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1. Introduction

In [4] we shewed that-in every model, Dons of the )\ =calculus as
constructed in [8] the strict-ordering, < , is first-ordsr definable using
only application. Here we-look -at the, perhaps more pertinent, question
of definability by pure ;\ —-termsz -of such-lattice~theorvetic entities as
J_, ‘r » W, TT ang \( s the least fixed-point cperator.

The main method will be to construct -certain, so-called, logiczl
relations which are satisfied-by all (constart vectors of) /\ =definable
elements and yet are not satizfied by ihe lati.cz-thecrer.c entity unier
discusgion. The definition of logical is derived from & serrasponding
one of M, Gordoa for the typed .X.-calculus, This in turn generalised
the idea of an invariant functional [2]. R. ¥ilns [3] hag independently
developed analogues of the logical relations for use in equivalense proofs

about programming langusges,

It is not known whether logical rels‘ions also provide sufficient
conditions for definability. In the second half of this wemorendum we
discuss this questicn for %he typed ecase, obtaining nscessary and
sufficient conditicns by using the more inclusive ccncept of an I-logical

relation,

This memorandum is by no means gelf-contained, The rsader should
have some knowledge of both the typed and untyped A K~calculi and be

fairly femiliar with Scott's models of the untyped ,X KXezalculus,
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2. Pure definability in D,

A structure <D,X,S¢[+]> is called a (non-trivial) model of the

/\—calculus if X and S have the usual properties-and extensionality holds

(and ID| > 1).  Such structures give a denotational semantics for the
A K-calculus which we will use informally, confusing use and mention.
Generally we will consider only the-models Dog 5 from-[8], given by a
Park retraction, ‘P 0= Af: D1 .f(t), where t is.an isolated element of
Do. We will often-use facts about such models, accompanied by a
reference to the proof for the case t= J. . The -general proof is always
similar. -Also needed is the fact that if Y)‘ is the paradoxical
combinator, Af(/\x f(xx))(/\ x_f(xx)), then, in Deg Y’\Cf}:n‘;lofn[
fiJa ¢ -> ¢, L]{r @) [5]. -

A relation R € DK, (K an ordinal) on such a structure is logical
iff:

VP @) = (VP K.E) - @)

Here K is any ordinal and application of vectors is defined
pointwise. An element x € D satisfies R iff 'R(g) is true, where e DK

is the constant vector such that (%))‘ =x ( A<KK).

An element x € D is A ~definable if x=M, for some closed A —term M;

it is /\ —~definable from X & D iff there is a closed ttrm M and x1....xn in

X such that x=Mx1....xn.

Theorem 1 1. Any closed A -term satisfies any logical relation.
24 If x is A -definable from X € D, and each element in

X satisfies the logical relation R, then so does x.

Proof Clearly,if x and y satisfy a logical relation R, so does x[y].
So to finish the proof we need only show that XK and S satisfy any such
relation, Suppose R is logical. To show K satisfies R, assuming
- A
R(Z) we must show that R(K[Z’]). This, in turn, follows if
Ar=>qr=> -> . - Ardar=>q =>
R(K[Z"][7°]) when R(y"). But this bblds ag K[z7'][77]=".

In/
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In the same way we see that S satisfies R if R(§I§>][§>][E>])
when R(E>), R(§>), and R(E>). But then we have successively, by the
remark made at the beginning of the proof that R(¥[2]), R(F3[5]) and
R(x[2>]ﬂ:§>][5>]]), concluding the proof.

Nothing is known about the converse of theorem 1; However it will
be very useful for particular cases of undefinability. Here is a way

of constructing logical relations R & ]fo'

Suppose Ro = D2

2
. c .
o Define Rn"' Dn by

Vi,g ¢ Dqe(R (£,8)=Y x,5 € D, (R (x,y) => R (£x,e7))).

Define R, € D2, by:

VY d,e € Doo(Rool{d,e)= ¥ n R (dn’en))°

T
Theorem 2. Suppose that Ro(t,t), that Ro(d,e) implies R, (¢O a, ¢o e),

for any d4; e in DO’ and that Ro is closed under unions of increasing

sequences, Then:

1. Ryo is logical.

2.  Rgog is closed under increasing sequences.

5. If Ry is closed under U (M) so is Ryq 5 if Ry(L,L)
(R (Ty,Ty)) then R(L,L) (R o(T,T)).

The construction also works for any R. € DK under the corresponding
conditions, and the theorem analogous to theorem 2 can be proved; this

extension will be assumed.

Lema 1.1  Suppose that R(t,t) and R(d,e) implies R, (70 a,f, e

for any d, e in Do. Then,

Vo Vg €D (R (f,6) -> & ( (£), ¢ _(g)))ena
Vo Ve en , R ,(f,e) > & ($(£),0 ()

1.2 If RO is clcsed under increasing sequences so is each Rn.
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Procf 1ol By incuetion on n,
For n=0, note that if R1(f,g) then Ro(ft,gt) frem the
definition of R, and the fact that Ro(t,t).

For n+!, suppose R +1(f,g) and suppose R +1(f',g').
By induction hypothesis R (’b (’ .8 ).  Therefore .
R (f(‘/ fr ) g(l,ﬁ g')), and by the induction hypothesis,
Ry (@ °f°¢ (f') ¢ LfeP (g'), which shows that
n+2( ¢n—- ’?‘nﬂg) The other half is similar.

1.2 By induction on n. For n+l, let <fm,gm>coo be an
(1nf1n1te1x}ncr6331ng sequence in R 1 and suppose R (x,y) Then
<e® X,g y> =0 is an increasing sequence in R and so
<(L‘i )x,(L|g )y> is in R by induction hypothe31s and the complete
additivity of appllcatlon in its first argument. This concludes the

proct,

Proof of theorem 2 1 PFirst suppose that Rw(f,g) and Rao(x,y). We
will show that R (fx,gy).

(-]
Now (fx\n m—nLP (_m-qx ) and similarly for (gy) [7]
Since R (fm RESL- S ) is true for any m>n,R (‘P m-’-1 m)
V,mn(gm 37, )3 follews by m - n applications of lemma 1.1, and then
we see I:ha.’c Rn((fx)n,(gy)n) by lemma 1.2 and the above formulee for

(fx)n and (gy)n

Conversely, suppose that whenever R“(x,y) then Rm(fx,gy) and
yet for some n)Rn(fn,gn) is false. By lemma 1.1 we can assume that
n¥), and so for scme <xn_1,yn 1> € R RT n—1(fnxn-1’gnyn—'l) is
false, Let z= ¢n—1°°xn-1 and deflne y similarly. By lemma 1.1,
Rao (x,y) is true and so therefore is Rm(fx gy) and, consequently,

((fx) },(gy) 1). But (fx) -A(f x ) and similarly for
(gy)r 1 (cf the laws of appllcatlon in [9]) and so R (fnxn-'l’
g yn 1), a co I:radlcm.on)

- mn _m% | ot \ . .
2  Suppose <x ,¥y > g 18 an (infinite) increasing cequence in

Now/



G.D.P. =5~ SAT=RM-4
October 1973

o0
U
Now, (m —0F )r =Ltep ‘)Dn ' m—O( ) ) and similarly for the

v's, (ef. [7]).

oThen onewSees, successively. that, R ((xm) , (7 ) for all m ard n,
(m_o(x ) m_,)(ym) ), for 211 n, by lemma 1.&, R (l}' (=M )
l'(/n r(m(y ) ) for n'>n, by lemma 1.1 and finally R ((Ll xm)

(UY) ) by lemms 1.2,

3 A straightforward inductive argument shows that if Ro is closed
under L so is each Rn Then, clearly, R (/\ A y(y (i} Y, )
A /\y(x Lly )) and so R,y is closed under L) as U = U (sz\:f(xn Llyn))
expresses LJ as an increasing sequence in Do -

The argument for D

where X and Y are continuous lattices then (fl’l g)x:(fx) mn (g'x)

is similar; it uses the fact thet if f,g¢ X -> ¥

If RO(_L ,1) then R (.L,_L), for any n, by lemma 1.1,

It RO(TO,T ) an eas y-inductive argument shows that R (T T ) for
all n, concluding the proof

As an example, lei PO={t'}' Then by the assumed
extension of) thecrem 2, Poo is logical and so the Osh component of any
closed A -term is t. Therefore if T# L neither L nor, since 4 ~=YI, Y is
,\ -definable; +this is a result of Park [6].

The next example establishes all the definabilities among .L ,T, L,
N and 7 for all possible values of t. 4

Theorem 3 1.1 If t= 1, Y=Yy and 1 =Yy I

2 In general, L =YT and Y= A f(Y)‘(/\ gAxf(gl))I).
.3 Af t=‘1‘o, then T=Y )X,

-4 If =T and Do={D ={1,T7} then

=1y(AgA xA ¥ Az g(xz)(yz)).

2./
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2.  The only definabilities among L.,T, L} ,[] and Y are
those implied ty 1.

Proof 1.1 This result is known - see [9].
.2, 1 =YI is obvious.

Stppozge f € Dgq and let J° =/\g Ax flgdl). As
To=Tl=\xr L , we see that AT =Il1">‘|OT‘ MAxr l ). By induction
onn, T Axrl)= ,\xfn+1(.L), giving Y’\T' =Ax(Yf), and the result
follows.

toe ’ A n>0 ‘ n ( 0’ ),
for all n, Y > K=T.

4. Let 1" =AgAxAyAzg(x2)f2). Since,in this Dpor s
x 3t iff xt J t, one sees that Tt g t. Now, t= /\‘X/\y xoﬂ Yo is
true in this lattice and then (] =YAT‘ follows by the usual inductive
argument,

2. as L and Y are interdefinable, only definabilities among
L,7, 1) ana I reed be considered.

We must show that if t;é 1 » then 1 is not A -definable from
{T,l4, 1} that it t;éTo, T is not A -definable frem {1 ,U,N}; that
L is not A —-definsble from {J 7,7} in all cases; and that if
tA1y or D D then I is not A -definable from {L,r,U}.

To show that 1 is not )\ -definable from {1, B, M}, when t£ 1 1et
RO={t,TO}. The conditions of theorem 2 are easily checked and so Poo
is logical. It also follows from theorem 2 that 4 , f'] and T satisfy
Roa - Clearly 1 does not. The conclusion then follows from theorem 1.2.

In the rest of the proof we shall first display an appropriate RO

and leave the (admittedly tedious) details to the reader.,

To show that if t;!To, T is not A -definable from {1,M,L}
take Ro={l,t}.

To/
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To show that, in all cases, W is not /\ —-definable from U_,T,ﬂ},
take Ro={<TO,TO,TO>,<.L,TO,.L>,<To,.L,J.>,<t,t,t>,<_]_,t,.L>,<t,J_,J. >,
<L,L, L5}, ©Note that ROQ(_L,TO,_L) and ROO(TO,.L,..L) but not
Roa(TgsTg, L).

To show that if-t;éTo then_ n is net A ~definable from {.L,T, U},
take RO={<x,y,z> | {x,y} c {t,To},vx;ét or y)ét, z € {.L,t,‘],"}} U {kdL,L1,1>}.
Note that Rpg(t,T, L) and Ree(T,+,L ) but not Roo(t,t, L).

To show that if t=T, and D# @ then [ is not \ -definable from
{.L,'I‘,Ll}, choose u ¢ DO distinct from L end t and take
Ro={<t,u,u>,<u,t,u>,<t,t,u>,<t,t,t>} U {5y, 4> x,y ¢ £1 ,u,t}}.

Note that'Roo(t,u,u) and R, (u,t,u) but not Roo(u,u ¥).  This concludes

the proof.

It is interesting tc note that when =T and D= (@ then & normal

term can even equal en unsolvable term, for example,

I=Y)‘(/\ fAxA y'f(xy})(cf. I=J, when =] [9]).

Our method of constructing logical relaticns is by no means all-
powerful. For example, we believe that-if t;éTo or Do;é (D then ‘V o is
not /\ ~definable. -Cléarly_, for the Rc:’s constructed so far, if
Rca(§>) then Ro()\"( .((i?)o()o) and -so Roa(A °( '((§>)0()O)° Therefore
Rw(;‘\/o). On the other hand, suppose 2 o were )‘ -definable by a closed
term M when t= 1 . Clearly (see [10}) M is not unsolvable, as
y’o;é .L. So there are closed +terms M1..“ Mk (kgO) such that
M M1 "”Mk=I’ but as mentioned abcve the Oth component of M1 must be Lo
and so either ] =I or ’U O=I’ & contradiction. Perhaps an extension of
Wadsworth's methods to the other ]%o's would sort this out,

The last example concerns interdefinabilities among the members of
{tt,££,7,U,M,D} in T [9] which is gotten by taking t= | and D, to
be the truth-value lattice displayed in figure 1.

7/
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The conditional, © , is in ’lﬁ—)Tm, and is regsrded as being in o »
in the usual way. It is definad by:

Wy (if z=T)

(z:: x,y): X (if tt = z,-L)
y (if T E z#T)
1 (o’chemrise)

It is kmown that T.is A\ -definable from {tt,ff, .}, UJ is
A —definable from {>,1} and M cen be definea- from {tt,ff,,>}. We
will show that there are no more )\ ~definabilities of tt,£1,T, U or M
other than those implied by the above ones; the situation for Il has only
been partly clarified.

First, > is not definable from {tt,ff, U, N,?}. Take
RO={<.|.,.L>,<tt,ff>,<ff,ff>,<tt,+.,t>,<tt,T>,<T,T>,<_L,ff>,<tt,_L>,<T,ff>}
and note that RO( D tt ff tt, D ff ff tt) is false. Here and later
theorem 2 is used implicitly.

tt is not definable from {ff,|),>,T};: take Ro={.L ,FF,T].

ff is not definable from {tt,U,2,T,T}}; take RO={.L , b, T},

T is not definable from any one -of {tt,ff,D N, {t5,4,2,n)
or {f£,U,d,N}; take RO={L,tt,ff'},{.L,tt} or {1,ff} reapectively.

U is nct definsble from either one of {tt,ff,l‘, 1} or {tt,ff, n,si
te.ke/

°
?
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take Ro={<tt,tt>,<ff,ff>,<1 oL >, 4T, >, Kbt FE> <, L >, <L, £F>)
and note that R ( Ll tt tt, U tt ff) is false in the first case and
take Ry ={L , tt ff} in the second cease.

In the case of ﬂ , we would like to show that [l is not definable
from any of the gets {tt,ff, u ,T}, {tt.ff,:)}, {ff,U,D,T} or
{tt,U,>,7}. For the firs: of these bake Ry={<5t, £>, <EF,££5,4T, >,
<1, L>,<tt,££>,<tt,T>,<T,££>} and note that RO( M £f tt, A ff £f) is
false.

The trouble with the others is that if Ry, (D, D) then R _,(M, M),
for the R's considered here. For if x,y € To then
(x > (y >y, _L) (y:>_|_,y)) =x {1 ¥y, and so one can define from 2 tsrms
M (n>0) such that M [ XV=X My if x and y are in T . Therefore if
R (2,2) then R (Ax)y X ny)foranynandsoR (n,n).

On the other hand, N is, in fact, not A -definable from 2
For suppose [T =M © for some closed M —term M. If M is unsoclvable then
N =], a contradiction:; therefore M has the form A Xyeeon ,\xn.xj M1°"'Mk
where n>0 and 1<j<n. One can assume that j<3 since one can always apply
the identity Il =M D> (MD)(MD). If j=1, thsn [ Toeeeex =DM LML
where M'=() M) D (1<r<k).  Teking the x;=I and Py={1} we see that
(M{)O= 1L and s=o M I....1= 1, a contradiction. If j#1 then since
N xy=Myx, for any X,y in T, , we have Mieeoof=M D 2y wme=l D yx ——=y MH""'MT';
whe:re the M' and M" are M\ -definable from X,¥, 2 and ——-, Since x,y

are arbltrary membcrs of T, , this is & contradiction.

Perhaps an extension of Wadsworth's ideas o LAMBDA [9], would

settle these questions,
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3. /\ ~definability in the £full type hiersrchy

For the seke of clarity, we will b2 & litile more fcrmal than in

the last section.

The set of type symbcls is the least set containing ¢ and

containing (G -> ¥) wherever it contzins 6 and ¥ ; 6 and U are
metavariables,possibly suffixed, ranging over type symbols and
(61 yesey Gn,"t‘) abbrevietes (0’1->(62->...(0’n—>'t')....)) (n>0).

The language of the typed A\ -calculus has denumerably many
variables o<"§ (1>0) of each type ¥ . We will use K and B , with

or without various decoratiors as metevariables over variebles. The

language has a set of terms which is given by:

1. O(: is & term of type T, (i>0),

2. if M and N ere terms of type (6 => V) and & respectively
then (MN) is a term of type v , <

3. if M is a term of %ype -7 then ()\ % ..M) is a term of type
(6 > T), (£0);

M and N, poszibly with sufficzs, will be used as metavariables over
terms, The reader is assumed to know what a /8 ,? -normel form of a
term is and the elementary properiies of normal forms; M= N means that
M and N have identical /3 - ?-normal forms, By the Church-Rosser theorem

- g T 6,
this is an equivalence relaticn. Suppose that Kep, =A™ (A 7 o))
(51, 62,%3) () o (1,52) () & (61,%,93) § of
and S =\ & v TR T3\ AR (o * 7 2 ")
( 6'1, )dé, 0’3 0 0 0o ' 0 0
(0(06'1 %2 °‘°& D). Then, as is well-known, the K's and S's generate
all closed terms under application, to within . The type subscripts
in K and S will cften be ocmitted, as will be as many other type symbols
as is convenient; the resulting propesitions are to be understood as

being asserted for every consistent way of putting the symbols back in.

Our language alsc has a semantics based on the full type
hierarchy {DG.} defined by:

b/
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D(s -5 2)=(Dg=>Dy) (the set of 211 functions from Dg to Do),
where T( is some given set.

The semantics is a function [[ ]]: Terms=>(Env—->U°a Do-) where Env,
the set of environments, is the set of type respecting functions from the

set of variables to U D., and is renged over by /a . Then, [ J] is the
unique function of that type such thet:

1. [d’fﬂ(ph/?(o(f) (10)
2. [ (ol [ ] (o) ([T p)) N
5. L O Zw]P) =Peple/e 1) (220, < py)

4
where /D [x/o(i] is the environment /O' such that

2! x (°(:=°<:)
LX)

1
/D( O(I:,) (othem'ise) a

Note that if M has type 6 ,[[u] (P) € D If M is closed then [[M] (/o)=[[M]](P'j
for any /0 and /D' ~ 80 we often drop the reference %o /0 fr closed M,
If M M' then ﬂ:M]](/D)=HM'ﬂ(/D) for any /0 ; we will give a converse later.

Suppose 7TL € D(L-> 0 is a permutation. Permutations WO’ in any
D(o,_> s) can be defined by:

1T(‘_>19(f)=‘7rtr°f° 7E£4 (f € DGS-)?ﬁ)“

If M is closed term then T(KM])_—[MD (see [2]). However this does
not characterise A\ -definability.

For example ground equality, =(s ie permutation-invariant, but is
certainly not A -definable. Explicitly let O =zbbreviate (L, ¢, ) and
let tt and ff be /\0((;' /\0(1" { LO and ,\o(l(') A 0(';. 0<L1 respectively.
Then = L is defined by:

tt (if x=y)
=ny (X9y € D()
ff (if xAy)

But/
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But the only >\ -deflnab_Le functionals of type (L, L ,0) are

Xq )\O( /\0( )\o( o( for 0<j<3 none of which are =, if lD 1 >1.

3 C

M. Gordon proposed, as a possible remedy, that relations
RL < D‘Z_ should be extended - not just permutations. Starting with such
an RL' the Rs's ere defined by:

Rg_st) (£:8) = Vx5 € Do (Bg(x,3)->R . (£x,e)).

When R is a permutation ‘n:,RJ =g for all & . The definition
generalises, in the obv1ous way, if one starts with RL"‘ K, for any
ordinal K. If RO»Q. D6 is obtained from an R in that way it is called
K-logical; f € D6 satigfieg it iff Rﬁ(f) holds. With the obvious
definitions of A\ -definability and A -definability from a set X< U Dgy
one shows that any /\ ~definable functional satisfies any K-logical
relation, of the right type and that if {Rg} is the system of relations
obtained from some Ry , &snd each member of X satisfies the appropriate
Rgand f is )\ -definable from X, then x satisfies the appropriate Rg e
The proof is like that of theorem 1.1.

One can now see why =) is not A-definable if 'DLl>1'
Let 0,1 be distinct elements of D . Let R ={<0,05,<0,1>,<1,05}.
Then R(tt,ff) is false for R(1,0) and R(0,1) but not R(t410,££01).
Therefore R(=(,=,) is false for R(0,0) and R(0,1) but not

R(=(0)(0),=,(0)(1)).

As an example of non-relative definability, consider the

universal quantifier Y, of type ((¢=>0)->0) defined by:

tt (if fx=tt for all x in D‘)
Y (£)=

ff (o‘bherwise) o

Now V( is permutation-invariant; however if lDLl 23 it is not
A —~definable from =(¢ To see this let R ={<0,0>,<1,1>} where 0,1 are

distinct elements of Dy. R(=(,=() is true, but if f,g € D ) are

(c=>0
such that f(x) is always tt but g(x) is tt iff x is O or 1 then

R/
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R(f,g) but not R(V¢ (£),V((g)). 1Incidentally, if |D] <3, ¥, is
A -definable from =(e.

We can only characterise definability using logical relations,

for types of level £ 2,

Theorem 1  Suppose U has the form (’F1,...,1Tn,() where each 1:i
has the form ((,...,¢,¢). Then if |D|> X, and f ¢ D satisfies

every 2-logical relation, it is )\ -definable.

Proof We will just give two cases since this should give the idea

without overmuch detail.

Suppose ¥ =((,(¢, (). Let x,7,0,1 be elements of D, with O
and 1 distinct and take RL={<x,1>,<y,O>}. Then R(fxy,f10). So for
every x,y € D¢ either fxy=x and f10=1 or else fxy=y and f£10=0,
Therefore either £10=1 or f10=0 and so, since 1#0 either

£= Ao Ay o] or #= Dhto A af T

The other case we consider is T =((£,(),L,L). Identify the

integers, with a subset of DL and let the restriction of s to the integers

be the suécessor function. Given g in D(‘_>() and x € D (let

B ={<g"(x),s™(0)> | n>0}.  Clearly R(x,0) and R(g,s). Therefore
R(f(g)(x),f(s)(O)) and so for every g € D«‘_>() and x € D( there is an
n such that f(g)(x):gn(x) and f(s)(O):sn(O). Since sn(0)=sn'(0) iff
n=n', n must be independent of g and x and so for some n,

raIAet 2N\ X o 7 (x BV ) T

n times

We believe the theorem holds without the restriction on D¢ . The

simplest type which has us baffled when iDLlZZ is (((€,=>0=->0~>0).

Some characterisation of definability can be obtained by
strengthening the implication in the definition of Rg to an
intuitionistic one, & la Kripke [1].

To this end, suppose we have a set W (of worlds) a reflexive,

transitive binary relation { which is a subset of W2 (alternativeness)
and & relation R € D'xW such that:

v/
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Vs e 0 Vw e WR (x,7,2,0) A (w <w') = Rlz,y,2,41)).
. . 3 .
Define relations Ro. C DX by

R(o—_w)(f,g,h,W)E (Vx,7,2 € Dg Vu' € W((R(x,y,2,%') A (w < w'))
=> R(f(x),g(y),h(Z),w'))),(f,g,h € D(S'-)'t)’w € W).

Any such Rg is called 3-I-logical; f ¢ D¢ satisfies Rg iff Re (f,f,1)
is true. It is clear how the definition of K-logical goes, for any

ordinal K, The reason for the magic number 3 is:

Theorem 2 If lDL' > Xo,then f € D¢ satisfies every 3-I-logical relation
iff it is )\ ~definable.

We don't know if the restriction on D¢ can be dropped, or if 3 can
be reduced to 2; it cannot be reduced to 1 because if DLis the integers

and f € ?(C—) ()_>(c_>()) is defined by:

f(g)(x)=gg(x)(x) (g € D(( Y (),x € D(), then f satisfies every
1-I-logical predicate but is not M\ -definable.

Neither do we know anything about characterising relative
definability, even in interesting special cases, or what happens in
other models of the typed A —-calculus or, of course, what happens in
the case of the untyped —cdculus. The rest of the memorandum is
devoted to the proof of theorem 2..

Lemmg 1 Suppose Rg & D3

Lt Vf,gh € D¢ Vw,wt e W((Rg (£,e,0,w) A wlw')->R(£.g,h,w)).

XW is 3-I-logical. Then, for the appropriate

Proof By induction on ¢ .

Lemmg 2 If f € D6 is )\ ~definable, it satisfies every 3-I-logical

relation.

Proof Let {RG} be the collection of 3~I~logical relations built up, as
above, from some W, < and RS D3><W. Clearly, if f € D(6 ) satisfies
RO'->T and g € Dg satisfies Ro’ then f(g) satisfies R’t’ . So we need

only/
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only show, by a remark made above, that [KH and ES“ satisfy the

appropriate R's.

For K, suppose that wiw', R(f,g,h,w'),w'<w" and R(x,y,z,w").
Then R( [K](f) (x) ,[[K]](g)(y),[Kﬂ(h)(z),w") by the previous lemma, since
R(f,g,h,w') and w'<lw",

For S, suppose that w<w',R(f,f',f",w!),w'<w",R(g,g',&",w"),
w'<w"! and R(x,x',x",w"'). As w'_<_w"',R(f(x),f'(x'),f"(x"),w"') and
ag w"ﬁw"',R(g(x),g'(x'),g"(x"),w‘“).- Therefore, as w"'<w"!',
R(f(x)(g(x)),f'(x) (g'(x')),f"(x")(g"(x")),w"'), concluding the proof.

This establishes the "consistency"™ half of theorem 2. Of course,
the lemma also holds if 3 is replaced by any K and, further, an
analogue of theorem 1.1.2 also holds in general.

To obtain the "completeness" half we use a special W, £ and R
which in turn réun_:{;es us to give a "standard" exwvironment, /00, which
-assigns to each ; en element of DT which behaves like o }’, in a
way to be made clear by lemmas 3 and 4.

Now we suppose that ID(_l _>_/\/O and (( )) is a map from the set of
terms of type <€ to D(. such that:

((M))=((™)) iff M N,

A vector, ;(>, of variables is non-repeating if no variable occurs
twice in it. If M is a term and ﬁ>=<N1,...,Nn> (n>0) is a vector of

terms, M g abbreviates (...((M N1)N2)...Nn); similarly if % is a

vector of elements of {J D,rthen f§> abbreviates f(x1)...(xn), where

§>=<x1 ,...,xn> and f is a functional of the appropriate type. If

o =&l yseee, x> is a vector of variables, then /0 (§>)=<f (041),...,/0 (°(n)>
for any environment /0 .

The standard environment, /00, is defined by:
4 ¢ )
o Pol®I=((%)) (120)
2./
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2.  If there is a vector N of terms of length n such that for any

j (1< _J<n) and almost every* non-repeating °(>. containing no variable free
in (P, 1, of& = @) 20, tmen e Tareses Td) (o (e )
((0(:”"" )) where N 1s one such vector; if there is no such

vector then

Lol T Dy ey )=(( ). (5305 TN
if 1<jn) Y

Notice that if FI: and ﬁ: satisfy the conditions of the second

clause then they are, componentwise,' & . So /00 is well-defined.

Lemma 3 For every term M and vector o( of variables of the appropriate
tyve, [WX ] ( Lo)=((u2 ,

Proof TFirst we prove the lemme for variables, by induction on types.
{
If M= 0(1, the result is immediate from the definition of /DO For
X
,(( dseces 41), :Let:o¢> 0(1....0( . For 1{j<n, let/é b‘? any
vector of variables such that O( ha.s type C . By induction
-> . o

hypothesis, EO(J /BJ]](/DO) =(( o{ Ig )) Therefore o/ satisfies the

condition in clause 2 of the defln:n:lon of /0 ’ When <f1,...,f >= 0(32

Therefore, H’Mo%ﬂ (/00)= /00(04 1_:---, )/DO( ) ((Me ))

Finally the lemme sproved for terms in ,3 7-norma1 form by
1nduct10n on their size. If M is a variable, we are finished. Otherwise,
if Mo( (eo.(xXM )....Mk)/whe)re oK is some variable and the M (1<1<k)
all are /5 ’?- normal forms of smaller size than M, tae proof then
proceeds by applying the induction hypothesis to the MJ, in a way
similar to the above. The only other case is when M ~= X/31 oie )fk e

for some i, and this is very easy.

4

i

* Here and elsewhere assertions of the form "for almost every o( eeso.
should e read as "there is a finite set of variables such that for
every o , none of whose component variables are in the sety ....",
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From now on, we drop references %o /0 o in ﬂ:M]] (fo). Lemme 3
implies that [[M]= M 172 My ', I D, were finite then thereWould
always/closed M, M', even of type ((¢->€)->(¢~>¢)), such that
] =[] vut M5emM'.  The above methods can be used to show that
given closed M, M', there is an integer m, such that if , D(.' 2m and
EM]: HM'] then M2 M'., These remarks form the converse to the
consistency of «¢ , mentionsd above.-

A term M is of order zero iff it has the form & Mieaood .

Lemma 4 Suppose M has order-zero and x,oo(sz)-:y/’ (;Z) for
almost all non-repeating vectors ;z such that x/OO(B() €D, .

Then HMJ] (x)= &Mﬂ (v).

Proof Immediate from the definition of /00.

Now W, € and R( can be defined. The worlds, W are triples,

<¢>,&>,;§>, where ﬁ> is a vector of members of U D’f’ o ,73> are non-
repeating and fD’>, &’,79’ have the same length and corresponding members
have thi same type; 'If wi=<;‘a‘i ,&?i,;>i> (i=1,2) then

s o= (o) - e - - _ o
w1w2- ﬁ i ﬁ 0 &4 oo /;:ﬁﬂ 2>,, where the component vectors have been
concatenated, Then w1$w2 iff w,,--wi’\w,‘, for sone werld, w

is defined by:

50 Pirally, R(

R (x,7,2, 8, &, 8>) 1£f & closed term M such that x=[[n])7”,

v=[4] fo(&) et == [H] P o(F).

Clearly W, < and R( satisfy the required conditiorse for obtaining

& gystem of 3~-I-logical Ry's.

Lemma 1 If Ro‘(f,g,h,w) where w=<ﬁ>,32,73> then there is a closed

term M such that whenever c—g>"“;<> +, /§>“;é>+ are non-repeating vectors

=[P, & @)= [ERIZ] et n p (7[R

2 Suppose that f= [[M]] §5>,g= [[ M“Z?]] and h= [[M?J] where M is
a closed term and g and h are denotations of order—zero terms and

w/



G.D.P. -18- SAT-RM-4
October 1973

w*--<¢> IZ> € Wo.  Ther Ro,(f,g,h.,w) for the appropriate & .
Proof Both parts are proved together by induction on ¢ .

1 TFor ( the result is immediate from the definition of R( .
So suppose f has type (6'-)'&')
Suppose R(o. >1,)(f,g,h.w) where w--<§5> g /6>>
Suppose next that w' =w Xz, X ’,/51> where x has type Gy is in W,
By induction hypothesis using 2 we see that, Rglx, /oo(°(1),/90(/81),w+ .
Therefore R,t(ix,(g /oo(o( )), (b/oo(p1)) w).
By induction hypothesis, using 1, there is a closed term N( P )

guch that if ¢x> o, >+ and ;3’- - §>' are non—repeatmg vectorq

then fx=[[ M _ d1’ F)]]b‘x, (g £y o ))/’O(->+) ﬁ (3, x,d1,/31)d)d e
ol PR L, PO T

The subscripts on M(x o( ) indicate its dependence on X, 0(1 and
—>+
/31. Then, [((ngo( g )03)0(1)0( _[( (g/DO °4> ))f (>-1
’[((M(x', ) )ocI o ffor any x,x' € Do—1fo4"041"‘- is non-

repeating. Thnrefore, by lemma 3, M
similar argument shows that M(

,6 4+ and the conclusion follow's.

(e, )Y M, By A
,B ) 1s also 1ndepf=ndenl of o 1 and
1’ 1

2 Suppose f= [MB§>,g~ )IMo(ﬂ and h= HM'aﬂ where M is 2 closed term
and g and h are denotations of order-zero terms, and w~—<fb' o? I[f> € W.
+ - - - -
Let w =<5>"5>+, oi"‘o(>+, /3>'“p> > be & world and suppcse
Ro.(x,y,z,w+). Then by induction hypo+hes1° for part 1, there is a
closed term M, such that wherever o(" el van: ey ey

oL , and IO /g ,3 ere

non-repeating vectors,

x;ﬂM]]fJAﬁ)r ‘-’9 ) I(M1o( ‘;2>+ ->++ﬂ and
zfo(ﬁ )= B:M D
Then we have fx::(]IMB@'))(EM -ﬂ (,(75> S-D'> l-))

—HNQH ﬁ §> for a certain closed term M.

Since y/oo(oe )= [[M1o< &>+]]/DO(_>H) for almost all non-repeating
vectors/
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vectors ;'ZH such that y/o O(;<>+L) is in D¢ end g is the denotation of a
term of order zero, lemma 4 appliss and we have,

gy=g( )IM17>2 ~ZH)
=(Eu Tpo (G I PR ~H)
=[[M2]] /oo(zz/\ &>T), where M, is the same term ss sbove. In
the same way,

hz= EMQJ] /DO(/.Z n/g)i-) .

It is now clear that gy and hz are themselves denotations of order
zero terms, and so applying the induction hypothesis for part 2, we

conclude that
+
R (fx,gy,hz,w").
v
Therefore R«r_>1?(f,g,h,w), as was required, concluding the proof.

Lemma 5 gives us the second rart of theorem 2, For suppose f

sat¥fies every 3-I—logicaliR63 Then in particular we have Rc(f,f,f,wo)
where R s is the one to which lemma 5 applies and w5 has g1l its

components empty, By part 1 of lemma 5, there is a closed term M such
that f=l[M]_] » which is just what was wanted.
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