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Abstract. As it is often the case in public-key cryptography, the first practical
identification schemes were based on hard problems from number theory (factoring,
discrete logarithms). The security of the proposed scheme depends on an NP-
complete problem from the theory of error correcting codes: the syndrome decoding
problem which relies on the hardness of decoding a binary word of given weight and
given syndrome. Starting from Stern's scheme [18], we define a dual version which,
unlike the other schemes based on the SD problem, uses a generator matrix of
a random linear binary code. This allows, among other things, an improvement of
the transmission rate with regards to the other schemes. Finally, by using techniques
of computation in a finite field, we show how it is possible to considerably reduce:

— the complexity of the computations done by the prover (which is usually a portable
device with a limited computing power),

— the size of the data stored by the latter.

Keywords: Identification scheme, NP-complete problem, SD problem, Zero-
knowledge.

1. Introduction

An identification scheme is a cryptographic protocol which enables party A (called
the "prover") to prove his identity polynomially many times to party B (called the
"verifier") without enabling B to misrepresent himself as A to someone else.

From a theoretical point of view, this can be done by using a zero-knowledge
interactive proof system. This type of interactive proofs was introduced in 1985 by S.
Goldwasser, S. Micali and C. Rackoff [11]. In 1986, A. Fiat and A. Shamir have
demonstrated the practical significance of such proofs so as to establish user
identities and to digitally sign messages [7].

From a practical point of view (for example a smart card application), the prover
can be identified to a smart card and the verifier to the organization receiving this
card. Thus, it is supposed that the prover has a reduced computational power and
a little amount of memory. These constraints do not apply to the verifier.
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The first (practical) zero-knowledge identification schemes were based on hard
problems from number theory (factoring, discrete logarithm) and relied on arithme-
tic operations on large numbers.

Since 1988, some new schemes, which use simple operations and whose security
depends on an NP-complete problem, have been proposed (see [9, 12, 15, 16, 18,
19] ).

Among all these schemes, three of them [9, 12, 18] rely on an NP-complete
problem from error correcting codes: the one of Syndrome Decoding ("SD" problem
[3]).
Name: SD

Input: H(k, n) a parity check matrix of a binary [n, k] code, i a syndrome, p an
integer.
Question: Is there a vector e of length n such that He = i and w(e) < p?

Remark. e` denotes the transpose of the vector e and w(e) its Hamming weight.
As mentioned in [3], the SD problem, stated in terms of generator matrix is also

NP-complete since one can go from the parity-check to the generator matrix (or
vice-versa) in polynomial time. Thus the decision problem of the SD problem
becomes:
Name: G-SD
Input: G(k, n) a generator matrix of a binary [n, k] code', x a binary vector of length
n and p an integer.
Question: Is there a vector e of length n and weight p such that x + en %?

Thus the problem is to know if there exists (m, e) such that x = mG + e where e is
a word of weight p. The identification schemes proposed by M. Girault, S. Harari
and J. Stern use a parity check matrix of a random linear binary code, which is
common to all users. Like Niederreiter did with McEliece's cryptosystem, we define,
in this paper, the dual version of Stern's scheme by using the generator matrix
of a random linear binary code. In this way, we obtain a zero-knowledge scheme
which, among all the schemes based on the SD problem, has the smallest trans-
mission rate.

In the last two sections, we study optimal parameters and we propose a variant
of the scheme so as to:

— reduce the complexity of the computation done by the prover,
— lower the size of the matrix stored by the prover.

These two constraints are to be taken into account if the protocol is to be
implemented in a smart card (or at least the part of the scheme concerning the
prover).

2. The Identification Scheme

The principle of the protocol is the following: Alice (the prover) knows the solution
of an NP-complete problem for a given data s (its secret). Bob (the verifier) asks Alice
a series of questions. If Alice really knows s, she can answer all the questions
correctly. If she does not, she has a probability q of answering correctly. After
r successful iterations of the protocol, Bob will be convinced that Alice knows s with
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probability 1 — q'. Furthermore, none of the questions or answers gives Bob any
information about Alice's secret (only about her knowledge of it).

In what follows small letters will be used for vectors and capital letters for
matrices. Sometimes the term "word" will be used instead of "vector". All operations
are computed over F 2 .

Notations.
— Let a be a permutation over {1,...,  n} and y be a vector of length n, then y r is

defined as the vector z such that z^ = Y ( J) for 1 <j < n,
— Let x be a binary vector of length n, w(x) is the weight of x, i.e. the number of bits of

x whose value is 1,
— <x> denotes the action of a collision-free hash function on the string x,

A vector is considered as a matrix with one row,
M` (resp. y`) denotes the transpose of the matrix M (resp. of the word y). We also
introduce some notations given in [8]:
A represents the real prover who follows its designated protocol,

— A represents a probabilistic polynomial time cheater,
— A represents either A or A,
— B represents the real verifier who follows its designated protocol,

B represents an arbitrary_ polynomial time program which tries to extract addi-
tional information from A,

— (X, Y) represents the execution of the two party protocols in which X is the prover
and Y is the verifier,

— (X, Y) [I] denotes the state of the polynomial-time probabilistic Turing machine
Y  at the end of the execution of the protocol when X and Y  share a public data I.
This state is equal to:
"success" if A satisfies the protocol,
"failure" otherwise.

The scheme uses a random binary matrix G(k, n) common to all users. It can be
considered as the generator matrix of a random linear binary code. Without loss of
generality, we can assume that G is given under the form G = (], I M) where M is
a random k x (n — k) matrix, since it is well known that a Gaussian elimination
doesn't change the code generated by G. The context is as follows:

Common Public Data : G(k, n) a binary matrix of rank k,
a hash function denoted by <S>,

Prover's Secret Data : m a binary vector of length k, e a binary vector
of length n,

Prover's Public Data : x = mG + e and p = a^(e).

Remarks.
— The pair (x, p) is the public identification of the prover,
— The prover's data can be computed by a certification center having the confidence

of all users or the prover can choose his secret keys and the center certifies the
corresponding public keys.

Suppose that A wants to prove his identity to B. The protocol includes r rounds,
each of these being performed as follows:

• A randomly computes:
— a binary vector u of length k,
— a random permutation a of the set {1,..., n},
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and sends to B three commitments:

c i = <a >, c 2 = < (u + m)Ga >, c 3 = <(uG + x)6

• B sends a random element b of {0, 1, 2}.
• Ifbis0,

— A discloses u + m and a,
— B checks the validity of c i and cz (since G and < • > are public).

• Ifbis1,
— A discloses (u + m)Ga and ea,
— B checks the validity of c 2 and c 3 and that w(ea) = p(< • > is public and since

x = mG + e, then (u + m)Ga + ea = (uG + x)6).
• If b is 2,

— A discloses a and u,
— B checks the validity of c l and c3 (since <>, G and x are public).

3. Properties of the Scheme

Let I = { G, x, p} be the public data shared by A and B and let P(1, s) be the following
predicate:

P(I, s) = "s is a pair (m, e) which satisfies x = mG + e, w(e) = p; G, x, p e I" then

Proposition 3.1. The protocol is an interactive proof of knowledge for P(I, s).

Proof.

Completeness: It is obvious that each prover which knows a valid pair (m, e) for the
public data I can answer correctly any of B's queries. Thus

Pr((A, B)[I] = "success") = 1.

Soundness:

Lemma 3.2. If B accepts A  proof with probability >_ (3)' + E, then there exists
a polynomial time probabilistic machine M which, with overwhelming probability,
either computes a valid secret pair (m, e) or finds a collision for the hash function.

Proof. Let T be the execution tree of (A, B) corresponding to all possible questions
of the verifier when the adversary has a random tape RA. B may ask 3 possible
questions at each stage. First we are going to show that, unless a hash collision has
been found, a secret key (m, e) can be computed from a vertex with 3 sons. Then we
will show that a polynomial time M can find such a vertex in T with overwhelming
probability.

Let V be a vertex with 3 sons. This corresponds to a situation where 3 commit-
ments c 1 , c2 , c 3 have been made and where the three queries were properly answered.
Let u' + m' and a' be the answers to the query b = 0; y" and e" be the answers to the
query b = 1, and u", a" be the answers to the query b = 2. We have

<a' > = c1= <a„ >
w(e )= p

<(u' + m')GQ > = c2 = <Y "
<y" + e"> = c3 = <(u

,,, G + x)v"
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Thus, either a collision for the hash function has been found, or else

x =(u'+m'+u")G+e"a -1 ,

where e"o' -1 is a word of length n and weight p. Therefore, the pair
(u' + m' + u", a"a' -1 ) is a valid secret key and can be used in order to impersonate A.

Now, the assumption implies that the probability for T to have a vertex with
3 sons is at least s. Indeed, let us consider RA as a set of u elements, where
A randomly picks its values, and let Q be the set {0, 1, 2}. These two sets are
considered as probability spaces both of them with the uniform distribution.

A pair (c, b) e(RA x Q)r represents the commitments, queries and answers ex-
changed between A and B during an identification process. We will say that (c, b) is
a "valid" pair, if the execution of (A , B) leads to the success state.

Let V be the subset of (RA x Q)' composed of all the valid pairs. The hypothesis
of the lemma means that:

card(V) >^^'+:.
card((RA x Q)) — 3

Let .f2r be a subset of RA such that:
- If c E Qr , then 2' + 1 < card fb, (c, b) be valid} < 3r,
- If c E RA'\Slr, then 0 < card {b, (c, b) be valid} <2r.
Then, V = {valid (c, b), cc fir ) u {valid (c, b), c e RA'\Slr }, therefore:

card(V) < card(Slr)3' + (µ' — card(.2r ))2'
Thus

card(V) card(Slr)r cardcard(Q)
card((RA x Q)') card(RA') + 2 

3
_ r

 — card((RA x Q)')

card(Qr) + 7 21' .

card(RA') 3 J
It follows that:

card(Q)
card(RA') -

This shows that the probability that an intruder might answer to (at least) 2' + 1 of
the verifier's queries, by choosing random values, is greater than e. Now, if more than
2' + 1 queries are bypassed by an intruder then T(RA) has at least 2' + 1 leaves, i.e.
T(RA) has at least a vertex with 3 sons.

So, by resetting A! times, and by repeating again, it is possible to find an

execution tree with a vertex with 3 sons with probability arbitrary close to one. 

The first conclusion of this lemma implies that <•> is not collision free and the
second conclusion contradicts the intractability, in polynomial time, of the G-SD
problem. It follows that:

Pr((A, B)[I] = "success") <_(2)
r.

Let us denote by RA , B the concatenation of all the bits exchanged between A and
B during an identification process. We will say that R A , B is the communication tape of
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(A , B). Because of the probabilistic nature of interactive protocols, a probability
distribution is defined on R A , B . We can state the following result:

Proposition 3.3. The protocol is a zero-knowledge interactive proof for P(I, s) in the
random oracle model.

Proof. Let us denote by x  y the concatenation of the binary strings x and y. So as
to mimic a dishonest verifier, we have to assume that he will devise a peculiar
strategy with regards to the commitments sent by the prover. Let St(c l , c 2 , c 3 ) be
such a strategy. We have St(c 1 , c 2 , c 3 )e {0, 1, 2}. Let us consider:

,/, k k
m• ^2 —^ 02

uHu +m
/,.Fk--+ Fn
Y'' 2 2

uHuG

m is an automorphism of F and if W is the code generated by G, then /i is an
isomorphism of Pz onto (6.

Here is the polynomial-time probabilistic Turing machine M which produces
a communication tape whose probability distribution is indistinguishable from the
probability distribution of a communication tape coming from a fair identification
process.
1. M randomly picks a query, b of {O, 1, 2},

- If b = 0, M chooses:
y a random element of l2,
a any permutation of 11 ' ... , n},

and computes c l = <a) and c 2 = < yGa> and substitutes c 3 by a random string.
Let H = c 1  c 2  c 3 and Ans = y  a. It is obvious that y and u + m have the
same probability distribution. Indeed, let z be any element of I2, since u is
a random element of OZ, then:

Pr(u + m = z) = Pr(u = (,^, 1 (z))

1
2k

= Pr(y = z).

- If b = 1, M chooses:
y any element of the code le,
e' any element of l of weight p,
a any permutation of {1,.. . , n},

and computes c2 = <ya> and c3 = <(y + e')a> and substitutes c l by a random
string. Let H = c 1  c 2  c 3 and Ans = ya  e'a • e'a has the same probability
distribution than ea, moreover let z be any codeword of %, then

Pr((u + m)G = z) = Pr(u = q5m 1(/,-1(z)))

= 2k—n

= Pr(y = z),

thus (u + m)G is uniformly distributed among codewords of 16 and can be
replaced by y.
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— If b = 2, M chooses:
• y any element of I?,
• a any permutation of {1.....n},

and computes c l = <a> and c 3 = <(yG + x)a> and substitutes c 2 by a random
string. Let H = c l  c 2  c 3 and Ans = y  a.

2. M computes b' = St(H),
3. If b' = b, then M writes on the tape -P, the quantities H, b and Ans, otherwise

M goes back to step 1.
Thus, in 3r rounds on average, M produces a communication tape , indistin-

guishable from a communication tape JPAB coming from a fair identification process
executed in r rounds. 
Remark. The Random Oracle model [1] allows to assume that the hash function
has specific statistical independence properties.

4. Security of the Scheme

Security of the scheme is linked to the parameters n, k, p and r. Two kinds of attack
are to be considered:

• Let H be a parity check matrix of the code defined by G. In order to impersonate
A, an intruder has to be able to compute a word e' of weight p whose image under
H is Hx` (this is the SD problem). Indeed, in this case H(x + e')` = 0, thus x + e' is
a codeword of the code defined by G, i.e. x + e' = m'G. Then the new pair (m', e') is
a valid secret key. The search for e' is an NP-hard problem and is equivalent to the
search for a word of weight p + 1 (whose last bit is 1) in the code defined by the
following parity check matrix:

(H I Hx`)

• Let G' be the matrix defined by

G'=(
G)

Then e belongs to the code 16' defined by G'. Thus, the search fore is equivalent to the
search for a codeword of weight p in the code 6'.

Therefore, these two attacks boil down to the search for a word of given weight in
a particular linear binary code. For some parameters, probabilistic algorithms of A .
Canteaut & H. Chabanne [5], J. S. Leon [13] and of J. Stern [17] can find a solution
to this problem. These algorithms can easily find words of small weight even in very
large code. Their efficiency is largely detailed in [6].

In the general case, the search for a word of weight p in a random binary code
becomes very complex when p is close to the Varshamov Gilbert bound. This bound
gives a theoretical estimate of the minimal distanced of a random linear binary code.
For

n=512, k=256, p=56

the workfactor of the different algorithms is about 2'° . This size guarantees the
security of the scheme.

However, according to the previous section, the probability of success of an
intruder is bounded by (3)'. Indeed, without knowing the secret pair (m, e), various
strategies can be used in order to impersonate A:
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• Randomly choose u and a and replace m by some arbitrary vector m'. In this case,
the false prover hopes that b is 0 or 2,

• Randomly choose u and a and replace x by x' = m'G + e' where m' is a random
vector of length k and e' is a random vector of length n and weight p. In this case,
the false prover hopes that b is 0 or 1,

• Randomly choose u and a and compute (uG + x). Then, compute y' and e' such
that (uG + x) = y' + e' and co(e') = p. Replace (u + m)G by y', and e by e'. In this
case, the false prover hopes that b is 1 or 2.

Thus minimal parameters which guarantee the security of the scheme are

n=512,  k=256, p=56  and r=35.

The complexity of the various attacks is then, at least 2 7° and the probability of
success of the different frauds is about 10 -6 .

5. Performances of the Scheme

Let us recall that all operations are done over the two-element field {0, 1 }. That is to
say that all operations are performed over bits. An addition between two bits is
a logical "xor" and a multiplication is a logical "and".

If n = (9(k), the complexity of the computations done by the verifier and the
prover is quadratic ((9(rk 2)) as in Stern's scheme. The complexity of Harari's scheme
and Girault's scheme is cubic (0(rk 3)).

The scheme is "flexible", that is, if there was a successful approach to solve the SD
problem for the suggested parameters, the algorithm could be altered to use, say,
n=1024, k=512andp=110.

Operations to perform are very simple and can be implemented in hardware in
a quite efficient way. Moreover all the tricks proposed for the implementation of
Stern's scheme (see [18]) can be applied to our scheme.

The only "complex" operation, that has to be done by the prover, is the
computation of uG. In the next section, new parameters are given so as to lower the
complexity of this computation and reduce the transmission rate of the scheme.

To show the efficiency of the scheme, we have compared it with the schemes of M.
Girault, S. Harari and of J. Stern. Comparisons have been made without using none
of the tricks suggested by the authors. For the length and the kind of hash function
which are used in the different schemes, the reader can refer to [10]. Conventions
taken are the following:

- Chosen parameters are minimal parameters which guarantee the security of the
scheme (n = 2000, k = 1000 for Harari's scheme, n = 512, k = 256, p = 56 for
Girault's scheme, Stern's scheme and for our scheme),

- the hash values are 128 bits long,
- a permutation comes from a seed of 120 bits via a pseudo random generator.
Results are given in Table 1.
Remark. "ZK" means that it has been proved formally that the scheme is an
interactive zero-knowledge proof system while "IP" means that it has only been
proved that the scheme is an interactive proof system.

The proposed scheme has the smallest transmission rate. In the next section we
propose new parameters so as to reduce the latter more and so as to lower the size of
the data stored by the prover.
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Table 1. Comparison of the SD schemes

Stern's scheme Harari's scheme Girault's scheme Our scheme

Rounds 35 1 20 35
No. of bits sent by round a- 1146 — ^ 164412 976
Global transmission rate 40133 bits 204200 bits ^ 3288240 bits c 34160bits
Properties ZK — IP ZK

6. Reduction of the Size of the Data and of the Transmission Rate
(Optimal Parameters)

Contrary to the scheme proposed in [9, 12, 18], it is enough to lower the dimension
of the matrix G in order to reduce the transmission rate of the scheme. Thus, for
n = 512, we have searched the minimal value of k for which

S2(n, k, p) > 260,

where p is the theoretical minimal distance of a binary linear [n, k] code and
.fl(n, k, p) denotes the workfactor of the probabilistic algorithms mentioned in
section 4. Notice that this workfactor may not be considered as unacceptable, if the
protocol is to be implemented (for example) on a bounded-life smart card. We have
found the following (minimal) parameters:

n =512, k =120, p=114.

For such parameters, the first attack (cf. section 4) consists in finding a word of
weight 115 in a (513, 121)-code. The second attack consists in finding a word of
weight 114 in a (512, 121)-code. The workfactor for these attacks is greater than 260
[6].

Notice, that the reduction of the dimension of the matrix implies a slight decrease
in the computation complexity of uG. Moreover, the non-systematic part of the
matrix G (which must be stored by the prover) is made up now of 47040 bits instead
of 65536 bits.

Table 2 sums up the performances of the new scheme. We have compared it with
Stern's scheme since, among the schemes based on SD problem, the latter has the
smallest computation complexity and the smallest transmission rate. Convention
taken are the same as the one taken for table 1. We have studied:
— the complexity of the computations (additions, multiplications over bits) done by

the prover,
— the transmission rate between the prover and the verifier,
— the size of the matrix stored by the prover.
Of course, the matrices being of the form (I, I M), only M is stored.

Notice that it is useless in Stern's scheme to choose a (120, 512) matrix since the
transmission rate depends on the length of the code (i.e. the number of columns of
the public matrix) and not on its dimension.

As compared to Stern's scheme, the improved scheme saves about 25% of the
transmitted bits. One way to obtain such a gain in Stern's scheme is to use a public
matrix which has at most 320 columns and more than 60 rows. For such parameters,
the probabilistic algorithms mentioned in section 4 are quite efficient. As an
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Table 2. Improved scheme

Stern's scheme Our scheme Improved scheme

Rounds 35 35 35
No. of bits sent by round 1146 ^ 976 ^ 885
Global transmission rate ±40133 bits ^_, 34160 bits ^ 30986 bits
Size of the matrix 65536 bits 65536 bits 47040 bits
Prover' s Workfactor 21222.13 ,_, 222.5 ,_, 222

Properties ZK ZK ZK

Table 3. Transmission rate of other
schemes

PKP ^ 17760 bits
CLE X 29400 bits
PPP ^ 58448 bits

example, for n = 320 and k = 160, p is about 35 and the workfactor of an attack is
about 246 .

For information, table 3 gives the transmission rate of the three-pass version of
the schemes based on another NP-complete problem (except for PKP scheme which
has only a five-pass version):
- the Permuted Kernel Problem [16],
- the Constraint Linear Equation problem [19],
- the Permuted Perceptron Problem [15].
Remark. For these three schemes computations are done over bytes, not over bits.

We now propose a variant which considerably reduces:

- the size of the data stored by the prover,
- the computation complexity of the latter.

7. A Variant Using Computations in D 2 k

As previously mentioned, the most "complex" operation, which must be done by the
prover, is the computation of uG. For the initial parameters, this operation needs
about 2 1 ' logical operations over bits. The proposed variant is only valid when kin
and will not work for all k [20]. As an example, it is supposed that n is equal to 2k.

Let /i = {/l , ... , f3} be a basis of 0 2k and let x = ^k=1 x1/3 be an arbitrary element
of F2k. In what follows, we will often identify the element x with the vector (x 1 ,. . . , xk)
which belongs to P. From now on, it is supposed that 11 2k is generated by the
polynomial z" + zi + 1, when, of course, such a polynomial is irreducible [2, 20].
Proposition 7.1. Let _ { 1, a, ... , a" -1 } be a basis of D Zk, a being a root of an
irreducible polynomial of degree k. Let y = ^k- 1 yif3i be a fixed element of l2k and

'`be an arbitrary element of The productP=^P^^^ Y f 2 P py needs at most
k(co,(y) - 1) + k - 1 additions between bits [2, 14], where cW p (y) denotes the Hamming
weight of (yr,... k)•
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Notice that since l z k is isomorphic to F, we can write that

PY  = (P 1,... , Pk) [Y ]s

where

Yfli

Yfl
is a k x k binary matrix, yfl 1 being the binary image of yf i . We will say that [y] s is the
f3-product matrix of y.

Now, if k is fixed, the computation of py depends essentially on W (y). Thus, the
main idea is to replace the matrix G by the fl-product matrix of two arbitrary
elements y l and y 2 such that co p(y 1 ) and w(y2) be small. Thus the public matrix G is
replaced by the following (k, 2k) matrix:

([Yi],9, [Y2]#)•

The protocol is still the same, but the computation of uG (resp. of (u + m)G6) is
replaced by the computation of (uy i , uy 2) (resp. of ((u + m)y i , (u + m)y 2)6) where the
binary vectors u and m are considered as elements of l 2 k. This can be easily done in
parallel by four shift registers of size k. Moreover in order to compute these
quantities the prover does not need to store the whole matrix G, he only needs to
store y l and Y 2 or, better still, since these values are fixed it is possible to compute
the two products with Berlekamp's algorithm [4] by using dual trace basis. Last
but not least, the computation of uG (resp. of (u + m)Ga) needs at most
k(co,q (y 1) + w p (yz )) — 2 additions.

Now, for k equal to 255 there exists irreducible polynomials of the form
z255 + z' + 1. Thus, for

n =510, k=255, p=56, r =35, w(y 1 )=w(y 2)=80

the computation of uG needs about 2153 logical operations and we get, for an
identification process, the following results:
— Size of the matrix stored by the prover: 510 bits,
— Complexity computation for the prover: <2208 ,
— Global transmission rate: 34090 bits.

We obtain, this way, a computation complexity which is, at least, 4 times smaller
than the one of the other schemes based on the SD problem and a storage capacity
which is at least 128 times smaller.

Thus, if the intractability assumption of the SD problem stays for this kind of
matrix G, then we have an identification scheme which, among all the other schemes
based on this problem, has:

— the smallest transmission rate,
— the smallest computation complexity,
— the smallest storage capacity needed by the prover.

Of course, the structure of the matrix G opens up new strategies of cryptanalysis.
We point out here a possible attack.

We have x = mG + e = (my, + e l , mY 2 + e2 ), where e l and e2 are two vectors of
length k, and e = (e l , e2 ). Let l et be the biggest subfield of F 2k then, if me F 2, and
TrF2k_ FZ'(ej = 0, the secret key (m, e) can be found. Indeed, let us recall that Y1'72 and
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x are public data, thus it is possible to compute

Trrzk. FZ' (my l + e1) = mTrl^zk:F (Y L )•

From this, we can find back m, and then we compute e = x + mG. The same attack
can be done if me 0z, and TrF2k. rZ,(e2 ) = 0.

For k = 255, we have ( = 85. So as to avoid this attack it is enough to choose
me F2k\02e which gives 2255 — 2 85 possible choices for m.

7.1. Open Problem In fact, as pointed out by J. Stern, the underlying problem to
solve for this kind of matrix G is the following:

Let y l , Y 2 and z be three public elements of F 2k. Find e l and e2 two elements of D 2 i
such that

J Y1e2 + Y2e1 =z

ws(ei) + cop(e2 ) = p•
Indeed, since x is public and is equal to (my 1 + e 1 , my 2 + e2 ), we obtain that:

Y2(mY1 + e1) + Y1(mY2 + e2)
 = Yiez + Yaei

z

We welcome attacks and suggestions from readers in order to solve such a system.

8. Conclusion

We have defined an identification scheme which among all the schemes based on the
SD problem has, in its initial form, the smallest transmission rate. Moreover, we
have proposed a variant so as to reduce the complexity computation of the prover
and the size of the data stored by the latter.
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