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Abstract

We collect some results and conjectures about q— analogues of a class of orthogonal
polynomials with simple moments.

In this note I collect some results and conjectures about q—analogues of orthogonal

) jr—=1
polynomials whose moments are z,, =] | Jr=-
M+

j=1

and x,,,, =0 for some integers r > 2 and
m > 0. This is a supplement to my paper [7], where the case r = 2 has been studied, where
the corresponding orthogonal polynomials can be interpreted as a sort of interpolation
between the q— Chebyshev polynomials for m=0 and m =1 and the discrete q— Hermite
polynomials for m=o0. For r > 2 | could not find concrete results in the literature, but due to
the simple form of the moments it is highly probable that some of these results and
conjectures are known. If so | would be very glad to receive references to the literature.

My aim has been to find sequences ( pn(x))nZO of monic polynomials with nice coefficients

such that for the linear functional defined by A(p,)=[n=0] the moments A(xz”) are nice

q —analogues of multiples of H Jr-1

- In most cases pI’OOfS are straightforward and will be
i= J
j=1 m

omitted.

0. Introduction

Let me first state some well-known results about orthogonal polynomials and Hankel
determinants (cf. e.g. [4]).

Suppose that () , 1s asequence of real numbers such that 4., =0 forall ne N and that

ni

all Hankel determinants det(,uiﬂ. )HO # 0.

i,j=



Then the polynomials

o My M, 1

1 M M, o M X
P(X)=—————det| u, g5 - gy, X
det(yiﬂ-)i‘jzo : :

Hy Hoa 0 Hona X"

are orthogonal with respect to the linear functional A on the polynomials defined by
AX") = u,.

This means that A(p,(X)p,(x))=0 if m=n and A(p,(x)*)0.
In particular for m=0 we get

A(p,(¥)=[n=0].
These identities also characterize the linear functional A.
The polynomials p,(x) are of the form

p,(X) = bJ a(n, k)x“

k=0

with a(n,k) =0 for n+k =1mod2 and satisfy a recurrence of the form
pn (X) = Xpn—l(x) - ﬂ’n—Z pn—2 (X)

for some sequence (/1“) with initial values p,(x)=1 and p,(x) = x.

As usual we call A(X™")= s, the moments of A.

The corresponding Hankel determinants are given by

n-1 i-1
1

T4

j=0

n-1

dEt('uiH' )i,j:O

The simplest example of this situation occurs for A, =1 for all ne N. In this case

2n
Moy = A(xz"):i[ j: C, isa Catalan number and p, (x)a Fibonacci polynomial.

n+1\ n
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(0.4)

(0.5)

(0.6)



1. Polynomials with moments z,, = J(jr—1).
j=1
Theorem 1

The polynomials

.

k=0 k j=0
satisfy the three-term recurrence

D (%, 1,8) = Xp, 4 (X, 1,8) + 54, , (1) P, ,(X,1,5)
with

A (1) =(N+Dr -1,
ﬂ?nﬂ(r) = (n +1)r

and are therefore orthogonal with respect to the linear functional A defined by

A(p,(x,r,8))=[n=0].

Their moments are
1 (r,8) = A(X°") = (=5)"T ] (ir-1)
j=1

and s1,,, = A(X*"")=0.

From (1.3) we can obtain the Hankel determinants

D",
det(ﬂi+j(rl_1)):;ioz { JH[;JIH J _1 i-2f

which for r =2 reduce to det(yiﬂ.(z,—l))in;l:O ~TTit

Let V be the linear operator on the polynomials defined by

SR

for n>2 and Vx" =0 for n< 2.

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)



Then we can write

k

pn(x,r,s)=2%vkx“ =eVx". (1.7)

k>0 ™ -

This implies

2l H -
p.(x.r,s+t)=e" p (x,r,t)=>"|]2 ﬂnJrlz_szr—l}kpnZk(x,r,s). (1.8)
k0| | |i=0

For t =—s we get

N e :
[EJ &%Jr—lj(—s)kpnzk(X,f,S)=X” (1.9)

k=0 j=0
k ]

and therefore (1.4).

_ 12

If we choose t =———s then we get
A

A2 e _
2 (|52 et () 2 pon= 0 s = ),

2 H -
P, (AX,1,5)= 2 H&nﬂz_szr—ljsk(1—/12)k/1”kan_Zk(x,r,s). (1.10)

Let p,(x,r,s)=> a(nk)x", ie.

k=0

n

a(2n,2k,r,s) = (E]s”‘k I7(ir-2),

T (L.11)
a2n+1,2k +1,r,s) = (Ejs”"‘ H (jr-1)
and let
A(r,s)=(adi, j,19)); - (1.12)

Then (1.8) implies



A (r,s+t)=A(r,s)A (r,t).
Therefore we get from (1.6)
A(r,s) =e>
with b(i,k,r,s)=0 for i—k =2 and

b(2i,2i-2,r,s) =i(ir —1),
b(2i+1,2i~1,r,s) =i((i +1)r —1).

Observe that for r =2

(5o

Therefore the polynomials p,(x,2,s) are the Hermite polynomials

I

X,2,8)=H (X,5) — X"
P, ( )=H_.( Z{; _2K)12"

In this case we have A4, =n+1. The moments of H_(x,—-1) are (2n-1)!.

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

It is well known that the sequence (H,(a,s)) , is the moment sequence of the polynomials

P (x,a,2,5)=H,(x—a,—s). It seems that an analogous result also holds in the general case.

Conjecture 1

The sequence (p,(a,r,s) is the sequence of moments of orthogonal polynomials P,(x,a,r,s)

whose first terms are

1,
X—a,
L X+a2—(r—l)zs’
r-1 r-1
& (r—2)a’+(r-1(2r -1as 2 (r-2)a*+(r-3)(2r-na’s
(r—2)a’ +(r-1)°s (r—2)a’ +(r-1)°s

(r—2)a +(2r* —6r +3)a’s+(r —1)°(2r —1)as’
(r—2)a’ +(r-1)°s




2. Polynomials with moments y,, = H r=
j-t M+ i

Theorem 2

The orthogonal polynomials with moments z,, = (-s)" H Jr -
i M+ j

are

2 (n J . ,
f,(x,m,r,s)=>1]2 H&%Jr—l}ks—x“k. (2.1)

k=0 k

They satisfy the three-term recurrence

f.(x,m,r,s)=xf_,(x,m,r,s)+sA, ,(mr)f ,(x,m,r,s) (2.2)
with
A ()= (m+n)((n +1)r—1)’
(m+2n)(m+2n+1) 2.3)
()= ((m+n)r+1)(n+1) '
T (m+2n+)(Mm+2n+2)°

and with A (m,r) === for all me .
m+1

The first terms of this sequence are

1,
X,
(r 1)s
m+1 "'
3, (2r-Ds X
m+ 2
4 2(2r-1s W (r 1)(2r —1)s?
m+3 (m+2)(m+3)
& 4 2(3r-1)s ot (2r =1)(3r -1)s® X
m+4 (m+3)(m+4)
4 3(3r-1s 4 3(2r —1)(3r —1)s? W (r 1)(2r -1)(3r -1)s*
m+5 (m+4)(m+5) (m+3)(m+4)(m+5)
We have



3] H s -
foomrs+t)=>"1]2 H&LZ_ZJJr—lja(n,n—Zk,s,t)fn_Zk(x,m,r,s) (2.4)

k )=°
with
< (k-1)(K). k=2 e
tZ( _ j(_]j!1_[(m+n—2k+1+€)(—s)‘t"1J
a(n,n—2k,s,ty=—2 A i (2.5)
[T(m+n-j)
j=1
for k >0 and
a(n,n,s,t) =1. (2.6)

Kk

k l k k-2 k-1
For t=—s we get from 2( J ](Jj!H(m+n—2k+1+£)=H(m+n—j)
[ay

0 j=1

J ﬁﬂ%“r—]} k-1 (_S)k Hk(x,m,r,s) @1

Therefore the moments are y,, = (— s)" H rjnr Jl
i M+

For r =2 some aspects of these polynomials have been studied in [7]. We get from (1.16)

H k
foom,2,s)= nt S X", (2.8)

~kI(n—2k)!12" ﬁ(mm_ i

i1

NS

(n+2)(n+2m)
(n+m)(n+m+1)

Note that 4, (m,2) =4, (m) = with 4,(m) :il forall meN.
m -+

As a special case we get that t (x) = f, [x, 0,2, —%) satisfies t, (x)=xt, ,(X)—A4,.,t, ,(X)

with 4, =2 and 4, =1 for n>0.



This implies that T, (x) = 2"*t,(x) for n>0 and T,(x) =1, satisfies
T,(X)=2xT, ,(X)-T,,(x) with T,(x) =1 and T,(x) = X. Thus the polynomials T, (x) are the

n

-k
Chebyshev polynomials of the first kind T, (x) == Z( 1) ( " jik(Zx)“".
n —_

kO

In the same way we see that the polynomials

1 bJ k n—k -2k
U,()=2"f | x12,-= =D (-1 (2x)"
2) = k
satisfy U (x) =2xU, ,(x)-U, ,(x) with U,(x) =1 and U,(x) = 2x and thus coincide with

the Chebyshev polynomials of the second kind.

The well-known representations

H k
T"(X):z(znkj " 2k(x —1) (2.9)

and

2lfn
{

U, (x) = Z s J "2 (x2 -1)' (2.10)

can be generalized to give

i (] n+ _
fn(x,m,r,s):% EJ Lo ((m+k+j) r+1)1—0[&21J_k+1+JJr_1J

0 2 n+ll| .
k 1 {(me] %)

(2.11)

X" 2K (x2 + rs)k

Polynomials with different m are related by

f.(x,m,r,s)=xf ,(x,m+1r,s)+ SM f.,(x,m+Lr,s) (2.12)
n+m-1

where 4 (r) satisfies (1.3).

For m=0 and r =2 thisreducesto T (x) =xU,,(x)-U, ,(x).



Conjecture 2

n-1
i,j=0"

Let a(n,k,r,m)=[x“1f (x,m,r,s) and A (r,m)=(a(, j,r,m))

Let B,(r,m)=(b(i, j, r,m)):_jio =log A (r,m).

a(n+2k,n,r,m)
k-1

[Tm+n+j)

Then b(n+2k,n,r,m) = y(k)

where (y(k)) ., =(0,1,-1,3,—14,80,-468,---) does not depend on n and m.

k=0

Remark

The sequence (7(k)),_, also appears in OEIS [9], A027614 apparently in a similar setting.

In OEIS [9], A179320 it is stated without proof that the exponential generating function

R(X) = i%x” satisfies R(x) = i:(( R{(l—xx)z j

n

3. Polynomials with moments ,, = [ [[ ir—1]

j=1

q

Theorem 3

n

The orthogonal polynomials with moments z,, = H[ jr —1]q are given by

p,(x,7,5,0) = Bﬂsqu[ij EJ HM”T” J— j}r —1lx“-2k. (3.1)

k k r j=0
They satisfy
pn (X, r,s, q) = Xpn_l(X, r,s, q) + Sﬂ’n_z(r’ q) pn_z(xv r,s, q) (32)
with
Ao (r,@) =q" [(n+Dr 1] ,

(3.3)
S (F,0) = QI [(n+D)r]..

Some other recurrence relations are



Pan (X, 1,8,0) = X, (X,1,0"S,0) +S[r =1]. P,y ,(X,1,9's,0),

(3.4)
Pan,a (X, 1,8,0) = Xy (X, 1,0"8,) +8[Nr ], Py, (X,1,0'S,0),

and

Pan (X! r,s, q) = qm_lxpzn_l(xl r,s, q) +[rn _1]q ((1_ CI)XZ + S) Pan-2 (Xv r, qrs’ q)l

(3.5)
Pona (%,1,5,0) = " XD,, (X, 1,5,0) + [m], (L 0)X* +5) p,y, 1 (X, 7,5, Q).

Another formula for these polynomials is

H n=2k|fi n+1-2k |, {EJ k-1 9 k-1
pn(x,r,s,q):Zq{ 2 ﬂ > ] 2 Hnﬂz ZJJr—l} Xn_ZKH(XZ(l—q)-i-quS).

k |, =

q

(3.6)

For r=2 we get the discrete q— Hermite polynomials

n

_ _ 2 _1\k Z(I;] [n]q : n—2k
P.(x,2,-1,0) = Hn(x,q)—kZ:(;( 1)q TSN (3.7)
In this case we get
2,(2,9)=q"[n+1]. (3.8)

Formula (3.6) reduces to

H [n—Zk] )
2 2 [n]q! n—2k = 2 2j
Hn(x,q)=§q [k]q![n_ZK]q!(_q;q)kx g((l—q)x -q”). (3.9)

X" 1 [2] X" ) .
Let e(x,q) = and E(x,q) = = be the g— exponential series (cf.
(.9) Zn:[n]q! 9 e(-x,q) Z(;q [n],! e ol series

e.g. [1] or [2]) and define the linear operator V, on the polynomials by

vqxf‘:H”—”Jr—l} FJ X" and V,x=V,1=0.
2 2],
q q

Then p,(x,1,5,0) =E(sV,,q")x".

10



o(az ) | (a—qu)
From 4 1=0 2" (cf. [2]) we see that
e(bz,q) &  [K]!

“ r@v Ky = E((S+t)Vq,qr)

- S
Z[k] AR E(sV,.q")

P, (X,r,8+1,q) = 5 P, (x.,5,0)

q " .
q [Zj\/q

= (s+1)¢ sl

21 ]V‘*
s Ll
]

I
0
D
k=0 q°
K—

LN

(-s+a"(s+1))

_ i=0 \/ K
= V. p,(X,r1,5,Q).
k>0 [k]qr ! 4

Therefore we get

} “mn”J Jr 1} Po_ak (X, 1,8, ).
k>0 j=0 k r1:0 q

(3.10)

1 n
p, (61 s+ta)=>T](-s+a" (s +t))ﬂ2J

For t =—s this gives

Z(_S){%Jl “mn”J ]r 1Lpn 2 (X,1,5,0) = X' (3.11)

k>0 j=0

and therefore ,, = (—s)”ﬁ[jr—l]q.

=

2

1-
If we choose t =———s we get

n k-1
P, (A%, 1,5,0) = > _s" ﬂ_J] liJ )r 1} A" 2kH(q" =2 )Py (X 1,5,0).
k>0 k j=0 q i=0
(3.12)
For r =2 this gives
H (1 _BJ 1) [n]! -2k 42 — 2% H 313
0= 2 N g HO( Hizxa). (313

11



If s and t are not numbers but operators satisfying ts=q'st then
E((s+t)V,q")=E(tV,q")E(sV,q") (cf. e.g. [1] or [2]) and therefore

p,(X,r,s+t,q) = E((s+t)V,qr)x” :E(tV,qr)E(sV,qr)xn = E(tV,qr) p,(X,r,s,Q).

Let & be the linear operator on the polynomials in s defined by zp(s)=p(q's) and s the
linear operator “multiplication by s then ¢s =q"se. Therefore p,(x,r,s(l—¢),gq)1l=x" and

we get another representation of x"

k n Kt
X"=E((-s&)V,q") p,(x.1,5,0)1= D" (-5)"q g bJ HmnT”J—jjr—l} D, (X.1,q%s,q).
k>0 k j=0 q

qr

Conjecture 3
Let A=(a(i, j,r)) bedefined by a(n, j,r)=[x'1p,(xr,s,q).

Then the logarithm log A can be obtained from A by multiplying the diagonals (i,i—2k)

k-1

o)

with y(k) :HT and the principal diagonal with »(0) =0.

For example log A, looks like

0 0 0 0 0 0
0 0 0 0 0 0
a(2,0) 0 0 0 0 0
0 a@31) 0 0 0 0
1— -r
a(4,0)—— 0 a(4,2) 0 0 0
2
log A, =
1-q°
0 a(5,1) —1— 0 a(5,3) 0 0
2
1_q—r 1_q—2r 1_ -r
a(6,0)( J1-a”) 0 a(6,2)—— 0 a6,4) 0
3 2
1-g9")(1-q™ 1-q”
0 a(7,1)( )3( ) 0 al3)—3— o a5

12
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r —
4. Orthogonal polynomials with moments H [[m+ J}
j=1

Theorem 4

Let r >2 and m >0 be integers. Then the polynomials

f el 2] ez ¢
Jx,m,r,s,q)=>q 2 LTJr—l - X

k=0 k ) j=0 qH[m+n_J]qr
j=1

q

(4.1)

are orthogonal with respect to the linear functional A defined by A( f (x,m,r,s,q))=[n=0]

and satisfy
f.(x,m,r,s,q)=xf,_,(x,m,r,s,q)+sA, ,(m,r,q)f ,(Xx,m,r,s,q)
with
[m+ n]qr [(n+D)r —1]q
m+ 2n]qr [m+2n +1]qr
[n +1]q, [(n+m)r +1]q

[m+2n +1]qr [m+2n+2]qr

/12n (ml r! q) = an [

(n+1)r-1

ﬂle(m, r q) =q

For m =0 this reduces to 4,(0,r,q) =[r—1]q.

If we set
LR
c(n,n-2k,r,q) = {ZJ Hn+1 ZJJ 1}
kK ] = |
then
3| g
C(n,n—Zk,r,q) k—1 ( S) fn—2k(X1r!m!Slq)'
k=0 [I[m+n-k-ij].
j=0
This implies
[ -]
A(X*"™)=0 and A(x (—s)" ?
()= ()= Tlr i,

13

(4.2)

(4.3)

(4.4)

(4.5)



Another representation is

n_ (q(m+k)r+l;qr)n_ (q(n—k+1)r—1;qr) > - r.
{k_q' ((.1(m+nk)r;q,.)n k)(2 2 ]j:!(xz +q ’[r]s),

n 9 n—k+1 r—(n—k) —n q(m+k)r+l; qr q(n—k+2)r—1; qr
f2n+1(X,m,r,S,Q):zq[ ’ ] 1 ( (q(m):nfl)(r;qr)n

f,,(x,m,r,s,q)= Z q(”*k)z r—(n-k)

k=0

k=0 K],

)k X2n+172kﬁ(xz n qrj [F]S).
j=0

(4.6)

There is an interesting relation between the polynomials with adjacent m.

q" " [nr —1]

f2n(x,m,r,s,q):xf2n1(x,m+1,r,s,q)+s[2nT_l]qrq f,,,(x,m+1r,s,q),
f, ..(x,m,r,s,q)=xf (xm+1rsq)+smf (x,m+1r,s,q) o
R v Y [2n+m], e o
For m — oo (4.7) reduces to (3.2).
Another one is
on(x,m,r,s,q):fonl(x,m+1,r,qrs,q)+s& f,. ,(x,m+1r,q's,q),
[2n+m —1]qr 48)
[rn]q

. (mr,s,q)=xf, (x,m+1r,q's,q)+s f,. . (x,m+1r,q's,q),

[2n+ m]qr

For m — oo it reduces to (3.4)
For r = 2 the expressions can be simplified (cf. [5],[6],[7]).
We get

n

_[—J [ n+1-2j 1, .| _ [n],!
R (1] =52 lL‘[k]q![n—Zk]q!(—q;q)k' @9

q

Further we have

[m+n]qz [2n +1]q q2" [2m+2n]q[2n +1]q
[m+2n].[m+2n+1], S 1+q[m+ 2n] . [m+2n+1],

[n+1]q2[2(n+m)+1]q _ g2t [2m+2n+1]q[2n+2]q
[m+2n+1] . [m+2n+2], 1+q[m+2n] [m+2n+1]qz

q° q° q°

Apn(M, 2,q) ="

2n+1

s (M 2,0) =4

14



and thus

q"  [2m+n] [n+1] q" [2m+n] [n+1]
A4 (m’z’q): : ; = g g .
! 1+q[m+n], [m+n+1],  @+q)(1+q™")(1+g™™) [m+n] [m+n+1],

Therefore we get
Corollary 4.1

The polynomials

2l

fom2,sg =S q{ﬁ] ' [n]q!l — st X" (4.10)
S0 [kl 'n-2k1,'(-9:q), [T[m+n-i],
satisfy
f,00m2,5,0) =, (0m2,5,0) + 54, (M20)f,(6m250)  (41)
with
_q [2m+n] [n+1],
/1n (m121q) B 1+q [m + n]q2 [m+ n+1]q2 (412)
and
H [n],! (-9)" f o (x,m25s,q)=Xx" (4.13)
& 1K1, 'In—2K], '(—a;q), [T[m+n-i],
Thus their moments are
2n\ _ n . [Zj_l]q
A(X*")=(-s) j:l—[m"'j]qz. (4.14)

Remark
These polynomials are related to the Big g — Jacobi polynomials ([8], 14.5)
m_i m_l m_l q—n,q2m+n’ X
P{X:q %9 %= w]: | il 40
q 2,_q 2
By [8], (14.5.4) the monic Big g —Jacobi polynomials p,(x,m) with these parameters satisfy
the recurrence
pn+2 (X’ m) = Xpn+1(X! m) + A‘|Cn+l pn (X’ m)
+ n]q Cn — q2m+n [n]q )
[2m+2n],
15

ith _—[2m
W A‘_[2m+2n]q



This gives

A1Cn+1 =

[2m+n], one [N+, g™t [2men] [n+1]

_4g

m+1

- [2m +2n],

For m =0 we have

po2q- L o

1+q[n].[n+1].  (1+9")(1+q™) for n>0 and

1 [2m] [1],
02D = . [m+1] |

2
" 'm=0

Comparing with [5] and [6] we see that the polynomials f, (x,o, 2,£,q

1+q
q — Chebyshev polynomials of the first kind. For n >0 we have
gs :
f.] x,0,2,—,q |(—q; =T (X,s,q).
( Trq QJ( 0:9),, =T.(xs,0)
no[2+n| |[n+1 n
In the same way we see that 4 (1,2,q) = g [ ]q[ ]q = q’(d+q)

[2m+2n+2],  (1+0)° [m+n].[m+n+1], L

1+q[i+n].[n+2].  (1+a™)(1+q™?)

This implies that the polynomials fn(x,l,Z,lﬁ,q) are the monic q— Chebyshev
+q

polynomials of the second kind.

In this case

gs )
f !1’2’_’ Y =U 19, .
n(x Teg qj( 6:9), =U,(x5,0)

Note that

f,(x0,2,5,9) f,(%0,2,q5,9) - (x* +[2]s) f,, (x.1,2,05,9) f,, (%12,0%s,q) =

isa g—analogue of T>(x)—-(x*-DU’ (x)=1.

For r =2 identity (4.7) reduces to

q"?’[n-1],s
f.(x,m,2,s,q)=xf ,(x,m+12,5,q) + ———
[n+m —1]qz
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i f ,(x,m+12s,0).

4 (M, 2,q).
g

] are the monic

q[zj ([2]s)"
(-a:q),,

(4.15)



Formula (4.6) reduces to

n—22k—2J
EJ (n—ij H [2m+2k +2j+1] -
fn(X,m,Z,S,q):Zq 2 {Zk}[zk 1]|IPZJ'J-0 Xn—zkH(X2+q2j(1+q)S)
2 [2m+2Ln+1J+2j}
j-0 2
EJ n-2k | (q2m+2k+1;q2)ﬂ_k .
:kzs;q[ 2 ][k]l[n—Z[E]].!( ) ( 2m+2{n7+1J ﬁJ 1-q)x™ ZKH(X +q2’(1+q)s)
2 ’q2 j=0
H
(4.16)

For m — o0 we get (3.9).

Special cases of (4.16) are (we set (-g;q) , =1)

EJ [n_zzk} N kT (o2 o 2]
fn(x,0,2,s,q)(—q;q)n71:Zq Lk}( TT(x* +a* @+a)s)

j=0

since
{n—sz—ZJ
[2k +2]+1]
[2k — 11— =
B (-a:a),.,
HERSIE]

{n—zzk—zj |
IT [2k+2j+3]

From [2k —1J11—2=

1ot

_ [n+1] 1
[2k+1(-q:q)

we get

J n-2k K—1
f,(x1,2,5,0)(-0:0), = d }Lnkill}xnZkH(X”q”(l*q)S)'

Another interesting formula is

[2m+2n] f,,,(x,m,2,5,q) =g"x[2m+n]f, (x,m,2,5,q) +[n](x* + 1+ Q)s) ., (x,m+1,2,0°s,q).

17



For m =0 this reduces to
(1+ q“) f 1(x0,2,5,q)= q"xfn(x,O,Z,s,q)+(x2 +(1+ q)s) f .(x1,2,9°,0).

In general we have

[r(m+2n)] f,,.,(x,m,r,s,q) =q"[(n+m)r]xf,,(x,m,r,s,q) +[nr](x2 +[r]s) f, .(x,m+1r,q's,q).

[r(m+2n)] f,,.,(x,m,r,s,q)=q

+H(n+2)r —1](x2 +[r]s) f, (x,m+Lr,q's,q).
(4.17)

(n+1)r-1

[(n+m)r +1]xf, .. (x,m,r,s,q)

2n+.

For m — o the polynomials f (x,m,r,s,q) tendto p,(x,r,s,q). For r =2 they are a sort of
interpolation between the q— Chebyshev and the discrete q— Hermite polynomials.

5. Other polynomials with related moments
5.1
There are also other choices with nice polynomials and moments but without orthogonality.

Let

| 1 HM””J jr 11 5.

k | 1

q

The polynomials

n

2 k
gn(x,m,r,s,q):ZSkq[z]d(n,n—Zk,r,q) - ! X" 2 (5.2)
k=0 [T[m+n- j]q
j=1
satisfy
d (-s)"
D od(nn-2k,r,q)— 9, (X,m,r,q) = X". (5.3)
k=0 [I[m+n-k-j],
j=0

Therefore the moments are

18



n

[Tlir-1,
oy = (=5)" —J:l - (5.4)
H[m+ i,

Remark

, -1 ,
For me N the Hankel determinants det(,uiﬂ. )n have no nice formula. But for m = we

i,j=0
s S g
see that the polynomials > (=1)g'*d(n,n—2k,r,q)x"* have the same moments
k=0
o =1 r —1]q as the orthogonal polynomials p, (x,r,s). Thus in this case we have again
j-1

nice Hankel determinants.

5.2

A slightly other choice is the following one:
B {EJH—k
Let j(n,k,a)=|-9* ;q|.
k

The polynomials

e -
| (x,m,r,s,q)= ZSkq[zjc(n, n—2k,r, q)Mka (5.5)
k=0 H[m+n— i

]

satisfy

¢l

e n—2k, 1, q)(=s) =KD | i) =x. (5.6)
k=0 [TIm+n-k-j]
Therefore the moments are
[m) [ILr-1,
A(X*")=c(2n,0,r,0) j(2n,n, ) ——— = (-q; 1), (-5)" L—. (5.7)
[m+n]! Tim+ il

Since
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n k-1 Mk
c(n,n-2k,2,q) j(n,k,q) = [EJ H{Z{%J_zj_l}(_q{ﬂ ;q] ___[n]!

k K] [n—2k]!

we get
. (x,m,2,s,q) = Zzls"q@c(n, n—2k, 2, q)kj(nﬁx”‘2k
k=0 H[m+n— i
= (5.9)
k @ [n]! 1 n-2k

K X
e [k]![n—2k]!H[m+n_j]

j=1

These polynomials have been introduced in [7] and satisfy the curious recurrence

[n-1],[n-2+2m],
[n+m-2],[n+m-1],

1,(x,M,2,q"s,q) = (x—(1—g)sD, I, (x,m, 2,q"s,q) +5 I ,(x,m,2,q"s,q),

(5.10)
. . [n+1],[n+2m],
where D, denotes the q— differentiation operator and A,(m) = for n>0
4 [n+m],[n+m+1],
and A,(m)=1 for m>0 and 4,(0) =2.
For m =0 we get the gq— Lucas polynomials
g 4 1 [n-k
(x,0,2,-1,q)=> (-1)*q*’ —{ }x”*k (5.11)
kzz(; [n-K]| k
which satisfy
lrn
LJIMK (x,0,2,-1,9)=x" (5.12)
k=0
. . .. 2n
and whose moments are therefore the central g— binomial coefficients { R }
For m=1 we get the gq— Fibonacci polynomials
2 “n-k
l,(x,1.2,-1,0) = Z(—l)kq@[ ) }x (5.13)
k=0

20



which satisfy

O
k_quk} _{k _1Dln2k(x,1, 2,-1,q)=x (5.14)

2n
and whose moments are the q— Catalan numbers n ! 1]{ }
_+_
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