by suppressing the 298 secretion and action of pro-inflammatory cytokines and their activation of the NF-KB 299 signaling pathway. (44) On the contrary, there had been reports showing that higher

300 levels of serum adiponectin were associated with both adult and childhood non-301 Hodgkin's lymphoma. (16) It has been postulated such an association may be 302 explained by the action of adiponectin in enhancing the secretion of interleukin-10 303 (IL-10), a known growth factor produced by non-Hodgkin's lymphoma cells. (45) 304 305 Leptin 306 Leptin, the product of the Obese (OB) gene, is an adipokine primarily secreted by 307 white adipose tissue. In addition to its key role in energy homeostasis as a satiety 308 hormone, leptin also exerts other effects in an endocrine fashion. In the context of 309 obesity, leptin level increases with the expansion of the adipose tissue mass. In 310 humans, obesity is associated with leptin resistance, further increasing the circulating 311 leptin level. By binding to its receptors (Ob-R), which are expressed in almost every 312 tissue, leptin modulates various downstream signaling pathways (Figure 1) including 313 JAK / STAT3, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3kinase / protein kinase B (PI3K/Akt), ERK1/2, AMPK and insulin receptor substrate 314 315 (IRS) pathways. (9, 11) In contrast to the anti-inflammatory actions of adiponectin, 316 leptin activates inflammatory cell response and induces pro-inflammatory cytokine 317 production. (46) Furthermore, in vitro studies demonstrated that leptin could induce 318 endothelial cell proliferation and activate vascular endothelial growth factor (VEGF), 319 and other proangiogenic factors. (47) These resultant effects make leptin an adipokine 320 with mitogenic, anti-apoptotic and pro-inflammatory properties, all being implicated 321 in carcinogenesis. 322

323 Leptin and breast cancer

Page 14 o

324	As in adiponectin, the association between leptin and breast cancer also seems to
325	depend on menopausal status. While there is consistent evidence showing that serum
326	leptin level correlates positively with breast cancer risk in postmenopausal women, an
327	inverse relationship has been reported in premenopausal subjects. (27, 48, 49)
328	Nonetheless, previous in vitro studies had already demonstrated that leptin promoted
329	mammary tumourigenesis via activation of JAK/STAT3 and PI3K signaling
330	pathways. (50) Leptin has also been shown to affect the prognosis of breast cancer.
331	Leptin-receptor-positive tumours had higher metastatic potential than those that were
332	negative for leptin-receptor. (51) A recent study confirmed that leptin stimulated
333	proliferation of breast cancer cells but not of normal breast cells. In particular, leptin
334	induced proliferation of estrogen-dependent breast cancer cell lines such as MCF7
335	and T47D but not of the estrogen-independent breast cancer cell lines MDA-MB-231.
336	(52) In fact, functional bidirectional crosstalk had been demonstrated between leptin
337	and estrogen receptors. Leptin could amplify estrogen signaling by activation of
338	estrogen receptor- α and aromatase gene (<i>CYP192A</i>) expression. Estradiol, on the
339	other hand, could modulate leptin receptor expression in animal studies and also
340	induced expression of leptin and its receptor in MCF7 breast cancer cells. (50) The
341	effect of leptin on estrogen-independent breast cancers, however, has remained
342	controversial. A study by Colbert et al. in 67 Chinese patients with breast cancer
343	demonstrated that more than 61% of breast cancer tissues, which included estrogen
344	receptor positive, estrogen receptor negative and triple (estrogen, progesterone and
345	HER2 receptors) negative tumours, were stained positive for leptin and its receptor.
346	Furthermore, leptin and its receptor were positively associated with proangiogenic
347	factors like Notch and vascular endothelial growth factor (VEGF), and hence
348	implicated in tumour aggressiveness and poorer prognosis. (53)

349	
350	Leptin and prostate cancer
351	Data on the association between leptin and prostate cancer has also been conflicting.
352	Some studies suggested that higher leptin levels were linked to more advanced and
353	hormone-refractory prostate cancer. (27) In vitro studies demonstrated that leptin
354	exerted its pro-carcinogenic effects via the activation of PI3K, MAPK and JNK-MAP
355	kinase pathways. (27) Leptin could induce proliferation, inhibit apoptosis and
356	promote the migration of androgen-insensitive prostate cell lines DU145 and PC3 but
357	did not have an effect on the androgen-sensitive cell line LNCaP. (28)
358	
359	Leptin and gastrointestinal cancers
360	Although leptin was linked with colorectal cancer risks in multiple epidemiological
361	studies, a recent meta-analysis did not observe any significant association between
362	leptin and colorectal carcinoma. (37) Nonetheless, animal studies had shown that
363	leptin-deficient mice were less prone to colonic polyp formation upon induction by
364	azoxymethane or when fed with a high fat diet, when compared to control mice. (54)
365	Furthermore, leptin could stimulate the proliferation of the human colorectal cancer
366	cell line HCT-116 via the PI3K-AKT signaling pathway. (10) Recently, leptin was
367	shown to induce the proliferation of gastric cancer cells through activation of STAT3
368	and ERK1/2. (55)
369	
370	On the contrary, although studies on the association between leptin and pancreatic

371 cancer are scarce, most of them showed that leptin levels were lower in patients with
372 pancreatic cancer than in controls. While some had attributed the hypoleptinaemia to
373 the weight loss that was commonly observed in pancreatic cancer patients (27), a

Page 16 o

374 recent study suggested that patients with newly diagnosed pancreatic cancer had

375 significantly lower serum leptin levels and these differences were independent of age

and BMI. (56) In vitro studies also showed that leptin could inhibit human pancreatic

377 cancer cell lines PANC-1 and Mia-PaCa. (27)

378

379 Leptin and other cancers

380 A recent prospective cohort study involving 167 incident endometrial cancer cases

381 demonstrated that, as in the case of adiponectin, the association between leptin and

382 endometrial cancer risk also depended upon the use of menopausal hormonal therapy.

383 Leptin was significantly associated with increased risk of endometrial cancer, even

after adjustment for estradiol level and BMI. However, this was only observed in

385 women not on menopausal hormonal therapy, suggesting that leptin might also

386 influence cancer risk through mechanisms other than estrogen-mediated endometrial

387 proliferation. (38)

388

389 The association between leptin and renal cell carcinoma has remained inconclusive

390 over the years. (27) A recent report observed that higher leptin levels were found in

391 patients with renal cell carcinoma, which, though attenuated, remained significant

392 after adjustment for BMI. However, this association was shown to differ by race, as it

393 was significant in Caucasians but not among African Americans. (40)

394

395 In differentiated thyroid cancers, the expression of leptin and its receptor was

associated with a higher risk of lymph node metastases. (42) Moreover, leptin could

397 affect the migration of thyroid cells, conferring higher metastatic potential and worse

398 prognosis. (57) In the context of haematological malignancies, however, no positive

399 associations were reported between leptin levels and multiple myeloma or non-

400 Hodgkin lymphoma. (44, 58)

401

402 Recently, there have been more studies looking into the association between leptin 403 and malignant melanoma. (59, 60) Leptin was found not only to correlate positively 404 with the risk of developing malignant melanoma, but also accelerate tumour growth. 405 Interestingly, it has been proposed that serum leptin receptor levels might possibly be 406 employed as a new tumour marker of malignant melenoma as its levels are inversely 407 associated with the stage of the disease, with highest levels found at the *in situ* stage 408 and lowest at stage IV. (59) 409 410 IL-6, TNF- α and various cancers 411 Both IL-6 and TNF- α are key cytokines involved in inflammation and immunity. 412 They are produced and secreted by several cells, including macrophages and 413 adipocytes. Both M1 and M2 macrophages are present in adipose tissue, but they 414 differ in the profile of cytokines they produced. In the context of obesity, local tissue 415 hypoxia around adipocytes promotes the switch of macrophages from M2 to the M1 416 phenotype. This changes the production profile from anti-inflammatory cytokines like 417 interleukin-10 of the M2 macrophages to pro-inflammatory cytokines like IL-6 and 418 TNF- α of the M1 macrophages. (9) Consequently, both the production and secretion 419 of these two adipokines are increased, and together they enhance tumourigenesis via 420 their pro-inflammatory effects. IL-6 promotes carcinogenesis mainly through the 421 JAK/STAT3 signaling pathway, which is involved in tumour proliferation, survival 422 and angiogenesis. TNF- α , on the other hand, activates the NF- κ B and JNK signaling

423 pathways. (11) Furthermore, both adipokines can promote carcinogenesis through

424 enhancing the conversion of non-cancer cells to tumour stem cells. (10)

425

426	Large amount of epidemiological evidence supported the role of IL-6 and TNF- α in
427	carcinogenesis and its progression. Serum IL-6 was shown to correlate positively with
428	advanced staging in colorectal, breast and cervical cancers, hepatocellular and renal
429	cell carcinoma. (61) The IL-6 receptor/STAT3 pathway also contributed to the
430	pathogenesis of multiple myeloma by protecting the myeloma cells from apoptosis.
431	(62) Furthermore, it had been reported to be associated with poor prognosis in
432	esophageal, gastric, colorectal, pancreatic, bladder, breast, ovarian and prostate
433	cancers, hepatocellular and renal cell carcinoma. (61) Similarly, high levels of
434	circulating TNF- α were found in patients with lung, pancreatic, breast and prostate
435	cancers. (63) In differentiated thyroid cancer, however, the exact role of IL-6 remains
436	to be elucidated. (42) In a Chinese community cohort in Hong Kong with a relatively
437	low prevalence of obesity, we previously demonstrated central obesity predicted
438	cancer development, and baseline IL-6 and soluble TNF receptor 2 levels were
439	independent predictors of incident cancer development after a median interval of 9.5
440	years, even after adjusting for conventional cancer risk factors. (6)
441	
442	Interplay of adipokines in cancers

443 Although adipokine may individually be involved in the development of various

444 obesity-related cancers and impact on their progression, there are diverse and complex

interplay via crosstalk with each other through their respective downstream signaling

- 446 pathways. (Figure 1) In fact, the associations between leptin and some cancers are
- 447 often related to adiponectin as well. In esophageal cancer, for example, leptin-induced

448 proliferation of esophageal adenocarcinoma cell lines could be inhibited by 449 adiponectin via AdipoR1. (30, 31) Similarly, leptin-induced proliferation of 450 hepatocellular tumour cells was also inhibited by adiponectin via the STAT3 451 signaling pathway. (10) 452 453 Other adipokines and cancers 454 Increasing epidemiological evidence has shown that a number of other adipokines are 455 also involved in obesity-related cancers. Neutrophil gelatinase-associated lipocalin 456 (NGAL) or lipocalin-2, for example, was over-expressed in breast, gastric, esophagus 457 and brain cancers. (11) Recently, lipocalin-2 was also noted to be associated with 458 tumour invasiveness, possibly attributed to its ability to scavenge iron into cancer 459 cells. (64) Resistin, another pro-inflammatory adipokine, was found to be present at 460 higher levels in advanced non-small cell lung, colon, breast and prostate cancers. (11) 461 A recent meta-analysis also suggested a consistent positive association between 462 resistin and colorectal cancers, although the number of studies was limited. (37) 463 464 **Clinical and therapeutic implications** 465 Owing to the fast growing prevalence of both obesity and cancer worldwide, together 466 with their associated morbidity and mortality, they have become major global 467 healthcare concerns. 468 469 Tackling obesity and cancer are equally challenging. It was not until recently that 470 there was evidence showing that weight reduction could reduce incident cancer rates. 471 A recent meta-analysis, involving six observational studies on 51740 subjects

472 including the largest prospective Swedish Obese Subjects (SOS) study cohort,

Page 20 o

473 reported a 45% relative risk reduction of cancer in obese subjects after bariatric 474 surgery (95% CI 0.41 – 0.73; p <0.0001). If stratified by gender, the protective effect 475 of bariatric surgery was found to be protective in women but not in men. (65) This 476 might reflect a reduction of sex steroid-related cancer. Nonetheless, several 477 mechanisms had been postulated to link bariatric surgery with cancer risk reduction, 478 and one of them was reported to act via modulation of the adipokines. (66) While 479 adiponectin level was shown to increase for up to 1 year post-operatively, leptin and 480 resistin levels were shown to decrease significantly up to 2 and 6 years after surgery, 481 respectively. (66)

482

483 Adipokines remain one of the major players in obesity related carcinogenesis. Both 484 adipokines and their respective downstream signaling pathways have become novel 485 targets in cancer therapeutics research. As adiponectin itself is difficult to synthesize, 486 synthetic small peptides like ADP-355, which can mimic the action of adiponectin, 487 are being tested in preclinical studies to restrict proliferation of several adiponectin 488 receptor-positive cancer cell lines. (67) Furthermore, as HMW adiponectin constitutes 489 the most active oligomeric form of adiponectin, a novel class of non-thiazolidinedione 490 peroxisome proliferator-activated receptor (PPAR) ligand, AMG131, has been 491 developed to increase the ratio of high molecular weight to total adiponectin 492 concentrations in the circulation. (30) Pegylated leptin receptor antagonist 2 (PEG-493 LPrA2) are also being tested in preclinical studies to reduce the proliferation and 494 angiogenesis of breast cancer cells. (67) Preclinical studies have shown that 495 monoclonal antibodies against IL-6 and its receptors can significantly inhibit tumour 496 growth either alone or in combination with conventional chemotherapy. Among them, 497 siltuximab, a monoclonal antibody against IL-6, is being evaluated in phase 2 clinical

498	trials against transplant-refractory multiple myeloma, hormone-refractory prostate
499	cancer and metastatic renal cell carcinoma. Besides, results have been promising in
500	other solid tumours including ovarian and non-small cell lung cancers. Inhibitors
501	against downstream signaling pathways like JAK or STAT3 inhibitors are also being
502	studied in phase 1 or 2 clinical trials on advanced solid tumours and haematological
503	malignancies. (61)

504

505 Although there are emerging data on the association between genetic polymorphisms 506 of obesity-related genes and cancer susceptibility, there is currently insufficient 507 evidence to recommend their use as predictors for incident cancer, or as prognostic 508 biomarkers in those who have developed cancer. Nevertheless, a recent meta-analysis 509 suggested that the LEP G2548A polymorphism, which had been reported to alter 510 serum leptin levels, was associated with increased overall cancer risk (Odds ratio 511 1.27; 95% CI 1.05 – 1.54). (68) However, with regard to adiponectin, no consistent 512 association has been found between cancer susceptibility and genetic polymorphisms 513 of either the adiponectin gene (ADIPOQ) or adiponectin receptor genes 514 (ADIPOR1/R2) in studies on non-Hodgkin's lymphoma, breast, colorectal and 515 prostate cancers. Three ADIPOQ single nucleotide polymorphisms (SNPs) had been 516 reported to be associated with a reduced risk of endometrial cancer in a Chinese 517 study. However, serum adiponectin level was not measured in that study and whether 518 these SNPs were biologically relevant remained to be elucidated. (16) Therefore, in 519 this era of genetics and epigenetics, future research should be directed towards 520 investigating whether these SNPs can be usefully employed as biomarkers in clinical 521 oncology practice.

522

523 Conclusions

524	With advances in basic and translational research, and assay development, novel
525	adipokines are continually being found to be implicated in obesity-related
526	tumourigenesis. Improved understanding of the interplay of adipokines with various
527	malignancies has unraveled the pathogenic mechanisms underlying the associations
528	between obesity and cancer, and led to more targeted cancer therapeutics to counter
529	the increasing challenge posed by obesity-related cancers, consequent to the obesity
530	epidemic.
531	
532	
533	
534	

References:

1. Renehan AG, Tyson M, Egger M *et al.* (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. *Lancet*, **371**, 569-578.

2. Calle EE, Rodriguez C, Walker-Thurmond K *et al.* (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. *N Eng J Med*, **348**, 1625-1638.

3. Bhaskaran K, Douglas I, Forbes H *et al.* (2014) Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. *Lancet*, **384**, 755-765

4. Parr CL, Batty GD, Lam TH *et al.* (2011) Body-mass index and cancer mortality in the Asia-Pacific Cohort Studies Collaboration: pooled analyses of 424,519 participants. *Lancet Oncol*, **11**, 741-752.

5. Consultation WHOE. (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. *Lancet*, **363**, 157-163.

6. Yeung CY, Tso AW, Xu A *et al.* (2013) Pro-inflammatory adipokines as predictors of incident cancers in a chinese cohort of low obesity prevalence in Hong Kong. *PloS one*, **8**, e78594.

7. Chan DS, Vieira AR, Aune D *et al.* (2014) Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. *Ann Oncol*, $\mathbf{0}$, 1-14.

8. Cao Y, Ma J. (2011) Body mass index, prostate cancer-specific mortality, and biochemical recurrence: a systematic review and meta-analysis. *Cancer Prev Res* (*Philia*), **4**, 486-501.

9. Perez-Hernandez AI, Catalan V, Gomez-Ambrosi J *et al.* (2014) Mechanisms linking excess adiposity and carcinogenesis promotion. *Front Endocrinol (Lausanne)*, **5**:65.

10. Park J, Morley TS, Kim M *et al.* (2014) Obesity and cancer-mechanisms underlying tumour progression and recurrence. *Nat Rev Endocrinol*, **10**, 455-465.

11. Raucci R, Rusolo F, Sharma A *et al.* (2013) Functional and structural features of adipokine family. *Cytokine*, **61**, 1-14.

12. Harvey AE, Lashinger LM, Hursting SD. (2011) The growing challenge of obesity and cancer: an inflammatory issue. *Ann N Y Acad Sci*, **1229**, 45-52.

13. Arner E, Forrest AR, Ehrlund A *et al.* (2014) Ceruloplasmin is a novel adipokine which is overexpressed in adipose tissue of obese subjects and in obesity-associated cancer cells. *PloS one*, **9**, e80274.

14. Hui X, Lam KS, Vanhoutte PM *et al.* (2012) Adiponectin and cardiovascular health: an update. *Br J Pharmacol*, **165**, 574-590.

15. Wang Y, Lam KS, Xu JY *et al.* (2005) Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. *J Biol Chem*, **280**, 18341-18347.

16. Dalamaga M, Diakopoulos KN, Mantzoros CS. (2012) The role of adiponectin in cancer: a review of current evidence. *Endocr Rev*, **33**, 547-594.

17. Hebbard L, Ranscht B (2014) Multifaceted roles of adiponectin in cancer. *Best Pract Res Clin Endocrinol Metab*, **28**, 59-69.

18. Duan XS, Lu J, Ge ZH *et al.* (2013) Effects of T-cadherin expression on B16F10 melanoma cells. *Oncol Lett*, **5**, 1205-1210.

19. Wang Y, Lam KS, Xu A. (2007) Adiponectin as a negative regulator in obesity-related mammary carcinogenesis. *Cell Res*, **17**, 280-282.

20. Macis D, Gandini S, Guerrieri-Gonzaga A *et al.* (2012) Prognostic effect of circulating adiponectin in a randomized 2 x 2 trial of low-dose tamoxifen and fenretinide in premenopausal women at risk for breast cancer. *J Clin Oncol*, **30**, 151-157.

21. Macis D, Guerrieri-Gonzaga A, Gandini S. (2014) Circulating adiponectin and breast cancer risk: a systematic review and meta-analysis. *Int J Epidemiol*, **43**, 1226-1236.

22. Ye J, Jia J, Dong S *et al.* (2014) Circulating adiponectin levels and the risk of breast cancer: a meta-analysis. *Eur J Cancer Prev*, **23**, 158-165.

23. Liu LY, Wang M, Ma ZB *et al.* (2013) The role of adiponectin in breast cancer: a meta-analysis. *PloS one*, **8**, e73183.

24. Wang Y, Lam JB, Lam KS *et al.* (2006) Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. *Cancer Res*, **66**, 11462-11470.

25. Lam JB, Chow KH, Xu A *et al.* (2009) Adiponectin haploinsufficiency promotes mammary tumor development in MMTV-PyVT mice by modulation of phosphatase and tensin homolog activities. *PloS one*, **4**, e4968.

26. Dalamaga M. (2013) Obesity, insulin resistance, adipocytokines and breast cancer: New biomarkers and attractive therapeutic targets. *World J Exp Med*, **3**, 34-42.

27. Paz-Filho G, Lim EL, Wong ML *et al.* (2011) Associations between adipokines and obesity-related cancer. *Front Biosci (Landmark Ed)*, 16, 1634-1650.
28. Allott EH, Masko EM, Freedland SJ. (2013) Obesity and prostate cancer:

weighing the evidence. *Eur Urol*, **63**, 800-809.

29. Stevens VL, Jacobs EJ, Sun J *et al.* (2014) No association of plasma levels of adiponectin and c-peptide with risk of aggressive prostate cancer in the Cancer Prevention Study II Nutrition Cohort. *Cancer Epidemiol Biomarkers Prev*, **23**, 890-892.

30. Nagaraju GP, Aliya S, Alese OB. (2014) Role of adiponectin in obesity related gastrointestinal carcinogenesis. *Cytokine Growth Factor Rev*, epub ahead of print.

31. Beales IL, Garcia-Morales C, Ogunwobi OO *et al.* (2014) Adiponectin inhibits leptin-induced oncogenic signalling in oesophageal cancer cells by activation of PTP1B. *Mol Cell Endocrinol*, **382**, 150-158.

32. Tsukada T, Fushida S, Harada S *et al.* (2011) Adiponectin receptor-1 expression is associated with good prognosis in gastric cancer. *J Exp Clin Cancer Res*, **30**, 107.

33. Kamada Y, Matsumoto H, Tamura S *et al.* (2007) Hypoadiponectinemia accelerates hepatic tumor formation in a nonalcoholic steatohepatitis mouse model. *J Hepatol*, **47**, 556-564.

34. Saxena NK, Fu PP, Nagalingam A *et al.* (2010) Adiponectin modulates C-jun N-terminal kinase and mammalian target of rapamycin and inhibits hepatocellular carcinoma. *Gastroenterology*, **139**, 1762-1773.

35. Fujisawa T, Endo H, Tomimoto A *et al.* (2008) Adiponectin suppresses colorectal carcinogenesis under the high-fat diet condition. *Gut*, **57**, 1531-1538.

36. Endo H, Hosono K, Fujisawa T *et al.* (2009) Involvement of JNK pathway in the promotion of the early stage of colorectal carcinogenesis under high-fat dietary conditions. *Gut*, **58**, 1637-1643.

37. Joshi RK, Lee SA. (2014) Obesity related adipokines and colorectal cancer: a review and meta-analysis. *Asian Pac J Cancer Prev*, **15**, 397-405.

38. Luhn P, Dallal CM, Weiss JM *et al.* (2013) Circulating adipokine levels and endometrial cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. *Cancer Epidemiol Biomarkers Prev*, **22**, 1304-1312.

39. Moon HS, Chamberland JP, Aronis K *et al.* (2011) Direct role of adiponectin and adiponectin receptors in endometrial cancer: in vitro and ex vivo studies in humans. *Mol Cancer Ther*, **10**, 2234-2243.

40. Liao LM, Schwartz K, Pollak M *et al.* (2013) Serum leptin and adiponectin levels and risk of renal cell carcinoma. *Obesity*, **21**, 1478-1485.

41. Horiguchi A, Ito K, Sumitomo M *et al.* (2008) Decreased serum adiponectin levels in patients with metastatic renal cell carcinoma. *Jpn J Clin Oncol*, **38**, 106-111.
42. Marcello MA, Cunha LL, Batista FA *et al.* (2014) Obesity and thyroid cancer. *Endoc Relat Can.*

43. Cheng SP, Liu CL, Hsu YC *et al.* (2013) Expression and biologic significance of adiponectin receptors in papillary thyroid carcinoma. *Cell Biochem Biophys*, **65**, 203-210.

44. Hofmann JN, Liao LM, Pollak MN *et al.* (2012) A prospective study of circulating adipokine levels and risk of multiple myeloma. *Blood*, **120**, 4418-4420.

45. Sanz-Garcia C, Nagy LE, Lasuncion MA *et al.* (2014) Cot/tpl2 participates in the activation of macrophages by adiponectin. *J Leuko Biol*, **95**, 917-930.

46. Conde J, Scotece M, Abella V *et al.* (2014) An update on leptin as immunomodulator. *Expert Rev Clin Immunol*, **10**, 1165-1170.

47. Park HY, Kwon HM, Lim HJ *et al.* (2001) Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. *Exp Mol Med*, **33**, 95-102.

48. Harris HR, Tworoger SS, Hankinson SE *et al.* (2011) Plasma leptin levels and risk of breast cancer in premenopausal women. *Cancer Prev Res*, **4**, 1449-1456.

49. Niu J, Jiang L, Guo W *et al.* (2013) The association between Leptin Level and Breast Cancer: A Meta-Analysis. *PloS one*, **8**, e67349.

50. Ando S, Catalano S. (2012) The multifactorial role of leptin in driving the breast cancer microenvironment. *Nat Rev Endocrinol*, **8**, 263-275.

51. Ishikawa M, Kitayama J, Nagawa H. (2004) Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. *Clin Cancer Res*, **10**, 4325-4331.

52. Dubois V, Jarde T, Delort L *et al.* (2014) Leptin induces a proliferative response in breast cancer cells but not in normal breast cells. *Nutr Cancer*, **66**, 645-655.

53. Colbert LS, Wilson K, Kim S *et al.* (2014) NILCO biomarkers in breast cancer from Chinese patients. *BMC Cancer*, **14**:249.

54. Endo H, Hosono K, Uchiyama T *et al.* (2011) Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis. *Gut*, **60**, 1363-1371.

55. Lee KN, Choi HS, Yang SY *et al.* (2014) The role of leptin in gastric cancer: clinicopathologic features and molecular mechanisms. *Biochem Biophys Res Commun*, **446**, 822-829.

56. Gasiorowska A, Talar-Wojnarowska R, Kaczka A *et al.* (2013) Role of adipocytokines and its correlation with endocrine pancreatic function in patients with pancreatic cancer. *Pancreatology*, **13**, 409-414.

57. Cheng SP, Yin PH, Chang YC *et al.* (2010) Differential roles of leptin in regulating cell migration in thyroid cancer cells. *Oncol Rep*, **23**, 1721-1727.

58. Conroy SM, Maskarinec G, Morimoto Y *et al.* (2013) Non-hodgkin lymphoma and circulating markers of inflammation and adiposity in a nested case-control study: the multiethnic cohort. *Cancer Epidemiol Biomarkers Prev*, **22**, 337-347.

59. Mizutani H, Fukushima S, Masuguchi S *et al.* (2013) Serum levels of leptin receptor in patients with malignant melanoma as a new tumor marker. *Exp Dermatol*, **22**, 748-749.

60. Chi M, Chen J, Ye Y *et al.* (2014) Adipocytes contribute to resistance of human melanoma cells to chemotherapy and targeted therapy. *Curr Med Chem*, **21**, 1255-1267.

61. Taniguchi K, Karin M. (2014) IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. *Semin Immunol*, **26**, 54-74.

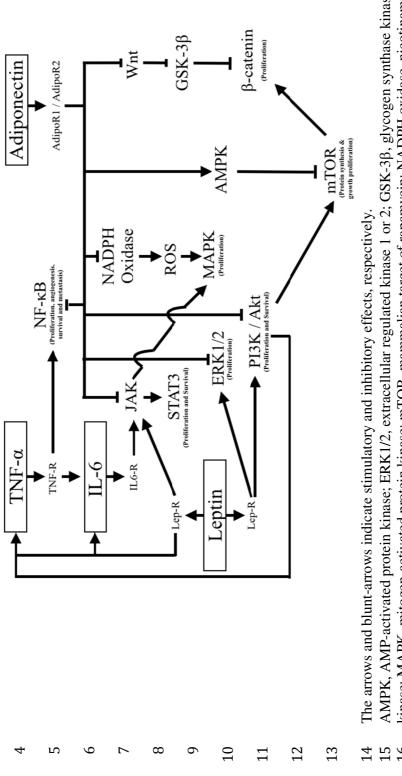
62. Chatterjee M, Stuhmer T, Herrmann P *et al.* (2004) Combined disruption of both the MEK/ERK and the IL-6R/STAT3 pathways is required to induce apoptosis of multiple myeloma cells in the presence of bone marrow stromal cells. *Blood*, **104**, 3712-3721.

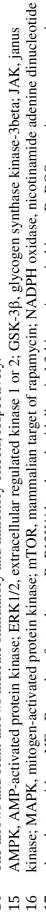
63. Guadagni F, Ferroni P, Palmirotta R *et al.* (2007) TNF/VEGF cross-talk in chronic inflammation-related cancer initiation and progression: an early target in anticancer therapeutic strategy. *In vivo*, **21**, 147-161.

64. Lippi G, Meschi T, Nouvenne A *et al.* (2014) Neutrophil gelatinase-associated lipocalin in cancer. *Adv Clin Chem*, **64**,179-219.

65. Tee MC, Cao Y, Warnock GL *et al.* (2013) Effect of bariatric surgery on oncologic outcomes: a systematic review and meta-analysis. *Surg Endosc*, **27**, 4449-4456.

66. Ashrafian H, Ahmed K, Rowland SP *et al.* (2011) Metabolic surgery and cancer: protective effects of bariatric procedures. *Cancer*, **117**, 1788-1799.


67. Khan S, Shukla S, Sinha S *et al.* (2013) Role of adipokines and cytokines in obesity-associated breast cancer: therapeutic targets. *Cytokine Growth Factor Rev*, **24**, 503-513.


68. He J, Xi B, Ruiter R *et al.* (2013) Association of LEP G2548A and LEPR Q223R polymorphisms with cancer susceptibility: evidence from a meta-analysis. *PloS one*, **8**, e75135.

Type of cancer	ADP level	Possible effects of ADP on cancer cells	LEP level	Possible effects of LEP on cancer cells	References
Esophagus	\rightarrow	Inhibit proliferation, decrease invasion and migration	←	Increase proliferation	(31)
Stomach	\rightarrow	Inhibit proliferation and decrease	~	Increase proliferation	(32, 55)
Colon	\rightarrow	Inhibit proliferation and decrease invasion	*	Increase proliferation	(10, 30, 36, 37)
Liver	\rightarrow	Inhibit proliferation, decrease invasion and migration	←	Increase proliferation	(10, 33, 34)
Pancreas	\rightarrow	Inhibit proliferation	\rightarrow	Inhibit proliferation	(27, 30, 56)
Breast	*	Inhibit proliferation and decrease aggressiveness	↑ (Post-menopausal) ↓ (Pre-menopausal)	Increase proliferation and metastases	(19-21, 24, 26, 48- 50, 52, 53)
Uterine	\rightarrow	Inhibit proliferation	- -	Increase cancer risk	(38, 39)
Prostate	$\stackrel{*}{\rightarrow}$	Inhibit proliferation, decrease aggressiveness and migration	*	Increase proliferation and migration	(27-29)
Thyroid	\rightarrow	Inhibit proliferation, decrease invasion and migration	←	Increase migration and metastases	(42, 43)
Lymphoma	←	Increase proliferation	Inconclusive		(45, 58)
Myeloma	\rightarrow	Inhibit proliferation	Inconclusive		(44)
Kidney	~	Increase metastases	Inconclusive	N/A	(40, 41, 57)
Melanoma	Inconclusive	N/A	~	Increase cancer risk and invasion	(59, 61)

phosphate oxidase; NF-kB, nuclear factor kappa B; P13K/Akt, phosphatidylinositol 3-kinase / protein kinase B; ROS, reactive oxygen species; 17 18 19

STAT3, signal transducer and activator of transcription; TNFR, tumour necrosis factor alpha receptor; Wnt, wingless type protein

Type of cancer	ADP level	Possible effects of ADP on cancer cells	LEP level	Possible effects of LEP on cancer cells	References
Esophagus	\rightarrow	Inhibit proliferation, decrease invasion and migration	←	Increase proliferation	(1)
Stomach	\rightarrow	Inhibit proliferation and decrease	←	Increase proliferation	(2, 3)
Colon	\rightarrow	migration Inhibit proliferation and decrease invasion	*	Increase proliferation	(4-7)
Liver	\rightarrow	Inhibit proliferation, decrease invasion and migration	~	Increase proliferation	(4, 8, 9)
Pancreas	\rightarrow	Inhibit proliferation	\rightarrow	Inhibit proliferation	(7, 10, 11)
Breast	$\xrightarrow{*}$	Inhibit proliferation and decrease aggressiveness	↑ (Post-menopausal) ↓ (Pre-menopausal)	Increase proliferation and metastases	(12-21)
Uterine	\rightarrow	Inhibit proliferation	←	Increase cancer risk	(22, 23)
Prostate	$\stackrel{*}{\rightarrow}$	Inhibit proliferation, decrease	*	Increase proliferation and	(11, 24, 25)
Thyroid	\rightarrow	Inhibit proliferation, decrease invasion and migration	¢	Increase migration and metastases	(26, 27)
Lymphoma	←	Increase proliferation	Inconclusive		(28, 29)
Myeloma	\rightarrow	Inhibit proliferation	Inconclusive		(30)
Kidney	~	Increase metastases	Inconclusive	N/A	(31-33)
Melanoma	Inconclusive	N/A	~	Increase cancer risk and invasion	(34, 35)

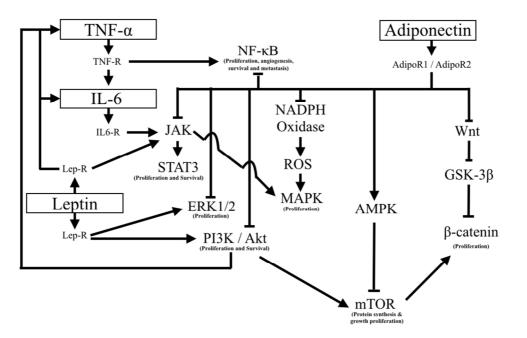


Figure 1: Schematic diagram showing the interaction of various major adipokines and their downstream signaling pathways 361x270mm (72 x 72 DPI)