Ten Consecutive Primes In Arithmetic Progression - Inria - Institut national de recherche en sciences et technologies du numérique
[go: up one dir, main page]

Article Dans Une Revue Mathematics of Computation Année : 2002
Ten Consecutive Primes In Arithmetic Progression
1 SPACES - Solving problems through algebraic computation and efficient software (France)
"> SPACES - Solving problems through algebraic computation and efficient software
Harvey Dubner
  • Fonction : Auteur
Tony Forbes
  • Fonction : Auteur
Nik Lygeros
  • Fonction : Auteur
Michel Mizony
  • Fonction : Auteur
  • PersonId : 829740
Harry Nelson
  • Fonction : Auteur

Résumé

In 1967 the first set of 6 consecutive primes in arithmetic progression was found. In 1995 the first set of 7 consecutive primes in arithmetic progression was found. Between November, 1997 and March, 1998, we succeeded in finding sets of 8, 9 and 10 consecutive primes in arithmetic progression. This was made possible because of the increase in computer capability and availabiblity, and the ability to obtain computational help via the Internet. Although it is conjectured that there exist arbitrarily long sequences of consecutive primes in arithmetic progression, it is very likely that 10 primes will remain the record for a long time.
Fichier non déposé

Dates et versions

inria-00100978 , version 1 (26-09-2006)
Identifiants
  • HAL Id : inria-00100978 , version 1

Citer

Harvey Dubner, Tony Forbes, Nik Lygeros, Michel Mizony, Harry Nelson, et al.. Ten Consecutive Primes In Arithmetic Progression. Mathematics of Computation, 2002, 71 (239), pp.1323-1328. ⟨inria-00100978⟩
589 Consultations
0 Téléchargements

Partager

More