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Abstract 

 This paper proposes a bi-level transit network design problem where the transit routes and 

frequency settings are determined simultaneously. The upper-level problem is formulated as a 

mixed integer non-linear program with the objective of minimizing the number of passenger 

transfers, and the lower-level problem is the transit assignment problem with capacity 

constraints. A hybrid artificial bee colony (ABC) algorithm is developed to solve the bi-level 

problem. This algorithm relies on the ABC algorithm to design route structures and a 

proposed descent direction search method to determine an optimal frequency setting for a 

given route structure. The descent direction search method is developed by analyzing the 

optimality condition of the lower-level problem and using the relationship between the lower- 

and upper-level objective functions. The step size for updating the frequency setting is 

determined by solving a linear integer program. To efficiently repair route structures, a node 

insertion and deletion strategy is proposed based on the average passenger demand for the 

direct services concerned. To increase the computation speed, a lower bound of the objective 

value for each route design solution is derived and used in the fitness evaluation of the 

proposed algorithm. Various experiments are set up to demonstrate the performance of our 

proposed algorithm and the properties of the problem. 

 

Keywords: Transit route and frequency setting problem; Bus network design; Bi-level 

programming; Artificial bee colony algorithm; Mixed integer program; Matheuristics 

1. Introduction 

 Transit network design has received considerable attention over the last two decades due to 

its practical importance. For example, in Hong Kong, over 90% of the 11 million daily trips 

that people make involve public transport. Hence, a well-designed transit network is 
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important for meeting passenger demand. Guihaire and Hao (2008) and Kepaptsoglou and 

Karlaftis (2009) provided comprehensive reviews in this area. Previous works on this topic 

focus on route design (e.g., Mandl, 1980; Murray, 2003; Wan and Lo, 2003; Li et al., 2011, 

2012), frequency setting (e.g., Furth et al., 1982; LeBlanc, 1988; Hadas and Shnaiderman, 

2012), timetabling (e.g., Wong et al., 2008; Fleurent et al., 2004), vehicle scheduling (e.g., 

Bunte et al., 2006), crew scheduling (e.g., Wren and Rousseau, 1993), fare structure (e.g., Li 

et al., 2009), fleet size determination (e.g., Li et al., 2008) and a combination of the above 

(e.g., Ceder and Wilson, 1986; Lee and Vuchic, 2005; Szeto and Wu, 2010). 

 The majority of previous studies have considered the optimization of transit route 

structures and service frequencies separately. For example, Fernandez and Marcotte (1992), 

Constantin and Florian (1995), Zubieta (1998), Gao et al. (2004), Uchida et al. (2005, 2007), 

and Leiva et al. (2010) proposed models for optimizing frequencies to achieve different 

objectives within an existing transit network, whereas Laporte et al. (2010) and Yu et al. 

(2012) focused exclusively on designing route structures. Both transit route structure and 

frequency setting determine the level of service (e.g., in terms of in-vehicle congestion and 

waiting time at bus stops); more importantly they determine whether the service has sufficient 

capacity to meet to passenger demand. Therefore, it is important to simultaneously optimize 

the transit route structure and the frequency setting. 

 In transit network design, it is essential to consider the in-vehicle congestion issue. 

In-vehicle congestion leads to increased waiting and travel times, along with the comfort 

problem prompted by a lack of seats for passengers. This comfort problem can be particularly 

serious if the trip time is long or demand is high. Generally, there are two approaches to 

addressing the congestion issue: capacity constraint and the congestion cost function. The 

capacity constraint approach (e.g., Kurauchi et al., 2003; Lei and Chen, 2004; Lam et al., 

1999, 2002; Cepeda et al., 2006; Sumalee et al., 2009, 2011; Schmöcker et al., 2008, 2011; 

Szeto et al., 2013; Cortés et al., 2013) incorporates capacity constraints in transit assignment 

models that disallow flows on transit vehicles to be greater than the corresponding capacity. 

The congestion cost function approach (e.g., Spiess and Florian, 1989; de Cea and Fernández, 

1993; Lo et al., 2003; Li et al., 2008, 2009, 2011; Sun and Gao, 2007; Teklu, 2008; Szeto et 

al., 2011a; Szeto and Jiang, 2014) adopts an unbounded increasing convex function to model 

the effect of in-vehicle congestion on waiting time. Although both approaches have been used 

in the literature, practically speaking, the former is more realistic because the latter can result 

in an unacceptable line flow that is far greater than the corresponding capacity.  
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 In addition to the congestion issue, it is important to consider passenger transfers between 

transit vehicles, as they can generate passenger inconvenience. The number of passenger 

transfers is an important network performance indicator, especially in Hong Kong, for the 

following reasons. First, the total number of passenger transfers reflects the number of 

passengers without direct services to their destinations, which can indicate inconvenience. 

Second, passengers always complain when there are no direct services to their destinations 

(Szeto and Jiang, 2012). The total number of passenger transfers also indirectly reflects the 

number of complaints regarding lack of direct services. Optimizing the number of passenger 

transfers can reduce the number of complaints implicitly. However, very few studies have 

considered this number. Baaj et al. (1990) embedded the transfer concept into their route 

generation procedures, such that a route with more than two transfers was abandoned. 

Similarly, the number of passenger transfers was modeled implicitly in Zhao et al. (2005). 

The travel cost calculated in the objective function excluded the travel costs of routes with 

more than two transfers, yet they did not optimize the total number of passengers needing to 

transfer between transit vehicles. Guan et al. (2006) used the total number of passenger 

transfers as a surrogate of transfer and waiting times in passenger line assignment, which is 

the lower level problem of their transit network design problem. Jara-Díaz et al. (2012) 

considered the total number of passenger transfers to investigate the condition under which a 

transit network design with transfers is preferable. Most of the existing studies have used the 

total passenger travel time as the objective function. However, there is no guarantee that 

minimizing the total number of passenger transfers also minimizes the total passenger travel 

time. In some cases, there can be a tradeoff between the total number of passenger transfers 

and total passenger travel time (Szeto and Wu, 2010). It is essential to explicit capture the 

total number of passenger transfers in the objective function. 

 This paper proposes a bi-level model for designing transit routes and their frequencies that 

explicitly minimizes the total number of passenger transfers in the objective function of the 

upper-level problem and incorporates strict capacity constraints to address the in-vehicle 

congestion in the lower-level problem. This bi-level model is formulated as a mixed integer 

non-linear program that is NP-hard and considers the route choice behavior of passengers 

through the lower-level user-equilibrium problem. The model also considers the stop location 

choice of each route within each zone of the study area. This model differs from the bi-level 

models proposed by Constantin and Florian (1995), Gao et al. (2004), and Uchida et al. (2005, 

2007) in the sense that they only considered frequency setting, whereas our model further 
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considers route design and stop location choice. 

 To solve transit network design problems, exact methods (e.g., Wan and Lo, 2003) and 

metaheuristics such as genetic algorithms (GAs) (e.g., van Nes et al., 1988; Bielli et al., 2002; 

Chakroborty, 2002; Tom and Mohan, 2003; Ngamchai and Lovell, 2003; Shih et al., 1998; 

Fan and Machemehl, 2006a; Mazloumi et al., 2012) and simulated annealing (e.g., Fan and 

Machemehl, 2006b; Zhao and Zeng, 2006) have been used. A hybrid artificial bee colony 

(ABC) algorithm—a matheuristic that combines a metaheuristic and an exact algorithm—is 

developed for the transit network design problem as an improvement to the original ABC 

algorithm, a metaheuristic proposed by Karaboga (2005) and motivated by the foraging 

behavior of honey bees.  

 Compared with existing evolutionary algorithms such as GAs, the ABC algorithm has a 

better local search mechanism that improves the solution quality. More recently, the ABC 

algorithm has been applied to solve complex engineering optimization problems. For example, 

Kang et al. (2009) successfully applied an ABC algorithm to the parameter identification of 

concrete dam-foundation systems. Karaboga (2009) proposed an ABC algorithm to solve a 

digital filter design problem and obtained good results. Karaboga and Ozturk (2009) used an 

ABC algorithm to train neural networks for pattern classification, and their results on 

benchmark instances showed that such use was efficient. Szeto et al. (2011b) improved the 

ABC algorithm to solve a capacitated vehicle routing problem. Szeto and Jiang (2012) 

enhanced the ABC algorithm to solve a single-level transit network design problem without 

considering the in-vehicle congestion effect. Long et al. (2014) improved the ABC algorithm 

to solve a turn restriction design problem. Szeto and Jiang (2012) and Long et al. (2014) 

showed that their proposed ABC algorithm is better than the GA for solving their problems, 

but it has not yet been improved to solve bi-level transit network design problems that 

consider in-vehicle congestion. This study enhances the ABC algorithm to solve this problem. 

 The proposed algorithm relies on the ABC algorithm to design route structures and a 

proposed descent direction search method to determine an optimal frequency setting for a 

given route structure. A node insertion and deletion strategy for repairing the route structures 

is developed based on average-direct-demand, which is defined as the average passenger 

demand on the direct services concerned. The descent direction search method is developed 

by analyzing the optimality condition of the lower-level problem and using the relationship 

between the lower- and upper-level objective functions. The step size for updating the 

frequency setting is determined by solving a linear integer program formed by the derivative 
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obtained by the Lagrange function of the lower-level problem. The Simplex method is used to 

solve the lower-level problem. To increase the computation speed, a lower bound of the 

objective value for each route design solution is derived and used in the fitness evaluation for 

the hybrid ABC algorithm. 

 Various experiments are conducted to demonstrate the effectiveness of our proposed 

algorithm. They illustrate the effects of various node insertion and deletion strategies and the 

effects of different parameter values and forms of fitness functions on the performance of the 

hybrid ABC algorithm. A realistic case study is conducted to show that under demand 

uncertainty, the optimal solution obtained from the hybrid ABC algorithm is better than the 

existing bus network design in terms of the average number of passenger transfers, and is 

more robust in terms of handling passenger demand. We also use the Winnipeg network to 

demonstrate that the performance of our proposed method is better than that of a GA to solve 

our problem. The experiments illustrate the effects of different design parameters such as 

minimum frequency, maximum fleet size, and the maximum numbers of routes and 

intermediate stops on the objective value. The results show that a higher minimum frequency 

can lead to a higher number of passenger transfers, and multiple design solutions are possible. 

 The main contributions of this study are as follows. 

1) Proposing a bi-level model to simultaneously solve the transit route design and 

frequency setting problems while considering the candidate transit stop location 

available in each zone in the study area and two inconvenience factors: transfers 

between transit vehicles and in-vehicle congestion. 

2) Developing a new matheuristic—the hybrid ABC algorithm—to solve the model. 

3) Examining the properties of the bi-level problem and the performance of the 

algorithm. 

4) Demonstrating the applicability of the proposed model and algorithm in realistic 

situations. 

 The remainder of this paper is organized as follows. Section 2 introduces the bi-level 

model. The proposed hybrid ABC method is described in Section 3, and numerical examples 

are presented in Section 4. Finally, the conclusions and future research directions are given in 

Section 5. 
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2. Bi-level formulation of the problem 

 

 Consider a study area with a connected (bus) transit network represented by a directed 

graph G with N nodes, E links (or arcs), and one dummy node (node 0) introduced for the 

ease of formulating the problem. The study area is separated into many zones, each of which 

is represented by a centroid. The centroid is the origin node aggregating the travel demand 

within the zone. Each centroid is connected to all of the candidate transit stops and terminals 

in that zone, in which a transit terminal for a bus service can be a candidate stop for another 

bus service. Each centroid also generates N’ types of travel demand, each of which is 

designated to one centroid (or destination node) outside the study area. Each of the N’ 

centroids is connected to bus terminals or bus stops in their individual zone. Both the bus 

terminals and centroids in each of these zones are connected to the transit network in the 

study area. The following notations are used in this paper. 

Sets 

UZ  = a set of nodes in the upper-level network, excluding the depot; 

 Gs  = a set of centroids within the study area; 

 Hm  = a set of candidate stops connecting to centroid m; 

U  = a set of starting bus terminals inside the study area; 

V  = a set of ending terminals outside the study area; 

Gd  = a set of centroids/destinations outside the study area; 

C  = a set of bus terminals and candidate stops within the study area; 

ZL = a set of nodes (including centroids) in the lower-level network; 

 = a set of transfer links or arcs in the lower-level network; 

A = a set of transit links in the lower-level network; 

   = a set of transit links coming out from node i; and  

    = a set of transit links going into node i. 

Indices 

, m = indices of nodes; 

e  = the index of a centroid/destination outside the study area; 

e′   = the index of an ending bus terminal outside the study area; and 

r  = the route index. 

RT

iA+

iA-

ji,
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Parameters 

cij  = the in-vehicle travel time on the shortest path between nodes i and j; 

ca  = the in-vehicle travel time on link a; 

st = the average time for stopping at a node;  
e
md   = the travel demand from node m to centroid e; 

W  = the maximum bus fleet size allowed for the network; 

kcap = the capacity of a bus; 

Rmax  = the maximum number of routes in the bus network; 

fmin = the minimum frequency of a route; 

Smax = the maximum number of stops (including the bus terminal) within the study area 

on a route; 

maxT    = the maximum route travel time within the study area; and 

     = a very large value used in the sub-tour elimination constraint. 

Decision Variables 

  Lower-level decisions 

 = the number of passenger transfers on transit link t to destination e;  

 = the flow on link a to destination e;   

 = the total waiting time at node i for all flows to destination e; 

  = ; 

 = .  

Upper-level decisions 

 = the node potential at node , which is needed in the sub-tour elimination 

constraint for bus route ; 

Xijr  = 1 if route r (r = 1 to Rmax) passes through node j immediately after node i, and 0 

otherwise; 

X0jr  = 1 if route r starts at node j, and 0 otherwise; 

Xi0r  = 1 if route r ends at node i, and 0 otherwise; 

X00r  = 1 if route r is not available, and 0 otherwise; 

fr  = the frequency of route r; 

   = ijrX   ; and 

p

e
tv

e
av

e
iω

v e
av  

w e
iω  

irq i

r

X
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f = . 

Functions of decision variables 

Tr = the trip time of route r from the starting terminal to the ending terminal; 

   = 1 if route r connects the terminal that links to centroid e, and 0 otherwise; 

 = the frequency of link a; and 

'e
id   = the travel demand from node i to bus terminal e′ . 

 

 Upper-level problem  2.1.

The upper-level problem is to determine the frequency of and a route structure for each 

transit line within the study area. The number of transfers within the study area is unlimited 

and their possible locations must remain within the study area. The upper-level problem is 

formulated as follows. 

 
d
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e
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    for r = 1 to Rmax, (2) 

  for r = 1 to Rmax, (3) 
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   for r = 1 to Rmax,  (10) 
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for r = 1 to Rmax,  (11) 
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s
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r r m
r m G

f k dd
= ∈
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for de G∈ ,  (14) 
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'

\U

e
r ie r

i Z V
Xδ

∈

= ∑    for 'e V∈ , and  (15) 

             for U,i j Z∈ , , r = 1 to Rmax.  (16) 

 Objective (1) is to minimize the sum of transfer passengers. Constraint (2) ensures that all 

of the bus service routes start from a bus terminal selected from the available locations inside 

the study area. Constraint (3) ensures that each of the service routes ends at a bus terminal 

selected from the available locations outside the study area. It should be noted that the rth 

route is not needed to provide bus services when X00r = 1. Constraint (4) ensures that with the 

exception of dummy nodes, any node on a service route has one preceding and one following 

node. Constraints (5)-(7) ensure that each node can be visited by a particular route at most 

once. Constraint (8) calculates the in-vehicle travel time (including stop time) of a service 

route. Constraint (9) ensures that the fleet size used cannot exceed the available fleet size. 

Constraint (10) ensures that the frequency of each service route is not less than the minimum 

allowable frequency. Constraints (11) and (12) restrict the number of intermediate stops and 

the trip time within the study area, respectively. Constraint (13) is the zone covering 

constraint, and ensures that at least one of the candidate stops in each zone is served by at 

least one transit line. Constraint (14) is the demand constraint, which ensures that there is 

enough line capacity to meet passenger demand heading to each destination/centroid outside 

of the study area. Constraint (15) determines whether route r ends at terminal e′ . Constraint 

(16) is the sub-tour elimination constraint, which is extended from Miller et al. (1960). 

 In this formulation, the decisions are the route structures and frequencies. However, under 

the preceding setting and constraint (13), the route design automatically also considers the 

stop location choice in a zone because there is more than one candidate stop in each zone in 

general, and a route may not pass through all of them. 

( )min 001 r rf X f− ≤

1ir jr ijrq q pX p− + ≤ − i j≠
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 Lower-level problem 2.2.

The lower-level problem requires another network representation to depict the passenger route 

choice behavior under a given set of transit routes defined by the upper-level problem. The 

network representation for the lower-level problem is extended from the one proposed by 

Nguyen and Pallottino (1988). The network is also represented by nodes and links (or arcs). 

However, a node may represent a bus stop in a transit line, a boarding node, an alighting node, 

or a centroid. A link is used to connect two adjacent nodes. Each link has three attributes: 

travel time, frequency, and capacity.  

 Figure 1 is a graph representation of a centroid connecting one general transit stop served 

by n transit lines. Similar to the graphical representation proposed by Nguyen and Pallottino 

(1988), there is a pair of boarding and alighting arcs connecting the bus stop of each transit 

line, , 1,...,is i n= , to the stop node (as represented by the node defined by the dashed line in 

Figure 1) that corresponds to the node in the upper-level network. To ensure that these arcs 

are only used for connectivity purposes, the travel time is set to zero and the capacity is set to 

a very large number. The frequency of the alighting arc is also set to a very large number, 

whereas the frequency of the boarding arc is equal to the frequency with which the passengers 

are entering the transit line. Unlike the graphical representation proposed by Nguyen and 

Pallottino (1988), we replace the stop node with two other nodes—an alighting node sa and a 

boarding node sb—a transfer arc to connect them, a centroid that corresponds to the centroid 

in the upper-level network, one access arc, and one egress arc. The boarding (alighting) node 

is used to send (receive) passengers to (from) different transit lines and receive (send) 

passengers from (to) the centroid via the access (egress) link. The travel times of the access 

and egress links are equal to the walking times from the centroid to the transit stops, while the 

frequencies and capacities associated with access and egress links are very large (i.e., infinity). 

The transfer arc has a travel time of M, a very high frequency, and a very large capacity. 

Intuitively, M can be interpreted as the inconvenience cost (expressed as time-equivalent) or 

transfer penalty generated by a transfer, and can be calibrated from survey data. When a direct 

service is always preferred to a transfer service, M is set to be a large number.  

 There is no alighting arc, alighting node, or egress arc for a starting terminal and no 

boarding arc, boarding node, or access arc for an ending terminal. The consecutive bus stops 

of a transit line are connected by a travel arc, in which the travel time is set to be equal to the 

in-vehicle travel time plus the stop time at the next stop, and the stop time at each terminal is 
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set to zero. The frequency of a travel arc is set to the frequency of the transit service, whereas 

its capacity is the frequency of that arc multiplied by the bus capacity. All of the general 

transit stops and terminals are connected through travel arcs. 

 Because the demand of each origin-destination (OD) pair is fixed and the flow on each link 

cannot be greater than that link’s capacity, the total demand between an OD pair may be larger 

than the available capacity provided by all transit lines serving this OD pair. Hence, the 

lower-level formulation may not provide a feasible solution. To address this issue, a virtual 

link (corresponding to a walking path) with a very large capacity, a very high frequency, and a 

very long trip time is created to connect each OD pair. The flow on each virtual link at 

optimality is then equal to the unserved demand of the corresponding OD pair. In the extreme 

case, when the capacity between an OD pair is zero, there is still a feasible and optimal 

solution for that OD pair. 

    
  Figure 1 A graph representation of a centroid connecting one general transit stop 

  

 Based on this network representation, the transit assignment formulation proposed by 

Spiess and Florian (1989) can be extended to capture transfer penalty and in-vehicle 

congestion as follows. 
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 The lower-level objective (17) is to minimize the sum of the total in-vehicle travel and stop 

times (i.e., the first term of the objective function) and total waiting time (i.e., the second term 

of the objective function). Constraint (18), which relates link flow, frequency, and waiting 

time, is a relaxed constraint of distributing node flows into the arcs emanating from that node. 

Constraint (19) is the flow conservation condition for a node. Constraint (20) ensures that the 

flow on each travel arc is not greater than that arc’s capacity, with the capacity constraint used 

to model the in-vehicle congestion cost and extra delay due to passenger overloading. 

Constraints (21) and (22) are non-negativity conditions.  

 In the lower-level problem, the following points related to the proposed capacity constraint 

must be clarified. First, the capacity constraint must be incorporated into the lower- rather 

than the upper-level problem. The capacity constraint is used to model that, due to limited 

vehicle capacity, some passengers may not be able to board the first bus that arrives at a bus 

stop, and hence may experience extra delays. The capacity constraint is placed in the 

lower-level problem to ensure that such delays are considered in passengers’ route choices. 

The extra delay of a passenger on a link is equal to the Lagrange multiplier associated with 

the capacity constraint, which appears in the equilibrium condition derived from the Karush–

Kuhn–Tucker condition of the lower-level problem. If the capacity constraint were placed in 

the upper-level, it would be assumed that passengers would not consider the delay in 

determining their route choice because the lower-level problem would be identical to the 

transit assignment problem proposed by Florian and Spiess (1989). This behavioral 

assumption is unrealistic.  

 The second point is related to the flow distribution. If the lower-level capacity constraint is 

not binding, the formulation reduces to the original strategy formulation (Spiess and Florian, 
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1989), where the resultant line flow is proportional to the line frequency, strictly following the 

assumptions that passengers arrive randomly, headway is exponentially distributed, and 

passengers select the first bus from a set of attractive lines that arrives at the bus stop. If the 

capacity constraint is binding, the flow distribution may not satisfy those assumptions because 

the passengers cannot board the first bus that arrives at the bus stop if it is full. In such cases, 

the results are approximations that are acceptable for strategic planning purposes.  

 The third point is related to the in-vehicle congestion cost. In the proposed model, 

passengers only perceive congestion costs if the capacity constraint is binding or buses are 

fully occupied. Otherwise, the congestion cost is neglected. However, in reality, passengers 

may still perceive in-vehicle congestion costs, such as the cost due to insufficient seat 

capacity or in-vehicle crowding, even when the capacity has not been reached. The more 

passengers there are inside a bus, the higher the in-vehicle congestion cost. Hence, the 

congestion cost should be a continuous and increasing function. In the proposed capacity 

constraint method, the in-vehicle congestion cost is a piecewise function, which can be 

addressed by developing a continuous, non-linear, and increasing in-vehicle cost function that 

can be linearized to reduce the problem to a linear programming problem. However, deriving 

this function has been left for future study. 

 The proposed formulation has three advantages. First, the lower-level problem is a linear 

programming problem and can be solved efficiently by existing algorithms. Second, it is easy 

for us to identify whether a particular route section is overloaded (by checking whether the 

corresponding Lagrange multiplier is positive) and whether the overall transit supply is 

sufficient (by checking virtual links carry flow)—all of which makes it easier to design 

appropriate improvement strategies. Third, this linear problem allows us to develop an 

efficient method for solving the transit network design problem.  

3. Solution method 

Constraint (9) is non-linear, and the decision variables are both discrete and continuous. 

Hence, the bi-level problem is a mixed-integer non-linear problem. It has been noted that a 

general network design problem is already NP-hard (Magnanti and Wong, 1984), and it is 

well-known that the transit route design problem is NP-hard (Zhao and Gan, 2003; Fan and 

Machemehl, 2004; Fan and Mumford, 2010). Our proposed problem includes the frequency 

setting problem and a lower-level problem that is more complicated than the general network 

design and the transit routing problems. Thus, our problem is also NP-hard. Given the 
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extreme difficulty of solving NP-hard problems for exact solutions, a hybrid artificial bee 

colony (ABC) algorithm is proposed to solve the bi-level problem. The hybrid relies on the 

original ABC algorithm to solve the route design problem and incorporates a proposed 

iterative procedure to determine the number of passenger transfers and the optimal frequency 

setting. In the iterative procedure, the linear transit assignment problems (17)-(22) are solved 

in each iteration via the Simplex method. Then, a descent direction is obtained using the dual 

solutions to the transit assignment problem and used to formulate a linear integer program, 

which is solved to give a step size to update the frequency for the next iteration. To alleviate 

the computational burden of solving many transit assignment problems, a screening method 

based on the lower bound of the upper-level objective function is also developed. Only 

potentially good route design solutions are required to find the corresponding optimal 

frequency. However, the other solutions are kept for a neighborhood search.  

 Artificial bee colony (ABC) algorithm 3.1.

 The ABC algorithm belongs to a class of evolutionary algorithms inspired by the 

intelligent behavior of honey bees finding nectar sources around the hive. This class of 

metaheuristics has received increasing attention recently, with variations of bee algorithms 

proposed to solve combinatorial problems. However, in all of them, a common search strategy 

is applied; that is, complete or partial solutions are considered as food sources and different 

groups of bees try to exploit the solution space in the hope of finding good quality nectar, or 

high quality solutions, for the hive. They then communicate directly to inform other bees 

about the search space and the food sources.  

 In the ABC algorithm, the colony of bees is divided into employed bees, onlookers, and 

scouts. Employed bees are responsible for exploiting available food sources (solutions) and 

gathering required information. These bees also share information with onlookers, and each 

onlooker selects a food source near the food source chosen by one employed bee. When the 

source is abandoned, the employed bee becomes a scout and starts to search for a new source 

in the vicinity of the hive. This abandonment happens when the quality of the food source 

does not improve for a predetermined number of iterations. 

 The ABC algorithm is iterative, and starts by associating all employed bees with randomly 

generated food sources (solutions). In every iteration, each employed bee selects a food 

source in the neighborhood of the currently associated food source using a neighborhood 
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operator, and evaluates its nectar amount (fitness) afterwards. If its nectar amount is better 

than that of the currently associated food source, then the employed bee keeps the new food 

source and discards the old one; otherwise, the employed bee retains the old food source. 

When all of the employed bees have finished this process, they share the nectar information 

for the food sources with the onlookers. Each of the onlookers then selects a food source 

according to a probability proportional to the nectar amount of that food source. In this study, 

we use the traditional roulette wheel selection method (Haupt and Haupt, 2004). Clearly, with 

this scheme, good food sources attract more onlookers than bad ones. After all of the 

onlookers have chosen their food sources, each of them selects a food source in the 

neighborhood of their chosen food sources (through neighborhood operators) and computes 

its fitness. The best food source among the particular food source of an employed bee and its 

neighboring food sources is the food source of the employed bee. If a solution represented by 

a particular food source does not improve for a predetermined number of iterations, then the 

food source is abandoned by its associated employed bee and the bee becomes a scout. The 

scout then searches randomly for a new food source. This is done by assigning a randomly 

generated food source (solution) to this scout. After each new food source is determined, 

another iteration of the ABC algorithm begins. The whole process is repeated until the 

termination condition is satisfied.  

 Overview of the hybrid artificial bee colony (ABC) algorithm  3.2.

 The existing ABC algorithm cannot be used directly to solve our problem because our 

problem is bi-level and has many constraints. Hence, a hybrid ABC algorithm is developed. 

The flow chart of the hybrid ABC algorithm is given in Figure 2, which depicts the main 

algorithm (ABC algorithm) and the sub-algorithm (the proposed frequency determination 

algorithm).  

ABC algorithm  

The steps of the ABC algorithm can be described as follows. 

1. Initialize the parameters, including the colony size Nc, the number of employed bees 

Ne, the number of onlookers No, the number of scouts Ns, and the predetermined 

number of iterations limit; set I, which is the counter of iterations, to be equal to zero; 

set the maximum number of iterations, Imax = 500; 
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2. Perform the initialization phase of employed bees: Generate an initial solution for 

each employed bee and set the limit counter for each solution to be zero;  

3. Increase the number of iterations by 1, i.e., I = I + 1;  

4. Perform the employed bee phase: Conduct a neighborhood search for each solution 

found by an employed bee. Evaluate the fitness of each neighbor solution. Replace 

the solution by its neighbor solution found by the search and set its limit counter to 

zero, if the latter is better. Otherwise, keep the solution of the employed bee, and 

increase the limit counter by 1; 

5. Perform the onlooker bee phase: Perform the roulette wheel selection to determine 

which solution obtained by an employed bee is selected by an onlooker. Then, 

conduct a neighborhood search for each solution selected by an onlooker. Evaluate 

the fitness of each neighbor solution. Replace the solution by its neighbor solution, if 

the latter is better. Otherwise, keep the solution of the employed bee, and increase its 

limit counter by 1; 

6. Perform the scout bee phase: Replace each solution that fails to improve within limit 

successive iterations by a new solution generated randomly;  

7. Check the stopping criterion: If maxI I< , return to step 3; 

8. Terminate and output the best solution.  
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 (a) ABC algorithm            (b) Frequency determination algorithm   

 Figure 2 Flow chart of the hybrid ABC algorithm   

 

 For the ABC algorithm in our proposed method, the initialization phase generates a 

population of initial solutions by the employed bees. Afterwards, each employed bee is 

associated with one randomly generated solution.   

 The employed and onlooker bee phases are quite similar, as shown in Figure 3. The only 

difference lies in the rule for selecting a candidate food source for a neighborhood search. In 

the employed bee phase, each employed bee selects its associated solution for a neighborhood 

search. In the onlooker bee phase, each onlooker selects a solution based on the fitness value. 

Hence, we expect promising solution areas to be visited and explored more frequently. Both 

phases require the frequency determination algorithm to determine the frequency associated 
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with each route and evaluate the fitness value of each solution. They both conduct a greedy 

selection after evaluating the fitness of the neighbor solution. If the neighbor solution is better 

than the food source, the latter is replaced by the former and its limit counter is set to zero. 

Otherwise, the current solution is maintained and the limit counter is increased by 1. Finally, 

if all of the employed bees or onlookers complete their neighborhood searches, then the 

employed or onlooker bee phase is terminated. 

 

  
  Figure 3 Flow chart of the employed bee and onlooker bee phases 

 

 In the scout bee phase, all of the food sources are scanned and the source that fails to 

improve within limit successive iterations is abandoned and replaced by a newly generated 

random solution.  

Frequency determination algorithm  

 For each solution (i.e., route structure) obtained in the employed or onlooker bee phase of 

the ABC algorithm, the following procedure is used to determine the frequency setting:  

i. Generate the initial frequencies; 

Select one neighbor solution for 
each employed bee

Generate a neighbor solution and 
repair the solution if necessary

Determine frequencies and 
evaluate the fitness of each 

solution  

Replace the solution by its 
neighbor, if the latter is better

Update limit counters

Employed bee phase 

Select one neighbor solution 
based on fitness proportion

for each onlooker

Onlooker bee phase 
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ii. Decide whether to obtain an optimal frequency for each route: If LBg (the lower bound 

of given solution g) is greater than 1,min  I
gz  (the minimum upper-level objective 

value until iteration I) or the route design is infeasible, then return the initial 

frequency of each route. Otherwise, proceed to the next step; 

iii. Solve the lower-level transit assignment problem; 

iv. If the termination criterion of the frequency determination algorithm is satisfied, then 

stop and return the optimal frequency setting. Otherwise, go to the next step;  

v. Determine the descent direction of the lower- and upper-level objective values with 

respect to the frequency; 

vi. Find the step size of the frequency by solving a linear integer program and update the 

frequency with the obtained step size, then go to step iii. 

 Solution generation and repairing procedures 3.3.

Solution representation in the ABC algorithm 

To search all of the possible route structures, the solution representation in the ABC algorithm 

should be specifically designed. Figure 4 illustrates the representation scheme used in the 

ABC algorithm. One solution consists of 100 elements representing 10 routes, with 10 

elements for each route. For example, the first 10 elements represent the first bus route, which 

starts at node 1, goes through nodes 18, 15, 10, 12, and 7, and terminates at node 25. Similarly, 

route 10 starts at node 16, goes through node 11, and terminates at node 27.  

 

 
  Figure 4 Solution representation scheme  

 

1 18 15 0 0 25 7 12 10 ∙∙∙ ∙∙∙  

Route 1 

0 0 0 0 0 0 

A total of 100 elements  

16 11 27 

Route 10 

0 0 
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Initialization procedures  

In the ABC algorithm, new solutions are generated in the initialization and scout bee phases, 

both of which adopt the same procedures to generate a random solution, as shown in Figure 5. 

 To initialize the route elements, the following procedures are carried out sequentially. For 

route r, the first node is determined by randomly selecting from the available starting 

terminals in the study area. Then, the last node is picked from all of the available ending 

terminals 'e , the number of intermediate stops is generated, and a corresponding number of 

nodes is inserted between the two terminals. The probability of selecting an intermediate stop 

node i is determined based on passenger demand by 

U

'

'

e
i

ei
j

j Z

dp d
∈

= ∑ , where  represents 

the probability of choosing node i. If there is more than one stop in a zone, stop i in that zone 

is randomly picked. The last step is to set the rest of the elements, if any, to zero. 

  
  Figure 5 Solution generation and repairing procedures 

Repairing procedures 

 

The solution generated makes it difficult to avoid infeasibility due to the proposed random 

operations. Although we can add a penalty to the fitness value of an infeasible solution and 

leave the algorithm itself to evolve, according to our preliminary experiments, the solution 

quality in terms of the number of feasible solutions and the objective value in the final 

iteration is lower than that obtained by the algorithm with the proposed route repairing 

procedures. Therefore, we propose the route repairing procedures to provide better (initial) 

solutions. The procedures include checking zone covering, stop sequence optimization, and 

ip

Initialize routes’ elements 

Repair the solution if necessary 

Determine the lower bound

Generate a solution

Check zone covering and insert 
uncovered nodes

Optimize stop sequence 

Delete and insert intermediate stops

Repair a solution
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deleting and inserting intermediate stops. 

Checking zone covering  

The zone covering procedure is designed to ensure that every demand zone is visited by at 

least one route. Because the total number of elements in a solution (which equals the 

maximum number of stops multiplied by the maximum number of routes) is greater than the 

number of zones in the network, there must be some zones that are visited by more than one 

route. However, there is no guarantee that all zones are served or covered in the initialization 

procedure. If centroid m is not served, then node i, which is one of the candidate stops 

connecting to centroid m, is inserted into the selected route with the number of stops less than 

the maximum allowable number of stops and the least travel time increment after inserting 

node i. If no route can serve this centroid due to constraint (11) on the maximum number of 

stops, a zone served by at least two transit lines is randomly selected and one of the stops in 

the zone passing by the lines is replaced by node i. These two steps guarantee that the 

zone-covering constraint (13) is satisfied.  

Stop sequence optimization 

For every generated ABC solution, a descent search heuristic is used to improve the sequence 

of stops on each route. The purpose of this sequence-improving process is to minimize the trip 

time of each route, as it does not depend on frequencies and is relatively easy to implement. 

The outline of the heuristic is as follows: 

 

For each route in the ABC solution   

Set i' = 1 

While i' ≤ the number of intermediate stops – 1   

j' = i' +1 

While j' ≤ the number of intermediate stops, do 

 Exchange the i' th and j'th stops 

 Evaluate the trip time of the route 

            If the trip time is reduced,  

then set j' = number of intermediate stops + 1, i' = 0 

else  

undo the exchange and j' = j' + 1 
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endif  

endwhile 

i' = i' +1 

   endwhile 

Next route in the ABC solution 

Deleting and inserting intermediate stops 

The stop sequence optimization procedure essentially rearranges the sequence of intermediate 

stops to form the shortest path. Nevertheless, some routes may still violate the maximum trip 

time constraint (12). Therefore, a stop-removal operation is conducted to eliminate nodes 

while ensuring the solution to satisfy the zone covering constraint. Various criteria can be 

used in selecting which nodes to delete, such as trip time reduction and the changes in total 

flow of the direct services involved after performing the node removal. Different criteria have 

different effects on the objective value and the algorithm performance.  

 We propose the following average-direct-demand 'ie
rψ  to approximate the change in the 

upper-level objective value that results from removing node i from route r, which connects 

terminal 'e  directly:  

  
' '

'
' 1

e ie
ie i r
r ie

p
p r

d dψ
d

≠

=
+∑

 for  r = 1 to Rmax, Ui Z∈ , 'e V∈ , 

where 'ie
pδ  is a binary indicator variable that is equal to 1 if route p passes both nodes i and 

'e . 'ie
p

p r
δ

≠
∑  calculates the number of transit lines that provide a direct service between node i 

and terminal 'e  after removing node i from route r. Adding 1 to that number allows us to 

consider the case when route r heading to terminal 'e  originally passes node i. Hence, the 

denominator gives the number of transit lines that provide a direct service between node i and 

terminal 'e  before removing node i from route r. The demand 'e
id  is obtained from the 

lower-level problem, and is the total flow on the boarding arcs ending at the transit stop 

corresponding node i in the upper-level network and heading to the transit stop corresponding 

to terminal ' ee H∈ . Overall, this average-direct-demand intends to capture the increase in the 

number of passenger transfers due to deleting node i. This average approximates the flow of 

each direct service and is determined by evenly splitting the demand between node i and 
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terminal 'e  to all of the routes providing direct services for that pair of nodes. This value can 

be interpreted as the average increment in the number of transfer passengers when node i is 

deleted from route r. Therefore, a node with a smaller ratio is preferred for removal, because a 

smaller ratio indicates a lower average increment in the number of passengers who need to 

make a transfer.  

 To compensate for the negative effects of deleting nodes, including reducing service 

coverage and increasing the number of passengers who make a transfer, a reverse operation 

called node insertion is subsequently conducted to insert as many nodes as possible while 

ensuring that the resultant solution satisfies the maximum trip time constraint. The node 

chosen for insertion is also based on the proposed average-direct-demand, and a larger value 

is preferred.  

 Lower bound determination and fitness evaluation  3.4.

 Fitness is used to reflect a solution’s quality and select candidate solutions for a 

neighborhood search. Although the reciprocal of the upper-level objective value can be used 

as a fitness measure for the proposed algorithm, it is cumbersome to calculate the upper-level 

objective for each solution because the corresponding optimal frequency must be found by the 

proposed frequency setting method, which involves solving the lower-level problem many 

times. Thus, a lower bound is calculated to determine the minimum number of passenger 

transfers for each solution, and then used to replace the upper-level objective value in the 

fitness function. Such a bound can be obtained much more quickly than the reciprocal of the 

upper-level objective value.  

 Given a route design solution, the lower bound provides the minimum number of 

passenger transfers, which is an optimistic estimation of the upper-level objective function 

value. The calculation of the lower bound is based on the assumption that each transit route 

has unlimited capacity. Under this condition, the passenger demand 'e
id , Ui Z∀ ∈ , 'e V∈ , 

can be met without needing to make a transfer if there is any route connecting nodes i and 'e . 

Because summing up all of the served demand provides the maximum total passenger demand 

without making a transfer, the minimum number of passenger transfers, or the lower bound, 

can be obtained by calculating the difference between the total passenger demand 

U

'

\ '

e
i

i Z V e V
d

∈ ∈
∑ ∑  and the sum of all passengers not making a transfer under the assumption stated 
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above, ( )
U

' '

\ '
1 e e

i i
i Z V e V

NR d
∈ ∈

−∑ ∑ , where 'e
iNR  equals 1 if there is no route connecting i and 'e , 

and 0 otherwise.  

 If the subscript g is used to denote a route design solution, then the lower bound of solution 

g, LBg, can be mathematically expressed as 

 ( )
U U

' ' '

\ ' \ '

1e e e
g i i i

i Z V e V i Z V e V

LB d NR d
恄 恄

= - -槫 槫 ,  (23)  

where 

 ( )
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'
'
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1
R

e
i ie r

r

NR RT
=

= −∏  for U \i Z V∈ , 'e V∈ , (24) 

 
U \ , ,

iwr iwr ijr jwr
j Z V j i j w

RT X X RT
∈ ≠ ≠

= + ∑  for U \i Z V∈ , U \w Z V∈ , w i≠  , r = 1 to Rmax, (25) 

 ijrRT = l if route r passes through node i and node j, and 0 otherwise. 

With the lower bound of route design solution g, gLB , the fitness of solution g, gF , is 

calculated via 

 

1 .g
g g

F
LB P

=
+   

 (26) 

gP  is a penalty term for solution g and is given by  

 ( )
max max

, max ,
1 1

max ,0 max ,0
R R

g r g r g
r r

P T T V Wa β
= =

 
= − + − 

 
∑ ∑ ,   (27) 

where ,r gV  is the fleet size for route r in solution g; ,r gT  is the trip time on route r in 

solution g, and α and β are the penalty parameters related to the maximum trip time constraint 

and the fleet size constraint, respectively. The penalty method deals with infeasible solutions 

that cannot be repaired by any of the repairing operators. The first term in (27) penalizes the 

violation of constraint (12) while the second term penalizes the violation of constraint (9). 

Infeasible solutions are kept for neighborhood searches because it is possible for the global 

minima to be located close to infeasible solutions. Nevertheless, by varying the penalty 

parameter values, it is easy to adjust the probability of searching an infeasible solution region. 

When the penalty value is large, the probability is small and vice versa. 

 Frequency determination procedure  3.5.

The following subsections describe the details of each step in the frequency setting procedure 
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depicted in Figure 2. 

Step i: Frequency initialization  

This step is conducted to obtain the initial frequency for each route. The initial frequency for 

route r is calculated from 

 ,
,

,2
r g

r g
r g

V
f

T
= ,   (28) 

where ,r gf  is the frequency of route r of solution g. Given trip time ,r gT , the total fleet 

should be allocated carefully to meet the minimum frequency and demand conservation 

requirements. Thus, we propose the following procedure for allocating buses to determine the 

initial frequency of each route. 

 1. Assign buses according to minimum frequency constraint (10). Given the trip time on a 

route, the minimum number of buses required to meet the minimum frequency constraint can 

be determined by equation (28);  

 2. Assign buses according to demand requirement constraint (14). This procedure ensures 

that the service capacity provided for each destination e is not less than the demand ending at 

destination e, under the assumption that the total service capacity for the study area is not less 

than the total demand. In the beginning, all of the transit lines with the same ending terminals 

are grouped, and then two frequency values are calculated and compared for each group. One 

is the assigned group frequency, which is the sum of the frequencies obtained in step 1. The 

other is the required frequency, which is the minimum frequency required to meet the total 

demand for each destination group calculated by s
d

cap
,

e
m

m G
d

e Gk
∈ ∀ ∈
∑

. For each group, if the 

required frequency is larger than the assigned frequency, then the group frequency is 

insufficient and the difference between the required and assigned frequencies is added to the 

frequency of the route with the least trip time. The route with the least trip time is chosen 

because when one more bus is assigned to that route, it produces the highest increase in the 

frequency and the line capacity compared with other routes. 

 3. Round up the fleet size and recalculate frequencies. After the foregoing two steps, the 

number of buses allocated to each route is calculated and rounded up to the nearest integer. 

The frequency of each route is then recalculated, which usually ends with a slightly higher 

value than the previous result. 
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 This procedure handles the frequency-related constraints by determining the fleet size of 

each route. Afterwards, if the sum of the fleet size of each route is less than or equal to the 

total fleet size defined by constraint (9), then the route structure simultaneously satisfies 

constraints (9), (10), and (14); otherwise, the route structure is infeasible and the fitness of the 

infeasible solution is penalized. If there are residual buses that have not been allocated to any 

route, they are added to the route with the least trip time because at global optimality all buses 

must be used. 

Step ii: Lower bound screening  

After step i, we can identify whether a route structure is feasible. For infeasible solutions, it is 

not necessary to search for optimal frequency. For feasible solutions, only potentially good 

solutions proceed to obtain optimal frequency. Candidate solutions are identified by 

comparing the lower bound with the current best objective value. If the lower bound of a new 

solution is larger than the current best objective value found by the hybrid ABC algorithm, 

then it is impossible to determine the upper-level objective value of a new solution that is 

smaller than the current best objective value by adjusting its frequency and not changing the 

route design. In this case, the route solution cannot be globally optimal and it is redundant to 

carry out the frequency setting procedure. However, if the lower bound is less than the current 

best objective value, then obtaining a better objective value by searching optimal frequency 

settings is possible, and hence the solution is potentially good. 

Step iii: Solving the transit assignment problem 

With an initial frequency and a feasible route structure, the lower-level transit assignment 

problem is solved by the Simplex method. Afterwards, both the primal and dual solutions are 

recorded. The primal solution indicates the number of transfer passengers and the dual 

solution is used, if necessary, to determine the descent direction and step size for updating 

frequency in later steps.  

Step iv: Termination criteria checking  

The following stopping criteria are used: 

 Criterion (1) 1, 1
k

g gz LB ε− ≤  and 

 Criterion (2)  1
1, 1, 2
k k

g gz z ε+ − ≤ , 
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where  and  are predefined maximum acceptable errors and 1,
k

gz  is the upper-level 

objective value of solution g after the kth iteration. Both criteria are derived based on the 

definition of the lower bound, which states that the upper-level objective value 1,
k

gz  cannot 

be reduced to a value that is smaller than the lower bound for route structure g.  

 Criterion (1) is used as a stopping criterion when the frequency is optimal or nearly 

optimal. If 1,
k

gz  and gLB  are equal, then the frequency is optimal. If the difference is small, 

then the frequency is probably optimal, and is at least nearly optimal. 

 Criterion (2) is used when two successive objective values are close enough, which implies 

that the two successive solutions are probably close enough, and the latest solution is 

probably optimal. 

Step v: Determination of the descent direction 

In this step, the descent direction of the upper-level problem with respect to frequency is 

determined. This descent direction is also the descent direction for the lower-level problem 

under the condition that the penalty parameter for transfers (i.e., M) is large enough. Hence, 

we can rely on the descent direction of the lower-level problem, which is derived as follows.  

Descent direction of the lower-level problem   

For the ease of presentation, we rewrite the lower-level formulation as a function of the 

frequencies  in the following vector form and omit the solution subscript g. 

  
  (29)

 

subject to: , (30) 

      , (31) 

 , (32) 

 , (33) 

 , (34) 

where  and  represent the vectors  and , respectively, which are 

functions of frequencies.  and . For constraints  

1ε 2ε

f

( )( ) ( )( )2 1 2min : z h h= +
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(30) to (32), , ; ; 

; ; ( )( )3
e
a

e
v =   

∑g v f  and ( ) capaf k =  c f . The 

dimensions of these matrices are not fixed, but vary with the solutions of the upper-level 

problem. 

 The descent direction is derived based on the necessary Karush–Kuhn–Tucker (KKT) 

conditions. At global optimality, the following conditions hold:  
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where ( )*v f  and ( )*w f  stand for the optimal solutions of the lower-level problem and 

e
iaπ =  π , e

iϕ =  φ , and [ ]aµ=μ  are, respectively, the optimal multipliers for equations 

(30), (31), and (32). The sufficient conditions of global optimality at ( ) ( )( )* *,v f w f  
are also 

satisfied because the lower-level problem is a linear programming problem with a convex 

solution set (i.e., a convex problem).  

 To obtain the descent direction of the objective function, we form the Lagrange function L, 

differentiate the Lagrange function with respect to f , and substitute ( )* *( ), ( ), , ,v f w f π φ μ  
to 

the derivative to get  
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Rearranging equation (39), we have 
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Substituting equation (35) into (40), we obtain  

( ) ( )( ) ( )*L
∂ ∂

∇ = − ⋅ −
∂ ∂

T T
f

k f c f
π m w f μ

f f
.   (41) 

Equation (41) provides the steepest ascent direction of the Lagrange function at the current 

solution ( )* *( ), ( ), , ,v f w f π φ μ . Accordingly, L−∇f  is the steepest descent direction at that 

point. Because 2L z∇ =∇f f  at ( )* *( ), ( ), , ,v f w f π φ μ , 2L z−∇ = −∇f f  at that point. This 

implies that L−∇f  provides a descent direction of the lower-level objective function with 

respect to f  at ( )* *( ), ( ), , ,v f w f π φ μ . 

Descent direction of the upper-level problem   

 

For the proposed formulation, the lower-level objective function can be decomposed into two 

positive and linear terms, where the second term has the coefficient M. That is, 
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∑ ∑  is the total flow on all the transfer links, and is identical to the objective function 

of the upper-level problem; x  is the vector for the rest of the decision variables of the 

lower-level problem; and C  is the vector of the coefficients of x . 
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Proposition 1: When M is greater than the largest element of C, the gradient - L∇f  at the 

current frequency solution is also a descent direction of the upper-level objective function.  

 

Proof: Without loss of generality, each of the current frequencies is less than infinity. 

Moreover, the waiting time for each transit line can only tend to zero when the frequency 

tends to infinity. Therefore, one can always reduce the total waiting time and, hence, the 

objective value of the lower-level problem by increasing the frequency of at least one transit 

line. Therefore, each of the elements of - L∇f  is always negative for the current solution, 

meaning that the objective value of the lower-level problem for the current frequency solution 

can always be reduced by increasing the frequency of at least one transit line. This implies 

that we can always find a descent direction, including the steepest descent direction, for the 

current frequency solution. 

 Because we only consider descent directions, we do not need to consider the constraints for 

the lower-level problem. Without considering the constraints of the lower-level problem, the 

objective value of the lower-level problem can be reduced after the current solution moves 

slightly along the steepest descent direction. As M is greater than the largest element of C, it is 

more efficient to reduce the value of the second term than that of the first term along the 

descent direction. Hence, the value of the second term must be reduced along this direction. 

Therefore, L−∇f  is a descent direction to the upper-level problem. This completes the proof. 

□ 

Proposition 1 implies that it is possible to reduce the value of the upper-level objective 

function by reducing the value of the objective function of the lower-level problem.  

Step vi: Step size determination and frequency updating  

In addition to the descent direction given by (41), a step size must be determined to update f. 

Hence, we investigate the individual component of the gradient of the Lagrange function to 

determine a good mathematical property that simplifies the procedure for determining the step 

size. The gradient of the Lagrange function is 

 cap* * * ae ea
ia i a

i a e ar r r

f kfL
f f f

p ω µ
 ∂∂∂  = − ⋅ ⋅ −

∂ ∂ ∂∑∑∑ ∑ ,  (43) 
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where 
r

L
f
∂
∂

 represents the gradient with respect to the frequency of line r and * represents the 

solution at optimality. The first term on the right side is defined by the dual solution of the 

relaxed node-flow distribution constraint (30). The second term is defined by the dual solution 

of the capacity constraint (32). Note that if link a is a boarding arc of transit line r, then 

1a

r

f
f
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=
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otherwise. Hence, 
r

L
f
∂
∂

 is a function that is only influenced by the 

frequency of transit line r. Such separable property permits us to adjust the frequency of each 

transit line or to determine the step size rf∆  for each line r, separately. 

 After obtaining the descent direction for each route, the following integer linear program is 

proposed to determine the step size:  

  3min : r
r r

Lz f
f∆

∂
= ∆ ⋅

∂∑V
  (44) 

subject to 

  max, for  1 to 
2

r
r

r

Vf r R
T

∆
∆ = = , (45) 

  min max, for  1 to r rf f f r R∆ + ≥ = ,   (46) 

  ( )
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r r r m

r m G
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∆ + ⋅ ⋅ ≥ ∀ ∈∑ ∑ ,  (47) 

  0r
r

V∆ =∑ , (48) 

where [ ]rV∆ = ∆V  and rV∆  is the change in the fleet size of route r. rf∆  is the step size 

of the frequency of route r. rV∆  and rf∆  are related through equation (45), which is 

derived from (28). The objective of the integer program is to minimize the increase in the 

value of the Lagrange function by adjusting the fleet size of each route, which is equivalent to 

minimizing the objective value of the lower-level problem by determining the optimal fleet 

allocation. Constraints (46) and (47) are derived from the upper-level constraints (10) and 

(14). Constraint (48) represents the fleet size conservation constraint. Because the fleet size 

rV∆  is an integer decision variable, the problem becomes a linear integer programming 
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problem. Although it is possible to adopt [ ]rf∆  as a vector of continuous decision variables 

instead of using ∆V  as a vector of integer decision variables, the problem of transforming 

optimal continuous solutions into optimal integral solutions is even more complex and 

non-trivial. Hence, we adopt ∆V  as a vector of decision variables. 

 

Proposition 2: 3z  is always a non-positive number at optimality. 

Proof: It is easy to observe that the solution at the origin, V 0∆ = , is feasible, as it must 

satisfy all of the constraints of the integer program. Moreover, when V 0∆ = , 3z  is equal to 

0. As the integer programming problem is a minimization type, the objective value of an 

optimal solution must not be greater than that of any feasible solution, including V 0∆ = . 

Hence, 3z  is always non-positive at optimality. This completes the proof. □   

 

 The implication of proposition 2 is that the optimal allocation determined by the integer 

program must reduce the value of the Lagrange function and hence the value of the upper 

objective function of the upper-level problem, if 3z  is negative at optimality. 

 After solving the integer program, the iterative procedure returns to step iii with the 

updated frequency obtained by first obtaining k
rfD  from k

rVD  using (45) and 

 1k k k
r r rf f f-= + D  max for  1 to .r R=    (49) 

Here, an additional superscript k is introduced, representing the kth iteration of the frequency 

found in the iterative frequency determination procedure.  

Violation of assumptions  

To use the descent direction information derived from (43), we assume: that (i) the optimal 

basis remains optimal (ii) M is greater than the largest coefficient in C. 

 The first assumption requires that each change in frequency is within a certain allowable 

range; otherwise swapping between basic and non-basic variables occurs. However, in the 

integer program, the exact allowable range is not used. Instead, we use the feasible region 

defined by (10) and (14) in the upper-level problem to approximate it. As a result, the 

approximation creates a problem when the feasible region of the upper-level problem does not 

lie within the allowable range. Consequently, an inappropriate step size is found and the new 
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frequency falls out of the allowable range. The objective value may subsequently increase, 

such that it takes extra iterations to reduce the objective value of the linear integer program.  

 There are two methods for addressing this issue. First, an additional constraint is added to 

limit the maximum change for each of k
rVD . However, if the constraint is too tight, it leads 

to more iterations to obtain an optimal allocation. Therefore, a balance decision should be 

carefully made. Trial and error testing is more likely to provide hints on where to set the 

maximum change for k
rVD .  

 Second, we use the results of our sensitivity analysis in the linear programming to derive 

additional constraints, which ensure that the basis remains unchanged. Without loss of 

generality, we rewrite the lower-level problem in the following compact form: 

  2min z = ⋅c x    (50) 

  =Ax b ,  (51) 

  ≥x 0 ,  (52) 

where A  is a matrix, b  and c  are column vectors, and x  is a vector of decision 

variables in which the elements involve all the elements of the auxiliary variables v  and 

w .  

 According to the fundamental results of the sensitivity analysis, at optimality, all 

coefficients in row 0 of the final tableau are non-positive (for the minimization problem) and 

all of the right sides are non-negative; that is, for the coefficients of the variables v  and w  

in row 0 of the final tableau, we have: 

 1
B − − ≤c B A c 0 ,   (53) 

where 1−B  is the inverse of B and B is the square matrix, which contains the columns from 

[ A | I ] that correspond to the set of basic variables (in order) and Bc  is the vector of 

elements in c  that corresponds to the basis variable. For the coefficients of auxiliary 

variables in row 0 of the final tableau, we have  

 1
B

− ≤c B 0 .  (54) 

For the right sides, we have 
1− ≥B b 0 .   (55) 

 Given that only the coefficients in (18) and the right side in (20) involve line frequency, 

only A  and b  involve frequency in some of the elements, and thus we only need to 
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consider conditions (53) and (55). After revising the elements involving line frequency by 

adding rf∆  to them, we have a revised matrix 'A  and a revised column vector 'b , which 

are linear functions of [ ]rf∆ . We then have the following two sets of additional linear 

constraints for the integer program:  

 1
B − ′ − ≤c B A c 0  and   (56) 

1− ′ ≥B b 0 .    (57) 

Note that both 1−B  and Bc  are known at optimality and c  is obtained from the 

lower-level problem. 

 The second assumption is that M is greater than the largest coefficient in C. When this 

assumption is met, - L∇f  must be a descent direction of the upper-level objective function. 

Otherwise, there is no guarantee that - L∇f  is also a descent direction of the upper-level 

objective function. When - L∇f  is not a descent direction of the upper-level objective 

function, we may need to switch to using the frequency setting heuristic proposed by Szeto 

and Wu (2010) to determine the frequency. This heuristic is time-consuming, as it relies on 

solving the lower-level problem many times to determine the descent direction of each line 

and the optimal frequency. The details of the frequency setting heuristic are not reported here 

but readers can refer to Szeto and Wu (2010) for the details. Alternatively, the method 

proposed in this paper can be used as a heuristic to determine frequencies. 

 Neighbor solution generation 3.6.

Due to the complexity of the problem, specific neighborhood search operators are developed 

to generate neighbor solutions. As each route comprises three parts—starting terminal, 

intermediate stops, and ending terminal—these neighborhood search operators intend to 

mutate all of these parts. Four operators are proposed to achieve this purpose: a) starting 

terminal swap, b) ending terminal swap, c) intermediate stop swap, and d) intermediate stop 

insertion (Figure 6). The operations are conducted randomly in the neighborhood search 

phase. 
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  Figure 6 Neighborhood search operations   

 The starting and ending terminal swap operators are trivial. They randomly select two 

routes and exchange the two starting and ending terminals, respectively. Before swapping 

their starting and ending terminals, the ending terminals of two candidate routes are checked 

to ensure that they are different to generate different solutions. For the intermediate stop swap 

and insertion operations, the nodes selected to perturb are based on the proposed 

average-direct-demand value. For instance, the node to be transferred is the one that induces 

the minimum average-direct-demand increment. Once a candidate node is found, a scanning 

procedure is carried out to check whether the selected node is in the receiving route. If so, the 

next best node is selected. Note that an intermediate stop deletion operator is not used here 

because it does not generate a better solution by itself. It is only used when the route is too 

long; that is, we repair the route structure because it violates the travel time constraint or the 

constraint on the number of stops. 

4. Experiments 

To investigate some of the problem’s properties and the performance of the proposed solution 

method, a small network was created and tested, after which the proposed method was applied 

to solve a realistic bus network problem in Tin Shui Wai (TSW), Hong Kong. The 

performance of the proposed algorithm was demonstrated by comparing it with that of a GA 

on the Winnipeg network. For the small and TSW networks, the centroid and stop were 
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assumed to be identical. The parameters, unless specified, were set as follows: 2000M = ; 

c 100N = ; e 50N = ; o 50N = ; limit = 50; the maximum number of iterations was 500; 

910a b= = ; and 1 2 0.01ε ε= = . The proposed ABC method was coded in C++ and 

complied with Visual Studio 2008, and the lower-level and linear integer programs were 

solved by CPLEX 12.4. For all of the tests, 20 runs with different initial seeds were conducted 

and the average performances were reported. 

 Small network experiments 4.1.

Figure 7 shows the small network that we created. The starting bus terminals were nodes 1 

and 2. Nodes 7-11 were ending terminals. The study area consisted of nodes 1-6. Each zone in 

this example had only one stop. Hence, the passenger demand between stops equaled that 

between the corresponding centroids. The passenger demand is given in Appendix I. The 

maximum trip time was set to 23 minutes, the total fleet size was 60, the maximum number of 

intermediate stops was 3, and the maximum number of routes was 5.  

 
 Figure 7 Small network 

Benchmark results with multiple solutions 

To calculate the benchmark result, a brute force method (that enumerated all possible 

solutions) was applied. The frequency determination procedure and the lower bound 

screening method were incorporated to speed up the brute force method. The optimal 

objective value obtained was 411. From the proposed ABC algorithm, the average objective 

value of each run and the lowest objective value both equaled 411, implying that all of the 

runs successfully found the optimal objective value. 

 Table 1 provides the two optimal solutions, which possess different route structures and 
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headways that are the reciprocal of the corresponding frequencies. The two structures are 

quite similar. The main differences are the frequency setting and the stop sequence of the 

fourth route. From the operator’s perspective they may be significantly different in terms of 

other criteria such as fuel consumption, emissions, and operation cost. For illustrative 

purposes, the fuel cost was estimated by multiplying the frequency by the corresponding trip 

time. The fuel cost was HK$634.7.0 and HK$621.7 per hour for solutions 1 and 2, 

respectively. If the first design was chosen, a 3% greater fuel cost was spent than if the second 

design was chosen, implying that the operator had to select the design wisely. From the 

passengers’ perspective, different frequencies and stop sequences indicated different waiting 

times and opportunities to find a seat. These two factors also affect passengers’ route choices 

in reality, and can be considered in selecting one out of all optimal solutions. Although the 

proposed ABC algorithm only kept the best solution over iterations, it was possible to create a 

solution pool that contained all of the optimal solutions searched. Hence, it was not difficult to 

select an optimal solution that gave the best performance in the other measures. 

 

Table 1 Optimal solutions of the small network 

Optimal solution 1 Optimal solution 2 

Stop sequence Trip time  
(min)  

Headway 
(min)  Stop sequence Trip time  

(min) 
Headway 
(min) 

1, 3, 2, T, 8 22.8 13.3 1, 3, 2, T, 8 22.8 12.2 
1, 3, 2, T, 9 22.8 12.4 1, 3, 2, T, 9 22.8 11.5 
1, 3, 2, T, 11 22.8 13.2 1, 3, 2, T, 11 22.8 12.1 
2, 5, 6, T, 10 20.2 12.3 2, 6, 5, T, 10 20.2 7.6 

2, 4, T, 7 22.0 5.9 2, 4, T, 7 22.0 11.2 

Effectiveness of the lower bound screening method and hybrid ABC algorithm 

To test the effectiveness of the lower bound screening method, an ABC version that did not 

use the screening method was developed. The other procedures were identical, with the 

exception of the lower bound screening method. For both versions, the infeasible solutions 

were identified and were not used to determine optimal frequency. Although the lower bound 

screening method was not used, the lower bounds were still calculated and adopted in the 

fitness function. The computation times are shown in Table 2. By comparing both methods, 

we found that the lower bound screening method reduced the computation time significantly. 

The computational advantage may be due to the following reasons. One is that for the version 
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with the lower bound screening method, only potentially good solutions were required to 

determine optimal frequency, whereas for the version without, all of the feasible solutions had 

to carry out the iterative optimal frequency determination procedure. Accordingly, the total 

number of solutions required to determine the optimal frequencies was reduced by the lower 

bound screening method. The other reason is the termination criteria of the descent frequency 

search. For the version with the lower bound screening method, the termination criteria relied 

on both criteria (1) and (2), whereas for the version without the method, the termination 

criterion was only defined by criterion (2), which was the difference between the upper-level 

objective values of two successive iterations. Thus, the number of iterations required to 

determine optimal frequency was also reduced by the lower bound screening method. The 

computational advantage is likely to be even more significant in large networks with more 

feasible solutions and integer variables. 

 Table 2 also shows that the hybrid ABC algorithm with the lower bound method obtained 

optimal solutions much more quickly than the brute force method (which was exact), 

illustrating the computational efficiency of the proposed algorithm. 

 

Table 2 Comparison of computation time 

 Brute force method Hybrid ABC algorithm 
With lower bound 

screening No Yes No Yes 

Average 
computation time 

(seconds) 
8292.55 14.16 1003.80 0.20 

Effects of design parameters 

Figures 8-11 demonstrate the effects of various design parameters on minimizing the number 

of passenger transfers, including the minimum frequency minf , the maximum number of 

intermediate stops Smax, the maximum fleet size W, and the maximum number of routes Rmax. 

Without further specification, the default parameters were set as min 4.8f = buses/h, 60W = , 

max 3S = , max 5R = , and max 26T =  minutes.   

Effect of minimum frequency   

Minimum frequency was used to maintain a certain level of service with respect to waiting 
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time. A higher frequency meant a higher capacity and a shorter waiting time. However, under 

the fleet size constraint, increasing the minimum frequency may have resulted in the 

deterioration of another type of service level, such as the total number of passenger transfers, 

as illustrated in this example. Figure 8 depicts the effect of the minimum frequency setting, 

showing that a tighter minimum frequency constraint results in a higher number of passenger 

transfers. The frequency requirement was satisfied by cutting the trip time and reducing the 

number of stops visited, because the total fleet size must be fixed. Thus, some passengers 

received the benefit of a reduced waiting time while others bore an additional transfer cost. 

This finding raises an interesting equity research direction for future research. In the extreme 

case, when the minimum frequency was greater than 5.4 buses/h, there was no feasible 

solution to satisfy the fleet size constraint.  

  
  Figure 8 Effect of minimum frequency  

Effect of the maximum number of intermediate stops 

More intermediate stops may have reduced the number of transfers, at the cost of increasing 

the route travel time and reducing the frequency. Figure 9 shows that the total number of 

transfers continued to decrease from 661 to 275 when maxS  increased from 2 to 4. More 

stops could be added to the existing routes by increasing the maximum number of 

intermediate stops, such that the existing services could cover more demand locations and 

provide more direct services. However, a further increase in maxS  did not reduce the number 
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of transfers because no more stops could be added to the existing routes in this range of the 

maximum number of intermediate stops allowed. Either the maximum travel time constraint 

(i.e., constraint (12)) or the minimum frequency constraint (i.e., constraint (10)) instead of the 

constraint on the maximum number of intermediate stops (i.e., constraint (11)) was binding at 

optimality. Visiting more stops extended the round trip and total stop times. Moreover, the 

prolonged travel time reduced the frequency if the fleet size for the route remained unchanged. 

Hence, the number of stops could not be added to each route without limit. The implication of 

this result is that practitioners must identify which constraints are critical in improving the 

services because the binding constraints are different under different conditions. 

 

   
  Figure 9 Effect of the maximum number of intermediate stops 

Effect of the maximum bus fleet size  

The effect of the maximum bus fleet size is shown in Figure 10. According to this figure, 

there was no feasible solution when 0 55,W< <  because the minimum frequency 

requirement could not be satisfied, implying that the fleet size was inadequate to provide the 

minimum acceptable level of service. When 55 59W≤ < , the number of transfers decreased 

with the increase in the fleet size, because more buses were allocated to the existing routes to 

serve the demand between any pair of stops on the same bus route, and less demand between 

them required a transfer due to the insufficient capacity of the direct services. When 59W ≥ , 

the effect of increasing the fleet size on reducing the number of transfers vanished because all 

of the demands between any pair of stops on the same bus route were met. Route capacity was 
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no longer the key factor in reducing the number of transfers and the maximum fleet size 

constraint was no longer binding. Further reducing the number of transfers required adding 

more direct services. 

  
  Figure 10 Effect of the maximum bus fleet size 

Effect of the maximum number of routes 

   
  Figure 11 Effect of the maximum number of routes 

 To illustrate the effect of the maximum number of routes, maxR  was increased from 5 to 9. 

The fleet size was adjusted to 120 in this test, because according to preliminary tests no 

feasible solution could be found if maxR  was greater than 6 under the default setting. The 

results are plotted in Figure 11. As expected, the number of transfers decreased with an 
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increase in maxR . More importantly, the number of transfers was successfully eliminated 

when maxR  was equal to or greater than 8, because more routes provided more direct services 

and covered more nodes. 

 TSW network 4.2.

 The main study area was located in Tin Shui Wai (TSW), Hong Kong (Figure 12a). All of 

the routes leave TSW through the Tai Lam Tunnel (TLT), located on the south eastern side of 

the area, and then continue via the highway, which is connected to urban destinations. 

Passengers can transfer either at the TLT station or at other nodes outside the TSW area. 

However, due to a lack of systematic design, the existing bus network operates in an 

inefficient manner, generating many transfers. Some of the bus services are routed using a low 

occupancy rate, which wastes resources and inconveniences passengers. However, from the 

passengers’ perspective, ideally, there should be as many routes as possible to provide direct 

point-to-point services, but this is infeasible due to the relatively fixed operating cost of the 

operator. As with other bus operators, the operating cost was shown to be roughly 

proportional to the number of operating vehicles. If a single route zigzags too much and has 

too many stops, the travel time is long. The bus operators’ main concern is then how to 

restructure the bus routes in TSW to reduce the number of passenger transfers without 

increasing the fleet size.  

 Figure 12b shows the TSW network. The square nodes represent the bus terminals inside 

TSW, the circle nodes represent the current bus stop locations, and “T” represents the TLT 

bus interchange. The in-vehicle travel times (in minutes) between nodes are shown next to the 

corresponding links. As Figure 12b reveals, the TSW area was divided into 23 zones, each of 

which had one stop or bus terminal. The stops and terminals in this area are represented by 

nodes 1-23 and the seven bus terminals are represented by squared nodes (Figure 12b). All of 

the bus routes originating from these terminals terminated at one of the five ending terminals, 

nodes 24-28. The demand matrix estimated from the available data is given in Appendix II.  

 

Effects of different forms of fitness functions and penalty parameter values 

Because a lower bound is used to approximate the upper-level objective value, the solution 

quality may not be reflected accurately. Therefore, the following three different forms of 
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fitness functions are proposed and tested:  

 

 
   (a) Map of Tin Shui Wai   (b) The Tin Shui Wai bus network                     

Figure 12 The study network 

 
151 10g g gF LB P= - - ,   

2g I g gF C LB P= - - , and    

13g
g g

F
LB P

=
+

.    

1gF  and 2gF  adopt a similar functional form in the sense that both use a constant minus 

the lower bound and the penalty term gP . However, an arbitrarily selected large constant (i.e., 

1015) is adopted in 1gF , while an adaptive value, IC , is used in 2gF . IC  is determined by 

adding a small constant (i.e., 1.0) to the maximum value of ( )g gLB P+  among all of the 

solutions obtained in iteration I. In addition to the forms of the fitness functions, the penalty 

parameter values affect the probability of searching infeasible solutions. The combined effects 
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of the form of a fitness function and the penalty parameter values are plotted in Figure 13, 

assuming that the value of the penalty parameter a is equal to the value of the penalty 

parameter β. The y-axis represents the average upper-level objective value and the x-axis is 

the log penalty parameter value, demonstrating that by modifying the form of the fitness 

function, the performance of our algorithm significantly improves. Although the penalty 

values affect the performance, the effect seems to be less than that of the form of the fitness 

function. The best average objective value is given by 3gF  at 810a b= = . This setting was 

adopted in the following experiments. 

   
Figure 13 Effects of various forms of fitness functions and penalty parameter values 

Effect of limit  

The predefined number limit is used to determine when an employed bee becomes a scout. 

This value may be roughly interpreted as the sampling frequency within a solution space. A 

higher value means that more neighbor solutions are found and compared. In this test, limit 

was increased from 0 to 500. The average upper-level objective values are plotted in Figure 

14. When limit equals 0, it represents the scenario that all food sources are abandoned and 

regenerated in each iteration. The average objective value decreased initially and then arrived 

at the minimum point, when limit equals 150. Afterwards, the average objective value slightly 

increased and became varied, indicating that the average algorithm performance worsened if 

limit was too large or small. One explanation is that when limit was small, the promising area 

in the solution space could not be well exploited, whereas when limit was too large, many 
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search efforts were trapped in the areas with low solution quality.  

     
  Figure 14 Effect of limit  

Effect of colony composition 

The composition of employed bees and onlookers also affects the performance of the hybrid 

ABC algorithm. Given that the total number of iterations and the colony size are fixed, 

different percentages of employed bees result in different numbers of initial solutions and 

different numbers of onlookers influence the intensity of neighbor solution searching. 

Meanwhile, the number of employed bees also reflects the number of scouts, which controls 

the maximum number of new solutions generated in each iteration. Figure 15 shows that the 

composition has a significant effect on the algorithm performance. In this example, when 50% 

of the colony is employed bees, the algorithm achieves the best average objective value. 

Either a higher or lower percentage prevents the further improvement of the objective value, 

probably because when the percentage of employed bees is low, only a few promising food 

sources are generated for onlookers to exploit. In contrast, if the percentage of employed bees 

is high, only a few onlookers conduct neighborhood searches to exploit the solution space 

near promising food sources. 

Effect of different node insertion and deletion strategies 

The insertion and deletion of nodes, which is important in improving route structures, is 

included in the repairing procedures and the neighborhood search. We propose an 

average-direct-demand value, defined as the average passenger demand on the direct services, 
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to select a node to insert or delete. To show the benefit of using the proposed measure in 

selecting nodes, three different strategies were compared and the results are presented in Table 

3.  

 

   
   Figure 15 Effect of colony combinations 

S1: Inserting and deleting nodes based on the proposed average-direct-demand increment    

and decrement, respectively. 

S2: Inserting and deleting nodes based on the cost increment and decrement, respectively. 

S3: Inserting and deleting nodes based on the total direct demand increment and decrement, 

respectively. 

 

Table 3 Comparison of the different insertion and deletion strategies 

 S1 S2 S3 

50%  demand 
311.62 646.05 602.62 

 (+107.3%) (+93.4%) 

100%  demand 
604.76 1313.99 1207.59 

 (+117.3%) (+99.7%) 
 

Two scenarios—low and normal demand—were tested. The average upper-level objective 

values of 20 runs are reported in Table 3. The number in each pair of braces is the increment 

percentage with respect to strategy S1 in the same row and shows that the proposed strategy 

S1 outperformed the others in both scenarios. The higher the demand, the more notable the 

advantage, because the average-direct-demand took the change in the upper-level objective 
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value due to inserting a node into consideration. In contrast, if only the total direct demand or 

cost change was considered, the nodes with a higher demand or shorter distance were visited 

more frequently, making them more likely to provide excessive services for these nodes and 

induce more transfers for other nodes. 

Robustness of the obtained solution 

The travel demands of the network were estimated, but the real demands may vary from day 

to day. To illustrate the robustness of the solution obtained by the proposed algorithm, 1,000 

demand matrices were generated by perturbing the estimated demand matrix and used for the 

evaluation. For each perturbed demand matrix, its element—the perturbed demand from node 

m to destination e—was randomly generated from a uniform distribution [0.8 e
md , 1.2 e

md ]. 

 Table 4 compares the best solutions obtained by the hybrid ABC algorithm for the studied 

situation using the perturbed demand matrices. ‘Std’ and ‘no.’ stand for ‘standard deviation’ 

and ‘number’, respectively. According to this table, the design solution obtained by the hybrid 

ABC algorithm was significantly better than the existing design, with the former reducing the 

number of transfers by 340% on average and successfully eliminating the unserved demand in 

all cases. The high unserved demand resulted from a lack of service capacity to meet the total 

demand of some destinations and the demand at some stops, where passengers failed to board 

any line. These two issues were addressed by the hybrid ABC algorithm. 

 The detailed solution obtained by the hybrid ABC algorithm is shown in Table 6 and the 

existing design is shown in Table 5. Intuitively, there are fewer stops in the proposed design, 

reflecting a more efficient meeting of demand. In addition, the headways of the routes are 

more evenly distributed for the obtained solution. Compared with the existing design, the 

standard deviation of headways for the best design decreased from 2.9 to 2.4 minutes, 

indicating that the difference in the level of service, in terms of frequency, among all of the 

routes, decreased.  

 

Table 4 Comparison of the solutions under random demand 

 

Average no. of 

transfers 

Std of no. 

of transfers 

Average 

unserved demand 

Std of unserved 

demand 

Hybrid ABC algorithm 355.491 22.38 0.00 0.00 

Current 1563.31 35.95 1350.85 56.18 
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Table 5 Existing route structures and headways  

Routes Stop sequence Number of 
buses 

Headway 
(minute) 

1 20, 19, T, 25 12 9.8 
2 16, 17, 18, 23, 22, 21, T, 25 17 8.1 
3 16, 17, 18, 23, 22, 21, T, 24 19 5.1 
4 1, 6, 9, 10, 12, 13, 19, 21,T, 25 19 8.5 
5 1, 6, 5, 4, 11,12, 13, 19, T, 24 23 5.3 
6 14, 15, 8, 9, 10, 12, 13, 19, T, 24 11 11.1 
7 1, 6, 8, 16, 17, 18, 23, 22,21, T, 28 30 4.1 
8 14, 13, 12, 10, 8, 16, 17, 18, 23, 22, T, 26 18 11.0 
9 7, 6, 1, 2, 3, 4, 11, 12, 13, 19, T, 24 11 12.3 
10 9, 10, 11, 5, 6, 8, 16, 17, 18, 23, 22, T, 27 16 11.3 

 

Table 6 Best solution obtained by the proposed ABC algorithm  

Routes Stop sequence Number of 
buses 

Headway 
(minute) 

1 14, 13, T, 27 11 11.6 
2 16, 1, 11, 13, 21, T, 24 23 5.3 
3 20, 23, 18, 16, 15, 14, T, 26 20 9.2 
4 7, 5, 1, 6, 9, 8, T, 25 14 12.1 
5 9, 5, 6, 8, 16, 17, 22, T, 26 15 12.2 
6 7, 1, 2, 3, 4, 12, 13,T, 26 15 12.3 
7 16, 8, 18, 20, 22, 23, 13, 12, T, 28 25 6.7 
8 23, 18, 16, 15, 10, 12, 13, 19, T, 25 19 8.9 
9 1, 2, 3, 4, 5, 7, 9, 14, 19, T, 28 14 9.8 
10 16, 23, 6, 10, 11, 15, 17, 21, 19, T, 28 20 8.5 

 

 Winnipeg network 4.3.

To evaluate the performance of the proposed hybrid ABC algorithm, it was compared with 

that of a GA using the Winnipeg network obtained from Emme 3.4. The network is shown in 

Figure 16 (a) and comprises 154 zones, 1067 nodes, and 2995 links. The network is further 

divided into seven districts including one central area. In each district, 30 lines are designed 

for commuters traveling from their home district to the central area. Each line is allowed to 

visit 15 stops at most within 45 minutes. The total fleet size is 1,200 buses with a capacity of 

60 passengers per bus. 

 For a fair comparison, the GA uses the same solution representation, initialization 

procedure, and frequency determination procedure as the hybrid ABC algorithm. The 
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population size is set to be equal the colony size. Unlike the hybrid ABC algorithm, the GA 

requires crossover and mutation operators to generate new solutions. Nevertheless, the 

standard crossover and mutation operators cannot be applied directly because the proposed 

solution representation is different from the solution representation in the traditional GA 

(Haupt and Haupt, 2004). Thus, the stop crossover operator developed by Szeto and Wu (2010) 

was used and the proposed neighborhood operators were adopted as mutation operators.  

   

 
(a) Winnipeg Network            (b) Districts of Winnipeg Network   

 Figure 16 Winnipeg network  

 Both algorithms ran 20 times. The computation time of each run was 300 seconds. The 

computation performances of the two algorithms is summarized in Table 7. The number 

within each pair of brackets in the third column is the percentage improvement of the hybrid 

ABC algorithm with respect to the GA in the corresponding measure. The second row shows 

that the average number of passenger transfers obtained by the hybrid ABC algorithm was 

lower than that of the GA. A t-test was also conducted to examine whether the difference in 

their average numbers of passenger transfers is statistically significant. The t-value obtained is 

2.093 and hence we can conclude that the difference is significant at the 5% level and the 

average performance of the hybrid ABC algorithm is better at this significance level.  

By comparing the standard deviations of the number of transfers in 20 runs in the third row 

in Table 7, it was concluded that the solution quality obtained by the hybrid ABC algorithm 

was much more stable. More importantly, as reflected in the last row, the best solution found 

by the hybrid ABC algorithm was superior to that obtained by the GA. The advantage of the 

hybrid ABC algorithm may be attributed to a better local search strategy, with a solution space 

explored by both employed bees and onlookers.  
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Table 7 Comparison of the computation performance of the GA and hybrid ABC algorithm 

Number of passenger transfers  GA Hybrid ABC 
Average 300.4 252.6 (-15.9%) 

Standard deviation  47.6 29.0 (-39.0%) 
Minimum  246.0 216.0 (-12.2%) 

  

 Figure 17 shows the average of the best fitness values for 20 runs for the two algorithms 

during the computational process. This figure illustrates the average of the best fitness values 

obtained by the hybrid ABC algorithm was higher than that of GA almost throughout the 

computational process. This implies that the hybrid ABC algorithm could always find a better 

feasible solution than the GA using the same computation time. It may be because the hybrid 

ABC algorithm has a better local search strategy.  

 
Figure 17 Average of the best fitness values for 20 runs for the GA and hybrid ABC algorithm 

5. Conclusions 

In this study, we proposed a bi-level model to formulate the transit network design problem. 

The network design and frequency settings were considered simultaneously. The number of 

passenger transfers was explicitly captured in the upper-level objective function, and the strict 

capacity constraint approach was used to handle the congestion effect in the lower-level 

problem. The lower-level problem is a congested transit assignment problem with the optimal 

strategy concept.  

 A hybrid ABC algorithm was developed to solve the model. The main algorithm (ABC 
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algorithm) was used to search the solution space of route structures, while the Simplex 

method solved the capacity-constrained transit assignment model. A node insertion and 

deletion strategy based on an average-direct-demand (i.e., average passenger demand on the 

direct services concerned) was proposed to repair route structures, and its effectiveness was 

illustrated by a numerical example. A descent search method was proposed for the frequency 

setting and a lower bound screening method was proposed to speed up the computation. The 

descent direction of the lower-level problem was also a descent direction of the upper-level 

objective under certain conditions, and a linear integer program was formed to determine the 

step size for updating the frequency setting.  

 Numerical examples were provided to illustrate the properties of the bi-level problem and 

the performance of the proposed algorithm. In particular, the benchmark comparisons verified 

that the proposed algorithm could find optimal solutions and that the descent search method 

saved considerable computation time. A small experiment was also performed to show the 

effects of different design parameters (including minimum frequency, maximum fleet size, 

maximum number of routes and intermediate stops) on the objective value and the possibility 

of multiple design solutions. 

 Using the realistic TSW network study, several tests were conducted to illustrate the effects 

of the ABC parameters, the functional forms of the fitness function, the penalty parameter 

values, and the node insertion and deletion strategies, demonstrating that the solution quality 

can be improved by carefully adjusting the ABC parameters. We found that the best solution 

obtained from the proposed algorithm was significantly better than the current design in terms 

of number of passenger transfers, and was more robust in terms of meeting passenger demand 

under demand uncertainty. Finally, the superior performance of the proposed hybrid ABC 

algorithm was demonstrated by comparing it with the GA in the Winnipeg network scenario. 

 This study opens up many research directions. First, the objective of our proposed 

problem–minimizing the number of transfers–was set from the perspective of passengers, 

which is reasonable if the operator is public and has passengers as its main consideration. 

However, the government may also consider the concerns of different stakeholders, including 

the operator. Hence, a potential future direction is to extend the proposed model to develop a 

multi-objective model that considers such concerns. Second, in terms of decision variables, 

the transit fare structure can be incorporated because it is also an important factor influencing 

passenger route choices. Third, the constant travel time assumption in the lower-level problem 

allowed us to have a linear programming problem that could be efficiently solved by existing 
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algorithms while remaining applicable to large-sized networks, deriving the descent direction 

to determine the optimal frequency setting. However, it has been shown that wait/transfer 

times at stations are usually increasing functions of the number of passengers boarding and 

alighting at stations (Lam et al., 1998; Yin et al., 2004; Li et al., 2009). It would be easy to 

extend our proposed model to capture this phenomenon without conceptual difficulty, but it 

would be more difficult to develop an “efficient” solution method to solve the resultant 

bi-level model. This has thus been left to future study. Finally, the proposed model could be 

extended to consider changing demand over time using the time-dependent approach (e.g., 

Szeto and Lo, 2005, 2008, Lo and Szeto, 2009), time space networks (Szeto, 2013), or the 

day-to-day dynamic approach (Watling and Cantarella, 2013) to develop good and meaningful 

bus service policies that are geared toward serving new development and facilities in Hong 

Kong, such as columbarium facilities. 
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Appendix I Peak hourly travel demands of the small network 

From\To 7 8 9 10 11 Total 
1 192 148 102 94 149 685 
2 100 74 78 56 102 410 
3 87 77 71 46 113 394 
4 96 63 49 34 85 327 
5 33 24 19 15 34 125 
6 19 14 14 9 23 79 
Total 527 400 333 254 506 2020 
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Appendix II Peak hourly travel demands of the TSW network 

From\To 24 25 26 27 28 Total 
1 192 148 102 94 149 685 
2 54 39 38 22 54 207 
3 47 40 38 27 55 207 
4 33 22 21 14 30 120 
5 100 74 78 56 102 410 
6 87 77 71 46 113 394 
7 113 76 71 46 103 409 
8 100 76 71 47 117 411 
9 96 63 49 34 85 327 
10 33 24 19 15 34 125 
11 19 14 14 9 23 79 
12 156 134 114 69 165 638 
13 177 105 90 78 143 593 
14 63 48 36 29 59 235 
15 102 81 63 39 93 378 
16 253 170 150 127 213 913 
17 28 20 20 14 27 109 
18 76 63 58 38 71 306 
19 34 25 22 14 30 125 
20 59 39 30 26 49 203 
21 36 23 22 15 28 124 
22 33 25 20 16 28 122 
23 206 184 147 96 209 842 
Total 2097 1570 1344 971 1980 7962 
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