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     Euler's Convenient Numbers

§0.  Introduction

In the classical consideration of numbers of the form , we find a set ofB  8C# #

convenient formulas for certain values of . Recall in Cox (see [1, 2.28]) a list is given of8
congruences for primes ::

Proposition 0.1.   If  is a prime, then:

: œ B  'C Í : œ "ß (# # a bmod #%

: œ B  "!C Í : œ "ß *ß ""ß "*# # a bmod %!

: œ B  "$C Í : œ "ß *ß "(ß #&ß #*ß %*# # a bmod &#

: œ B  "&C Í : œ "ß "*ß $"ß %*# # a bmod '!

: œ B  #"C Í : œ "ß #&ß $(# # a bmod )%

: œ B  ##C Í : œ "ß *ß "&ß #$ß #&ß $"ß %(ß %*ß ("ß )"# # a bmod ))

: œ B  $!C Í : œ "ß $"ß %*ß (*# # a bmod "#! .

Certain numbers , as we shall see, yield a nice set of congruences. Specifically,8
numbers  such that if  is odd, , and  has only one solution8 7 7ß 8 œ " 7 œ B  8Ca b # #

for non-negative , then  is prime. It turns out  is not such a number. For example,Bß C 7 ""
using the previous condition,  is the only representation of  as ,#  "" † " "& B  ""C# # # #

yet  is not prime. If we wish to find primes such that , then we would"& : œ B  ""C# #

have to use the methods of class field theory (as developed in Cox, [1, §5-9]).

The numbers  that do provide convenient congruences are aptly named 8 convenient

numbers. Although class field theory makes the existence of these numbers less crucial

for computing primes of the form , they are still interesting for historical andB  8C# #

computational reasons. For example, Euler was able to find the prime

") &") )!* œ "*(  ")%) † "!!, , # #

by noticing  is convenient. In this paper, we will see that there are only finitely many")%)
of these numbers. In fact, the highest such number is --  the Riemann hypothesis")%) if

holds! If it does not, there is at most one more (pretty large) such number. This last fact is

a deep result due to Weinberger that we will sketch at the end. First, we recall some basic

theorems and facts from genus theory.

§1.  Genus Theory

Proposition 1.1.  Let be an integer and  be an odd integer relativelyH ´ !ß " 7a bmod 4

prime to . Then  is properly represented by a primitive form of discriminant  if andH 7 H
only if  is a quadratic residue modulo . As a corollary, if  is an integer and  is anH 7 8 :
odd prime not dividing , then  if and only if  is represented by a primitive8 Ð Ñ œ " :8

:

form of discriminant .%8
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Proof.   See [1, Lemma 2.5] and [1, Corollary 2.6] in Cox. �

Theorem 1.2.   (Classification of Primitive Positive Definite Forms) Let H ´ !ß "a bmod %  with , and let  be the set of primitive positive definite forms ofH  ! G Ha b
discriminant . Then Dirichlet composition induces a well-defined binary operation onH
G H G Ha b a b, which makes  into a finite Abelian group whose order is the class number

2 H G Ha b a b. Furthermore, the identity element of  is the class containing the principal

form

B  C H ´ !# #H
%   if ,a bmod %

B  BC  C H ´ "# #"H
%  if a bmod %

and the inverse of the class containing the form  is the class containing+B  ,BC  -C# #

+B  ,BC  -C# #.

Proof.   See [1, Theorem 3.9] in Cox. �

Definition 1.3.   The group  in the previous theorem is called the . TheG Ha b class group

principal form of discriminant  is called the The form H +B  ,BC  -Cprincipal class. # #

is called the of so that the opposite form gives the inverseopposite +B  ,BC  -C ß# #

under Dirichlet composition.

Proposition 1.4.  A reduced form  of discriminant  has0 Bß C œ +B  ,BC  -C Ha b # #

order  in the class group  if and only if  or .Ÿ # G H , œ !ß + œ , + œ -a b
Proof.   See [1, Lemma 3.10] in Cox. �

Proposition 1.5.   Let with . Take  to be the number of oddH ´ !ß " H  ! <a bmod  %
primes dividing . Define the number  as follows: if , and ifH H ´ " œ <. .a bmod , then %
H ´ ! H œ %8 8  ! , then , where , and  is given by:a bmod % .

. œ

< 8 ´ $
<  " 8 ´ "ß #
<  " 8 ´ %
<  # 8 ´ !

ÚÝÝ
ÛÝÝÜ

if 

if 

if 

if 

a b
a b

a b
a b

mod 

mod 

mod 

mod .

%
%

)
)

Then the class group  has exactly  elements of order .G H # Ÿ #a b ."

Proof.   See [1, Proposition 3.11] in Cox. �

Theorem 1.6.   (Main Theorem of Genus Theory)  mod  Let with .H ´ !ß " H  !a b%
Then

(i)  All genera of forms of discriminant  consist of the same number of classes.H

(ii) There are  genera of forms of discriminant , where  is given in the# H." .
previous proposition.
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(iii) The principal genus consists of the classes in , the subgroup of squares inG Ha b#
the class group G Ha b

Proof.   See [1, Theorem 3.15] in Cox. �

Proposition 1.7.   Let  and  be primitive forms of discriminant ,0 Bß C 1 Bß C H Á !a b a b
positive definite if . Then the following statements are equivalent:H  !

(i)   0 Bß C 1 Bß Ca b a b and  are in the same genus, i.e., they represent the same values ina b™ ™Î. ‡
.

(ii) 0 Bß C 1 Bß C Î7a b a b a b and  represent the same values in  for all non-zero™ ™ ‡

integers .7

(iii) 0 Bß Ca b and  are equivalent modulo  for all non-zero integers .1 Bß C 7 7a b
Proof.   See [1, Theorem 3.21] in Cox. �

§2.  Convenient numbers

In §0, we introduced convenient numbers: those  for which genus theory gives a8
congruence condition for . In this section, we will pass to the language of classesB  8C# #

using our knowledge from § . Notice that investigating convenient numbers is the same"
as considering each genus of discriminant  that consists of a single class. The%8
following theorems make this precise.

Theorem 2.1.    Let  be a positive integer. Then the following statements are equivalent:8

(i)     Every genus of forms of discriminant  consists of a single class.%8

(ii)    If  is a reduced form of discriminant , then either ,+B  ,BC  -C %8 , œ !# #

+ œ , + œ -, or .

(iii)  Two forms of discriminant  are equivalent if and only if they are properly%8
equivalent.

(iv)   The class group  is isomorphic to  for some integer .G %8 Î# 7a b a b™ ™ 7

(v)    The class number  equals , where  is as in Proposition 1.5.2 %8 #a b ." .

Proof.   Let  be the class group for discriminant . Assume each genusG œ G %8 %8a b
of forms of discriminant  consists of a single class. We will show that if%8
+B  ,BC  -C %8 , œ ! + œ ,# # is a reduced form of discriminant , then either , , or

+ œ - H. From Proposition 1.4, it suffices to show that a reduced form of discriminant 

has order or  in . From Theorem 1.6(iii) (the main theorem of genus theory), we" # G
know that the principal genus is . Since we assumed each genus of forms ofG#

discriminant  consists of a single class, by definition this gives . Hence,%8 G œ "# e f
each element in  has order . This shows (i) (ii).G Ÿ # Ö

Assume that if  is a reduced form of discriminant , then either+B  ,BC  -C %8# #

, œ ! + œ , + œ - %8, , or . We will show two forms of discriminant  are equivalent if

and only if they are properly equivalent. The right-to-left implication is obvious. Without

loss of generality, consider two equivalent reduced forms of discriminant , say%8

0 Bß C œ +B  ,BC  -C 1 Bß C œ .B  /BC  0Ca b a b# # # #  and  .
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Then by definition there are  so that:ß ;ß <ß = − ™

0 Bß C œ 1 :B  ;Cß <B  =Ca b a b
with . First, notice we can use our assumption to give , or:=  ;< œ „ " , œ !ß + œ ,
+ œ - 0 1 0. We claim that  is properly equivalent to  or its opposite. If  is not properly

equivalent to , it must be improperly equivalent to , that is, . But then if1 1 :=  ;< œ "
we let  denote the opposite of ,1 1w

1 :B  ;Cß <B  =C œ . :B  ;C  / :B  ;C <B  =C  0 <B  =C

œ . :B  ;C  / :B  ;C <B  =C  0 <B  =C

œ 1 :B  ;Cß <B  =C œ 0 Bß C

w # #

# #

a b a b a ba b a b
a b a ba b a b
a b a b,

with . Hence,  is properly equivalent to thea b a b a b a b: =  ; < œ  :=  ;< œ  " œ " 0
opposite of . This proves the claim. We continue by showing that reduced forms are1
properly equivalent to their opposite (so in particular,  and  are properly equivalent to0 1
their opposite). Let  be a reduced form and  its opposite. If2 Bß C œ B  BC  C 2a b ! " ## # w

" ! "œ ! œ , then this is trivial. If , then

2 Bß C œ

œ

a b ! " # ! ! # ! ! ! ! ! #

! ! # ! " #

B  BC  C œ B  BC  C œ B  # BC  C  BC  C  C

B  C  B  C C  C œ B  C  B  C C  C œ 2 B  Cß C

# # # # # # # #

# ## # wa b a b a b a b a b
so that since , by definition  is properly equivalent to . Similarly," † "  " † ! œ " 2 2a b w

if , then! #œ

2 Bß C œa b ! " # ! " ! ! " !B  BC  C œ B  BC  C œ C  C B  B œ 2 Cß B# # # # # w#a b a b a b,
so that again  is properly equivalent to . Hence, we have shown that the original  and2 2 0w

1 are properly equivalent to each other or their opposite, but since they are reduced, that

means their opposites are properly equivalent to each other, and hence  and  are0 1
properly equivalent. This shows (ii) (iii).Ê

Assume two forms of discriminant  are equivalent if and only if they are%8
properly   equivalent. We want to show the class group  for some .G z Î# 7 −a b™ ™ ™7

It is easy to see any form is equivalent to its opposite through . Hence,a b a bBß C È BßC
by our assumption, for any form in  its opposite must lie in  as well since they areG G
properly equivalent. Then the last statement from Theorem 1.2 tells us the opposite of a

form and its inverse are in the same class in , so that each class is its own inverse. InG
other words,  is a finite abelian group with all elements of order . Then by theG #
classification of finite abelian groups,  for some  (since aG z Î# 7 −a b™ ™ ™7

component of any other  for  would give an element of order ). This shows™ ™Î. .  # .
that (iii) (iv).Ê

Furthermore, assume  for some . By Theorem 1.6(ii), theG z Î# 7 −a b™ ™ ™7

number of genera is the index of  in , that is, . Hence, the class numberG G ## ".

2 %8 œ G œ G À G † G œ # Ga b k k c d k k k k# # " #. .

Since we assumed , obviously 1. Hence, . ThisG z Î# G z 2 %8 œ #a b a b™ ™ 7 # ".

prove (iv) (v).Ê
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Finally, assume . Then as above,  means that2 %8 œ # 2 %8 œ # Ga b a b k k. ." " #

G z "# , so that by Theorem 1.6(iii), the principal genus consists of a single class.

However, the genera of forms all consist of the same number of classes, so each genus

consists of a single class. This means (v) (i), which concludes the proof. Ê �

We will now make the connection between convenient numbers and forms of

discriminant  whose genus consists of a single class. For sake of preciness, we will%8
use Euler's traditional definition of a convenient number.

Definition 2.2  Let  be an odd number relatively prime to , which is properly7 8
represented by . If the equation  has only one solution withB  8C 7 œ B  8C# # # #

Bß C   ! 7 8, then  is a prime number, and  is called a .convenient number

Proposition 2.3.   A positive integer  is a convenient number if and only if for forms of8
discriminant , every genus consists of a single class.%8

The above proposition asserts the  in Theorem 2.1 can be given by all five equivalent8
definitions (i)-(v).

Lemma 2.4.   Let  be a positive odd number relatively prime to . Then the7 8  "
number of ways that  is properly represented by a reduced form of discriminant  is7 %8

# "  .#Š ‹Š ‹
: l7

8
:

Proof.    Let  and  be odd with . Let  be a prime dividing . We8  " 7  ! 7ß 8 œ " : 7a b
will show that mod  hasB ´ 8 7# a b

# Š ‹Š ‹
: l7

8
:" 

solutions. Recall that a polynomial

0 B ´ ! <a b a bmod 

has  solutions, where  is the number of solutions of mod  with# a b8 8 0 B ´ ! Ð : Ñ3 3 3
.3

< œ : <#
3
.3  the prime decomposition of . (This is a direct application of the Chinese

Remainder Theorem; for a detailed proof, see [12, Theorem 5.25] in Apostol). In other

words, to find the number of solutions for

B  8 ´ ! 7# a bmod ,

it is sufficient to know the number of solutions of

B  8 ´ ! :#
3
.ˆ ‰mod ,3

where  is a component of the prime decomposition of . However, notice: 7 œ :3 3
. .3 3#

that if , then this last equation has no solutions, so indeed it has Ð Ñ œ " ! œ "  Ð Ñ8 8
: :3 3

œ 8 Ð Ñ œ "3
8
: solutions. Now consider . This means there is at least one solution.

Assume there were multiple solutions, that is, there is a  such thatC

B ´ C ´ 8 : : l CÎ# #
3
.ˆ ‰mod   (with ).3
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Then divides . However, it can only divide one of the two: B  C œ B  C B  C3
. # #3 a ba b

factors since  and  (i.e., it doesn't divide their sum). Buta b a bB  C  B  C œ #B : l #BÎ
then

B ´ „ C :ˆ ‰mod 3
.3

so indeed there are only two solutions. Again, there are  solutions.# œ "  œ 8Š ‹8
: 3
3

Hence, in total, there are

#8 œ3 #Š ‹Š ‹
: l7

8
:" 

solutions to the congruence mod .B ´ 8 7# a b
Now, consider forms  of discriminant  of the form1 Bß C %8a b

1 Bß C œ 7B  #,BC  -C ! Ÿ ,  7 ‡a b a b a b# #  .

Then the discriminant of  is . Hence, we need .1 Bß C #,  %7- œ %8 , 7- œ 8a b a b# #

However, since  and  are fixed, notice  determines  uniquely. Hence, this is7 8 , -
precisely equivalent to solutions for

,  7- ´ 8 7# a bmod , that is,

, ´ 8 7# a bmod .

In other words, there is a bijection between  and solutions of mod .1 Bß C B ´ 8 7a b a b#

Take  to be a form of discriminant  and let0 Bß C œ +B  ,BC  -C %8a b # #

0 ?ß @ œ 7 < ß = ?=  @< œ "a b  be a proper representation. Let  be such that , and let! ! ! !

< œ <  ?5 = œ =  @5 5 − ?=  @< œ "! ! and  . Then as  varies, we get all solutions of .™
Finally, let

1 Bß C œ 0 ?B  <Cß @B  =Ca b a b.
Now

1 Bß C œ + ?B  <C  , ?B  <C @B  =C  - @B  =C œa b a b a ba b a b# #

œ +? B  #+?<BC  +< C  ,?@B  ,?=BC  ,<@BC  ,<=C  -@ B  #-@=BC  -= C# # # # # # # # # #

œ +?  ,?@  -@ B  #+?<  ,?=  ,<@  #-@= BC  +<  ,<=  -= Ca b a b a b# # # # # #

œ 7B  # +?<  -@=  , ?=  @< BC  GC# #a ba b a b .

Now, pick the unique  so that . Then  and so5 − ?=  @< œ ! ! Ÿ +?<  -@=  7™
1 Bß C ‡ 1 Bß Ca b a b a b is uniquely represented as . Call this . Notice that the map sending a?ß@

proper representation  to  is onto, since each of the above steps is0 ?ß @ œ 7 1 Bß Ca b a b?ß@

reversible (so that we can start with  and show there is an  such that1 Bß C 0 Bß C?ß@a b a b
1 Bß C œ 0 ?B  <Cß @B  =C?ß@a b a b).

Assume  with1 Bß C œ 1 Bß C? ß@ ?ß@w wa b a b
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Œ  Œ  Œ ! "

# $
œ

? @ ? @
< = < =

w w

w w

"

.

Using the fact  (by determinants) and expanding!$ "# œ ?=  <@ Î ? =  < @a b a bw w w w

0 B  Cß B  C 0 B  Cß B  C œ 0 Bß Ca b a b a b! " # $ ! " # $, we see that . Then by the same

argument as in [1, Theorem 2.8] in Cox (assuming  is reduced), .0 Bß C Ð Ñ œ „ Ð Ña b ! "
# $

" !
! "

Finally, this implies  if and only if  (just1 Bß C œ 1 Bß C ? ß @ œ „ ?ß @? ß@ ?ß@
w w

w wa b a b a b a b
multiply by  on the left in the above matrix equation), so that the map sending aÐ Ñ? @

< =

w w

w w

proper representation  to the form  is two-to-one in addition to being0 ?ß @ 1 Bß Ca b a b?ß@

onto. Hence, by the earlier correspondence between forms as in  and solutions ofa b‡
B ´ 8 7 7# a bmod , there are twice as many ways to properly represent  by a reduced

form of discriminant  as there are solutions to mod . We have already%8 B ´ 8 7# a b
computed the latter, so indeed there are

##
: l7

8
:Š ‹Š ‹" 

representations in total. �

Corollary 2.5. Let  be properly represented by a primitive positive definite form7
0 Bß C % 8ß 8  "ß 7a b of discriminant 768  and assume that  is odd and relatively prime

to . If  denotes the number of prime divisors of , then  is properly represented in8 < 7 7
exactly  ways by a reduced form in the genus of .# 0 Bß C<" a b
Proof.   Since two forms representing  do not have disjoint values in , they7 Î%8a b™ ™ ‡

must lie in the same genus. Then by Proposition 1.1, for each prime , : l7 Ð Ñ œ "8
:

(since  implies ), so that by the previous lemma  is properly representeda b7ß8 œ " : l 8 7Î
in  ways. # † # œ #< <" �

Proof.   (of Proposition 2.3)  We will first show the right-to-left implication. Assume that

for forms of discriminant , every genus consists of a single class. By Definition 2.2,%8
we need to show that if  is properly represented by  and 7 B  8C 7 œ B  8C# # # #

( ), then  is prime. Since  is the only reduced form in its genus, by theBß C   ! 7 B  8C# #

previous Corollary (2.5),  is properly represented by  in  ways. Now, since7 B  8C ## # <"

B C "Î% can be positive or negative and  can be positive or negative, at least  of these are

the ones with  and  both positive. That is, there are  ways of writing B C # 7 œ B  8C<" # #

with . We assumed that  has a unique such solution, so that , that is,Bß C   ! 7 # œ "<"

< œ " 7 7 œ : 5 −. In other words,  has a single prime divisor, so that  for some . If5 ™
5 œ " 7 5   # 7 :, then is already prime. If  (i.e.,  is not a prime), then by Lemma 2.4, 5#

has at least  representations. But then  has at least  representations so  is# 7 œ : ) 75

properly represented in at least  ways with  which contradicts our assumption# Bß C   !ß
that it is represented in such a way uniquely. Hence,  gives a contradiction, so that5   #
indeed  is prime. By Definition 2.2.,  is hence a convenient number.7 8

Conversely, assume  is convenient. Take  to be a form of discriminant ,8 0 Bß C %8a b
and let  be the Dirichlet composition of  with itself. Without loss of1 Bß C 0 Bß Ca b a b
generality, assume that  is reduced. Then by Theorem 2.1, if 1 Bß C 1 Bß C œ B  8Ca b a b # #

then since each element in the class group has order , each genus consists of a singleŸ #
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class. Hence, it suffices to show . By way of contradiction, assume1 Bß C œ B  8Ca b # #

that . Assume  are odd primes not dividing  which are1 Bß C Á B  8C : Á ; 8a b # #

represented by . Then since  is the Dirichlet composition of  with0 Bß C 1 Bß C 0 Bß Ca b a b a b
itself,  is represented by . Then by Corollary 2.5, since ,  has :; 0 Bß C < œ # :; # œ )a b #"

proper representations by a reduced forms of discriminant . Since  of these is due to%8 "
1 Bß C ( :; œ B  8C Bß C   !a b, there are at most  ways to write . If  satisfy this equation,# #

then so do , and . Hence, if there were two unique solutions fora b a b a bBß C ß BßC BßC
:; œ B  8C Bß C   ! )# # with , then there would be  in total, a contradiction. Hence,

:; œ B  8C Bß C   ! :;ß 8 œ "ß :;# # has a unique solution for . Then since  is properlya b
represented by , and  has a unique solution for , byB  8C :; œ B  8C Bß C   !# # # #

Definition 2.2,  should be a prime since  is convenient. Of course, it isn't, which gives:; 8
the desired contradiction. Therefore, . 1 Bß C œ B  8Ca b # # �

In this section, we looked at convenient numbers more carefully, and showed their

characterization by the statements in Theorem 2.1. We will now look concretely at which

numbers are convenient.

§3.  Existence of only finitely many convenient numbers

In the previous section, we used genus theory to talk about the connection between

convenient numbers and forms of discriminant  whose genus consists of a single%8
class. Convenient numbers allow us to provide an elementary condition (congruence) for

when a number  is prime. Hence, we conclude by investigating which numbersB  8C# #

are convenient. It can be checked manually that the following integers  are'& 8 Ÿ ")%)
convenient numbers.

Table 3.1.  List of convenient numbers .Ÿ ")%)

2 %8 8
"ß #ß $ß %ß (

# &ß 'ß )ß *ß "!ß "#ß "$ß "&ß "'ß ")ß ##ß #&ß #)ß $(ß &)
% #"ß #%ß $!ß $$ß %!ß %#ß %&ß %)ß &(ß '!ß (!ß (#

a b all such  with one class per genus

1

ß ()ß )&ß
))ß *)ß "!#ß ""#ß "$!ß "$$ß "((ß "*!ß #$#ß #&$

) "!&ß "#!ß "'&ß "')ß #"!ß #%!ß #($ß #)!ß $"#ß $$!ß $%&ß
$&(ß $)&ß %!)ß %'#ß &#!ß ('!

"' )%!ß "$#!ß "$'&ß ")%)

Euler and Gauss noticed early on that there do not seem to be any more convenient

numbers immediately after 1848. In 1914, D. N. Lehmer verified this up to , ," !!! !!!
using sieve methods and an electro-mechanical computer (for more on this, read about the

Lehmer sieve). Euler was very troubled by the sudden disappearance of convenient

numbers past 1848 (the existence of infinitely many such numbers would make classical

methods for finding large primes much more effective). In order to convince himself that

there were indeed no such relatively small numbers past 1848, Euler proved the following

proposition. This helped him narrow down which numbers could be convenient.

Proposition 3.2.  Let  be a convenient number. Then7
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(i)      If  is a perfect square, then  or .7 7 œ "ß #ß $ß % &

(ii)     mod If , then  is convenient.7 ´ $ %7a b%
(iii)    mod If  is convenient and , then  is convenient.7 7 ´ % %7a b)
(iv)    If  so that  is convenient, then  is convenient.5 − 5 7 7™ #

(v)     mod If , then  is convenient.7 ´ # *7a b$
(vi)   mod If  with , then  is not convenient.7  " 7 ´ " %7a b%
(vii)  mod If , then  is convenient.7 ´ # %7a b%
(viii) mod If , then  is not convenient.7 ´ ) %7a b"'

(ix)   mod If , then  is not convenient.7 ´ "' %7a b$#

(x)    If there is a prime  with  such that , then  is not: + − 7 + œ :  %7 %7™ # #

convenient.

Proof.   Euler attempted to prove all of these in [3], but (iv), (vi), (viii), and (ix) had

errors. Grube corrected these in [2], completing the proof of the theorem. If one spends

time looking at these conditions, then it becomes increasingly clear that the convenient

numbers significantly thin out at some point (e.g., 1848). �

This proposition certainly provides some insight into the nature of convenient

numbers, but it does not give any information about how many there are. This did not

become more apparent until 1934, when S. Chowla proved ([4]) that there are finitely

many convenient numbers. This paper used the fact that

lim
.Ä_

2 .
1 .
a ba b œ _,

where  denotes the number of genera of binary quadratic forms with discriminant .1 . .a b
In 1954, Briggs and Chowla used Siegel's asymptotic formula to give some concrete

bounds (see [5]). Later, in 1963, E. Grosswald improved on this further by using the

analytic class number formula (see [6]), and all this culminated in the most current result

by Weinberger (see [7]), which states there are no convenient numbers past  unless a")%)
weaker assumption than the Riemann hypothesis is false, in which case there is at most

one.

Theorem 3.3.   There is at most one convenient number larger than .")%)

The proof of this theorem uses some deep results discovered by Tatuzawa, and the

proof of these is beyond the scope of this paper. We begin with a reminder of the notation

and nature of L-series. First, the special case

'a b != œ
8œ"

_
"
8=

is the Riemann zeta function. This function has no zeros when Re , and it hasa b=  "
trivial zeros for even negative numbers. Finally, any non-trivial zero lies in the stripe fa b= − l !  =  "‚ Re , the "critical strip." The Riemann hypothesis states that any

non-trivial zero has Re ; in other words, the only zeros of  are the negativea b a b= œ ="
# '
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even numbers and those with real part . It is obvious that lemmas 3.4 and 3.5 give a"
#

weaker criterion, and hence are not as strong as the Riemann hypothesis.

The generalization of  is the Dirichlet L-series. If  is a Dirichlet character, then' ;a b=
P ß = œa b !;

<œ"

_
<

<
;a b

= ,

for each complex number  with Re . The zeros of the L-series shares the= − =  "‚ a b
same characteristics as the Riemann zeta function. Indeed, the generalized Riemann

hypothesis states that in the critical strip, any  satisfies Re . In ourP ß = œ ! = œa b a b; "
#

case, we will use

; ;a b a b ˆ ‰< œ < œ.
.
< ,

the Kronecker symbol (see [1, pg. 104] and [1, §7.D] in Cox). In this case,

P ß B œa b !;
<œ"

_
Ð Ñ

<

.
<
= .

Furthermore, assume  (so that we are excluding ). For a quadratic field. œ %8  % 8 œ "

5 œ . 2 . / .’ “È a b a b, we denote the class number by . Furthermore, define  be the

least positive integer such that  for each  in the ideal class groupT œ " T/ .a b
G œ G "a bb5 (where  is understood as the ideal class of the principal ideals, which forms

an identity on ). This number  is called the exponent of the ideal class group.G / .a b a bb5

Then if , by definition each element   has order , so by Theorem 2.1/ . œ # T − G Ÿ #a b
these  ( ) are exactly the convenient numbers (where we have preserved some8 . œ %8
results using ideals instead of forms--see the last paragraph on [1, pg. 112 and Theorem

5.30 and Theorem 7.22], which states for , ). Finally, we assume.  ! G . z Ga b a b5 5b
the aforementioned lemmas.

Lemma 3.4.   For fixed , if  and , then  has a!   .   / P ß " Ÿ P ß =& ; ;" !Þ'&&
# .

"Î& &a b a b&

real root , with .= "  Î% Ÿ =  "&

Lemma 3.5.   maxFor fixed , there is at most one  with  and&  ! . .   / ß /˜ ™"Î ""Þ#&

P ß " Ÿa b; !Þ'&&
.

&
& .

Proof.   These lemmas are proved in Tatuzawa [17]. �

We can now start proving the theorem.

Notation.    Let  be the product of the first  primes (starting at ).. < #<

Lemma 3.6.   If  in the interval  with , thenP ß = Á ! "  Ÿ =  " .   .a b; "
% "" log .

/ .  # .   . .   .a b  for all . Without this hypothesis, there is at most one  such"" ""

that ./ . œ #a b
Proof.   As noted earlier, if , then  is not going to be a convenient number. In/ .  # 8a b
other words, this is saying there are no convenient numbers larger than . It has already.""
been checked computationally by D. H. Lehmer and J. D. Swift that there are no

convenient numbers up to
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. œ #!! &'! %*! "$! ¸ # † "!""
"", , , .

First, from Theorem 2.1,  when . If , then since  is2 . œ # / . œ #   "" $(a b a b." .
the th prime,  is the product of  (the first 11 primes) and subsequent primes larger"" . .. ""

than  (and the product of these latter  primes is obviously ). Then$(  ""   $(. .""

combined with the above approximation of , we have.""

.   . $(   # † "! † $( Þ $Þ(.
. .

""
"" "" "" a b

Furthermore,  when  (see [1, §7.D] in Cox). It is a result from algebraic.   . / . œ #. a b
number theory (see [14, Cohen], [15, Cohen], [16, Cohn], and a few hints in [1, §7.D] in

Cox) that

2 . œa b P ß"
5 .
a ba b;

,

where

5 . œ
.  !

.  !
a b

Ú
ÛÜ

# .

.
#

A . .

ln (

1

a bÈ
a bÈ

for ,

for  

is the Dirichlet structure constant with  the fundamental unit and  is the number(a b a b. A .
of substitutions that leave the binary quadratic form unchanged, given by

A . œ
' . œ $
% . œ %
#

a b
Ú
ÛÜ

for 

for 

otherwise.

Since we assumed  and  (so that  and ),.  ! .  % A . œ # 5 . œ # Î# . œ Î .a b a b È È1 1

2 . œ $Þ)
.P ß "a b a bÈ a b;

1
.

This is important as it gives a relationship between the class number  and .2 . P ß "a b a b;
As we will see, it is precisely this estimation of  that will yield a contradiction for2 .a b
/ . œ #a b .

We will use the contrapositive of Lemma 3.4 with . We  & œ "
.log 

assumed P ß = Á !a b;

in , so if  that would give a contradiction. Hence,"  Î% Ÿ = Ÿ " P ß " Ÿ& ;a b !Þ'&&
.

&
&

P ß " a b; !Þ'&&
.

&
& .

Then from  and this fact,a b$Þ)

# œ 2 . œ P ß " 
.

œ

." a b a bÈ
1

;
È È

È È
. !Þ'&& !Þ'&& . "

. .
œ †

.

!Þ'&& . !Þ'&&

/ . / .
  ¸ "$"*Þ)*  "$"*

.

1 1

&

1 1

& ln 

ln ln 
.

"Î .

""

""

ln 

Hence, we need . Now, we can keep going using (3. ),.  "" (
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# 



." !Þ'&& . !Þ'&& . $( !Þ'&&

/ . / / .  "" $(
 † œ †

. $(

. $(

!Þ'&&

/ .  ""
†

. '

1 1 1 .

1 .

È È
a b

È
a b

È
a b

ln ln  ln ln

ln  

""
""

""
""

""
"" Î#

""

""
""

""

a b
a b

a b.

.

.

.

ln ln  ln 
.

$( / .  "" $(
œ † † #

!Þ'&& . $

1 .

È
a b
""

""

""

""
.

.

Dividing both sides by , we get#.""

#
#

"!.

.

"

"" œ #  !Þ'&&
/ .  "" $(

. $
1 .

†  "$"*
È

a b""
""

""

.

ln  ln 
.

since obviously

!Þ'&& !Þ'&&
/ .  "" $( / .

. $ .
1 . 1

† 
È È

a b"" ""
""

"" ""

.

ln  ln ln 

so that we can use the lower bound  found earlier. However, , so"$"* # œ "!#% Î "$"*"!

that our assumption  cannot be true. Hence,  for ./ . œ # / .  # .   .a b a b ""

Now assume we do not have the Riemann hypothesis. This time, we let  but& œ "
.ln ""

for Lemma 3.5. If P Ÿ !Þ'&&
.

&
& , we don't have a contradiction. Otherwise, exclude the

.   / ß / œ .max˜ ™"Î ""Þ#
""

&

 in the lemma from consideration. Then, again assume  so we can say/ . œ #a b
# œ 2 . œ P ß " .

1
" .a b a bÈ

;
È È È. !Þ'&& !Þ'&& !Þ'&&

. . / .
. .

1 1 1
& &

& &  œ †  "$"*"" ""

"" ""ln 

so that . Now, using (3.7),.  ""

# œ 2 . œ  
. !Þ'&& . $( !Þ'&&

. . $(

œ $(  $(
!Þ'&& !Þ'&&

/ . / .

. .


!Þ'&&

/

.

.
& .

.

&

. .

" ""
""

""
""

"" ""

"" ""

"" "" Î#

""

a b È È
a b

È Èˆ ‰
È

1 1

& &

1 1

1

ln ln 

l

" "
# .""ln a b

n ln 
.

. / .
'  #  "$"* † #

!Þ'&& .

"" ""

"" "" """". . .

1

È

Then, again,

#
#

"!.

.

"

"" œ # œ "!#%  "$"*

which is a contradiction, so that  for all  except at one most one. In/ .  # .   .a b ""

other words, there are no convenient numbers beyond  when the Riemann hypothesis.""
holds, and if it does not then there is at most one. Once again, it has been verified

computationally that is the biggest convenient number . Therefore, this")%) Ÿ .""
concludes the proof of Theorem 3.3. �
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