# SCHOOL OF ARTIFICIAL INTELLIGENCE UNIVERSITY OF EDINBURGH Memorandum: SAI-RM-4 Date:- October, 1973 Subject: Lambda-definability and logical relations Author: G.D. Plotkin ## 1. <u>Introduction</u> In [4] we showed that in every model, $D_{\infty}$ , of the $\lambda$ -calculus as constructed in [8] the strict ordering, $\prec$ , is first-order definable using only application. Here we look at the, perhaps more pertinent, question of definability by pure $\lambda$ -terms of such lattice-theoretic entities as $\bot$ , $\top$ , $\bigsqcup$ , $\bigcap$ and $\bigvee$ , the least fixed-point operator. The main method will be to construct certain, so-called, <u>logical</u> relations which are satisfied by all (constant vectors of) $\lambda$ -definable elements and yet are not satisfied by the lattice-theoretic entity under discussion. The definition of logical is derived from a corresponding one of M. Gordon for the typed $\lambda$ -calculus. This in turn generalised the idea of an invariant functional [2]. R. Milne [3] has independently developed analogues of the logical relations for use in equivalence proofs about programming languages. It is not known whether logical relations also provide sufficient conditions for definability. In the second half of this memorandum we discuss this question for the typed case, obtaining necessary and sufficient conditions by using the more inclusive concept of an I-logical relation. This memorandum is by no means self-contained. The reader should have some knowledge of both the typed and untyped $\lambda$ K-calculi and be fairly familiar with Scott's models of the untyped $\lambda$ K-calculus. ## 2. Pure definability in D A structure $\langle D,K,S_{\bullet}[\cdot] \rangle$ is called a <u>(non-trivial) model of the $\lambda$ -calculus</u> if K and S have the usual properties and extensionality holds (and |D| > 1). Such structures give a denotational semantics for the $\lambda$ K-calculus which we will use informally, confusing use and mention. Generally we will consider only the models $D_{\infty}$ , from [8], given by a Park retraction, $\Psi_0 = \lambda f$ : $D_1 \cdot f(t)$ , where t is an isolated element of $D_0$ . We will often use facts about such models, accompanied by a reference to the proof for the case t = 1. The general proof is always similar. Also needed is the fact that if $Y_{\lambda}$ is the paradoxical combinator, $\lambda f(\lambda x f(xx))(\lambda x \cdot f(xx))$ , then, in $D_{\infty}$ , $Y_{\lambda}[f] = \bigcup_{n \geq 0} f^n[f[t] = t \rightarrow t, 1](f \in D_{\infty})$ [5]. A relation R $\subseteq$ D<sup>K</sup>, (K an ordinal) on such a structure is <u>logical</u> iff: $$\forall \, \overline{f}^{>} \in D^{K} (R(\overline{f}^{>}) \equiv (\forall \, \overline{x}^{>} \in D^{K} (R(\overline{x}^{>}) \rightarrow R(\overline{f}^{>}[\overline{x}^{>}]))))$$ Here K is any ordinal and application of vectors is defined pointwise. An element $x \in D$ satisfies R iff $R(\hat{x})$ is true, where $\hat{x} \in D^K$ is the constant vector such that $(\hat{x})_{\hat{x}} = x$ ( $\lambda \lt \kappa$ ). An element $x \in D$ is $\frac{\lambda}{-\text{definable}}$ if x=M, for some closed $\lambda$ -term M; it is $\frac{\lambda}{-\text{definable}}$ from $X \subseteq D$ iff there is a closed term M and $x_1, \dots, x_n$ in X such that $x=Mx_1, \dots, x_n$ . Theorem 1 1. Any closed $\lambda$ -term satisfies any logical relation. 2. If x is $\lambda$ -definable from X $\subseteq$ D, and each element in X satisfies the logical relation R, then so does x. <u>Proof</u> Clearly, if x and y satisfy a logical relation R, so does x[y]. So to finish the proof we need only show that K and S satisfy any such relation. Suppose R is logical. To show K satisfies R, assuming $R(\overline{x})$ we must show that $R(\overline{K}[\overline{x}])$ . This, in turn, follows if $R(\overline{K}[\overline{x}][\overline{y}])$ when $R(\overline{y})$ . But this holds as $\overline{K}[\overline{x}][\overline{y}]=\overline{x}$ . In the same way we see that S satisfies R if $R(\widehat{S}[\overline{x}^*][\overline{y}^*][\overline{z}^*])$ when $R(\overline{x}^*)$ , $R(\overline{y}^*)$ , and $R(\overline{z}^*)$ . But then we have successively, by the remark made at the beginning of the proof that $R(\overline{x}^*[\overline{z}])$ , $R(\overline{y}^*[\overline{z}^*])$ and $R(x[\overline{z}^*][\overline{y}^*][\overline{z}^*])$ , concluding the proof. Nothing is known about the converse of theorem 1. However it will be very useful for particular cases of undefinability. Here is a way of constructing logical relations $R \subseteq D_{\infty}^2$ . Suppose $$R_0 \subseteq D_0^2$$ . Define $R_n \subseteq D_n^2$ by: $$\forall f,g \in D_{n+1}.(R_{n+1}(f,g) \equiv \forall x,y \in D_n(R_n(x,y) \rightarrow R_n(fx,gy))).$$ Define $R_{\infty} \subseteq D_{\infty}^2$ by: $$\forall$$ d,e $\in$ D<sub>\impsi</sub>(R<sub>\impsi</sub>(d,e) $\equiv$ $\forall$ n R<sub>\impsi</sub>(d<sub>n</sub>,e<sub>n</sub>)). Theorem 2 Suppose that $R_0(t,t)$ , that $R_0(d,e)$ implies $R_1(\phi_0 d, \phi_0 e)$ , for any d, e in $D_0$ , and that $R_0$ is closed under unions of increasing sequences. Then: - 1. Roo is logical. - 2. Ros is closed under increasing sequences. - 3. If $R_0$ is closed under $\sqcup$ ( $\Pi$ ) so is $R_\infty$ ; if $R_0(\bot,\bot)$ ( $R_0(T_0,T_0)$ ) then $R_\infty(\bot,\bot)$ ( $R_\infty(T,T)$ ). The construction also works for any $R_0 \subseteq D^K$ under the corresponding conditions, and the theorem analogous to theorem 2 can be proved; this extension will be assumed. Lemma 1.1 Suppose that $R_0(t,t)$ and $R_0(d,e)$ implies $R_1(\phi_0,d,\phi_0,e)$ for any d, e in $D_0$ . Then, $$\forall n \ \forall f,g \in D_n (R_n(f,g) \rightarrow R_{n+1}(\phi_n(f), \phi_n(g)))$$ and $\forall n \ \forall f,g \in D_{n+1} (R_{n+1}(f,g) \rightarrow R_n(\phi_n(f), \phi_n(g)))$ 1.2 If $R_0$ is closed under increasing sequences so is each $R_n$ . Proof/ Proof 1.1 By induction on n. For n=0, note that if $R_1(f,g)$ then $R_0(ft,gt)$ from the definition of $R_1$ and the fact that $R_0(t,t)$ . For n+1, suppose $R_{n+1}(f,g)$ and suppose $R_{n+1}(f',g')$ . By induction hypothesis $R_n(\psi_n f', \psi_n g')$ . Therefore $R_n(f(\psi_n f'), g(\psi_n g'))$ , and by the induction hypothesis, $R_{n+1}(\phi_n \circ f \circ \psi_n (f'), \phi_n \circ f \circ \psi_n (g'))$ , which shows that $R_{n+2}(\phi_{n+1} f, \phi_{n+1} g)$ . The other half is similar. 1.2 By induction on n. For n+1, let $\langle f^m, g^m \rangle_{m=0}^{\infty}$ be an (infinite) increasing sequence in $R_{n+1}$ and suppose $R_n(x,y)$ . Then $\langle f^m, g^m \rangle_{m=0}^{\infty}$ is an increasing sequence in $R_n$ and so $\langle (\underset{m}{\sqcup} f^m)x, (\underset{m}{\sqcup} g^m)y \rangle$ is in $R_n$ by induction hypothesis and the complete additivity of application in its first argument. This concludes the proof. <u>Proof of theorem 2</u> 1 First suppose that $R_{\infty}(f,g)$ and $R_{\infty}(x,y)$ . We will show that $R_{\infty}(fx,gy)$ . Now $(fx)_n = \prod_{m=1}^{\infty} \psi_{mn}(f_{m+1}x_m)$ and similarly for $(gy)_n = [7]$ . Since $R_m(f_{m+1}x_m, g_{m+1}y_m)$ is true for any $m \ge n$ , $R_n(\psi_{mn}(f_{m+1}x_m), \psi_{mn}(g_{m+1}y_m))$ follows by m-n applications of lemma 1.1, and then we see that $R_n((fx)_n, (gy)_n)$ by lemma 1.2 and the above formulae for $(fx)_n$ and $(gy)_n$ . 2 Suppose $\langle x^m, y^m \rangle_{m=0}^{\infty}$ is an (infinite) increasing sequence in $R_{\infty}$ . Now, $(\prod_{m=0}^{\infty} x^m)_n = \prod_{n=1}^{\infty} \Psi_{n'n}(\prod_{m=0}^{\infty} (x^m)_n)$ and similarly for the y's, (cf. [7]). Then one sees, successively that, $R_n((x^m)_n, (y^m)_n)$ for all m and n, $R_n(\underline{\square}(x^m)_n, \underline{\square}(y^m)_n)$ , for all n, by lemma 1.2, $R_n(\underline{\varPsi}_n, (\underline{\square}(x^m)_n)_n)$ , $\underline{\varPsi}_n(\underline{\square}(x^m)_n)$ for n' $\geq n$ , by lemma 1.1 and finally $R_n((\underline{\square}(x^m)_n)_n)$ , $(\underline{\square}(x^m)_n)$ by lemma 1.2. A straightforward inductive argument shows that if $R_0$ is closed under $\square$ so is each $R_n$ . Then, clearly, $R_{\infty}(\lambda \times \lambda y(x_n \square y_n), \lambda \times \lambda y(x_n \square y_n))$ and so $R_{\infty}$ is closed under $\square$ as $\square = \square \cup (\lambda \times \lambda y(x_n \square y_n))$ expresses $\square$ as an increasing sequence in $\square$ . The argument for $\mathbb{D}_{\infty}$ is similar; it uses the fact that if f,g: X -> Y where X and Y are continuous lattices then $(f \sqcap g)_{x=(fx)} \sqcap (gx)$ . If $R_0(\bot,\bot)$ then $R_n(\bot,\bot)$ , for any n, by lemma 1.1. If $R_0(T_0,T_0)$ an easy inductive argument shows that $R_n(T_n,T_n)$ for all n, concluding the proof. As an example, let $P_0 = \{t\}$ . Then by the assumed extension of) theorem 2, $P_{\infty}$ is logical and so the Oth component of any closed $\lambda$ -term is t. Therefore if $T \neq \bot$ neither $\bot$ nor, since $\bot$ -YI, Y is $\lambda$ -definable; this is a result of Park [6]. The next example establishes all the definabilities among $\bot$ , $\top$ , $\bigsqcup$ , and Y for all possible values of t. Theorem 3 1.1 If $t = \bot$ , $Y = Y_{\lambda}$ and $\bot = Y_{\lambda}I$ . - .2 In general, $\perp$ =YI and Y= $\lambda f(Y_{\lambda}(\lambda g \lambda x f(g \perp))I)$ . - .3 If $t=T_0$ , then $T=Y_{\lambda}K_{\bullet}$ - .4 If $t=T_0$ and $D_0=0=\{1,T\}$ then $\Pi=T_\lambda(\lambda g \lambda x \lambda y \lambda z g(xz)(yz))$ . - 2. The only definabilities among $\bot$ , $\top$ , $\bigcup$ , $\bigcap$ and Y are those implied by 1. - <u>Proof</u> 1.1 This result is known see [9]. - .2. 1 =YI is obvious. Suppose $f \in D_{\infty}$ and let $T = \lambda g \lambda x$ $f(g \perp)$ . As $T t = T \perp = \lambda x f \perp$ , we see that $Y_{\lambda} T = \coprod_{n \geq 0} T^n (\lambda x f \perp)$ . By induction on n, $T^n(\lambda x f \perp) = \lambda x f^{n+1}(\perp)$ , giving $Y_{\lambda} T = \lambda x (Yf)$ , and the result follows. - .3. As Kt $\exists$ t, $Y_{\lambda} = \prod_{n \geq 0} K^n$ t. As $K^n$ t $\exists$ $T_n$ (t= $T_0$ , here), for all n, $Y_{\lambda} K=T$ . - .4. Let $T = \lambda g \lambda x \lambda y \lambda z g(xz)(yz)$ . Since,in this $D_{\infty}$ , $x \supseteq t$ iff $xt \supseteq t$ , one sees that $T t \supseteq t$ . Now, $t = \lambda x \lambda y x_0 \prod y_0$ is true in this lattice and then $\prod = Y_{\lambda} T$ follows by the usual inductive argument. - 2. As $\bot$ and Y are interdefinable, only definabilities among $\bot$ , $\top$ , $\bigsqcup$ and $\bigcap$ need be considered. We must show that if $t \neq \bot$ , then $\bot$ is not $\lambda$ -definable from $\{T, \sqcup, \Pi\}$ ; that it $t \neq T_0$ , T is not $\lambda$ -definable from $\{\bot, \bot, \Pi\}$ ; that if $t \neq T_0$ or $D_0 \neq \emptyset$ then $\Pi$ is not $\lambda$ -definable from $\{\bot, T, \Pi\}$ in all cases; and that if $t \neq T_0$ or $D_0 \neq \emptyset$ then $\Pi$ is not $\lambda$ -definable from $\{\bot, T, \sqcup\}$ . To show that $\bot$ is not $\lambda$ -definable from $\{T, \bot, \cap\}$ , when $t \neq \bot$ let $R_0 = \{t, T_0\}$ . The conditions of theorem 2 are easily checked and so $P_\infty$ is logical. It also follows from theorem 2 that $\bot$ , $\bigcap$ and T satisfy $P_\infty$ . Clearly $\bot$ does not. The conclusion then follows from theorem 1.2. In the rest of the proof we shall first display an appropriate $R_{\mbox{\scriptsize O}}$ and leave the (admittedly tedious) details to the reader. To show that if $t \neq T_0$ , T is not $\lambda$ -definable from $\{\bot, \Pi, \bot\}$ take $R_0 = \{\bot, t\}$ . To show that, in all cases, $\square$ is not $\lambda$ -definable from $\{\bot, \top, \Pi\}$ , take $R_0 = \{\langle \top_0, \top_0, \top_0 \rangle, \langle \bot, \top_0, \bot \rangle, \langle \top_0, \bot, \bot \rangle, \langle t, t, t \rangle, \langle \bot, t, \bot \rangle, \langle t, \bot, \bot \rangle\}$ . Note that $R_0 = (\bot, \top_0, \bot)$ and $R_0 = (\top_0, \top_0, \bot)$ but not $R_0 = (\top_0, \top_0, \bot)$ . To show that if $t \neq T_0$ then $\Pi$ is not $\lambda$ -definable from $\{\bot, T, \bot\}$ , take $R_0 = \{\langle x, y, z \rangle \mid \{x, y\} \subseteq \{t, T_0\}, x \neq t \text{ or } y \neq t, z \in \{\bot, t, T_0\}\} \cup \{\langle \bot, \bot, \bot \rangle\}$ . Note that $R_{\infty}(t, T, \bot)$ and $R_{\infty}(T, t, \bot)$ but not $R_{\infty}(t, t, \bot)$ . To show that if $t=T_0$ and $D_0 \neq \mathbf{0}$ then $\Pi$ is not $\lambda$ -definable from $\{\mathbf{L},T,LL\}$ , choose $u \in D_0$ distinct from $\mathbf{L}$ and t and take $R_0 = \{\langle t,u,u \rangle\langle u,t,u \rangle\langle t,t,u \rangle\langle t,t,t \rangle\} \cup \{\langle x,y,L \rangle \mid x,y \in \mathbf{EL},u,t\}\}$ . Note that $R_{\infty}(t,u,u)$ and $R_{\infty}(u,t,u)$ but not $R_{\infty}(u,u,u)$ . This concludes the proof. It is interesting to note that when $t=T_0$ and $D_0=\mathcal{D}$ then a normal term can even equal an unsolvable term, for example, $I=Y_{\lambda}(\lambda f \lambda x \lambda y f(xy))$ (cf. I=J, when $t=\int_{-\infty}^{\infty} [9]$ ). Our method of constructing logical relations is by no means all-powerful. For example, we believe that if $t \not= T_0$ or $D_0 \not= D$ then $\psi_0$ is not $\lambda$ -definable. Clearly, for the R's constructed so far, if $R_\infty(\bar{x}^>)$ then $R_0(\lambda < .((\bar{x}^>)_\alpha)_0)$ and so $R_\infty(\lambda < .((\bar{x}^>)_\alpha)_0)$ . Therefore $R_\infty(\psi_0)$ . On the other hand, suppose $\psi_0$ were $\lambda$ -definable by a closed term M when $t = \bot$ . Clearly (see [10]) M is not unsolvable, as $\psi_0 \not= \bot$ . So there are closed terms $M_1 \dots M_k$ (k>0) such that $M_1 \dots M_k = I$ , but as mentioned above the Oth component of $M_1$ must be $\bot$ and so either $\bot$ =I or $\psi_0 = I$ , a contradiction. Perhaps an extension of Wadsworth's methods to the other $D_0$ 's would sort this out. The last example concerns interdefinabilities among the members of $\{tt,ff,T,U,\Pi,D\}$ in $T_{\infty}[9]$ which is gotten by taking t=1 and $D_{0}$ to be the truth-value lattice displayed in figure 1. fig. 1 The conditional, $\supset$ , is in $T_{\infty}^3 \to T_{\infty}$ , and is regarded as being in $T_{\infty}$ , in the usual way. It is defined by: $$(z > x,y) = \begin{cases} x u y & (\text{if } z=T) \\ x & (\text{if } \text{tt } \sqsubseteq z \neq T) \\ y & (\text{if } \text{ff } \sqsubseteq z \neq T) \\ 1 & (\text{otherwise}) \end{cases}$$ It is known that T is $\lambda$ -definable from $\{tt,ff, \sqcup \}$ , $\sqcup$ is $\lambda$ -definable from $\{\supset,T\}$ and $\Pi$ can be defined from $\{tt,ff,\sqcup,\supset\}$ . We will show that there are no more $\lambda$ -definabilities of $tt,ff,T,\sqcup$ or $\Pi$ other than those implied by the above ones; the situation for $\Pi$ has only been partly clarified. First, $\supset$ is not definable from $\{tt,ff, \sqcup, \Pi,T\}$ . Take $R_O=\{\langle \bot,\bot\rangle,\langle tt,ff\rangle,\langle ff,ff\rangle,\langle tt,tt\rangle,\langle tt,T\rangle,\langle T,T\rangle,\langle\bot,ff\rangle,\langle tt,\bot\rangle,\langle T,ff\rangle\}$ and note that $R_O(\supset tt\ ff\ tt,\supset ff\ ff\ tt)$ is false. Here and later theorem 2 is used implicitly. tt is not definable from $\{ff, \mathbf{U}, \mathbf{D}, \mathbf{T}\};$ take $R_0 = \{\mathbf{L}, ff, \mathbf{T}\}.$ ff is not definable from $\{tt, \mathbf{U}, \mathbf{D}, \mathbf{T}, \mathbf{\Pi}\};$ take $R_0 = \{\mathbf{L}, tt, \mathbf{T}\}.$ T is not definable from any one of $\{tt, ff, \mathbf{D}, \mathbf{\Pi}\}, \{tt, \mathbf{U}, \mathbf{D}, \mathbf{\Pi}\}$ or $\{ff, \mathbf{U}, \mathbf{D}, \mathbf{\Pi}\};$ take $R_0 = \{\mathbf{L}, tt, ff\}, \{\mathbf{L}, tt\}$ or $\{\mathbf{L}, ff\}$ respectively. $\sqcup$ is not definable from either one of $\{tt,ff,T,\Pi\}$ or $\{tt,ff,\Pi,\supset\}$ ; take/ take $R_0 = \{\langle tt, tt \rangle, \langle ff, ff \rangle, \langle L, L \rangle, \langle T, T \rangle, \langle tt, ff \rangle, \langle tt, L \rangle, \langle L, ff \rangle \}$ and note that $R_0 \cap \{L, tt, ff\}$ in the second case. In the case of $\Pi$ , we would like to show that $\Pi$ is not definable from any of the sets {tt,ff, $\Pi$ , T}, {tt,ff, D}, {ff, \$\Pm\$, T} or {tt,\$\Pm\$, T}. For the first of these take \$R\_0 = {<tt,tt>,<ff,ff>,<T,T>, <\Pm\$, \$\t,\Pm\$, \$\t,\Pm\$, \$\t,\Pm\$, \$\t,\Pm\$, \$\t,\Pm\$ and note that \$R\_0\$ (\$\Pm\$ ff tt, \$\Pm\$ ff ff) is false. The trouble with the others is that if $R_{\infty}(\Im,\Im)$ then $R_{\infty}(\Pi,\Pi)$ , for the R's considered here. For if $x,y\in T_0$ then $(x\supset (y\supset y,\bot),(y\supset \bot,y))=x\Pi$ y, and so one can define from $\supset$ terms $M_n$ $(n\geq 0)$ such that $M_n xy=x\Pi$ y if x and y are in $T_n$ . Therefore if $R_{\infty}(\Im,\Im)$ then $R_{\infty}(\Im x \Im y \times \Pi, \Pi, Y_n)$ for any n and so $R_{\infty}(\Pi,\Pi)$ . On the other hand, $\Pi$ is, in fact, not $\lambda$ -definable from $\Im$ . For suppose $\Pi$ =M $\Im$ for some closed $\lambda$ -term M. If M is unsolvable then $\Pi$ = $\bot$ , a contradiction; therefore M has the form $\lambda \times_1 \cdots \lambda \times_n \cdot \times_j \times_1 \cdots \times_k \times_$ Perhaps an extension of Wadsworth's ideas to LAMBDA [9], would settle these questions. # 3. $\lambda$ -definability in the full type hierarchy For the sake of clarity, we will be a little more formal than in the last section. The set of <u>type symbols</u> is the least set containing $\boldsymbol{c}$ and containing $(\boldsymbol{\sigma} \to \boldsymbol{\gamma})$ wherever it contains $\boldsymbol{\sigma}$ and $\boldsymbol{\gamma}$ ; $\boldsymbol{\sigma}$ and $\boldsymbol{\gamma}$ are metavariables, possibly suffixed, ranging over type symbols and $(\boldsymbol{\sigma}_1,\ldots,\boldsymbol{\sigma}_n,\boldsymbol{\gamma})$ abbreviates $(\boldsymbol{\sigma}_1 \to (\boldsymbol{\sigma}_2 \to \ldots (\boldsymbol{\sigma}_n \to \boldsymbol{\gamma})\ldots))$ $(n \ge 0)$ . The language of the typed $\lambda$ -calculus has denumerably many variables $\alpha_i^{\gamma}$ (i $\geq$ 0) of each type $\gamma$ . We will use $\alpha$ and $\beta$ , with or without various decorations as metavariables over variables. The language has a set of terms which is given by: - 1. $\alpha_{\underline{i}}^{\gamma}$ is a term of type $\gamma$ , $(\underline{i}\underline{>}0)$ , - 2. if M and N are terms of type ( $\delta \rightarrow \gamma$ ) and $\delta$ respectively then (MN) is a term of type $\gamma$ , - 3. if M is a term of type $\tau$ then $(\lambda \overset{\bullet}{\alpha}_{\underline{i}}.M)$ is a term of type $(\sigma \rightarrow \tau)$ , $(\underline{i} \geq 0)$ ; $D(\sigma \rightarrow \tau)^{=(D_{\sigma} \rightarrow D_{\gamma})}$ (the set of <u>all</u> functions from $D_{\sigma}$ to $D_{\gamma}$ ), where $P_{\epsilon}$ is some given set. The semantics is a function $[ ] : Terms \rightarrow (Env \rightarrow V_{\sigma} D_{\sigma})$ where Env, the set of environments, is the set of type respecting functions from the set of variables to U D $_{m{\chi}}$ , and is ranged over by ho . Then, $m{\mathbb{I}}$ $m{\mathbb{I}}$ is the unique function of that type such that: 1. $$\mathbb{E} \propto_{i}^{\gamma} \mathbb{I}(\rho) = \rho(\alpha_{i}^{\gamma}) \quad (i \geq 0)$$ where $\rho[x/\alpha_i^{\gamma}]$ is the environment $\rho$ ' such that $$\rho'(\alpha_{i'}^{\gamma}) = \begin{cases} x & (\alpha_{i'}^{\gamma} = \alpha_{i}^{\gamma}) \\ \rho(\alpha_{i'}^{\gamma}) & (\text{otherwise}). \end{cases}$$ Note that if M has type $\sigma$ , $[M](\rho) \in D_{\sigma}$ . If M is closed then $[M](\rho) = [M](\rho)$ for any ho and ho - so we often drop the reference to ho for closed M. If $M \approx M'$ then $[M](\rho) = [M'](\rho)$ for any $\rho$ ; we will give a converse later. Suppose $\pi_{\mathbf{L}} \in \mathbb{D}(\mathbf{L} \rightarrow \mathbf{L})$ is a permutation. Permutations $\pi_{\mathbf{L}}$ in any D(6->6) can be defined by: $$\pi_{(\sigma \rightarrow \tau)}(f) = \pi_{\tau} \circ f \circ \pi_{\sigma}^{-1} \quad (f \in D_{(\sigma \rightarrow \tau)}).$$ If M is closed term then $\pi(M)=M$ (see [2]). However this does not characterise $\lambda$ -definability. For example ground equality, $=_{\ell}$ , is permutation-invariant, but is certainly not $\lambda$ -definable. Explicitly let 0 abbreviate ( $\iota$ , $\iota$ , $\iota$ ) and let tt and ff be $\lambda \propto_0^{\iota} \lambda \propto_1^{\iota} \propto_0^{\iota}$ and $\lambda \propto_0^{\iota} \lambda \propto_1^{\iota} \sim_1^{\iota}$ respectively. Then $=_{l}$ is defined by: $$=_{\boldsymbol{\zeta}} xy \begin{cases} \text{tt (if } x=y) \\ & (x,y \in D_{\boldsymbol{\zeta}}) \end{cases}$$ $$\text{ff (if } x\neq y)$$ But/ But the only $\lambda$ -definable functionals of type ( $\ell$ , $\ell$ ,0) are $\lambda \propto \frac{1}{2} \lambda \propto \frac{1}{2} \lambda \propto \frac{1}{3} \propto \frac{1}{3}$ for $0 \leq j \leq 3$ none of which are = if $|D_{\ell}| > 1$ . M. Gordon proposed, as a possible remedy, that <u>relations</u> $R_{\boldsymbol{\ell}} \subseteq D_{\boldsymbol{\ell}}^2$ should be extended - not just permutations. Starting with such an $R_{\boldsymbol{\ell}}$ , the $R_{\boldsymbol{\ell}}$ 's are defined by: $$\mathbb{R}_{(\sigma_{-}>\tau)}(f,g) \equiv \forall x,y \in \mathbb{D}_{\sigma^{*}}(\mathbb{R}_{\sigma}(x,y) \rightarrow \mathbb{R}_{\tau}(fx,gy)).$$ When R is a permutation $\mathcal{T}_{L_2}R_6 = \mathcal{T}_6$ for all $\sigma$ . The definition generalises, in the obvious way, if one starts with $R_L \subseteq D^K$ , for any ordinal K. If $R_6 \subseteq D^K_{\sigma}$ is obtained from an R in that way it is called K-logical; $f \in D_6$ satisfies it iff $R_6(\hat{f})$ holds. With the obvious definitions of $\lambda$ -definability and $\lambda$ -definability from a set $X \subseteq UD_{\sigma}$ , one shows that any $\lambda$ -definable functional satisfies any K-logical relation, of the right type and that if $\{R_6\}$ is the system of relations obtained from some $R_L$ , and each member of X satisfies the appropriate $R_6$ and f is $\lambda$ -definable from X, then x satisfies the appropriate $R_6$ . The proof is like that of theorem 1.1. One can now see why = l is not $\lambda$ -definable if $|D_{\ell}|>1$ . Let 0,1 be distinct elements of $D_{\ell}$ . Let $R_{\ell} = \{<0,0>,<0,1>,<1,0>\}$ . Then R(tt,ff) is false for R(1,0) and R(0,1) but not R(tt10,ff01). Therefore $R(=_{\ell},=_{\ell})$ is false for R(0,0) and R(0,1) but not $R(=_{\ell}(0)(0),=_{\ell}(0)(1))$ . As an example of non-relative definability, consider the universal quantifier $\forall_{\ell}$ of type $((\ell->0)->0)$ defined by: $$\forall_{\ell}(f) = \begin{cases} \text{tt (if fx=tt for all x in } D_{\ell}) \\ \\ \text{ff (otherwise).} \end{cases}$$ Now $\forall_{\ell}$ is permutation-invariant; however if $|D_{\ell}| \geq 3$ it is not $\lambda$ -definable from = $\ell$ . To see this let $R_{\ell} = \{\langle 0,0\rangle,\langle 1,1\rangle\}$ where 0,1 are distinct elements of $D_{\ell}$ . $R(=_{\ell},=_{\ell})$ is true, but if $f,g\in D_{(\ell->\ell)}$ are such that f(x) is always tt but g(x) is tt iff x is 0 or 1 then R/ R(f,g) but not $R(\forall_{(f)},\forall_{(g)})$ . Incidentally, if $|D| \le 3$ , $\forall \zeta$ is $\lambda$ -definable from =(. We can only characterise definability using logical relations, for types of level < 2. Theorem 1 Suppose $\tau$ has the form $(\tau_1, \dots, \tau_n, \ell)$ where each $\tau_i$ has the form $((,...,(,\ell))$ . Then if $|D_{\ell}| \ge k_0$ and $f \in D_{\tau}$ satisfies every 2-logical relation, it is $\lambda$ -definable. We will just give two cases since this should give the idea without overmuch detail. Suppose $\Upsilon = (\zeta, \zeta, \zeta)$ . Let x,y,0,1 be elements of D, with 0 and 1 distinct and take $R_{\ell} = \{\langle x, 1 \rangle, \langle y, 0 \rangle\}$ . Then R(fxy, f10). every $x,y \in D_{\ell}$ either fxy=x and f10=1 or else fxy=y and f10=0. Therefore either f10=1 or f10=0 and so, since $1\neq0$ either The other case we consider is $\gamma = ((\ell, \ell), \ell, \ell)$ . Identify the integers, with a subset of D $_{\boldsymbol{\zeta}}$ and let the restriction of s to the integers be the successor function. Given g in $D(\zeta \rightarrow \zeta)$ and $x \in D_{\zeta}$ let $P_{\zeta} = \{ \langle g^{n}(x), s^{n}(0) \rangle \mid n \geq 0 \}$ . Clearly R(x,0) and R(g,s). Therefore R(f(g)(x),f(s)(0)) and so for every $g \in D(x \rightarrow x)$ and $x \in D_x$ there is an n such that $f(g)(x)=g^n(x)$ and $f(s)(0)=s^n(0)$ . Since $s^n(0)=s^n'(0)$ iff n=n', n must be independent of g and x and so for some n, $f = I \lambda \propto \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \lambda \propto \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot - \rangle \cdot () \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} ( \cdot$ We believe the theorem holds without the restriction on $D_{\boldsymbol{\ell}}$ . simplest type which has us baffled when $\int D_{\ell} \left( \ge 2 \text{ is } \left( \left( (\ell, -> \ell) -> \ell \right) -> \ell \right) \right) d\ell$ Some characterisation of definability can be obtained by strengthening the implication in the definition of R $_{m{\delta}}$ to an intuitionistic one, a la Kripke [1]. To this end, suppose we have a set W (of worlds) a reflexive, transitive binary relation $\leq$ which is a subset of $W^2$ (alternativeness) and a relation $R \in D^3 \times W$ such that: $\forall x,y,z \in D_{\ell} \forall w' \in W(R(x,y,z,w) \land (w \leq w') \rightarrow R(x,y,z,w')).$ Define relations $R_{\sigma} \subseteq D_{\sigma}^{3} \times W$ by: $$\begin{split} ^{R}(\boldsymbol{\sigma} \rightarrow \boldsymbol{\gamma})^{\,(f,g,h,w)} &\equiv (\forall \, x,y,z \, \in \, \mathbb{D}_{\boldsymbol{\sigma}} \, \forall \, w' \, \in \, \mathbb{W}((\mathbb{R}(x,y,z,w') \, \, \boldsymbol{\wedge} \, (w \leq w')) \\ & \quad \quad - \boldsymbol{\times} \, \mathbb{R}(\, f(x)\!, g(y)\!, h(z)\!, w'))), (f,g,h \, \in \, \mathbb{D}_{(\boldsymbol{\sigma} \rightarrow \boldsymbol{\gamma})}, w \, \in \, \mathbb{W}). \end{split}$$ Any such R<sub>6</sub> is called <u>3-I-logical</u>; $f \in D_6$ satisfies R<sub>6</sub> iff R<sub>6</sub> (f,f,f) is true. It is clear how the definition of K-logical goes, for any ordinal K. The reason for the magic number 3 is: Theorem 2 If $|D_{\ell}| \ge \lambda_0$ , then $f \in D_{\delta}$ satisfies every 3-I-logical relation iff it is $\lambda$ -definable. We don't know if the restriction on $D_{\ell}$ can be dropped, or if 3 can be reduced to 2; it cannot be reduced to 1 because if $D_{\ell}$ is the integers and $f \in D(\ell \to \ell) \to (\ell \to \ell)$ is defined by: $f(g)(x)=g^{g(x)}(x)(g \in D_{(\zeta \to \zeta)}, x \in D_{\zeta})$ , then f satisfies every 1-I-logical predicate but is not $\lambda$ -definable. Neither do we know anything about characterising relative definability, even in interesting special cases, or what happens in other models of the typed $\lambda$ -calculus or, of course, what happens in the case of the untyped $\lambda$ -calculus. The rest of the memorandum is devoted to the proof of theorem 2. Lemma 1 Suppose $R_{\bullet} \subseteq D^3 \times W$ is 3-I-logical. Then, for the appropriate $\leq V_{\bullet}$ : $\forall f,g,h \in D_{\bullet} \forall w,w' \in W((R_{\bullet}(f,g,h,w) \land w \leq w') -> R_{\bullet}(f,g,h,w'))$ . Proof By induction on 6. Lemma 2 If $f \in D_{\delta}$ is $\lambda$ -definable, it satisfies every 3-I-logical relation. <u>Proof</u> Let $\{R_6\}$ be the collection of 3-I-logical relations built up, as above, from some W, $\leq$ and R<sub> $\ell$ </sub> $\in$ D<sup>3</sup> $\times$ W. Clearly, if $f \in D_{\ell}$ satisfies $R_{\ell} \to T$ and $g \in D_{\ell}$ satisfies $R_{\ell}$ then f(g) satisfies $R_{\ell}$ . So we need only/ only show, by a remark made above, that [K] and [S] satisfy the appropriate R's. For K, suppose that $w \le w'$ , $R(f,g,h,w'), w' \le w''$ and R(x,y,z,w''). Then R(K)(f)(x), K(g)(y), K(h)(z), w'' by the previous lemma, since R(f,g,h,w') and $w' \le w''$ . For S, suppose that $w \leq w'$ , R(f, f', f'', w'), $w' \leq w''$ , R(g, g', g'', w''), $w'' \leq w'''$ and R(x, x', x'', w'''). As $w' \leq w''''$ , R(f(x), f'(x'), f''(x''), w''') and as $w'' \leq w''''$ , R(g(x), g'(x'), g''(x''), w'''). Therefore, as $w''' \leq w''''$ , R(f(x)(g(x)), f'(x)(g'(x')), f''(x'')(g''(x'')), w''''), concluding the proof. This establishes the "consistency" half of theorem 2. Of course, the lemma also holds if 3 is replaced by any K and, further, an analogue of theorem 1.1.2 also holds in general. To obtain the "completeness" half we use a special W, $\leq$ and R which in turn requires us to give a "standard" environment, $\rho_0$ , which assigns to each $\propto \frac{\gamma}{i}$ an element of D, which behaves like $\propto \frac{\gamma}{i}$ , in a way to be made clear by lemmas 3 and 4. Now we suppose that $|D_c| \ge N_0$ and (( )) is a map from the set of terms of type c to $D_c$ such that: $$((M))=((N))$$ iff $M \approx N$ . A vector, $\overrightarrow{\alpha}$ , of variables is non-repeating if no variable occurs twice in it. If M is a term and $\overrightarrow{N} = \langle N_1, \dots, N_n \rangle$ (n>0) is a vector of terms, M $\overrightarrow{N}$ abbreviates (...((M N<sub>1</sub>)N<sub>2</sub>)...N<sub>n</sub>); similarly if $\overrightarrow{x}$ is a vector of elements of $\overrightarrow{U}$ D<sub>\(\frac{\pi}{\pi}\)</sub> then $f\overrightarrow{x}$ abbreviates $f(x_1)...(x_n)$ , where $\overrightarrow{x} = \langle x_1, \dots, x_n \rangle$ and f is a functional of the appropriate type. If $\overrightarrow{\alpha} = \langle \alpha_1, \dots, \alpha_n \rangle$ is a vector of variables, then $\overrightarrow{P}(\overrightarrow{\alpha}) = \langle P(\alpha_1), \dots, P(\alpha_n) \rangle$ for any environment P. The standard environment, $\rho_0$ , is defined by: 1. $$\rho_0(\alpha_i)=((\alpha_i))$$ $(i\geq 0)$ 2. If there is a vector $\overline{N}$ of terms of length n such that for any j $(1 \le j \le n)$ and almost every\* non-repeating $\overline{A}$ containing no variable free in $(\overline{N})_j$ , $f_j \cap (\overline{A})_j = ((\overline{N})_j - \overline{A}_j)$ , then $\bigcap_{0 \le j \le n} (\overline{A}_j - \overline{A}_j) = ((\overline{N})_j - \overline{A}_j)$ , where $\overline{N}$ is one such vector; if there is no such vector then $$\rho_0(\alpha_i^{(\boldsymbol{\gamma}_1,\ldots,\boldsymbol{\gamma}_n,\boldsymbol{\zeta})})_{(f_1)\ldots(f_n)=((\alpha_0))} ((\alpha_0)) \cdot ((i\geq 0; f_j \in D_{\boldsymbol{\gamma}_j}))$$ Notice that if $\overline{N}_1$ and $\overline{N}_2$ satisfy the conditions of the second clause then they are, componentwise, $\otimes$ . So $\rho_0$ is well-defined. Lemma 3 For every term M and vector $\overset{>}{\sim}$ of variables of the appropriate type, $[\![M\overset{>}{\sim}]\!](\nearrow_0)=((M\overset{>}{\sim}))$ . Proof First we prove the lemma for variables, by induction on types. If $M = \alpha_i$ , the result is immediate from the definition of $\rho_0$ . For $\alpha_i$ , the result is immediate from the definition of $\alpha_i$ be any vector of variables such that variables. The variables are also any vector of variables are also any vector of variables and variables are also any vector of variables. The variables are also any vector of variables are also any vector of variables are also any vector of variables. Finally the lemma isproved for terms in $\beta$ , $\gamma$ -normal form by induction on their size. If M is a variable, we are finished. Otherwise, if $M \gtrsim \approx (\dots (\bowtie M_1) \dots M_k)^{(k > 0)}$ where $\bowtie$ is some variable and the $M_1 (1 \le 1 \le k)$ all are $\beta$ , $\gamma$ -normal forms of smaller size than M, the proof then proceeds by applying the induction hypothesis to the M, in a way similar to the above. The only other case is when $M \approx \lambda \beta_1 \dots \lambda \beta_k \approx 1$ for some i, and this is very easy. <sup>\*</sup> Here and elsewhere assertions of the form "for almost every a ....". should be read as "there is a finite set of variables such that for every a , none of whose component variables are in the set, ....". A term M is of order zero iff it has the form & M1....Mk. Lemma 4 Suppose M has order-zero and $x \nearrow_0(\overrightarrow{\lambda}) = y \nearrow_0(\overrightarrow{\lambda})$ for almost all non-repeating vectors $\overrightarrow{\lambda}$ such that $x \nearrow_0(\overrightarrow{\lambda}) \in \mathbb{D}_{\zeta}$ . Then [M](x) = [M](y). $\underline{\text{Proof}}$ Immediate from the definition of $\rho_0$ . Now W, $\leq$ and R, can be defined. The worlds, W are triples, $\langle \vec{p}^{\prime}, \vec{q}^{\prime}, \vec{p}^{\prime} \rangle$ , where $\vec{p}^{\prime}$ is a vector of members of U D, $\vec{q}^{\prime}, \vec{p}^{\prime}$ are non-repeating and $\vec{p}^{\prime}, \vec{q}^{\prime}, \vec{p}^{\prime}$ have the same length and corresponding members have the same type. If $\vec{w}_1 = \langle \vec{p}^{\prime}_1, \vec{q}^{\prime}_1, \vec{p}^{\prime}_1 \rangle$ (i=1,2) then $\vec{w}_1 \vec{w}_2 = \langle \vec{p}^{\prime}_1, \vec{q}^{\prime}_2, \vec{q}^{\prime}_1, \vec{q}^{\prime}_2 \rangle$ , where the component vectors have been concatenated. Then $\vec{w}_1 \leq \vec{w}_2 = \vec{w}_1 + + \vec{w}_2 = \vec{w}_1 + \vec{w}_2 + \vec{w}_2 = \vec{w}_1 + \vec{w}_2 + \vec{w}_2 + \vec{w}_2 + \vec{w}_1 + \vec{w}_2 \vec{w}_1 + \vec{w}_2 +$ Clearly W, $\leq$ and R satisfy the required conditions for obtaining a system of 3-I-logical R s. Lemma 5 1 If $R_{\delta}(f,g,h,w)$ where $w=\langle \vec{p} \rangle, \vec{k} \rangle$ then there is a closed term M such that whenever $\vec{k} \Rightarrow \vec{k} \Rightarrow$ $$f = [\![M]\!] \vec{p}, g \not \cap_{\mathcal{O}} (\vec{\alpha}^{+}) = [\![(M\vec{\alpha}^{+})\vec{\alpha}^{+}]\!] \text{ and } h \not \cap_{\mathcal{O}} (\vec{\beta}^{+}) = [\![(M\vec{\beta}^{+})\vec{\beta}^{+}]\!]$$ $w=\langle \vec{p}\rangle, \vec{k}\rangle \in W$ . Then $R_{\sigma}(f,g,h,w)$ for the appropriate $\sigma$ . Proof Both parts are proved together by induction on o. 1 For ( the result is immediate from the definition of R . So suppose f has type (5->2). Suppose $R(G\to T)$ (f,g,h,w) where $w=\langle \beta\rangle$ , $\alpha$ , $\beta\rangle$ . Suppose next that $w^{\dagger}=w^{\prime}(x,\alpha_{1},\beta_{1})$ , where x has type G, is in W. By induction hypothesis using 2 we see that, $R_{G}(x,\rho_{0}(\alpha_{1}),\rho_{0}(\beta_{1}),w^{\dagger})$ . Therefore $R_{G}(fx,(g,\rho_{0}(\alpha_{1})),(h,\rho_{0}(\beta_{1})),w^{\dagger})$ . By induction hypothesis, using 1, there is a closed term $M(x,\alpha_{1},\beta_{1})$ such that if $\alpha = (\alpha_{1},\alpha_{2}) = (\alpha_{2},\alpha_{3}) = (\alpha_{3},\alpha_{4}) = (\alpha_{1},\alpha_{4}) = (\alpha_{2},\alpha_{4}) = (\alpha_{3},\alpha_{4}) (\alpha_{3},\alpha_$ The subscripts on $M(x, \alpha_1, \beta_1)$ indicate its dependence on $x, \alpha_1$ and $\beta_1$ . Then, $M(x, \alpha_1, \beta_1) = (g \rho_0(\alpha_1)) \rho_0(\alpha_1) = M(x, \alpha_1, \beta_1) = (g \rho_0(\alpha_1)) \rho_0(\alpha_1) = M(x, \alpha_1, \beta_1) = (g \rho_0(\alpha_1)) \rho_0(\alpha_1) \rho_0(\alpha_$ Suppose $f = [M] [\vec{p}], g = [M \vec{\alpha}]$ and $h = [M \vec{p}]$ where M is a closed term and g and h are denotations of order-zero terms, and $w = \langle \vec{p} \rangle, \vec{\alpha}, \vec{p} \rangle \in W$ . Let $w = \langle \vec{p} \rangle \vec{p} + \rangle \vec{p} + \vec{p} \rangle \vec{p} \rangle \vec{p} + \vec{p} \rangle \vec{p}$ Then we have $f_{x=([M] \vec{p})([M] (\vec{p}) \vec{p}^{+}))$ = $[M_{2}] \vec{p}^{+} \vec{p}^{+}]$ for a certain closed term $M_{2}$ . Since $y \rho_0(\vec{\alpha}^{++}) = [M_1 \vec{\alpha} \wedge \vec{\alpha}^{++}] \rho_0(\vec{\alpha}^{++})$ for almost all non-repeating vectors/ vectors $\overset{>}{\alpha}$ +++ such that $y \nearrow_0(\overset{>}{\alpha}$ +++) is in D and g is the denotation of a term of order zero, lemma 4 applies and we have, $$\begin{aligned} & \text{gy=g}(\llbracket \mathbb{M}_1 \stackrel{>}{\sim} \stackrel{>}{\sim} \stackrel{>}{\sim} + \rrbracket) \\ & = (\llbracket \mathbb{M} \rrbracket \rho_0(\stackrel{>}{\sim}))(\llbracket \mathbb{M}_1 \rrbracket \rho_0(\stackrel{>}{\sim} \stackrel{>}{\sim} \stackrel{>}{\sim} +)) \\ & = \llbracket \mathbb{M}_2 \rrbracket \rho_0(\stackrel{>}{\sim} \stackrel{>}{\sim} \stackrel{>}{\sim} +), \text{ where } \mathbb{M}_2 \text{ is the same term as above.} \end{aligned}$$ In same way, $$hz = [M_2] \rho_0(\bar{\beta}^{>} \wedge \bar{\beta}^{>+}).$$ It is now clear that gy and hz are themselves denotations of order zero terms, and so applying the induction hypothesis for part 2, we conclude that $$\gamma^{(fx,gy,hz,w^+)}$$ . Therefore $R_{(f,g,h,w)}$ , as was required, concluding the proof. Lemma 5 gives us the second part of theorem 2. For suppose f satisfies every 3-I-logical R<sub>o</sub>. Then in particular we have $R_o(f,f,f,w_0)$ where R<sub>o</sub> is the one to which lemma 5 applies and $w_0$ has all its components empty. By part 1 of lemma 5, there is a closed term M such that f = [M], which is just what was wanted. ### Acknowledgements I would like to thank Mike Gordon for his help and encouragement. The work was carried out with the aid of an S.R.C. research grant. #### References - [1] Kripke, S.A. (1965). Semantical analysis of intuitionistic logic I. Formal systems and recursive functions, <u>Proc. 8th Logic Colloquium</u>, <u>Oxford, 1963</u>. Amsterdam: North-Holland. - [2] Läuchli, H. (1970). An abstract notion of realizability for which intuitionistic predicate calculus is complete. <u>Intuitionism and proof theory</u>. Amsterdam: North-Holland. - [3] Milne, R. (1973). The formal semantics of computer languages and their implementations. Ph.D. thesis. University of Cambridge. - [4] Plotkin, G.D. (1972) A set-theoretical definition of application. <u>Memorandum MIP-R-95</u>, School of Artificial Intelligence, University of Edinburgh. - [5] Park, D. (1970). The Y-combinator in Scott's lambda-calculus models. Symposium on Theory of Programming. University of Warwick. Unpublished. - [6] Park, D. (1973). Personal communication. - [7] Scott, D. (1969). Lattice-theoretic models for the $\lambda$ -calculus. University of Princeton. Unpublished. - [8] Scott, D. (1970). Continuous lattices. <u>Technical Monograph PRG-7</u>, Oxford University Computing Laboratory Programming Research Group. - [9] Scott, D. (1972). Data types as lattices. University of Amsterdam. Unpublished lecture notes. - [10] Wadsworth, C.P. (1973). The relationship between lambda-expressions and their denotations in Scott's models for the lambda-calculus, in <a href="https://example.com/Proceedings-of-the-Orleans-conference">The Proceedings of the Orleans conference</a> (eds. Calais, Derrick and Sabbagh). To appear.