
Writing Internal Documentation

Thomas Vestdam
Department of Computer Science

Aalborg University
Fredrik Bajers Vej 7E

DK-9220 Aalborg
E-mail: odin@cs.auc.dk

Introduction
Different kinds of documentation are produced during software development. For
example, requirements specifications, design documentation, process documentation,
documentation of tests, user documentation, interface documentation, and internal
documentation, which is the topic of this paper.

Internal documentation addresses and maintains the program understanding and is
intended for current and future developers. Current developers document thoughts and
rationales behind a program, so future developers can gain understanding of the program,
without resorting to reverse engineering (either manual or “automatic”). We know that
programs that are documented in this way are likely to be better programs [5] because
they have a tendency to be reflected upon more carefully during coding. In addition,
maintenance is an important and time-consuming discipline during software development.
Often a program lives for a long time, but during this lifetime, the program is subject to
changes, such as bug fixes and enhancements. The developers that work on a program
may vary during its lifespan. Future programmers such as newcomers to a software
project and maintainers will have a hard time understanding the program if no
documentation is available. As time passes the understanding of the program will
disappear if this understanding is not maintained in some way – the developers will
simply forget why things where done as they were. Even the original developers will
forget the details of a program if no documentation has been written.

In our research programme we consider internal documentation as indispensable during
program development [13]. The time spent on documentation is an investment in ease of
program maintenance as well as ease of current and future development.

The production of internal documentation is not easy. Programmers often have a hard
time figuring out what, how and when to document. In addition, the documentation
should also be readable and usable to other programmers (e.g. maintainers, fellow
programmers, and newcomers).

During our work we have observed recurring problems the programmers experience when
they are writing internal documentation. In addition, we have observed recurring solutions
to the problems. Consequently, a number of patterns presenting the problems and their
solutions have been produced. Some of the background for these patterns is based on
observations of use of a specific internal documentation paradigm, called Elucidative
Programming [11]. Observations have been done in both industrial and educational
contexts. Moreover, the patterns are also based on general observations and studies of
internal documentation, as well as observations made by others (and presented in the

literature). The observations have mainly been focused on internal documentation of
object-oriented programs.

Others have made related patterns addressing for example component documentation
[20], project documentation management [21], and reader-friendly media for
documentation [22]. Such patterns can be combined with the patterns presented here.

A few distinguished meanings
In the patterns, we make use of a few special terms:

A documentation reader is a person studying documentation in order to gain
understanding of an entire program or just parts of it. Potential documentation readers are,
different programmers collaborating on the same program, future programmers taking
over a project, maintainers, or the original programmer.

A newcomer is a programmer who enters a programming team during or after the
development process (e.g. maintainer).

A program entity is in most situations a class, but can in general be a small or large
logical part of a program. Large parts are for example, a class or a collection of classes,
and small parts are for example a method, a block, or even a single statement.

A programming task can result in either a new part of the program or an alteration of an
existing part (e.g. maintenance).

The pattern structure
The patterns presented in this paper are presented in a simple form, starting with a
headline starting the pattern name, and which group the pattern belongs to. The patterns
are grouped into:

Structural patterns: What is important to explain about the program?
Temporal patterns: Given a programming task, when is it time to write internal

documentation?
Maintenance patterns: How can existing internal documentation be maintained?
Stylistic patterns: How can internal documentation be structured and presented?

Some of the pattern names stem from our research area, Elucidative Programming. These
names may not be obvious to others, but because of lack of creativity, they have been
kept. The pattern headline is followed by a section stating the problem the pattern solves,
and sections describing forces, solution, and consequences. Finally, each pattern includes
a section on examples demonstrating documentation strategies that are instances of the
pattern. Some examples are actually anti-examples used as a contrast.

General forces
The following “ forces” have a general influence on the patterns in this paper. These
should be considered before applying the patterns.

Cost: Production of internal documentation often requires extra effort (i.e. time) of the
programmers. This will raise the cost of program development. However, the payoff may
be software that is of a higher quality and easier to maintain (e.g. has a longer lifespan).
Hence, documentation will pay off in the long run.
Furthermore, the patterns presented here form one approach to doing documentation.
Other approaches exist that are quite different, in terms of cost, and more appropriate in

specific software projects. For example, documentation is not really used in Extreme
Programming [18].

Quality: If software is documented consistently during development the resulting product
is likely to be of higher quality than if no documentation was written. This is because
programmers tend to think and reflect more carefully about source code when they write
documentation explaining the code. Programmers will, for example, reflect upon - and
question - chosen solutions and code design.
However, the more time spent on writing documentation the higher the cost becomes.
Yet, internal documentation can be used as a problem indicator. Documentation that does
not make sense or is inconsistent may point to an actual problem in source code.

Maintainability: A well-documented system is easy to maintain. The original
programmers can use documentation to be reminded of details, whereas newcomers can
gain enough understanding of the source code in order to perform maintenance tasks.
However, not all software project needs to be maintained or can easily be maintained by
applying reverse engineering tools. Writing internal documentation in such cases is
unnecessary (not worth the cost).

Difficulty: It is not easy to write documentation, especially for the inexperienced. Using
these patterns adds even more work – some of the patterns are very concrete but others
are more abstract. Nevertheless, the patterns are useful as source of inspiration. A
programmer starting on documentation for the first time should be able to find inspiration
in these patterns. Programmers already used to writing documentation (e.g. JavaDoc [3]
and code comments) but wish to write even more thorough documentation, harvesting the
benefits of maintainability and quality, may also find the inspiration in these patterns.
And, experienced documentation writers may still find inspiration in these patterns, but
will perhaps need to reshape some of the patterns before applying them.
However, as writing documentation is difficult, there is a risk that the resulting
documentation becomes useless. Hence, if the quality of the documentation is not ensured
we cannot expect to harvest possible benefits of maintainability and higher quality.

Dislike: Most programmers actually dislike writing documentation. Therefore,
programmers often resort to reverse engineering tools, or interface documentation like
JavaDoc [3]. Hence, the potential benefits of quality and maintainability may not be the
reward. Education and attitude amongst software developers are common reasons for the
aversion. Furthermore, it is even difficult to persuade programmers to just maintain
existing documentation.

Pattern sequences
Instead of giving a graphical road map of the patterns, we will present three possible
sequences of applying the patterns. Application of the patterns is iterative as writing
documentation is an ongoing process following the programming process.

Sequence 1:
This sequence is useful for novice programmers or novice documentation writers. The
ongoing process can be simplified by only using Document Structure Follows Program
Structure.

∗ Decide upon and apply Documentation Templates.

∗ Separate and Interrelate Documentation and Program.
∗ Let Document Structure Follows Program Structure and repeatedly Intertwine

Programming and Writing Documentation. Consider recording Program History,
concepts (Conceptual Writing) or Transverse Issues.

∗ At fixed points in time, the process is stopped and the documentation is subjected to a
Documentation Review. After each review perform Documentation Refactoring and
resume the process of writing documentation. Resume writing documentation.

Sequence 2:
This sequence is useful for the more experience documentation writer. The focus is on
capturing Transverse Issues. Consider using Document Structure Follows Program
Structure if documentation of static program entries and structure is needed.

∗ Decide upon and apply Documentation Templates.
∗ Separate and Interrelate Documentation and Program.
∗ Repeatedly Intertwine Programming and Writing Documentation while recording

Transverse Issues.
∗ During coding, either update the documentation directly or use Documentation

Refactoring to maintain the documentation. During Documentation Refactoring,
consider Extract Commonly Used Information and concepts (Conceptual Writing).
Resume writing documentation.

Sequence 3:
This sequence is also useful for the more experience documentation writer, in need of
comprehensive documentation. The focus is on capturing Transverse Issues, Program
History, and concepts (Conceptual Writing). In order to make the documentation more
flexible Extract Commonly Used Information can be applied during Documentation
Refactoring (in step 5).

∗ Decide upon and apply Documentation Templates.
∗ Separate and Interrelate Documentation and Program.
∗ Repeatedly Intertwine Programming and Writing Documentation while recording

Program History, concepts (Conceptual Writing) and Transverse Issues.
∗ During coding, either update the documentation directly or use Documentation

Refactoring to maintain the documentation.
∗ At fixed points in time, the process is stopped and the documentation is subjected to a

Documentation Review. After each review perform Documentation Refactoring and
resume the process of writing documentation.

In general, when documentation is changed - for example, if Documentation Templates
are introduced after production of documentation has begun - Documentation Refactoring
can be used to alter/repair the documentation. If Extract Commonly Used Information and
Conceptual Writing have been applied, Documentation Refactoring becomes easier. If
Documentation Refactoring becomes too difficult to grasp, a Documentation Review can
help relive the problem.

01. Separate and Interrelate Documentation and Program [Structural]

Problem: A pile of documentation in one hand and a pile of code in the other - how
can one find the documentation relevant for a given part of the code?

Forces: Documentation is often in physical proximity of the program, for example
in a literate program [5], as JavaDoc comments [3], or ordinary code-
comments. This physical proximity makes it hard to ignore the
documentation. When documentation is not in the proximity of the source
code, it is often ignored and forgotten, and program and documentation
become inconsistent.

However, the program often seems to disappear in the documentation [10].
For example, in literate programs the actual code is scattered throughout
the documentation making it difficult for collaborating programmers to
develop and maintain large programs. In addition, code comments also
have a tendency to drown the program.

If documentation and program are separated, the program can be kept clean
of “ foreign” elements, such as long bodies of text or documentation
specific elements and syntax. Furthermore, the program can be studied as it
is and code visualisation-, debug-, or reverse-engineering tools can be used
without having to extract the program from the documentation (or visa
versa).

 However, if documentation and program are separated good references
between the two must be provided. Otherwise, documentation and program
will become inconsistent.

Furthermore, as documentation is often fragmented into several documents
a good reference mechanism is needed in order to keep these fragments
connected (see also Extract Commonly Used Information and Document
Structure Follows Program Structure).

Solution: Separate documentation and program, and use typed links to provide
selective and mutual navigation between documentation and program.

Hypertext is a natural presentation media for both documentation and
program. The documentation may consist of several documents, and typed
hyperlinks can provide both selective navigation and navigational
proximity:

− Provide typed hyperlinks from the documentation to the program.
− It should be possible to link to syntactical elements or source markers

(i.e. marks placed in the code by a programmer) in the program.
− Provide hyperlinks from the anchored links in the program to the

respective sources in the documentation.
− Use the names of the syntactical elements as anchor names instead of

more arbitrary words. For example, a hyperlink like “the method is
found here” may help the reader when reading the documentation, but
the origin of a link becomes difficult to find when following a link
from the program to the documentation.

− Finally, provide typed hyperlinks for links going from documentation
to documentation.

As an exception, consider placing documentation such as interface
documentation in relevant places in the program.

Consequences: Flexible navigation between documentation and program is provided,
hence putting documentation and program in navigational proximity. The
documentation can address specific program entities - simply by
“pointing” .

The types on the hyperlinks help the documentation reader to sort out
which links are relevant in a given situation. Documentation Templates
gives an example of link types, and can be used to standardise how links
should be made.

However, physical proximity is lost. Furthermore, the documentation
structure tends to become very fragmented and consequently difficult to
maintain. It can even become difficult to get an overview of the
documentation. These problems can be relived by applying Documentation
Review and Documentation Refactoring.

Examples: Elucidative Programming [12] is a typical example of this pattern. Program
and documentation are kept separate.

02. Document Structure Follows Program Structure [Structural]

Problem: Getting started on writing documentation as well as structuring the
documentation is not easy, especially for the inexperienced documentation
writer - how can one get started writing and structuring documentation?

Forces: A good starting point for a documentation reader is descriptions of the
individual program entities and their static relations. This gives the reader
something to hold on to as, ideally, every program entity can be associated
with some kind of description in the documentation. Such entity
descriptions can for example include explanations of the purpose of the
entity, important methods, data structures, algorithms, or the services the
entity provides or requires [9]. In addition, references can be provided
between entity descriptions according to the static relationships of the
program. It is for example, often necessary to understand a base class in
order to understand its sub-classes.

Although the dynamic relationships are more difficult to deduct from the
code than the static relationships, they are not of much use when trying to
gain an overview of a program (see also Transverse Issues). In this
situation, the documentation reader is more interested in getting an
understanding of where entities are located in the program and their
immediate purpose.

However, the documentation may turn out to be a mirror of the program.
This may not be satisfying as program understanding sometimes is

detached from the program structure. Documentation is intended for
humans and not computers [5].

Solution: Let the documentation structure follow the program structure when
presenting static program structure and program entities.

Create documents addressing the overall structure of the program, for
example for each module or component. Give these specific names; such as
“Overview of XXX” or place them in a specific part of the documentation.

For each “ larger” program entity (e.g. classes), create a document and:

− Give an overall description of the entity. Consider including
descriptions of important methods, data-structures, algorithms,
interfaces, or even test descriptions.

− If the given entity is involved in inheritance, association, or
aggregation relationships, add references to documentation of the
involved entities.

During a design-phase diagrams are often created, these can be very useful
in the documentation in order to communicate the program structure (see
also [23]). This also includes use case- and architecture- diagrams.

Consequences: Good descriptions of the overall structure of the program can be a good
starting point for a documentation reader. Such descriptions can also
maintain the overall program structure during collaborative work. As such,
this pattern can effectively be applied when programmers are unsure about
how to structure the documentation.

When the documentation structure follows the program structure, and
Separate and Interrelate Documentation and Program is applied,
documentation of different entities becomes easy to locate, and the reader
quickly starts forming a mental image of the static design of the program.

However, some documentation needs to be detached from the program
structure in order to be comprehensible. Most often, this is Transverse
Issues, or can simply be handled by applying Transverse Issues.

If the program structure changes, so must the documentation structure (see
Documentation Refactoring).

Examples: Object oriented documentation is an example of how useful properties can
be gained by structuring documentation in the same way as the program
(i.e. an isomorphic structure) [15].

 CASE tools such as Rational Rose are often used to produce and organise
entity documentation that follows the program structure (e.g. design
diagrams).

As a contrast, in Literate Programming [5] the documentation drives the
programming as the program to follows the documentation structure.

03. Transverse Issues [Structural]

Problem: It is not feasible to document all aspects of a program, but which aspects
should at least be considered?

Forces: It is often hard to understand the dynamic interaction between program
entities when studying code (e.g. see [2]). For example, user interaction
often involves several parts of the code by spawning actions, events, or
calculations (i.e. method calls) that transverse the program structure.
Figure 2 is a simple illustration of this. For example, the classes C1, C2, and
C3 stem from an interface component, a function component, and a model
component respectively. When a user issues a command, C1, C2, and C3,
work together on solving a complex task that involves, retrieving
information from a storage, doing calculations, and presenting a result.
With a few sentences, for example explaining which methods are invoked
when and where, the transverse issue T can bind C1, C2, and C3 together.
The transverse issue T simply describes how C1, C2, and C3 collaborate on
solving the given task.

If the programmer has no understanding of relationships across a program,
it becomes difficult to predict how a change somewhere in the program
may affect other parts of the program [16]. Such information is difficult
and time-consuming to dig out manually. For example, consider distributed
systems where a few lines of code in one place may affect several other
parts of the system.

However, it is difficult to predict which transverse issues will be useful to
future documentation readers [2]. It is certainly not feasible to document all
possible relationships across a program in order to guide documentation
readers through the entire program.

Yet, some transverse issues are actually often documented. For example,
design patterns [4] describing collaboration between groups of classes and
methods, or descriptions of change that affect several parts of a program.

C1

C2

C3

T

Figure 2: Illustration of a transverse issue

Solution: Describe and explain program relationships such as collaborating
program entities or code dependencies. Relate such transverse issues to
relevant program fragments.

Referring to Figure 2, the transverse issue T is of interest if:

− C1, C2, and C3 are collaborating. For example, as a design pattern or
are together performing a certain task. Only include descriptions of
tasks that are essential to the program.

− C1, C2, and C3 depend on each others. For example, the existence of
one program entity is depended on the services of another program
entity.

− C1, C2, and C3 are affected by a certain change. For example, the
respective program entities are extended to accommodate new
functionality or conditions.

For each transverse issue create a document including descriptions of the
transverse issue and references to the involved program entities (using their
names, see Separate and Interrelate Documentation and Program). A
transverse issue may also include references to other relevant
documentation (see also Extract Commonly Used Information).

Consequences: A key to the understanding of a program is an understanding of the
communication within the program. Descriptions of the communication
enable the documentation reader to dig out rationales behind it, giving an
understanding of why things work together as they do.

 Requirements and tests can be seen as transverse issues and if described in
the documentation, they become visible to the programmers collaborating
on developing the program. Furthermore, if the requirements are related to
affected program entities, maintainers (or others) can track the effect of the
requirements.

 However, Non-transverse issues, such as static relationships, are also
important, but are not covered by Transverse Issues. Capture these with
Document Structure Follows Program Structure.

Examples: DocSewer uses documentation threads [6], to guide a documentation
reader to relevant program entities collaborating on some task. For
example, the transverse issue T in Figure 2 could be a documentation
thread.

In Literate Programming [5], on the other hand, descriptions of transverse
issues are not commonly found as all documentation about a given
program fragment is written in the context of that fragment.

04. Extract Commonly Used Information [Structural]

Problem: The documentation often becomes a mess because explanations of program
entities become long and complex. It becomes difficult to find relevant
explanations, and consequently difficult to update - how can the
documentation become more flexible?

Forces: Often several aspects of a given program entity deserve attention in the
documentation. For example, if using Document Structure Follows
Program Structure aspects like overall description, explanation of
important methods and algorithms are often added to the documentation.
For example, class C in Figure 3 is a database handler, and A1 is a
description of how it wraps complex SQL statements by providing methods
for these. A2 is an overall description of the class and A3 is a description of
how the class has been tested.

A collective presentation of such aspects often leads to a large body of text,
where the different aspects are entwined (see left side of Figure 3).
Entwined aspects are difficult to separate making the text complex and
difficult to read. In addition, this complex text must be reviewed when the
given program entity is changed.

If instead aspects are extracted and explained separately (see right side of
Figure 3), distinction becomes easier, and aspects become less complicated
to read and maintain.

However, this may lead to a very fragmented documentation structure,
where all the aspects of a given program entity becomes difficult to isolate.
Hence, the documentation becomes difficult to read and structure.

Yet, references between documentation parts often lead the reader to large
bodies of text where the aspect referred to is difficult to isolate.

Solution: Different aspects of a program entity should be explained separately, if
these aspects are important in more than one context.

Extract an aspect if it provides commonly useful information such as:

C

A1

A3

A2

A1:

A2:

A1
A2

A3:

Extracted
aspects

Entwined
aspects

A3:

Figure 3: Two ways of presenting different aspects

− General descriptions of program entities. Such as the purpose of an
entity, rationale(s) behind an entity, or descriptions of important
methods.

− Detailed descriptions of program entities. Such as descriptions of
special algorithms or descriptions of tests performed on the entity.

− Overview descriptions. Such as descriptions of program structure and
organization, or descriptions of specific protocols used.

− A description or explanation that a Transverse Issue refers to.

Give extracted aspects an identification mark, such as a title. Bring the
aspect in navigational proximity (see Separate and Interrelate
Documentation and Program) of both relevant program entities and other
relevant documentation. References should for example be added if an
aspect depends, mentions, uses, extends, or excludes another aspect.

If using Document Structure Follows Program Structure, consider
collecting aspects of program entities as different sections in the respective
“entity” documents.

Consequences: By applying this pattern the programmer provides easily identifiable
descriptions of different aspects of the program. It is a matter of separation
of concerns [1], each commonly used aspect of the program is described in
exactly one place only and nothing else is described in that place. The
documentation reader can search through these descriptions when looking
for something specific.

Extraction of aspects may also lead to code refactoring. Complex
documentation may point towards a need for simplification of the code. In
other words, writing documentation often points out defects and problems
in the code.

By describing the aspects of a program entity, the programmer may start
thinking more about which aspects of a given program entity could be of
interest for others. Furthermore, it is possible to create templates
suggesting which aspects should be addressed for specific types of program
entities (see Documentation Templates).

Examples: The documentation produced using Elucidative Programming in Java [12]
is a fragmented hypertext structure making it possible to Extract
Commonly Used Information.

DocSewer uses documentation threads [6] to sew different aspects of a
program together, hence producing a linear presentation of the selected
aspects. Documentation threads are a means for presenting a collection of
aspects of use in a specific context (e.g. a transverse issue). It is therefore
important that the different aspects are easy to extract.

In Literate Programming [5], all relevant aspects of a given program entity
are written collectively in the context of the program entity. This has
proven very useful when publishing programs (e.g. as a book).

05. Program History [Structural]

Problem: Often programmers inadvertently try solutions that have already been
proven useless because they have forgotten previous encountered problems
- how can this be avoided?

Forces: In order to understand the current state of a program it is also useful to
know what has been tried, rejected, or changed as well as reasons for this.
Such program history can help a documentation reader to gain in-depth
understanding of why solutions where chosen and others were rejected. As
time passes recollections of previous solutions will disappear, and future
programmers risk trying solutions already proved useless. For example, if
technicalities prevent usage of a preferred storage (e.g. database) this could
be noted.

Future maintainers (or newcomers) will have many of the same questions
as the original programmers about why a certain solution was selected and
others rejected [1]. It is desirable if answers to such questions can be found
in the documentation. Furthermore, if the forces working against a desired
solution are documented, the solution can be re-tried if these forces are
eliminated during program evolution. For example, technicalities
preventing usage of a preferred storage may be eliminated by the release of
new drivers.

However, recording program history is time consuming and it can be
difficult to decide when an alternative is relevant. The result may simply be
that too much useless program history is collected in the documentation.

Lack of time often causes programmers to choose “quick and dirty”
solutions, but it is not worth the effort to actually document such solutions.
However, programmers often know of a “better” alternative when a bad
solution is being chosen.

Often programmers think they can cover program history through version
control, but the change-descriptions stored in a version control system are
not easy to trace back to the actual parts of the source code that were
changed. The problem becomes even worse if a change involves several
source files.

Solution: Record the choices made during program development in the
documentation. This includes relevant solutions that have been tried but
proven useless. In addition, consider recording relevant alternatives such
as solutions that are more flexible, optimal or even more aesthetic than the
chosen solution.

Describe selected solutions and explain the rationale behind the choice. For
example, explain why choosing a specific architecture, storage, algorithm,
or protocol.

Consider recording solutions that have been tried and proven useless or
erroneous, if:

− The solution illustrates a conceptual problem - “This should work, but
it doesn’t”

− It is a good solution and the error symptoms have a potential future
remedy - “A better solution would be to do this, but then we need to
get rid of this problem.”

Keep the code of tried solution separated from the “real” code. Describe it
and explain why it was useless/erroneous, such as conditions, error
symptoms or conceptual problems.

Finally, consider recording an alternative if it, presumably, can lead to a
better solution of a problem at hand – depending on the nature of the
problem and the chosen solution.

Remember to be selective about all records of program history; otherwise,
too much documentation will be accumulated.

Consequences: Records of the history of a program can give a documentation reader a
deeper insight on the program than insight obtainable from documentation
addressing the current state of the program. This deeper insight includes
explanations of how problems were solved, as well as why relevant
alternatives were not used. This prevents future programmers from trying
solutions that are known to wreck the program. Furthermore, recorded
alternatives can provide suggestions on how the program can be extended
(e.g. to become more general or comply to other requirements) [16].

In addition, documentation of the programming process itself is to some
degree maintained by explaining how and why things are done.

During program evolution, history will disappear in the big sea of changes.
Tried solutions will become obsolete, and some history may end up
addressing non-existing program entities. Documentation Reviews can
detect this, and Documentation Refactoring can weed out obsolete history
(and stored code), as well as remedy a poor structure.

Examples: Configuration management systems often include tools for storing different
versions and variants of the same program (or documentation). This
enables programmers to subsequently retrieve and compare variants of a
program.

06. Conceptual Writing [Structural]

Problem: Different programmers often use the same words for different things and
different words for the same thing – how can we avoid that the
documentation inherits such inconsistencies?

Forces: New terminology is often invented during the development of a program,
and program understanding is often discussed using this terminology [1].
This special terminology is also often used in documentation. For example,
in explanations of concepts such as the program itself, special system set-
up, special names denoting specific parts of a program, or special

functionality. The use of this special terminology makes communication
between programmers prompt and precise.

However, this terminology may not be obvious to others. Documentation
containing unknown terminology is hard to understand for a newcomer.
Even the original authors, if they are available, may not be able to recall
the meaning of old terms.

In addition, programmers invent special terminology about the
development process. For example, terms are invented for special
activities, program constructs, working methods and even special decisions
such as requirements to the program.

Even though such terminology do not directly make documentation harder
to understand a newcomer may find it hard to understand the practice of
the development process within an existing programming team. For
example, special code conventions that must be upheld in order to ensure
the quality or robustness of the code can be an important issue during
development. Such conventions can also be seen as a part of the program
terminology.

Even though terminology is defined when used, the same terms may end
up being defined repeatedly or in several variations. Furthermore,
programmers collaborating on a program often use different terms for the
same concepts, or the same term for similar yet distinct concepts. This
introduces inconsistencies in the documentation and consequently makes
the documentation harder to understand.

Solution: Special terminology used about the program must be defined in a central
part of the documentation.

 Create a list of concepts (a glossary), for example as a single document or
a collection of documents in an appropriate place somewhere in the
documentation structure. Fill the list with terms from the program
terminology along with their definitions.

In general, use the defined terms when writing documentation, and provide
references from usage of terms in the documentation to the list of terms.

Consider adding terminology about the development process, such as code
conventions, special requirements and code constructs.

Consider defining terms before writing documentation (See also Intertwine
Programming And Writing Documentation).

Consequences: This pattern helps programmers to use the same words for the same
concepts. In addition, the documentation becomes more precise as the
program can be discussed and explained in a well-defined abstract
terminology. The documentation may even become more compact, as
terms need not be explained repeatedly. Newcomers can study the list of
concepts in order to gain a basic understanding of the program
terminology.

 In the object-oriented paradigm, important program terminology is often
represented by class names. Placing these names in the list of terms along

with their definition can provide a documentation reader understanding of
the fundamental concepts of the program. In general, explanations of
concepts that stem from an application domain can be very useful in the
documentation.

Examples: Conceptual Writing is to some extend used in PAS (Partitioned
Annotations of Software) [9]. When a component (e.g. a class) is
documented using PAS, a partition (a section) is dedicated to descriptions
of the concepts behind the component.

Design patterns are known to provide programmers with a common
vocabulary. In addition, WikiWikiWeb is an example of how
people/programmers can collaborate on defining concepts, and
consequently use the same terms for the same concepts [8].

07. Intertwine Programming And Writing Documentation [Temporal]

Problem: Documentation must be written, but when is it time to write it?

Forces: Writing documentation explaining the “big picture” before the code is
written helps the programmer gain insights into the actual code design.
Such insight can help reduce complexity of a code design or simply make
it clearer.

 When designing code programmers often form a plan, mentally check the
plan, revise the plan, and then write the actual code. If problems are
encountered and the overall plan has been documented the programmer can
easily go back and question the overall plan, even after a longer period.

However, it is not always possible to predict the design details at an early
stage. When a code design meets reality, revisions are often needed. I f
code design is thoroughly documented beforehand, the documentation is
subject to constant revision. In addition, some programming tasks can even
be considered as trivial and are not expected to introduce new concepts
(see also Conceptual Writing) or complexity to the program (e.g. a bug fix
or a simple extension). Such tasks are simply best solved by doing, and
programmers often just wish to get the programming task done.

Yet, if the program is written without prior documentation of the code
design, documentation may never be written. Programmers often dislike
writing documentation – and if the coding is completed, why bother about
documentation?

When programmers have lived with a program for a long time, they will
take decisions about - and rationales behind - the program for granted.
Documentation written after or near the end of the development process
therefore tends to only include immediate details of the program that the
programmers think they are going to forget. Such documentation is mainly
of use for people who already know the program well, whereas newcomers
will find it useless [1].

As time passes, the program understanding will disappear. Even the
original programmers will forget the rationales behind the program. If
program understanding is not maintained somehow, the program itself may
degrade during maintenance [16].

Solution: Document the overall code design before coding, and document the design
details after the coding. In addition, maintain relevant issues that arise
during coding by alternating between writing code and documentation.

Writing documentation should be considered a cycle starting before the
code is written and is concluded after the code has been written. The cycle
includes documentation written:

− Before coding: Describe the context of the programming task, and
sketch the code design. In addition, record introduction of new
concepts (see Conceptual Writing) and Transverse Issues.

− During coding: Keep both coding and documentation on track by
recording relevant issues that arise during the programming process.
Relevant issues can be: new program entities (see Document Structure
Follows Program Structure), rationales behind chosen solutions, special
conditions in the code, special requirements, ideas, Transverse Issues,
new concepts (see Conceptual Writing), and alternatives (see Program
History).

− After coding: Review new code systematically in order to recall details,
and conclude the documentation by synchronising it with the final
code. Make sure that the overall problem that has been solved is
described and include explanations of how it was solved. Consider
recording new concepts (See Conceptual Writing), Transverse Issues,
and new program entities (see Document Structure Follows Program
Structure).

Consequences: Documentation written beforehand helps ensuring careful and thorough
thoughts behind selected solutions. The time invested in writing such
documentation pays of during future development and maintenance - and
may even affect performance and correctness of the program.

Documentation written during coding captures the current state of the
program. If the programmer alternates between writing code and
documentation, the programming process is likely to be reflected in the
documentation. This is useful if programmers are to finish the work started
by other programmers, or themselves during a long-term project.

When coding is completed, the programmer knows how a given problem
was solved. Through after rationale, the programmer can write good
explanations of the completed code. However, if bugs are first fixed and
then documented, the documentation is more likely to degrade over time,
than if documentation is written before the fix [17].

 However, when program understanding is documented after coding, some
of the program understanding disappears simply because the programmer
has forgotten some of the details. Furthermore, the documentation may
tend to be perfunctory.

Examples: Writing documentation beforehand is in general considered as good
common sense, but is rarely used due to programmer’s bad habits (or
perhaps it is in their nature). This pattern can be (and often is) exercised
using Literate Programming [5] or Elucidative Programming [7].
Furthermore, JavaDoc [3] is also used to specify interfaces before coding,
as well as maintain these during coding [19].

Alternatively, in Extreme programming [18], documentation is sparsely
used – if used at all. Instead, the programmers try, as an ideal, to keep the
code simple through frequent refactoring (when changes are made to the
program). This helps ensuring that the source code can be understood by
simply reading it. Moreover, tests are written before code is written, and
are used as “specifications” of what the code should do.

08. Documentation Refactoring [Maintenance]

Problem: The program evolves, and documentation gradually falls behind. Keeping
the documentation up-to-date according to every change is simply not
feasible – when is it time to update the documentation and how can this be
done without constantly changing the entire documentation?

Forces: When a documentation reader studying documentation encounters
documentation that addresses code that does not exist, faith in the
documentation is lost. This is also the case if code is obviously different
from the explanations in the documentation. Such inconsistencies will
frequently occur if the documentation is not maintained.

However, as a program grows in size so will the documentation. When the
program changes, the programmer may be forced to read larger portions of
documentation in order to identify how and where the documentation must
be changed accordingly. This is very time consuming, and it is difficult to
be sure that all relevant places in the documentation have been found.
Programmers therefore often find it tiresome as well as difficult to
maintain documentation, as this requires constant restructuring and
revision of the documentation – even when dealing with small program
changes.

Instead, it is tempting to only describe the actual changes made to the
program in relevant places in the documentation. For example, change
descriptions can be appended to existing descriptions of a program entity
when it is changed.

However, this will result in documentation that becomes difficult to read,
as different change descriptions must be put together in order to understand
a certain program entity or aspect (e.g. Transverse Issues). Furthermore,
some descriptions of change will eventually address entities in the program
that do not exist any more or will simply invalidate older descriptions.

Documentation is subject to many changes during development, and
eventually it is likely to become unstructured and incoherent. For example,

begin to contain much outdated, obsolete, and invalid information.
Documentation Reviews can be used to detect such problems.

Solution: Refactor the documentation on a regular basis either by 1) providing
updates to the documentation based on a hot list of changes that need
immediate propagation, or 2) revise the entire documentation.

During coding, maintain a list of changes made to the program. This hot
list should be appropriately placed in the documentation. Entries in the hot
list can for example consist of a description of the change, ideas to
improvements, results from test runs, and in general things to remember.
Consider constructing templates for list entries.

If documentation that may be affected by a change is discovered during
coding, this should be uniformly marked throughout the documentation.

When it is time to update the documentation, the entries in the hot list are
dealt with one by one. For example, consider updating the documentation
once a week or use the number of entries in the hot list as an indication of
when it is time to update the documentation (say, when the hot list contains
10-20 entries).

When the documentation begins to contain much unstructured or outdated
documentation then refactor the documentation by revising all the existing
documentation. This can be done on a regular basis, or as requested by a
Documentation Review. In addition, programmers that use the
documentation actively during work will often discover problems with
inconsistencies, outdated and unstructured documentation.

A revision should ensure that the documentation is comprehensible and
consistent with the program. In addition, such refactoring can be used to
improve navigation by bringing the right documentation in navigational
proximity (see Separate and Interrelate Documentation and Program) of the
right code. Hence, revision of the documentation includes:

− Deleting useless, duplicated, and outdated documentation.
− Revision of existing documentation - possibly resulting in rephrasing

or addition of documentation - e.g. according to new templates (see
Documentation Templates).

− Tying together incoherent documentation.
− Going through all affected documentation systematically to ensure that

all references are correct.

Consequences: Updating documentation is time consuming, but the resulting
documentation has a high degree of consistency with the program. Even
though it is not always possible to update everything, tools can be created
to assist the programmer in detecting parts of the documentation that are
affected by a change in the program or detecting references that has
become invalid.

When a wrecked documentation structure is refactored, it can be salvaged
and cleansed of outdated, useless, and incomprehensible documentation.

Intuitively it seems to be easy to come up with descriptions of change. It is
a matter of putting a few words to what have just been changed in the
source code. It can therefore be easy to persuade programmers to write
such documentation. However, updating the existing documentation may
still be challenging, but if the activity is part of the development process
the programmer is inclined to get it done.

If documentation of the program evolution is important, the changes made
to the program must be recorded in order to maintain what actually
happened during the implementation. Hence, the hot list can be used to
maintain Program History.

Examples: In Literate Programming [5], the code is in physical proximity of the
documentation and it is not difficult to identify where in the documentation
changes should be made. Hence, the documentation is often changed
immediately after the code has been changed.

In Elucidative Programming in Java [12], special documents containing
change descriptions are created when the program is changed, or typed
hyperlinks are used to find the parts of the documentation that need
updates corresponding to a program change.

In the open source community, change-logs are often used to keep track of
changes. In general, a hot list can be seen as a change-log.

 In extreme programming refactoring is often done after a program change
has been successfully implemented in order to keep the code simple (i.e.
easier to understand) [18] - the same can apply to documentation.

09. Documentation Review [Maintenance]

Problem: Documentation varies from programmer to programmer in terms of quality
and quantity - how can the overall quality of documentation be evaluated
and ensured during coding?

Forces: Most programmers lack the experience in writing internal documentation,
and only few programmers actually write documentation. This may result
in inconsistent and prose documentation of no real help to maintainers or
collaborating programmers.

 Furthermore, different programmers write documentation differently. Even
if Documentation Templates are used, the quality of the actual contents of
the documentation may vary a lot from programmer to programmer.

 To make things worse, some programmers are so ridden with bad habits
that they will simply not get around to writing documentation.

 In addition, documentation is often incomplete, for example because the
programmer starts writing some documentation, but is later detained by
other activities. Often the incomplete documentation is forgotten and never
completed.

 However, some documentation is only used by the original programmer
and only needs to be comprehensible to that person. Moreover, if future
programmers can communicate with the original programmer (e.g. is still
in the same programming team) it is often not only easier but also better to
do so, instead of reading through piles of documentation [16]. Hence,
incomplete documentation becomes less of a problem.

Yet, if the original programmer is indisposed and never documented parts
of a program, for example considered essential program entities/aspects as
non-essential, then future programmers will not find much help in the
documentation.

Furthermore, over time Documentation Refactoring is likely to result in a
lot of changes and updates that eventually will wreck the documentation
structure.

Solution: The documentation should be reviewed regularly in order to ensure the
adequacy of the documentation. Documentation reviews can for example
be performed in connection with code reviews.

Evaluate whether the:

− Documentation coverage is adequate for specific needs.
− Documentation is comprehensible.
− Documentation is properly structured.
− Documentation is consistent with the program.

The reviewers should also give pointers to the programmers, on how they
can improve the documentation and their documentation “skills” , for
example, in order to break bad habits.

Consequences: By performing Documentation Reviews, the quality of the documentation
can be ensured. If the quality of the documentation is not high enough, the
programmers are asked to improve the documentation.

Documentation reviews are a good way of providing programmers
inexperienced in documentation writing with feedback and suggestion on
how to improve the quality of the documentation.

However, documentation reviews are time consuming, and if the reviewers
do not approve the documentation, programmers must spend even more
time on writing the documentation.

Examples: Code reviews are generally used in order to ensure quality of code, and
Documentation Reviews can essentially be structured and performed in the
same manner.

10. Documentation Templates [Stylistic]

Problem: Different programmers have different styles when writing and structuring
documentation. Depending on which programmer wrote what in the
documentation, some aspects of the program are well explained whereas

others are not - how can we ensure some kind of uniformity of the
documentation?

Forces: When several programmers are collaborating on documentation (and
program) standards are quite useful in order to keep the documentation
uniform. Such standards can specify which topics should be covered in the
documentation. Standards can also give documentation readers some
knowledge of what to expect of the documentation and where to look for
specific information.

In addition, documentation is written differently from programmer to
programmer. Some programmers have their own idea of how to write the
documentation, whereas others have a difficult time getting started –
“which topics should I cover in the documentation”? Documentation
standards in form of guidelines and checklists can help programmers
getting started as well as ensure that important topics are covered.

However, guidelines and checklists take away the freedom to write and
structure documentation as the individual programmer prefers.

Yet, there is often little room and use for “ individual” documentation if
programmers are working in collaboration on a program.

In addition, by having guidelines and checklists programmers can save
effort, as they do not need figure out what to write about. However,
programmers may just end up filling out forms without thought.

Solution: Identify overall aspects that should (or can) be addressed in the
documentation and create templates for these.

Overall aspects include: rationales, concepts (see Conceptual Writing), bug
reports, change descriptions, entity descriptions (see Document Structure
Follows Program Structure), Transverse Issues, or requirements.

For each template, specify to which kind of aspect or part of a program it
applies.

Relationships between templates should also be specified. For example,
specify which kinds of templates can be related/linked to each other.

A template should specify topics to be covered. For example, a template
for a concept can include sections describing: status (e.g. completed, in
progress or new), keywords, author, creation date, last updated, title,
context, description or even an abstract of the concept.

A template can also include examples of use or general guidelines.
Examples of use can be used to ensure that documentation is written in a
“uniform language”. Alternatively, Documentation Reviews can be used to
ensure use of uniform language.

Consider specifying how references should be created and used in
documentation. For example, if using Separate and Interrelate
Documentation and Program the different types of links and their
application can be specified. For example, some links are created because a

specific program entity is briefly mentioned, whereas others are created
because the entity is described in detail.

Consequences: This pattern ensures uniformity of the topics that should be covered when
addressing certain aspects or entities of a program. This can ensure
documentation “completeness” . A consistent and logical documentation
model - accommodating specific needs within a specific programming
team (or company) - can be created.

Intuitively, if specific guidelines are given to programmers, they will find
documentation much easier to write. The overhead of figuring out what to
write is reduced, and chances of documentation actually being produced
are improved. However, if a wide variety of templates exists selection of
appropriate templates becomes very difficult. Furthermore, programmers
may still find it difficult to figure out how to author the actual contents of a
template [9]. Consider using Documentation Review to ensure right usage
of templates and the quality of the actual writing.

Note that, there are contexts and situations, for which it is not easy to
create good and general applicable templates, guidelines, or checklists.

Examples: Partitioned Annotations of Software (PAS) [9] are used to describe
components (e.g. classes) from different points of view (aspects). PAS can
be seen as predefined templates defining topics to be covered. PAS is
based on the existing structure of a program.

Conclusion
Programmers accustomed to writing internal documentation will probably recognise some
of the patterns presented in this paper. The patterns are a combination of the common
sense, common practise, and ideals used by programmers writing and structuring internal
documentation. The patterns are based on our own observations of programmers
producing internal documentation, as well as observations made by others. However, the
list of references, only includes a few of the literature resources used as basis for the
patterns (if all were listed, the list would become very long).

Some of our observations stem from use of Elucidative Programming [11], which have
pushed the patterns in a certain direction. This type of internal documentation is based on
hypertext and separate documentation and program (see Separate and Interrelate
Documentation and Program). Transverse Issues, Documentation Templates, Conceptual
Writing, and Extract Commonly Used Information are patterns commonly used when
writing documentation the elucidative way [7] [12] [14].

Based on discussions at EuroPLoP 2001 and recent work we have become aware of new
possible patterns. One of these addresses how to allocate time for writing documentation.
Other possible patterns address how to make code walkthroughs in libraries and
frameworks, or how internal documentation can be linked to use cases (e.g. [18]).

Future work also includes introducing the patterns presented here in development projects
and comparison of the resulting documentation with documentation produced in projects
not using the patterns. This should help evaluating whether patterns make a difference
when programmers produce internal documentation.

Acknowledgements
Most of the patterns presented in this paper have been discussed in the Software Quality
through Documentation of Program Understanding research programme (DOPU), at
Aalborg University [13]. The people who participated in these discussions are
acknowledged for their help in identifying, reviewing, and formulating the patterns. In
addition, thanks to Andreas Rüping for his comments during the shepherding of this paper
– the patterns became a lot clearer and concrete on his account. And thanks to the all the
reviewers at EuroPLoP 2001, for their comments.

Furthermore, students from Aalborg University have participated in the experiments (one
example can be found in [14]) – their participation has been very rewarding. In addition,
the graduate students Max R. Andersen and Claus N. Christensen are acknowledged for
sharing their observations of both production and use of internal documentation in an
industrial setting [7].

References
1. Parnas, David Lorge & Clements, Paul C.: A Rational design Process: How And Why

To Fake It. IEEE Transactions On Software Engineering, 12(2), 1986, pp. 251-257.
2. Erdem, Ali & Johnson, W. Lewis & Marsella, Stacy: Task Oriented Software

Understanding. In Proceedings of the 13th IEEE International Automated Software
Engineering Conference, 1998, pp. 230-239.

3. Friendly, Lisa: The Design of Distributed Hyperlinked Programming Documentation,
Proceedings of the International Workshop on Hypermedia Design (IWHD'95),
Montpellier, France, Sylvain Fraïssé and Franca Garzotto and Tomás Isakowitz and
Jocelyne Nanard and Marc Nanard (editors), 1995.

4. Gamma, Erich & Helm, Richard & Johnson, Ralph & Vlissides, John: Design
Patterns: Elements of Reusable Object-Oriented software. Addison Wesley, October
1994.

5. Knuth, Donald E.: Literate Programming, The Computer Journal, vol. 27(2), May
1984, pp. 97-111.

6. Vestdam, Thomas: Documentation threads - presentation of fragmented
documentation, Nordic Journal of Computing, Vol. 7(2), 2000, pp. 106-126.

7. Andersen, Max Rydahl & Christensen, Claus Nyhus: Evaluating Elucidative
Programming in an Industrial Setting, Aalborg University, 2001 (submitted to ICSM
2001).

8. WikiWikiWeb, http://c2.com/cgi-bin/wiki.
9. Rajlich, V. & Varadarajan, S.: Using Web for Software Annotations, International

Journal of Software Engineering and Knowledge Engineering, Vol. 9, 55-72, 1999.
10. Nørmark, Kurt: Requirements for an Elucidative Programming Environment, Eight

International Workshop on Program Comprehension, June 2000.
11. Nørmark, Kurt: Elucidative Programming, Nordic Journal of Computing, vol. 7(2),

2000, pp. 87-105.
12. Nørmark, Kurt & Andersen, Max Rydahl & Christensen, Claus Nyhus & Sørensen,

Kristian Lykkegaard: Elucidative Programming in Java, The eighteenth annual
international conference on Computer documentation - IPCC/SIGDOC, September
2000, available from http://dopu.cs.auc.dk.

13. Software Quality through Documentation of Program Understanding Research
Programme, Department of Computer Science, Aalborg University,
http://dopu.cs.auc.dk/.

14. Vestdam, Thomas: Introducing Elucidative Programming in Student Projects,
Aalborg University, 2001, available at http://dopu.cs.auc.dk/.

15. Sametinger, Johannes: Object-Oriented Documentation. Journal of Computer
Documentation vol. 18, no. 1, pp. 3-14 January 1994.

16. Naur, Peter: Programming as Theory Building. Microprocessing and
Microprogramming, vol. 15, 1985, pp. 253-261.

17. Visaggio, G.: Relationships between Documentation and Maintenance Activities.
Proceedings of the IEEE International Workshop on Program Comprehension,
Dearborn, Michigan, May 1997, pp. 4-16.

18. Beck, Kent: Extreme Programming Explained: Embrace Change, Addison Wesley
Publishing Company, 1999.

19. Kramer, Douglas: API documentation from source code comments: a case study of
javadoc, In Proceedings on the seventeenth annual international conference on
Computer documentation, 1999, pp. 147-153.

20. Kotula, Jeffrey: Using patterns to create component documentation, IEEE Software,
Vol. 15(2), March-April 1998, pp. 84 – 92.

21. Rüping, Andreas: Project Documentation Management, In Proceedings of the Fourth
European Conference on Pattern Languages of Programming and Computing, 1999.

22. Rüping, Andreas: Reader-Friendly Media for the Documentation of Software
Projects, In Proceedings of the Seventh Pattern Languages of Programs Conference,
2000.

23. Rüping, Andreas: The Structure and Layout of Technical Documents, In Proceedings
of the Third European Conference on Pattern Languages of Programming and
Computing, 1998.

