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SAR-SIFT: A SIFT-LIKE ALGORITHM FOR SAR

IMAGES
Flora Dellinger, Julie Delon, Yann Gousseau, Julien Michel, Florence Tupin

Abstract—The Scale Invariant Feature Transform (SIFT) al-
gorithm is widely used in computer vision to match features
between images or to localize and recognize objets. However,
mostly because of speckle noise, it does not perform well on
synthetic aperture radar (SAR) images. We present here an
improvement of this algorithm for SAR images, named SAR-
SIFT. A new gradient computation, yielding an orientation and
a magnitude robust to speckle noise, is first introduced. It is then
used to adapt several steps of the SIFT algorithm to SAR images.
We study the improvement brought by this new algorithm,
compared to existing approaches. We present an application
of SAR-SIFT for the registration of SAR images in different
configurations, especially with different incidence angles.

Index Terms—synthetic aperture radar (SAR), remote sensing,
SAR image registration, scale-invariant feature transform (SIFT)

I. INTRODUCTION

Last generations of earth observation satellites are provid-

ing a large amount of high resolution data, both in optical

and Synthetic-aperture radar (SAR) domains, resulting in the

multiplication of multi-sensors, multi-resolutions and/or multi-

angles contexts. To jointly exploit these data for classification,

3D reconstruction, rapid mapping or change detection, feature-

based approaches with some particular invariances may be

more suitable than pixel-based ones. This paper studies the

interest of feature based descriptors for SAR data in particular.

The Scale Invariant Feature Transform (SIFT) [1] is a

very classical algorithm for interest points detection and

local features description. Due to its efficiency [2], it is

widely used in the field of computer vision to localize and

recognize objects between images. Its invariances to scale

changes, rotations, translations and partially to illumination

changes and affine distorsions make it suitable for different

kind of applications such as object retrieval, image indexing,

stitching, registration or video tracking.

The SIFT algorithm is an interesting option for remote

sensing images due to its performances and invariances. The

algorithm has been applied mostly to optical images since

they have characteristics similar to natural images. Several

registration methods [3], [4], [5] use SIFT keypoints as Control

Points (CP) to estimate deformation models. Li [3] takes

into account the specificity of remote sensing images and
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introduces a new matching criterion with scale and orien-

tation restrictions. A multilevel SIFT matching approach is

proposed by Huo [4] to register very high resolution images,

with the help of RANdom Sample Consensus (RANSAC).

Sedaghat [5] adapts the algorithm to obtain space uniformly

distributed keypoints and filters the mismatchs by applying a

projective model. The SIFT algorithm has also some assets for

remote sensing image retrieval or classification applications.

Yang [6] uses bag of words (BoW) representation of SIFT

descriptors to perform image retrieval of land-use/land-cover

classification in high resolution imagery. Image classification

is performed by Risojevic [7] by merging representations of

Gabor texture descriptors and SIFT descriptors BoW. Object

detection is another application field of the SIFT algorithm.

Single buildings are detected on very high resolution optical

images by Sirmacek [8] by using SIFT keypoints, multiple

subgraph matching and graph cut methods. Tao [9] performs

airport detection by considering both clustered SIFT keypoints

and region segmentation.

While the SIFT algorithm has proven its efficiency for

various kinds of applications in optical remote sensing, the

situation is different for SAR images. SAR is an active system

and has the advantage of acquiring images independently of

weather conditions and solar illumination. SAR images are

frequently used in disaster situations since they are often

the fastest available ones. However images are corrupted

by a strong multiplicative noise, called speckle, and data

processing is thus made difficult. The SIFT algorithm does not

perform well on this type of images. Several improvements

have been proposed to improve the algorithm. Some suggest

to pre-filter [10] or denoise [11] the images to reduce the

influence of speckle noise. Others remove some invariances

[12], [13] or modify some steps of the algorithm [14], [15]

to improve the performances. Spatial relationships between

keypoints are considered by Lv [16] and Fan [17] to suppress

false correspondences. To limit the search space, Wessel

[18] uses DEM and orbit information, and Xiaoping [19]

performs a manual pre-registration. Details and limitations

of these algorithms will be developed later in Section

II-C. However performances of these newly developped

algorithms are still relatively limited and the number of

correct matches is not sufficient enough to consider other

applications than registration. Most of them do not consider

statistical specificities of speckle noise. Considering the field

of applications offered by the SIFT algorithm in optical

images, it would be of great interest to have a performant

SIFT-like algorithm adapted to SAR images.
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We propose in this paper to adapt the SIFT algorithm to the

statistical specificities of SAR images. Section II presents the

outline of the classical SIFT algorithm and its behaviour on

SAR images. Section III introduces a new gradient computa-

tion and a SIFT-like algorithm, both adapted to SAR images.

Experimental validations and performances are presented in

Section IV. Finally, section V investigates the possibilities

offered by this new algorithm for multi-angles and multi-

resolutions contexts in SAR imaging. An application of SAR

image registration and preliminary results for change detection

are presented.

A conference proceedings version of this work has appeared

in [20].

II. PRESENTATION OF THE SIFT ALGORITHM AND

BEHAVIOUR ON SAR IMAGES

In this section the original SIFT algorithm and some of its

variants are introduced. We also present its limitations when

applied to SAR images and some of its adaptations to cope

with such images.

A. Presentation of the original SIFT algorithm

The SIFT algorithm has been introduced by Lowe in 2004

[1] for the matching of local features in natural images. The

algorithm follows four steps, that we describe in the following

paragraphs:

1) Keypoints detection: First keypoints are selected as local

interest points and characterized by their localization (x, y),
scale σ and orientation θ:

P (x, y, σ, θ) .

A difference of Gaussian (DoG) [1] scale-space, as an

approximation of the Laplacian of Gaussian (LoG) [21], is

constructed with scales σl = σ0·rl and l ∈ J0..lmax−1K. Local

extrema in the three dimensions (x, y, σ) are then selected to

obtain keypoints defined by their position and scale.

Candidates with low contrast or located on the edges

are filtered by a criterion based on the Hessian matrix [1].

Another possibility is to use the multi-scale Harris corner

detector, based on the Harris matrix [22].

Among other interest point detectors, we can cite Harris-

Laplace [23] that localizes points in space as extrema of the

multi-scale Harris function and in scale as maxima of the LoG.

More accurate localization is achieved by Hessian-Laplace

[24] by replacing the space selection with local maxima

of the Hessian determinant. To achieve affine invariance,

Harris-Affine [25] and Hessian-Affine [24] detectors refine

the localization with an iterative adaptation based on the

second-order derivative matrix. ASIFT [26] simulates different

viewpoints to evaluate two camera axis orientation parameters.

In this paper we will compare the proposed approach for

keypoints detection (see Section III-B1) to keypoints that are

detected as local extrema (in (x, y, σ)) in the LoG scale-space.

These points will be filtered by the multiscale Harris criterion

to eliminate those lying on edges or low-contrasted. We will

refer to this approach as the LoG method.

2) Orientation assignement: To determine the main orienta-

tions associated with keypoints, Lowe [1] suggests to compute

a local histogram of gradient orientations, weighted by the

gradient magnitudes. The histogram is computed on a scale-

dependent neighborhood. The main orientations are defined as

bins superior to 80% of the maximum. In [27], the histogram is

replaced by Haar wavelet responses in x and y directions and

the sum of responses is computed within a sliding orientation

window to estimate the principal orientation.

In this paper, following [28], we select the main modes

of the local orientation histogram thanks to an a contrario

approach. As in the original SIFT algorithm, different

keypoints can be obtained with the same position and scale

but with different orientations θ.

3) Descriptors extraction: A SIFT descriptor is assigned to

each keypoint P (x, y, σ, θ) to describe its local geometry. A

square neighborhood is defined around each point with a size

depending on σ to obtain translation and scale invariance. It

is then rotated by an angle −θ to ensure rotation invariance.

This normalized neighborhood is divided into 4 × 4 square

sectors, upon which histograms of the gradient orientations,

weighted by the gradient magnitudes, are computed. For each

keypoint, the SIFT descriptor is obtained by concatenating

and normalizing these histograms.

Different adaptations of the SIFT descriptor have been

proposed in the literature. PCA-SIFT [29] is obtained by

applying PCA on normalized gradient neighborhood. GLOH

[2] is computed on a log-polar grid and upon 17 sectors, the

size of the resulting vector being reduced with PCA. SURF

[27] is obtained by replacing gradient histograms by sums

of Haar wavelet responses in vertical and horizontal directions.

Here we choose to use the SIFT descriptor with a log-polar

grid [28] of 9 sectors (Fig. 11).

4) Keypoints matching: Keypoints of two different images

are matched according to their respective descriptors. Different

matching criteria exist in the literature but the most commonly

used is the Nearest Neighbor Distance Ratio (NNDR) method

[1]. First, euclidean distances are computed between one

descriptor and the ones of the other image and the nearest

neighbor is chosen. To filter false matches, distances to the

second and first closest neighbor are compared. A threshold

th is applied on the ratio of those respective distances. We

will further call the first step as the Nearest Neighbor (NN)

step and the second as the Distance Ratio (DR) step.

In [28], a probability of false alarm is computed for all

possible matches using an a contrario method. This approach

allows different matches for one keypoint and permits to

recognize multiple occurences of one object.

For the sake of simplicity, the NNDR method will be used

here.



3

Fig. 1: Results of the LoG keypoints detection method applied

on a rectangle corrupted by speckle noise and 1-look amplitude

image (29 keypoints detected).

B. Limitations of the SIFT algorithm on SAR images

The SIFT algorithm does not perform well on SAR images.

Many false keypoint detections as well as false matches occur.

In particular, speckle noise leads to numerous false detections

with the LoG method (Fig. 1). On optical images, noise is

usually relatively weak and the keypoints filtering part of

the algorithm (multi-scale Harris criterion [22]) suppresses

most of the false detections thanks to its contrast dependency.

However SAR images present a large dynamic range and the

multiplicative noise leads to stronger gradient magnitude on

homogeneous areas with high reflectivity (Figure 2(b)). False

alarms on high contrast areas are thus not suppressed, as seen

on the example of a rectangle corrupted by speckle noise (see

Figure 1).

The orientations and descriptors are also not robust to mul-

tiplicative noise, since their computation relies on a classical

gradient by difference.

C. Previous adaptations of the SIFT algorithm for SAR images

Modifications of the SIFT algorithm for SAR images have

already been proposed in the literature. Some suggest to

simplify the algorithm, by skipping the smallest scales for

the keypoints detection [12] or by suppressing the orientation

assignement [13], [17]. While such a procedure does decrease

the number of false detections since many occur at those

scales, the remaining keypoints are still not precisely located.

Suppressing the orientations limits the capability of the algo-

rithm to match images with different viewing conditions.

To improve the algorithm, some steps can be adapted.

In [15], intensity values are thresholded to obtain spacially

uniformly distributed keypoints and the size of the region

descriptor is extended to increase matching performances. But

this limits the distinctiveness of descriptors and prevents the

application of the algorithm on images with strong changes. In

[14], a new pyramid with progressive downsampling is used

for keypoints detection and the SIFT descriptor is replaced by

an improved version of Shape Context. While faster, this new

algorithm has lower performances than the original SIFT.

Some works propose to reduce the influence of speckle by

replacing the Gaussian scale space by an anisotropic one [30]

or by computing multi-looks [19], [18]. But this last process

decreases image resolution and causes loss of information.

Another solution is to denoise the images : curvelet transfor-

mation [10] or Infinite Symmetric Exponential Filter (ISEF)

[11] can be used. Denoising is time consuming and can create

artefacts that disturb the algorithm. While the performances

of these algorithms are better than those of the original SIFT

algorithm directly applied to SAR images, the number of

correct matches is usually low (of the order of a few dozens).

Other studies suggest to improve performances by rejecting

outliers. Lv [16] divides the images into four subregions and

considers the spatial relationships of the matched keypoints

in every subregion. This however implies that the images

represent the same scenes with almost no overlaps and no

rotation. For a registration application, image transformation

is estimated in [17] based on best correspondences but a

restrictive deformation is used. Wu [31] combines the SIFT

algorithm and the cluster reward similarity measure to esti-

mate iteratively an affine transformation. The process is time

consuming and restricted to image registration.

The search space can be limited by performing a manual

pre-registration [19]. False correspondences can be removed

by knowing orbit informations, even if not precise [18],

and a digital elevation model (DEM). But these kinds

of informations are not always known and manual pre-

registration is time consuming and subject to interpretation

errors.

To adapt the SIFT algorithm to SAR images, it is necessary to

take into account the statistical specificities of SAR images.

We suggest to develop first a new gradient computation thanks

to which both the magnitude and the orientation are robust

to speckle noise. Several steps of the algorithm can then be

adapted to SAR images. A new keypoints detection method

is introduced, as well as a new orientation assignement and

a SAR adapted descriptor. The keypoints matching step is

not modified, since it does not depend much on the type of

images but rather on the quality of the descriptors. Section

III introduces these new developments.

III. PROPOSED METHOD

A. Gradient computation for SAR images

1) State of the art: Many works on edge detection have

underlined the problem of using gradient by difference on SAR

images. Indeed, variances of the gradient components depend

on the underlying reflectivities [32]. Traditional approaches in

edge detection consist in thresholding the gradient magnitude.

For SAR images, this leads to higher false alarm rates in

homogeneous areas of high reflectivity than in the ones of

low reflectivity. The classical gradient by difference is thus

not a constant false alarm rate operator. Statistical studies [32],

[33], [34] have shown that the use of ratio is more suitable to

multiplicative noise than the use of difference. Several edge

detectors using ratio have been introduced in order to obtain

a constant false alarm rate on SAR images:

• The Ratio of Average (ROA) [32], [33] consists in

computing the ratio of local means on opposite sides of

the studied pixel along one direction i (Figure 3(a)):
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(a) Rectangle corrupted by
speckle noise

(b) Gradient by difference (Eq.
(8,9)) and

(c) Gradient by Ratio

Fig. 2: Example of a rectangle corrupted by speckle noise and

its gradient magnitude for two gradient computation methods.

(a) Scheme of the ratio of local
means for the first direction.

(b) Four main directions, to
compute respectively T3, T1, T2

and T4.

Fig. 3: Scheme of the ROA method [32], [33].

Ri =
M1(i)

M2(i)
. (1)

The ratio Ri is then normalized:

Ti = max

(

Ri,
1

Ri

)

. (2)

These ratios are computed along the four main directions

(Figure 3(b)). The gradient magnitude D1
n and orientation

D1
t are defined as:

D1
n = max

i
(Ti)

D1
t = (argmax

i
(Ti)− 1)× π

4
.

(3)

Edges may then be obtained by thresholding the gradient

magnitude D1
n.

• The Ratio of Exponentially Weighted Averages

(ROEWA) [35] is an improvement of the ROA for

a multi-edge context, obtained by computing exponential

weighted local means (Figure 4). For example, given

a point (a, b), the means are defined for the vertical

direction as:

Fig. 4: Exponential filter for computation of weighted means.

M1,α(1) =

∫

x=R

∫

y=R+

I(a+ x, b+ y)× e−
|x|+α|y|

α

M2,α(1) =

∫

x=R

∫

y=R−

I(a+ x, b+ y)× e−
|x|+α|y|

α

(4)

with α the exponential weight parameter.

As in the ROA, the ratio and its normalization for a

direction i are defined as:

Ri,α =
M1,α(i)

M2,α(i)

Ti,α = max

(

Ri,α,
1

Ri,α

)

.

(5)

These ratios Ti,α are computed along the horizontal (i =
1) and vertical (i = 3) directions. By analogy to the edge

detectors on optical images that are based on gradients,

the edge image is obtained by:

D2
n,α =

√

(T1,α)2 + (T3,α)2. (6)

The ROEWA is more precise in a multi-scale edge

context and more robust to noise than the ROA, since

the weighting parameter α allows an adaptive smoothing

of the image.

Those operators have been designed for edge detection and

provide a good estimate of the gradient magnitude. However

they do not give a precise measure of the gradient orientation

since only a few directions are considered. This could be

improved by increasing the number of directions, but it would

be time consuming.

Suri [13] proposes to define the vertical and horizontal

gradient as respectively T1,α and T3,α. By analogy to the

gradient-based edge detector for optical images, the gradient

magnitude and orientation are estimated as:

D3
n =

√

(T1,α)2 + (T3,α)2

D3
t = arctan

(

T3,α

T1,α

)

.
(7)
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Fig. 5: Extract of Cosmo-SkyMed R©image with 34◦ of inci-

dence angle and 1m resolution.

This definition of orientation is highly questionable. Indeed,

T1,α and T3,α always take positive values and thus D3
t can

only take values between 0 and π
2

. Moreover, the gradient

computation on a vertical edge with reflectivities ma and mb

(ma < mb) yields:

T1,α =
ma

mb

T2,α = 1

D3
t = arctan

(

mb

ma

)

.

Therefore the gradient orientation takes arbitrary values

depending on the reflectivities of the areas, while it is

expected to be equal to zero. The normalized ratios T1,α and

T3,α should not be used directly to compute the gradient

orientation.

2) Proposed approach: We propose here to define the

horizontal and vertical gradient as:

Gx,α = log(R1,α)

Gy,α = log(R3,α)
(8)

and to compute the gradient magnitude and orientation in the

usual way as:

Gn,α =
√

(Gx,α)2 + (Gy,α)2

Gt,α = arctan

(

Gy,α

Gx,α

) (9)

with α the parameter of the exponential weight used to

compute the local means.

By using the logarithm, the problem mentioned above for

the gradient orientation on a vertical edge is avoided, since

the computation yields:

Gx,α = log(ma)− log(mb)

Gy,α = 0

Gt,α = 0.

There is no normalization with the minimum (or maximum)

between the ratio and its inverse, in order to obtain negative

and positive gradient values. With this approach the whole

possibilities of orientation values are taken into account.

Also since the weighting parameter α allows to smooth the

(a) Horizontal component (b) Vertical component

(c) Magnitude (d) Orientation

Fig. 6: Gradient by difference applied on the image of Fig. 5

with a Gaussian blur of σ = 2.

(a) Horizontal component (b) Vertical component

(c) Magnitude (d) Orientation

Fig. 7: New gradient computation (Gradient by Ratio) applied

on the image of Fig. 5 with α = 2.

image at different scales, this gradient can be compared to

the gradient by difference applied on an image with Gaussian

blur. We call this new gradient computation method Gradient

by Ratio (GR).

Figure 2 presents the gradient magnitude on a rectangle

corrupted by speckle noise for the two gradient computation

methods. The Gradient by Ratio method (Eq. (8,9)) does not

produce more high values on high reflectivities areas than on

the ones of low reflectivity, unlike the gradient by difference.

The gradient values of the image of Figure 5 are presented

on Figure 6 for the gradient by difference and on Figure

7 for the GR. It appears that the gradient by difference
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presents a better reduction to speckle noise but gradient

values (magnitude, and vertical and horizontal components)

are higher on high reflectivy areas than on low reflectivity

ones. For the GR method however, gradient responses are not

higher on those areas.

This new gradient computation method will now help us to

adapt the SIFT algorithm to SAR images.

B. A SIFT-like Algorithm adapted to SAR images

The outline of the new algorithm, that we have called

SAR-SIFT, is presented in Figure 8. As mentioned before, the

first three steps of the algorithm are adapted to SAR images

and only the last one (matching) is left unchanged.

1) Keypoints detection: A first simple approach to detect

keypoints on SAR images would be to apply the LoG method

on the logarithm of the image. This allows to deal with

an additive noise instead of a multiplicative one, and to

suppress the false detections on the high reflectivity areas.

Although appealing because of its simplicity, this approach

is not robust enough to noise and does not improve much

the performances of the original LoG approach (Fig. 1). The

example of a rectangle corrupted by speckle noise on Figure

9(a) shows that keypoints are indeed found near corners, as

expected, but badly located. There are fewer false detections

than when applied directly on the amplitude image (Fig. 1)

and they also happen equally on high and low reflectivity

areas, but they are still numerous. By adapting the parameters

on the multi-scale Harris criterion [22], the number of false

detections can be decreased but so will the number of correct

ones.

LoG and Hessian matrices do not seem convenient and

easy to adapt to multiplicative noise since they rely on second

derivatives. The multi-scale Harris function [23], in contrast,

is based on the first derivative. From the new gradient

computation adapted to SAR images that we have developed

in Section III-A, we propose a new approach based on this

detector.

The multi-scale Harris matrix and function are defined for

optical images respectively as:

C(x, y, σ) = σ2 · G√
2·σ ⋆

[

(∂Iσ∂x )2 (∂Iσ∂x ) · (∂Iσ∂y )

(∂Iσ∂x ) · (∂Iσ∂y ) (∂Iσ∂y )2

]

R(x, y, σ) = det(C(x, y, σ))− t · tr(C(x, y, σ))
(10)

with G√
2·σ a Gaussian kernel with standard deviation

√
2 · σ,

⋆ the convolution operator, Iσ the convolution of the original

image by a gaussian kernel with standard deviation σ and t

an arbitrary parameter. Observe that the weight σ2 is needed

here for full scale normalization [23]. In the LoG method, the

multi-scale Harris criterion allows to suppress low-contrast

and edge points by applying a threshold dH on R(x, y, σ).

Image I1 Image I2

K
ey

p
o

in
ts

d
et

ec
ti

o
n

Construction of the SAR-Harris scale-space (Eq. (11))

Select extrema in space

Threshold tSH on the SAR-Harris function

P1,i(x1,i, y1,i, σ1,i) P2,j(x2,j , y2,j , σ2,j)

O
ri

en
ta

ti
o

n
a

ss
ig

n
em

en
t

Scale-dependent neighborhood around each keypoint

Histogram of gradient orientation weighted by

gradient magnitude with use of GR (Eq. (8,9))

Select main orientations

P1,i(x1,i, y1,i, σ1,i, θ1,i) P2,j(x2,j , y2,j , σ2,j , θ2,j)

D
es

cr
ip

to
rs

ex
tr

a
ct

io
n Scale-dependent neighborhood around each

keypoint is divided into sectors (Fig. 11)

Histogram of gradient orientation weighted by

gradient magnitude with use of GR (Eq. (8,9))

Gather all histograms into one normalized vector

P1,i → Dr1,i P2,j → Dr2,j

K
ey

p
o

in
ts

m
a

tc
h

in
g

For each Dr1,i, compute L1 distance to all Dr2,j

Choose closest Dr2,j (NN step)

Threshold th on the ratio of the distances
to the first and second closest Dr2,j (DR step)

Mk : P1,i ↔ P2,j

Fig. 8: Outline of SAR-SIFT algorithm. Contributions pre-

sented in this paper are in red.
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(a) LoG method applied on the logarithm
image (22 keypoints)

(b) SAR-Harris method (32 keypoints)

Fig. 9: Detection of keypoints on a rectangle corrupted by

speckle noise with the LoG method applied on the logarithm

of the image and the SAR-Harris method.

Considering this definition and the Gradient by Ratio, we

propose the new SAR-Harris matrix and the multi-scale SAR-

Harris function respectively as:

CSH(x, y, α) = G√
2·α ⋆

[

(Gx,α)
2 (Gx,α) · (Gy,α)

(Gx,α) · (Gy,α) (Gy,α)
2

]

RSH(x, y, α) = det(CSH(x, y, α))− d · tr(CSH(x, y, α))
(11)

with d an arbitrary parameter, and where the derivatives Gx,α

and Gy,α are computed using Eq. (8).

In this case, it can be shown that the multiplication by σ2

is not needed anymore to ensure scale invariance.

For this keypoints detection method, we replace the LoG

scale-space by a multi-scale representation of the original

image, obtained by computing the multi-scale SAR-Harris

function (Eq. (11)) at different scales αk = α0 · cm with

m ∈ J0..mmax− 1K. Local extrema in space are then selected

at each level to be keypoints candidates. Subpixel positions of

the keypoints are refined by performing a bilinear interpolation

of the SAR-Harris criterion around the local extrema. A

threshold dSH on the muli-scale SAR-Harris function allows

to filter edge and low contrast points. We obtain keypoints

characterized by their position (x, y) and their scale α.

This approach, called the SAR-Harris method, merges the

two steps of the LoG method in order to avoid the use of

second order derivatives. As it is easily verified, it also has

the advantage of being independent of the image contrast.

We have noticed that this scale-space rarely reaches extrema

in 3-dimensions. This fact was also observed on optical

(a) LoG method applied on the amplitude image
(435 keypoints)

(b) LoG method applied on the logarithm of the
image (435 keypoints)

(c) SAR-Harris method (433 keypoints)

Fig. 10: Detection of keypoints on the image of Fig. 5 with

the LoG method, applied on the amplitude image and the

logarithm of the image, and the SAR-Harris method. The

thresholds dH and dSH were adjusted to obtain the same

number of keypoints regarding the keypoints detection method

used.

images [23]. Only extrema in space are thus selected. Several

detections can then occur at the same position but for different

scales. However, some of them are suppressed by thresholding

the multi-scale SAR-Harris function.

The example of a rectangle corrupted by speckle noise on

Figure 9(b) shows the efficiency of this method: keypoints

are only found on the corners, as expected, and there are no

false detections.

Figure 10 presents an example of keypoints detection for

different methods. As expected, we observe that keypoints
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Fig. 11: Scheme of the circular descriptor. k is a fixed

parameter. Ratio of inner to outer circle radius is respectively

0.25 and 0.73.

detected with the LoG method applied on the amplitude

image are mainly detected on high reflectivity areas and a

lot of false detections occur on high homogeneous areas.

Concerning the keypoints detected with the LoG method

applied on the logarithm of the image, a lot of false detections

are also found on homogeneous areas but they happen both

on high and low reflectivy areas. However, the keypoints

detected with the SAR-Harris method are mostly located on

corners and bright points, and the number of false detections

on homogeneous areas is really low.

2) Orientations Assignement and Descriptors Extraction:

In the original SIFT algorithm, both the steps of orientation

assignement and descriptor extraction rely on histograms of

gradient orientation. These histograms are computed on a

neighborhood of each keypoint and weighted by the gradient

magnitude.

Here we propose to use the Gradient by Ratio (GR) method,

introduced in Section III-A to compute those histograms.

Instead of using a square neighborhood and 4 × 4 square

sectors as in the original SIFT descriptor, we rely on a

circular neighborhood (size of 6σ) and log-polar sectors as

in [28], see Figure 11. The resulting descriptor is called Ratio

Descriptor. Let us observe that the GR method to compute

the gradient could straightforwardly be adapted to other spatial

configurations of sectors, such as the one of the original SIFT.

In order to select principal orientations, we rely on an a

contrario approach [28]. Up to two orientations are selected

at each points.

IV. EXPERIMENTAL VALIDATION OF THE SAR-SIFT

ALGORITHM UNDER SPECKLE NOISE

In this section, both the proposed keypoints and descrip-

tors are compared to the original SIFT algorithm. We first

investigate the stability and robustness of the keypoints de-

tection methods by measuring their repeatability rate. Then

performances of keypoints detection methods and descriptors

are evaluated with the help of ROC curves. To only assess

the ability of the algorithms to deal with speckle noise, the

study is conducted on image pairs acquired under the same

conditions.

A. Test images and parameters

For these experiments, we use 18 pairs of extracts of

TerraSAR-X images with a subpixel registration, representing

the city of Toulouse, France. All images have a size of

512 × 512 pixels and have been all acquired under the same

viewing conditions (34◦ incidence angle, 2m resolution,

SpotLight mode). A visual check showed that no temporal

changes occur between the two images of each pair, so that

only the noise realisation differs.

SIFT keypoints are detected with the LoG method (local

extrema in LoG and threshold on the multi-scale Harris crite-

rion). To construct the scale space, we choose the following

parameters: σ0 = 0.63 the first scale, r = 21/3 the ratio

between two scales and lmax = 13 the number of scales. For

the multi-scale Harris criterion, the parameter t is set to 0.04.

The threshold on this criterion dH is usually set to 2000 for

8-bits images, but will be adapted for each SAR image, since

they have different dynamics.

For the SAR-Harris method, the chosen parameters are:

β0 = 2 the first scale, c = 21/3 the ratio between two scales,

mmax = 8 the number of scales and d = 0.04 the arbitrary

parameter of the SAR-Harris criterion. The threshold dSH has

been set to 0.8 after an experimental study of the probability

distribution of the SAR-Harris criterion computed on corners,

borders and homogeneous areas.

For both the Ratio and SIFT descriptors, histograms are

computed on 12 bins and the log-polar grid is used with

k = 12.

B. Keypoints repeatability

The repeatability criterion [36] gives a measure of the

stability of keypoints detection, regarding the image changes.

Given a pair of registered images, we look, for each keypoint

of the first image, at the closest one extracted on the other

image with the same method. Then for different thresholds

u, the percentage of keypoints repeated on the other image at

a distance lower than u is observed.

The new SAR-Harris keypoints detection method presented

in Section III-B1 is compared to the LoG method applied

on either the amplitude image and the logarithm image.

Results are shown on Figure 12. The thresholds dH have been

adapted to obtain on average the same number of keypoints

than with the SAR-Harris method. We obtain for the entire

set a total of 25032 keypoints extracted with the original LoG

method, 24729 keypoints when the logarithm of the image is

used and 21253 keypoints with the SAR-Harris method. The

keypoints density is thus the same for each detection method.

It can be observed that the SAR-Harris method performs

better than the two LoG methods. For example at a localization

error of d = 1.5 pixels, more than 50% of the keypoints

extracted by the SAR-Harris method are repeated. This rate

is only 30% for the keypoints extracted with the two other

methods. We also observe that the performances of the LoG
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Fig. 12: Repeatability rate of keypoints, computed on 18

image pairs, with respect to the localisation error. Keypoints

are extracted with three different methods: the LoG method

applied on the amplitude image and on the logarithm of the

image, and the SAR Harris method.

method do not present an improvement when applied on the

logarithm image rather than on the amplitude one.

C. Matching performances

Global ROC curves are computed for different combina-

tions of keypoints detection methods and types of descriptor.

Keypoints are matched with the NNDR method (NN step then

DR step, see Section II-A4).

Let Mk(P1,i, P2,j) be a match between a point

P1,i(x1,i, y1,i, σ1,i, θ1,i) of an image I1 and a point

P2,j(x2,j , y2,j , σ2,j , θ2,j) of an image I2. Considering the

deformation T of the image I1 in comparison to the image

I2, Mk is defined as correct if:

||T (x1,i, y1,i)− (x2,j , y2,j)||2 < t1 ·min(σ1, σ2), (12)

where t1 is set to 5. Here the image pairs present a subpixel

registration, so T is the identity function.

The quantities #CMall and #FMall are defined

respectively as the total number of correct and false matches

for the entire set with the NN step. The number of correct and

false matches, respectively #CM and #FM , is evaluated

for a certain value of the threshold th on the ratio of the

distance to the closest and second closest match (DR step). To

obtain Receiver Operating Characteristic (ROC) curves, the

percentage of correctly matched keypoints #CM
#CMall+#FMall

is ploted against the false alarm rate #FM
#CM+#FM by varying

th.

We compare here two keypoints detection methods, the

LoG method on the amplitude image and the new SAR-Harris

method, as well as two descriptors, the proposed Ratio and

the usual SIFT descriptors. The results of the four considered

Fig. 13: Global ROC curves, computed on 18 image pairs, to

evaluate the performance of the Ratio and SIFT descriptor,

and the LoG and SAR-Harris methods.

situations are displayed on Figure 13. Since the images do

not present any rotation, no orientations are assigned to the

keypoints for this experiment, neither for the SIFT nor the

SAR-SIFT approach. The L1 and L2 distances are tested

to compute similarities between descriptors at the matching

step. We have observed that results with the L1 distance are

always better than with the Euclidean distance. To simplify

the reading, only matches with the L1 distance are displayed.

We observe that the best performance is achieved by the

combination of the SAR-Harris keypoint detection method

and the Ratio Descriptor. Indeed, for a false alarm rate of

1%, almost 50% of the possible correct matches are obtained,

when for the other configurations this rate is less than 30%.

The 1% false alarm rate is the percentage of false matchs

among the correspondences obtained with a certain value

of th, and not among all the possible matches. Also, using

the SAR-Harris method with the SIFT descriptor already

improves significantly the performances of the algorithm. In

contrast, the use of the LoG method with the Ratio Descriptor

offers a limited enhancement.

In summary, the SAR-Harris method is more stable and

robust to noise than the LoG method. and the Ratio Descriptor

outperforms the SIFT Descriptor. Combination of SAR-Harris

and Ratio Descriptor are used in the SAR-SIFT algorithm (Fig.

8). This algorithm thus achieves better results than the original

SIFT algorithm on SAR images.

V. EXPERIMENTAL VALIDATION OF THE SAR-SIFT

ALGORITHM IN MORE COMPLEX SITUATIONS AND

APPLICATIONS

After having validated experimentally the efficiency of the

SAR-SIFT algorithm in dealing with strong SAR noise, we

analyse its behaviour in more complex situations, and in

particular with different acquisition modes. The use of the
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RANSAC algorithm is then suggested to increase the number

of correct matches while keeping a low false alarm rate for

some specific situations where a global deformation exists.

Finally, two applications of the SAR-SIFT algorithm are

considered, registration and change-detection.

A. Behaviour of the SAR-SIFT with different image viewing

conditions

We focus now our study on image pairs with different

resolutions and/or different incidence angles. In order to have

a reference situation, we also consider image pairs having

the same viewing conditions. We can expect some good

results for the situations with only a difference in resolution.

The situation is more complex when the incidence angle

is changed, since the image geometry and the SAR signal

are different. Therefore it can be expected that the number

of associated keypoints will decrease in this case. This

section investigates the variability of this number in different

conditions.

The available sets of images are presented in Table I,

with their characteristics (sensor, incidence angle, resolution,

mode), number of images and size in pixels.

For the images with the same viewing conditions, matches

were computed between every images of the sets a, b and c.

To obtain a situation with a varying resolution, a multilook

has been computed in the azimuth direction for the images of

the set d to obtain a scale factor of two with respect to the

images of the set e. For the case with difference in incidence

angles, the sets a and b are used to study a case with a

difference of incidence of 14◦. Both are also compared with

the set c, but in those cases there is also a difference in

resolution. Five configurations are thus considered.

Ground truth deformation grids have been estimated

manually1 between all considered images. The parameter

t1 is set to 5, except for situations with incidence angle

differences, where it is set to 7. Indeed, due to slant-range

distorsions, building sizes may vary in those cases and a

more loose threshold should be considered. Here both SAR-

SIFT and SIFT algorithms are performed with orientation

assignement.

We first observe the ability of the algorithm to match

corresponding keypoints using the NN step only (Section

II-A4). We want to verify that the algorithm can obtain a

sufficient number of correct matches, without considering the

Distance Ratio step. Table II presents, for each configuration,

the average number of keypoints extracted and correct matches

per image with no thresholding.

Next, the DR threshold (allowing to reject false

correspondances) is varied to produce ROC curves. Using the

same notations as in Section IV-C, the percentage of good

matches #CM
#CMall

is plotted against the percentage of false

1Starting from a registration using the sensor parameters provided by space
agencies, a fine manual registration is computed.

Set Sensor Angle Resolution Mode Number Size

a CSK 48◦ 1m D 4 2048 × 2048

b CSK 34◦ 1m D 2 2097 × 1914

c CSK 43◦ 3m D 6 646 × 550

d TSX 34◦ 2m A 2 1500 × 3000

e TSX 34◦ 1 × 2m A 1 750 × 1500

TABLE I: Available images, their characteristics, number

for each set and size in pixels. TSX is the abbreviation

for TerraSAR-X and CSK for Cosmo-SkyMed R©. D is for

Descending mode and A, for Ascending mode. All images

were acquired on SpotLight mode.

Scale Difference of Number of Number of

factor incidence angle keypoints correct matches

- - 19393 11414

2 - 36934 5199

3 5
◦

50998 2251

3 10
◦

50998 1529

- 14
◦

49011 1144

TABLE II: Average number, per image, of keypoints extracted

and correct matches with the NN method for different config-

urations (scale factor and/or different incidence angles).

matches #FM
#CM+#FM for different values of th, see Figure 14.

As it can be expected, situations with either the same view-

ing conditions or difference in resolution present really good

scores. The NN step allows a high percentage of keypoints

to be correctly matched, respectively 59% and 14%. Among

these correct matches, roughly 80% and 45% respectively can

be obtained with the DR step with only 1% of false alarms.

However, when considering an incidence angle difference,

the scores are really low. Only a small percentage of keypoints

(between 2 and 4%) can be matched with the NN step. Since

the number of extracted keypoints is large enough, a large

amount of them are still correctly matched. But the DR

part of the matching is not efficient enough to filter false

correspondances and it is highly difficult to obtain a sufficient

number of correct matches with a low false alarm rate. It

is interesting to note that the influence of the resolution

difference is very limited, unlike the incidence angle. Indeed

the matching between the sets a and b, with an incidence

angle difference of 14◦ and the same resolution, shows

weaker scores than the matching between the sets b and c,

and a and c, both with a scale factor of 3 and an incidence

angle difference of respectively 9◦ and 5◦.

On images with the same viewing conditions or with only a

resolution difference, image geometry barely varies and SAR-

SIFT achieves a high number of correct keypoints match-

ing (always more than a thousand). However, with different

incidence angles, SAR signal varies and the corresponding

distorsions are not taken into account in the invariances of

SAR-SIFT. The larger the difference is, the greater the image

variations are and the more difficult it is for SAR-SIFT to find

corresponding keypoints.
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Fig. 14: Global ROC curves, computed with the images of

Table I, to assess the number of SAR-SIFT matches with

different acquisition conditions.

B. Filtering of false matches to search a global deformation:

AC-RANSAC

1) Proposed approach: As seen in the previous paragraph,

the filtering part of the keypoints matching (DR step) fails in

situations with differences of incidence angles.

However, for registration purpose and as first approxi-

mation, satellite image pairs may be related by a global

deformation. In multiview contexts and on roughly flat scenes,

this deformation is often modeled by an affine transformation

[37]. SAR images do present local displacements when ac-

quired under different incidence angles. But the global relation

between two SAR images can be described by this model,

provided that they are acquired by the same sensor and in the

same mode.

This a priori information can be helpful to suppress false

correspondences in registration applications. We propose to

use the RANSAC algorithm [38] in order to obtain a high

number of correct matches with a low false alarm rate. This

algorithm can be used to estimate a global deformation

in presence of outliers (false correspondences) and thus to

provide a set of coherent correspondences. We have chosen to

use an a contrario version of RANSAC, called AC-RANSAC

[39] that yields good results even with a very high percentage

of outliers (up to 90%). It also has the advantage to require

only one parameter, the number of iterations imax.

2) Experimental results: AC-RANSAC has been applied

on the correspondences of the images of the fifth situation of

Table II, presenting the largest incidence angle difference. In

order to obtain the highest number of correct matches, the DR

filtering part is not applied. We call simple matches all the

resulting correspondences using the NN step only. However,

to speed up the process, a random selection of matches used to

estimate the deformation is done among the correspondences

with a ratio of distances lower than the threshold value of

th = 0.9. We have chosen imax = 10000 as number of

iterations and affine transformation as global deformation.

Average number of false and true correspondences per

Studied situation Simple matchs AC-RANSAC

Correct matches 2251 1979

False matches 48747 104

TABLE III: Number of correct and false matches before and

after applying AC-RANSAC.

image are presented on Table III, before and after applying

AC-RANSAC.

The use of AC-RANSAC allows to suppress almost all

false matches while keeping 88% of the correct matches. The

percentage of outliers goes from about 95% to 5%. We can

achieve a high number of correct matches with a reasonnable

percentage of false alarms.

C. Application of SAR-SIFT to Registration

As explained in Section V-B, the deformation between

two images acquired by the same sensor and in the same

mode can be approximated by an affine transformation. This

approximation however is only valid for points on the ground.

AC-RANSAC has proven its efficiency to filter a significant

number of false matches for registration purpose and can

also be used to estimate the affine transformation between

two images. We propose here a registration application of the

SAR-SIFT algorithm in situations where the incidence angle

is varying.

1) Proposed approach: To register such images, we need

to estimate the coefficients of the following polynomial trans-

formation:
x2 = a1 + a2 · x1 + a3 · y1
y2 = b1 + b2 · x1 + b3 · y1

(13)

A least-square estimation of the coefficients can be done

using the keypoint matchings between two images. However,

as seen in Section V-A, the algorithm presents low efficiency

in these conditions and we risk to face a significant number

of outliers. As presented in Section V-B, the AC-RANSAC

algorithm can help to model the deformation in presence of

outliers and is efficient to filter false correspondences.

We propose to apply this algorithm on the matches

obtained by the SAR-Harris algorithm between two SAR

images in order to estimate the parameters of Eq. (13). The

same process and parameters values presented in Section

V-B are used. This registration method will be further called

SAR-SIFT + AC-RANSAC.

2) Evaluation: Table IV describes the pair of images used

to assess the precision of the registration. They have the same

resolution but a difference of incidence angle of 14◦. Since

there is no available ground truth, we have manually extracted

30 Ground Control Points (GCP) on the pair of images. These

are then used to realize a manual registration as well as a

measure of the registration accuracy.

Ten of the GCP are selected randomly to evaluate the

parameters of Eq. (13) and obtain a manual registration.

The twenty other points are used to measure the accuracy
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Sensor Angle Resolution Mode Size

Cosmo-Skymed R© 48
◦

1m Descendant 2048 × 2048

Cosmo-Skymed R© 34
◦

1m Descendant 2048 × 2048

TABLE IV: Pair of images used to evaluate the precision of

the registration performed by SAR-Harris + AC-RANSAC.

Images are acquired on the area of Toulouse, France.

Registration Manual SAR-SIFT

method registration + AC-RANSAC

RMSE (in pixel) 2.46 2.03

TABLE V: Accuracy of the two registration methods for the

images of Table IV.

of the two registration methods, the one using SAR-SIFT +

AC-RANSAC and the previous manual one, by computing

root mean square errors (RMSE). This process is repeated

10000 times and averaged RMSE are presented in Table V.

Superposition of the two registered image by the SAR-SIFT

+ AC-RANSAC method is presented Figure 15.

The automatic method, SAR-SIFT + AC-RANSAC,

presents a good registration accuracy, comparable to the man-

ual method. Considering that extracting GCP is time consum-

ing and subject to errors, this new method is an interesting way

to automatically register SAR images with different types of

acquisition.

D. Change detection application: preliminary results

Another possible application of SAR-SIFT would be change

detection. Such applications are often subject to misregistra-

tion errors and the use of feature-based approaches allows to

avoid a pre-registration step.

As a preliminary result, we match an image pair presenting

some changes (Figure 16). One image has been acquired in

Fig. 15: Superposition of the two registered images (angular

difference of 14◦) of Table IV with the SAR-SIFT + AC-

RANSAC method. The master image is in red and the slave

one in blue.

(a) Image from 2007

(b) Image from 2008

Fig. 16: Extracts of TerraSAR-X images with 34◦ of incidence

angle and 2m resolution, from the area of Toulouse, France.

2007 and the other in 2008, see Figure 16. The obtained

correspondances are then filtered with the AC-RANSAC al-

gorithm. In area with changes, we suppose that keypoints

are detected but not matched. In order to test this hypothesis

the following experiment is conducted: Every keypoint at a

distance lower than 40 pixels of a match is thus disgarded.

Remaining keypoints from the 2007 image are displayed on

Figure 17.

We observe that remaining points are present on the two

main sites with changes, and that a few errors occur. Smaller

changes are not detected, but the used algorithm is very simple

and the tolerant threshold of 40 pixels is high.

From this preliminary experiment, we think that the SAR-

SIFT algorithm can be considered for change detection appli-

cations. A more sophisticated algorithm should be developped,

using keypoints density for example.

VI. CONCLUSION

This article presents a new SIFT-like descriptor adapted to

SAR images. It relies on a new gradient computation adapted
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Fig. 17: The 2007 image is displayed with all keypoints that

are at a distance of at least 40 pixels from a match between

the 2007 and 2008 images.

to SAR images and robust to speckle noise. This new gradient

computation method, Gradient by Ratio (GR), is then used

to improve steps of the SIFT algorithm. A new keypoint

detection method based on multi-scale Harris detector offers

stable keypoints. Robust gradient orientations provided by GR

enables to obtain a more efficient descriptor for SAR images

than the original SIFT one.

By applying an a contrario RANSAC, a consistent number

of correct matches can be achieved, allowing the use of

this new SIFT-like algorithm for diverse applications. In this

article, an efficient registration application of SAR images

is presented for difficult situations, such as incidence angle

changes. Other applications like change detection or object

matching will be the subject of further work.
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