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Abstract—Neurons in the mammalian retina expressing the

photopigment melanopsin have been identified as a class

of intrinsically photosensitive retinal ganglion cells

(ipRGCs). This discovery more than a decade ago has

opened up an exciting new field of retinal research, and fol-

lowing the initial identification of photosensitive ganglion

cells, several subtypes have been described. A number of

studies have shown that ipRGCs subserve photoentrain-

ment of circadian rhythms. They also influence other non-

image forming functions of the visual system, such as the

pupillary light reflex, sleep, cognition, mood, light aversion

and development of the retina. These novel photosensitive

neurons also influence form vision by contributing to con-

trast detection. Furthermore, studies have shown that

ipRGCs are more injury-resistant following optic nerve

injury, in animal models of glaucoma, and in patients with

mitochondrial optic neuropathies, i.e., Leber’s hereditary

optic neuropathy and dominant optic atrophy. There is also

an indication that these cells may be resistant to glutamate-

induced excitotoxicity. Herein we provide an overview of
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ipRGCs and discuss the injury-resistant character of these

neurons under certain pathological and experimental condi-

tions. � 2014 The Authors. Published by Elsevier Ltd. on

behalf of IBRO. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).

Key words: melanopsin, intrinsically photosensitive retinal

ganglion cell, injury, survival.

Contents

Introduction 845

Intrinsically photosensitive RGCs (ipRGCs) 846

Multiple types of ipRGC 846

ipRGCs are resistant to injury 848

ipRGCs are resistant to optic nerve damage 848

ipRGCs are resistant to damage in animal models of

glaucoma 849

ipRGCs and inherited optic neuropathies 849

ipRGCs are protected from N-methyl-D-aspartate

(NMDA)-induced excitotoxicity 850

Conclusion 850

Grant information 851

References 851

INTRODUCTION

Rods and cones were long believed to be the only

mammalian photo-sensitive cells. Phototransduction

signals from these cells propagate through the retinal

circuitry to modulate action potential firing in retinal

ganglion cells (RGCs), the projection neurons of the

retina. RGCs send the light information via their axons,

which constitute the optic nerve, to targets in the brain,

such as the lateral geniculate nucleus (LGN) of the

thalamus, the midbrain superior colliculus (SC), and the

hypothalamic suprachiasmatic nucleus (SCN) which

mediate form vision, orienting and avoidance responses,

and photoentrainment of circadian rhythms, respectively.

The LGN relays light information further to the visual

cortex for the complex processing necessary for visual

perception (Pickard and Sollars, 2012).

In the 1980s, data began accumulating to suggest that

circadian rhythms generated by the SCN circadian clock

could be shifted in mice in which virtually all classic

photoreceptors had degenerated. Moreover, the spectral

sensitivity of the photoreceptor that produced these

behavioral phase shifts was unlike that of either rods or
/licenses/by/3.0/).
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cones (Foster et al., 1991; Provencio et al., 1994;

Yoshimura and Ebihara, 1996). Importantly, the light-

induced effects on SCN-clock function in rodless/cone-

less mice still required illumination of the eyes

(Freedman et al., 1999; Lucas et al., 1999). These find-

ings offered the possibility that not all light signals trans-

mitted from the retina to the brain begin with the rod

and cone photoreceptors in the eye. This was further

supported by observations that: (1) light remained effec-

tive in suppressing pineal melatonin secretion and

entraining the circadian rhythms in blind patients with

severe loss of rods and cones (Czeisler et al., 1995),

and (2) photic activation of the SCN was found in newborn

mice which had yet to complete development of the retinal

rod and cone circuitry (Weaver and Reppert, 1995). Col-

lectively, these reports raised the otherwise unanticipated

possibility of the existence of a third photoreceptor in the

mammalian eye.

Intrinsically photosensitive RGCs (ipRGCs)

The above-mentioned observations motivated the search

for novel photopigments in the mammalian retina.

Provencio and his colleagues identified a new opsin,

termed melanopsin that was expressed in both primate

and rodent retinas but in RGCs rather than rods or

cones (Provencio et al., 1998, 2000). Shortly thereafter

a vitamin A-based photopigment with peak sensitivity to

�480-nm light was identified functionally in rodless/cone-

less mice using the pupillary light reflex as a behavioral

response (Lucas et al., 2001). The search culminated in

2002 with the breakthrough discovery of ipRGCs

(Berson et al., 2002; Hattar et al., 2002). Berson and his

colleagues (2002) found that SCN-projecting RGCs

responded to light by depolarizing and increasing their fir-

ing rate. Electrophysiological analyses showed that these

SCN-projecting RGCs respond to light after pharmacolog-

ical blockade of all signals from the rods and cones, and

even after ipRGCs were physically isolated from the rest

of the retina. It was concluded that RGCs projecting to

the SCN were bona fide photoreceptors, and that these

unconventional RGCs probably expressed the recently

identified melanopsin protein. Hattar and coworkers

(2002) confirmed these observations by showing that

indeed these light-responsive RGCs expressed melanop-

sin and were afferent to the SCN. Additional studies con-

firmed that melanopsin was the photopigment responsible

for bestowing photosensitivity to these RGCs (Panda

et al., 2002; Ruby et al., 2002; Lucas et al., 2003). It is

now widely acknowledged that, in adult mammals, mela-

nopsin is expressed only in ipRGCs, not in other cell

types, and melanopsin is distributed throughout the

plasma membrane of both the somata and their dendrites

(Belenky et al., 2003; Do et al., 2009).

Multiple types of ipRGC

Initially identified as a single type of RGC (Berson et al.,

2002; Hattar et al., 2002), additional morphological and

physiological studies have revealed that ipRGCs

comprise a far more complex population than originally

thought. Based on their morphology, molecular markers,
retinofugal projections, intrinsic photosensitivity, melanop-

sin protein level, and other electrophysiological properties,

ipRGCs are at present believed to comprise at least six

types, namely M1–M6 (Fig. 1) (Sekaran et al., 2003; Tu

et al., 2005; Jusuf et al., 2007; Viney et al., 2007; Baver

et al., 2008; Schmidt et al., 2008, 2014; Badea et al.,

2009; Schmidt and Kofuji, 2009; Ecker et al., 2010;

Pérez de Sevilla Müller et al., 2010; Estevez et al., 2012;

Sand et al., 2012; Zhao et al., 2014), with M6 being

recently identified (Quattrochi et al., 2013).

The best-characterized ipRGCs are the M1, M2 and

M3 types. The majority of M1 cells are located in the

ganglion cell layer (GCL) (with some displaced to the

inner nuclear layer) and these cells constitute only about

1% (700–900 overall) of the mouse RGC population, but

their �300-lm diameter dendritic fields tile the entire

retinal surface (Berson et al., 2010). The most distinguish-

able feature among ipRGC subtypes is the region in which

their dendrites stratify in the inner plexiform layer (IPL)

(Fig. 1). M1 cell dendrites stratify at the outermost margin

of the IPL, at the border with the inner nuclear layer (INL)

(for review, see Schmidt et al., 2011). This is the classic

physiologic ‘‘OFF-sublamina’’ of the IPL where OFF-bipo-

lar cells distribute their axon terminals. Despite their den-

drites terminating in the OFF-sub-lamina, M1 cells receive

synaptic input from ON-bipolar cells in what has been

termed an accessory ON-layer (Dumitrescu et al., 2009;

Hoshi et al., 2009). M1 cells have a noticeably high level

of melanopsin immunoreactivity (Hattar et al., 2006;

Baver et al., 2008). Consequently, M1 cells show the

highest intrinsic photosensitivity among the ipRGC types

and they also produce the largest intrinsic photocurrent

(Schmidt and Kofuji, 2009; for review, see Do and Yau,

2010). A subset of ipRGCs, most likely M1 cells, has intra-

retinal collateral axonal branches that terminate in the IPL

(Joo et al., 2013). These collateral branches are probably

responsible for the light-driven responses of dopaminer-

gic amacrine cells that exhibit sustained melanopsin-

dependent light responses (Zhang et al., 2008, 2012).

Unexpectedly, M1 ipRGCs have recently been described

to send axons into the iris and ciliary body where they

appear to participate in the pupillary light reflex (Schmidt

et al., 2013; Semo et al., 2014).

Compared with M1 ipRGCs, M2 ipRGCs have larger

somata and a more complex dendritic arbor (Hattar

et al., 2006; Schmidt and Kofuji, 2009; Berson et al.,

2010). The number of M2 cells is similar to M1 cells and

M2 ipRGCs also tile the entire retina (Hattar et al.,

2006; Berson et al., 2010). Importantly, the dendrites of

M2 ipRGCs stratify in the ON-sublamina of the IPL near

the border with the GCL (Hattar et al., 2006; Baver

et al., 2008; Schmidt and Kofuji, 2009). M2 ipRGCs have

an intrinsic photosensitivity that is less than the intrinsic

photosensitivity of M1 ipRGCs and they produce a 10-fold

smaller maximum photocurrent (Schmidt and Kofuji,

2009). However, they can fire action potentials at far

higher frequencies than the M1 cells (Schmidt and

Kofuji, 2009). Thus, synaptic input may be more important

for driving the M2 ipRGCs over their full dynamic range

than it is for driving the M1 cells (for review, see Do and

Yau, 2010).



Fig. 1. Morphology of five types of intrinsically photosensitive retinal ganglion cell (ipRGC). Top: en face view (scale bar = 100 lm). Bottom:

Dendritic stratification as viewed in schematic radial section. Pale blue bands in the inner plexiform layer (IPL) are the ON and OFF cholinergic

bands. There are two bands of melanopsin dendrites, both outside the cholinergic bands. One lies at the margin of the inner nuclear layer (INL), and

the second, broader band sits close to the ganglion cell layer (GLC). The outer band contains processes of M1 and M3 cells, the inner one the

processes of M2, M3, M4, and M5 cells. There are subtle differences in stratification among the inner-stratifying population. Image from ‘Intrinsically

photosensitive retinal ganglion cells’, Berson DM, reprinted courtesy of The MIT Press from The New Visual Neurosciences edited by John S.

Werner and Leo M. Chalupa.

Q. Cui et al. / Neuroscience 284 (2015) 845–853 847
The dendrites of M3 ipRGCs bistratify in both the inner

ON and outer OFF-sublaminae of the IPL, and comprise

less than 10% of the ipRGCs (Berson et al., 2010;

Schmidt et al., 2011). Detailed analyses of the M3

ipRGCs have revealed that these bistratified RGCs, in

contrast to other bistratified RGCs, show variability in

the proportion of dendritic stratification in the ON and

OFF sublaminae and their dendritic fields do not cover

the entire retina (Schmidt and Kofuji, 2011). This has

led to questioning whether these RGCs actually represent

a specific type of ipRGC (Berson et al., 2010). The M3

ipRGCs are otherwise similar to M2 cells in the size and

complexity of their dendritic arbors (Schmidt and Kofuji,

2011). All other ipRGC types including M3 cells are less

intrinsically photosensitive than M1 ipRGCs (Schmidt

and Kofuji, 2009, 2011; Ecker et al., 2010). This variation

in intrinsic photosensitivity may be associated with the dif-

ferent levels of melanopsin in these ipRGC types,

because compared to M1 cells, melanopsin abundance

appears to be lower in the M2 cells and even lower in

the M3 ipRGCs (Schmidt and Kofuji, 2009; Berson

et al., 2010; Ecker et al., 2010; Estevez et al., 2012).

Thus, ipRGCs as a class may tune their intrinsic sensitiv-

ities by their level of melanopsin expression (for review,

see Schmidt et al., 2011).

In a study using transgenic mice in which a green

fluorescent protein labels melanopsin RGCs, two

additional types of ipRGC, M4 and M5, were revealed

(Ecker et al., 2010). Both of these ipRGC types stratify in

the ON sublamina of the IPL, but each has a unique mor-

phology and can be differentiated from M2 cells (Fig. 1).

M4 cells have the largest soma of any described ipRGC

subtype, as well as larger and even more complex den-

dritic arbors than M2 cells (Ecker et al., 2010). By contrast,

M5 ipRGCs have small, highly branched arbors arrayed

uniformly around the soma (Ecker et al., 2010; for review,

see Schmidt et al., 2011). Owing to the low expression

level of melanopsin, M4 and M5 subtypes can only be

labeled with melanopsin antibody after immunostaining

amplification techniques are performed. Consistent with

very low levels of melanopsin, these cells exhibit a weak
intrinsic light response (Ecker et al., 2010). Nevertheless,

the melanopsin-driven intrinsic photo-response of M4

ipRGCs appears to play a functional role contributing to

visual contrast sensitivity and also allowing these cells to

signal prior light exposure and environmental luminance

over long periods of time (Schmidt et al., 2014). Prelimin-

ary observations from a transgenic mouse line in which the

Cadherin-3 promoter drives enhanced green fluorescent

protein (EGFP) expression, have identified a new ipRGC

tentatively referred to as M6. These cells have spiny, den-

sely branched dendritic arbors that often stratify in two

sub-laminae of the IPL, express very low levels of mela-

nopsin and produce small intrinsic light responses similar

to M4 and M5 ipRGCs (Quattrochi et al., 2013). Although

the function of M6 ipRGCs remains to be determined, their

projections overlap with those of other ipRGCs, terminat-

ing in the olivary pretectal nucleus (OPN) and the intergen-

iculate leaflet (IGL) (Quattrochi et al., 2013).

The discovery of ipRGCs provided the final proof that

some light responses in mammals could originate with

non-rod, non-cone photoreceptors in the retina. It also

represented a breakthrough in our understanding of the

retinal circuitry responsible for a number of biological

functions. The past decade has seen this fundamental

discovery expand in a number of important directions

(Lucas, 2013). Briefly, it is now clear that ipRGCs target

numerous discrete brain regions involved in both non-

image-forming and image-forming vision (Pickard, 1985;

Morin et al., 2003; Hattar et al., 2006; Fig. 2). In addition

to their critical role in mediating circadian photoentrain-

ment, ipRGCs also contribute signals regulating the pupil-

lary light reflex and influencing sleep (Berson et al., 2002;

Göz et al., 2008; Güler et al., 2008; Hatori et al., 2008; Tsai

et al., 2009; Altimus et al., 2010). During late gestation

ipRGCs are responsible for mediating the effects of light

on retinal development (Rao et al., 2013). During the early

neonatal period ipRGCs are responsible for behavioral

responses to light (i.e., negative phototaxis) before the

rod/cone circuitry is fully developed (Johnson et al.,

2010). Notable central targets of ipRGCs are the SCN

and the IGL for circadian entrainment, the OPN for the



Fig. 2. Central targets for intrinsically photosensitive retinal ganglion

cells (ipRGCs). Visual-related nuclei are shown in red and non-

imaging centers are shown in green. The illustration is descriptive as

ipRGC projections are not uniform in density. Abbreviations (func-

tions involved): SCN, suprachiasmatic nucleus (circadian rhythms);

SC, superior colliculus (vision and eye movement); LGv, lateral

geniculate nucleus, ventral division (visuomotor functions); IGL,

intergeniculate leaflet (circadian rhythms); OPN, olivary pretectal

nucleus (pupillary light reflex); PAG, the rostral periaqueductal gray

(conditioned fear, pain and analgesia); MA, medial amygdaloid

nucleus (reproductive behavior and conditioned fear); SPZ, subpa-

raventricular zone (sleep and wake regulation); pSON, peri-supraop-

tic nucleus (neuroendocrine output); LHb, lateral habenula (reward

processing, pain and reproductive behavior).
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pupillary light reflex, the ventral subparaventricular zone

(vSPZ) for masking behavior, the ventrolateral preoptic

nucleus (VLPO) for sleep, and the dorsal lateral geniculate

nucleus (dLGN) for image formation (Hattar et al., 2002,

2006; Gooley et al., 2003; Hannibal and Fahrenkrug,

2004; Barnard et al., 2006; Brown et al., 2010; Ecker

et al., 2010; Matynia, 2013; Schmidt et al., 2014). As is

common for conventional RGCs, ipRGCs also send axon

collaterals to innervate multiple brain regions (Pickard,

1985; Morin et al., 2003; Hattar et al., 2006).

In addition to ipRGCs, conventional RGCs also

innervate these same targets, with proportions that vary

across brain regions and species. For instance, virtually

all retinal innervation of the mouse SCN is from ipRGCs

(Hattar et al., 2006; Baver et al., 2008; Güler et al.,

2008), whereas in the golden hamster, the ipRGCs con-

stitute 80–90% (Sollars et al., 2003). It is possible that

these varying proportions of inputs from ipRGCs and con-

ventional RGCs correspond to some differences in non-

image vision across species. In addition, conventional

RGCs projecting to non-image forming brain regions

may also regulate certain biological functions. It was

recently shown that both ON and OFF Y-like RGCs with

alpha RGC morphology innervate the dorsal raphe

nucleus (DRN) in the Mongolian gerbil (Luan et al.,

2011), and that these RGCs influence non-vision func-

tions such as serotonergic tone and mood (Ren et al.,

2013). Although ON-alpha (M4) RGCs do express low

levels of melanopsin and are intrinsically photosensitive

(Estevez et al., 2012; Schmidt et al., 2014), no melanop-

sin was detected in DRN-projecting RGCs which also

includes OFF-alpha cells (Luan et al., 2011). Recently,

we characterized an RGC population that projects to the

caudal periaqueductal gray (cPAG) in the Mongolian
gerbil (Ren et al., 2014). In the mouse, a weak ipRGC

projection has been described to the region of the

PAG (Hattar et al., 2006). However, the function of

cPAG-projecting RGCs, as well as those RGCs projecting

to additional brain regions, remains to be determined.

ipRGCs are resistant to injury

ipRGCs are atypical central nervous system neurons,

acting both as photoreceptors responding directly to

environmental stimuli and as standard neurons

integrating synaptic input and generating action

potentials even in the absence of intrinsic

phototransduction (Berson, 2003; Pickard et al., 2009).

These properties, in and of themselves, would not neces-

sarily have predicted ipRGCs to be resistant to traumatic

injury or to be protected from certain pathological condi-

tions. However, a growing literature indicates that indeed

ipRGCs are less vulnerable to damage and disease com-

pared to conventional RGCs. Owing to the labeling tech-

nique used, the work on injury resistant ability of

ipRGCs is mainly focused on M1 type.

ipRGCs are resistant to optic nerve damage. It has

been known for several decades that a small

percentage of RGCs survive for protracted periods

following optic nerve transection (Holländer et al., 1985).

The first example of ipRGCs’ enhanced survival proper-

ties came from a study examining RGC persistence fol-

lowing optic nerve transection in the mouse.

Melanopsin-immunopositive RGCs (most likely M1

ipRGCs) showed a threefold increase in survival rate

compared to non-melanopsin RGCs when examined

1 month after optic nerve injury (Robinson and Madison,

2004). Similarly, melanopsin-immunopositive RGC

enhanced survival was observed 2 weeks after optic

nerve injury in rats (Li et al., 2008). More recently it was

reported that the M1 ipRGC is the most common RGC

type that remains after rat optic nerve transection, com-

prising 82% of surviving RGCs 60 days after injury

(Pérez de Sevilla Müller et al., 2014). Despite this

enhanced survival after injury to their axons, ipRGCs did

not show increased axonal regrowth into nerve grafts

compared to conventional RGCs, suggesting that the

mechanisms underlying ipRGCs’ ability to survive follow-

ing axonal injury differs from the cellular mechanisms pro-

moting regrowth of their injured axons (Robinson and

Madison, 2004). Similar findings were also obtained in

an optic nerve crush model in which ipRGCs showed

enhanced survival but not enhanced axon regeneration

into the distal part of the crushed optic nerve (K Park, per-

sonal communication).

The cellular/molecular mechanisms underlying the

survival of ipRGCs following optic nerve transection are

currently unknown. However, one factor that may

contribute to the survival of M1 ipRGCs after optic nerve

damage is the undamaged axon collateral that remains

within the eye (Joo et al., 2013; Schmidt et al., 2013;

Semo et al., 2014). These ipRGCs may derive trophic

support from within the retina for enhanced survival after

optic nerve injury. Although the exact number of M1

ipRGCs that send collaterals into the retina, iris and ciliary
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marginal zone (Semo et al., 2014) is not known, this spe-

cific subset of ipRGCs may be too small to fully account

for the increased survival observed after optic nerve dam-

age. Among the possible mechanisms that may contrib-

ute to ipRGCs’ superior survival after damage is

melanopsin phototransduction. At present it is not known

whether melanopsin-mediated phototransduction contrib-

utes to M1 ipRGC survival after optic nerve transection.

This could be examined using reporter knock-in mouse

models in which a reporter gene replaces the melanopsin

(Opn4) gene allowing M1 ipRGCs to be identified in the

absence of melanopsin protein (Pickard et al., 2009). There-

fore, using mice homozygous for the reporter (Opn4�/�),

ipRGC survival could be examined after optic nerve tran-

section in the absence of melanopsin phototransduction.
ipRGCs are resistant to damage in animal models of
glaucoma. Glaucoma is an ocular disorder typically

associated with raised intraocular pressure (IOP)

resulting in optic nerve damage and the loss of RGCs,

and several groups have examined the sparing of

ipRGCs in rodent models of glaucoma. While

conventional RGC number was decreased in rats with

an increase in IOP produced by laser cauterization, no

change in the number of melanopsin-containing RGCs

was seen (Li et al., 2006), suggesting that ipRGCs are

resistant to the deleterious effects produced by IOP eleva-

tion. However, in CFP-D2 mice that develop a naturally

occurring elevation of IOP with increasing age, ipRGCs

appeared to be resistant to damage resulting from IOP

elevation at an early age (5 months old), but became vul-

nerable at a later age (11 months old) (Zhang et al.,

2013). This discrepancy may be related to the magnitude

of IOP changes observed at the different ages. While IOP

was significantly increased from 2 to 5 months of age, IOP

increased even further at 11-months (Zhang et al., 2013).

Thus the IOP threshold for inducing damage to ipRGCs

may be significantly higher than the IOP levels that induce

damage to conventional RGCs. It should be noted that in

other rodent models of glaucoma, ipRGCs appeared to be

vulnerable to damage to an extent similar to that of con-

ventional RGCs (Drouyer et al., 2008; de Zavalia et al.,

2011).

ipRGC activity has begun to be examined in patients

with glaucoma using either light-induced reduction

nocturnal pineal melatonin secretion or the pupillary light

reflex as functional readouts of the melanopsin-based

phototransduction. In most reports the results indicate

significant reduction in ipRGC function in the affected

eye compared either to the unaffected eye or to normal

populations (Pérez-Rico et al., 2010; Kankipati et al.,

2011; Nissen et al., 2014). However, in the case study

of a glaucoma patient who had no light perception vision

and marked retinal nerve fiber layer loss in the affected

eye, a minimal pupillary light reflex was observed (Zhou

et al., 2014), suggesting some sparing of ipRGC function.

The cellular/molecular mechanisms that appear to

protect ipRGCs in animal models of glaucoma are not

understood and again, it is not known whether

melanopsin-based intrinsic photosensitivity plays a role.

One difference between the results obtained in animal
models of glaucoma and glaucoma patients is the

endpoint examined: i.e., morphological vs functional.

Future studies examining ipRGCs in animal models of

glaucoma should examine both melanopsin

immunoreactive RGCs and an ipRGC functional

measure such as photoentrainment or the pupillary light

reflex (see Drouyer et al., 2008). Moreover, ipRGC type

must also be considered since ipRGCs differentially inner-

vate their central targets (Baver et al., 2008) and thus one

behavioral endpoint might be significantly altered

whereas another might be less affected.
ipRGCs and inherited optic neuropathies. Hereditary

optic neuropathies are a group of disorders with

prominent optic nerve degeneration and dysfunction.

The most common of these disorders are dominant optic

neuropathy or atrophy (Kjers’ disease) and Leber’s

hereditary optic neuropathy (LHON). These diseases are

associated with mutations in mitochondrial DNA,

although the exact mechanisms of mitochondrial

impairment have yet to be determined. Due to high

metabolic demands, it has been suggested that the optic

nerve may be particularly vulnerable to perturbations in

mitochondrial function (Bristow et al., 2002; Newman,

2005). In patients with mitochondrial optic neuropathies,

i.e., LHON and dominant optic atrophy (DOA), and severe

vision loss, ipRGC function was tested by examining the

light-induced suppression of nocturnal melatonin secre-

tion (mediated via ipRGC input to the SCN). Light-induced

melatonin suppression in LHON and DOA patients was

maintained as in controls, indicating that the retinohypo-

thalamic tract is sufficiently preserved in these patients

to stimulate the descending autonomic circuits to the

pineal. Importantly, histological investigation of post-mor-

tem eyes from two LHON patients and one with DOA,

revealed that melanopsin-containing RGCs were relatively

spared compared with the massive loss of total RGCs (La

Morgia et al., 2010). Using the pupillary light reflex to

assess preservation of ipRGCs in LHON, Moura and col-

leagues also reached the conclusion that there was a

selective preservation of ipRGCs (Moura et al., 2013).

Similar sparing of the pupillary light reflex was observed

in a group of patients with hereditary optic neuropathy with

optic nerve atrophy and vision loss (Kawasaki et al., 2014).

These observations suggest that ipRGCs resist neurode-

generation caused bymitochondrial dysfunction andmain-

tain non-image-forming functions of the eye in these highly

visually impaired patients.

Mutations in the optic atrophy 1 (OPA1) gene are

commonly associated with DOA patients. The product of

the OPA1 gene, a dynamin-related guanosine

triphosphatase, is targeted to the mitochondrial inner

membrane and may play a role in the stabilization of

mitochondrial membrane integrity (Newman, 2005).

Mouse models have been used to examine the role of

OPA1 in RGC function and the pathophysiology of vision

loss (Williams et al., 2011). Using the B6;C3-

Opa1Q285STOP mouse model, Perganta and colleagues

reported that ipRGC morphology and function were com-

pletely preserved, supporting the clinical observations

that ipRGCs are protected in mitochondrial optic neurop-



850 Q. Cui et al. / Neuroscience 284 (2015) 845–853
athies (Perganta et al., 2013). It is not known why ipRGCs

are less susceptible to these devastating mitochondrial

diseases of the retina. It has been suggested that these

cells may have a reduced energy demand and therefore

be less vulnerable to mitochondrial dysfunction although,

conversely, it has been shown ipRGCs have an unusually

high accumulation of mitochondria in their dendrites

(Belenky et al., 2003). ipRGC morphology and function

have also been examined in animal models of diabetic ret-

inopathy. Morphological changes and reduced ipRGC

function have been consistently described although the

total number of ipRGCs is not reduced (Gastinger et al.,

2008; Kumar and Zhou, 2011; Lahouaoui et al., 2014).
ipRGCs are protected from N-methyl-D-aspartate
(NMDA)-induced excitotoxicity. Following neuronal

injury or under pathological conditions that lead to the

excessive release of the neurotransmitter glutamate, a

complex cascade of events occurs, leading to calcium

dysregulation and subsequent neuronal death i.e.,

glutamate-induced excitotoxicity (Lipton and Rosenberg,

1994). As in other central nervous system neurons, the

glutamate-evoked rise in intracellular calcium [Ca2+]i in

conventional RGCs is predominately mediated by the

NMDA-type glutamate receptor as NMDA application

in vivo and in vitro kills RGCs (Siliprandi et al., 1992;

Lam et al., 1999; Li et al., 1999; Hartwick et al., 2008;

but see also Ullian et al., 2004). ipRGCs receive glutama-

tergic input from bipolar cells, express AMPA, kainate and

NMDA glutamate receptors, and are depolarized by gluta-

mate (Belenky et al., 2003; Hartwick et al., 2007; Jakobs

et al., 2007; Bramley et al., 2010). Thus, it might appear

that ipRGCs would also be susceptible to the damaging

effects of excess glutamate.

However, before the discovery of ipRGCs it was known

that SCN-projecting RGCs were resistant to glutamate-

induced toxicity; the retinohypothalamic tract was spared

in rodents after peripheral glutamate injections whereas

most RGCs projecting to the primary visual system were

killed (Nemeroff et al., 1977; Pickard et al., 1982;

Chambille, 1998).More recently these indirect findings that

ipRGCswere less vulnerable to glutamate-induced toxicity

were confirmed; in mice receiving intraocular NMDA injec-

tions, M1 ipRGCs were protected from the extensive cell

death experienced by conventional RGCs (DeParis et al.,

2012). It is currently not known why ipRGCs are resistant

to NMDA excitotoxicity although the specific subunits that

form the NMDA receptor in ipRGCs may play a role. Con-

ventional NMDA receptors are typically comprised of

GluN1 and GluN2 (previously NR1 and NR2) subunits to

form a functional channel. However, they may also contain

the modulatory GluN3A (previously NR3A) subunit that

dramatically decreases the Ca2+ permeability of the

NMDA receptor-associated channel. Cells expressing the

GluN3A subunit display greater resistance to NMDA-med-

iated neurotoxicity (Nakanishi et al., 2009; Henson et al.,

2010). It has been suggested that ipRGCs express the

GluN3A receptor subunit, although GluN3A subunit

expression is not unique to ipRGCs (Jakobs et al., 2007).

All of the studies to date on ipRGCs in injury models or

under pathological conditions have examined M1 ipRGCs
that express a high level of melanopsin and are thus

easily identified. It is not clear whether melanopsin and

intrinsic photosensitivity play a role in protecting RGCs

from injury. This could be examined using knock-in

mouse models in which a reporter replaces the Opn4

gene allowing M1 ipRGCs to be identified in the

absence of melanopsin protein (Hattar et al., 2002;

Pickard et al., 2009). The more sensitive Opn4-cre repor-

ter mouse model (Ecker et al., 2010) could also be used

to test whether other ipRGCs types that express much

lower levels of melanopsin (M2–M6) are also resistant

to optic nerve injury or NMDA-induced excitotoxicity. For

example, in addition to M1 ipRGCs, ON alpha-RGCs

were somewhat resistant to optic nerve transection in

the rat (Pérez de Sevilla Müller et al., 2014) and these

cells appear to be the M4 ipRGC subtype (Estevez

et al., 2012; Schmidt et al., 2014).

It is unlikely that a single molecular/cellular mechanism

is responsible for ipRGCs’ resistance to injury or disease.

Intraretinal axon collaterals and NMDA receptor subunits

with low Ca2+ permeability probably play some role in

the survival of M1 ipRGCs following optic nerve damage

and glutamate excitotoxicity, respectively. Molecular

mechanisms that might contribute to ipRGC survival

include the pathways for phosphatase and tensin

homolog/mammalian target of rapamycin (PTEN/mTOR)

and Janus kinase/signal transducer and activator of

transcription (JAK/STAT). JAK/STAT proteins are

activated in response to several cytokines and growth

factors and mediate neuronal survival including RGCs

(Huang et al., 2007). Whereas resistance to NMDA-

induced excitotoxicity does not appear to depend on

JAK/STAT signaling (DeParis et al., 2012), the PI3K/Akt

cascade may play a role in ipRGC survival after optic

nerve transection (Li et al., 2008). In the past, we have

shown that JAK/STAT and PI3K/Akt signaling pathways

are involved in ciliary neurotrophic factor and cAMP eleva-

tion-mediated RGC survival and axonal regeneration (Cui

et al., 2003; Park et al., 2004).

Pituitary adenylate cyclase-activating polypeptide

(PACAP) has been shown to have neuroprotective

effects in the retina when administered intraocularly;

when injected in low concentrations into the vitreous it

protects conventional RGCs from glutamate-induced

excitotoxicity (for review, see Atlasz et al., 2010). In the

retina, PACAP is expressed exclusively in ipRGCs

(Hannibal et al., 2002, 2014). Thus, PACAP may play a

role in ipRGCs’ survival under conditions of glutamate-

induced cell death, although whether neuronal expression

of PACAP could mediate these effects is unknown.

PACAP knockout mice could be used to examine the

extent to which PACAP contributes to ipRGC resistance

to injury and excitotoxicity (Reglodi et al., 2012).
CONCLUSION

In adult mammals, melanopsin is expressed only in

ipRGCs, and all ipRGCs appear to express melanopsin

(Do and Yau, 2010). There are at least six types

of melanopsin-containing ipRGCs, targeting various

brain regions involved in both image-forming and
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non-image-forming functions. For unknown reasons,

ipRGCs possess a higher intrinsic ability to survive under

certain pathological and experimental conditions. A better

understanding of the cellular and molecular mechanisms

that provide neuroprotection to these RGCs may provide

valuable insights for designing strategies to diminish

the loss of vision following optic nerve injury or ocular

disease.
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