
HAL Id: hal-00724622
https://hal.science/hal-00724622v1

Submitted on 22 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Fixed Priority Scheduling Problem for Energy
Harvesting Real-Time Systems

Younès Chandarli, Yasmina Abdeddaïm, Damien Masson

To cite this version:
Younès Chandarli, Yasmina Abdeddaïm, Damien Masson. The Fixed Priority Scheduling Problem
for Energy Harvesting Real-Time Systems. RTCSA 2012 WiP, Aug 2012, South Korea. pp.415–418.
�hal-00724622�

https://hal.science/hal-00724622v1
https://hal.archives-ouvertes.fr


The Fixed Priority Scheduling Problem for Energy

Harvesting Real-Time Systems

Younès Chandarli∗†, Yasmina Abdeddaïm∗, and Damien Masson∗

Université Paris-Est, LIGM UMR CNRS 8049,
∗ESIEE Paris, 2 bld Blaise Pascal, BP 99, 93162 Noisy-le-Grand CEDEX, France

†Université Paris-Est Marne-la-vallée, 5 bld Descartes, 77454 Marne-la-Vallée Cedex 2, France

Abstract—Energy harvesting is the process of generating elec-
trical energy from environmental sources such as solar panels.
In recent years, this term has been frequently applied in the
context of small autonomous devices such as wireless sensor
nodes. The classical scheduling theory is insufficient for this kind
of systems and new scheduling problems arise in this context.
Until now, the research on this area focused in trying to improve
the efficiency of existing algorithms. Our approach is to complete
these efforts by a feasibility theory allowing us to understand
why classical optimal algorithms are not efficient anymore with
energy constraints.

In this paper, we try to establish a schedulability test for a fixed
priority real-time scheduling problem with energy constraints.
We first introduce the problem and describe the model. Then, to
illustrate the difficulty of the problem, we focus on a preemptive
fixed priority scheduling policy where all the executions are
postponed as long as possible. This policy lets the harvester the
maximal amount of time to refill the battery. We call this policy
PFPALAP for As Late As Possible. We try to define sufficient
and/or necessary schedulability conditions and discuss its poten-
tial optimality under some additional assumptions. Then, through
simple counter examples, we show that intuitive assumptions are
wrong for this scheduling problem, making it very interesting to
study.

I. INTRODUCTION AND RELATED WORK

The first work addressing the scheduling problem for energy

harvesting systems was the one of Mossé [1]. The problem

was solved under a very restrictive task model: the frame

based model where all the tasks have exactly the same period

and implicit deadline. Then Moser et al. studied a very

similar problem [2]. They proposed an optimal algorithm

called LSA but in their hypotheses, the CPU frequency can

be changed to adjust the Worst Case Execution Time (WCET)

of the tasks depending on their energy consumption. Then

the results of this work rely on a strong hypothesis: tasks

energy consumption is directly linked to their WCET. Recent

work shows that this hypothesis is not realistic [3]. Finally,

the problem was addressed by Chetto et al. in [4], [5]. A

clairvoyant algorithm and several non clairvoyant heuristics

was proposed. This clairvoyant algorithm relies on a meta

policy: as long as the system can perform without energy

failure, a standard policy such as EDF is used. Then, as soon

as a future energy issue is detected, i.e E < 0, the system is

paused as long as possible or until the energy storage unit is

full. The notion of slack time [6] is extended to the notion

of slack energy. An algorithm to compute slack energy under

EDF is provided.

Energy Sources

Real−time Tasks

Processors Bluetooth ...

Energy Storage

Pr(t)

Emax

E(t)

Figure 1. Energy Harvesting Embedded System Model

However, as most embedded systems only use fixed priority,

we are interested in extending and completing existing works

for fixed priority scheduling.

The remaining of the paper is organized as follow, we

present the model in Section II, then we describe the

PFPALAP algorithm and we discuss about its worst case

scenario, its study period and we try to build a schedulability

condition based on PFPALAP in Section III. Section IV

presents the problem of finding the minimal battery size that

permits to schedule a system. Finally we conclude in Section

V.

II. MODEL

A. Target application description

We consider an embedded system connected to an energy

harvesting device. An energy harvesting device is a system

that collects energy from its environment. The energy is stored

in an energy storage unit. We suppose that we can know or

bound the energy quantity that arrives in the storage unit, and

for each task the energy that it consumes in the worst case.

Figure 1 illustrates this description.

B. Formal description

We consider a real-time system in a renewable energy

environment defined by a set of n periodic and independent

tasks. Each task τi is characterized by its priority Pi, its worst

case execution time Ci, its period Ti, its deadline Di and its

worst case energy consumption Ei. The execution time Ci and



the energy consumption Ei of a task are fully independent. A

task τi releases an infinite number of jobs separated by Ti

time unit and each job must execute during Ci and consume

Ei energy unit. Deadlines are constrained or implicit. The

system is powered by a battery or a capacitor recharged from

a renewable energy source like a solar panel. The energy is

replenished continuously even during the execution of tasks

and the energy level of the battery fluctuate between two

thresholds Emax and Emin. We note Pr(t) the charging

function and for the sake of simplicity we consider that Pr(t)
is a linear function. We define the processor utilization of τi
as Ui = Ci/Ti and its energy utilization as

Uei =
Ci∫ t+Ti

t
Pr(t) dt

The total utilization of the system is the sum of all the tasks

utilization; i.e U =
∑n

1 Ui and Ue =
∑n

1 Uei .

III. PFPALAP SCHEDULING ALGORITHM

PFPALAP is a fixed-priority scheduling policy that delays

the jobs executions as long as possible, i.e, as long as the

slack time remains positive. We are interested in studying this

policy since this algorithm is simple and seems optimal when

Emax is not bounded. It lets the maximal time interval for the

battery replenishment before the execution of a task. If this

algorithm is proved to be optimal it can be used to build a

feasibility test. Unfortunately, we will show a counter example

that invalidates this claim. To do that, we must first find the

worst case scenario that the task set can suffer, then we have

to calculate the length of the study period necessary to decide

the task set feasibility. In the following sections, we present

without proof an intuitive worst case scenario, a study period

and a feasibility condition based on PFPALAP .

A. PFPALAP worst case scenario

For the classical work conserving fixed priority algorithm,

which we denote PFPASAP by opposition to PFPALAP , the

worst case activation scenario corresponds to the synchronous

activation of all tasks [7]. In this situation the processor gets a

maximum of workload that takes a maximum time to execute.

So, the resulting busy period is the longest possible one.

The lowest priority tasks suffer their longest delay in this

situation, this is why it is said the worst case scenario. In

the same scenario, PFPALAP undergoes the same workload

and behaves the same way as PFPASAP but further delays

jobs as long as slack-time is available. So without energy

constraints, the worst case scenario of this algorithm is the

same as PFPASAP . By combining E0 = Emin with this

scenario we get a scenario which can be the worst one for

PFPALAP . Indeed, at this moment the CPU load and energy

demand are maximized and the battery level is minimized.

A different situation is necessarily not as worse because in

the case of an asynchronous activation, we should have more

slack-time to recharge and less CPU workload and if more

energy than Emin is available, the system is less energy

constrained. These arguments are persuasive but not conclusive

and we do not have any formal proof until now.

B. PFPALAP Study period

Without energy constraints, the study period of a task set

with constrained or implicit deadlines is the processor busy

period in the worst case scenario. For PFPASAP scheduling,

this period is the response time of the first job of the lowest

priority task [7]. Following the same logic, the study period

of PFPALAP algorithm is defined as the period when there is

pending work. It starts from the critical instant (synchronous

activation) and ends when all CPU demand is processed, that is

later than the effective deadline of the lowest priority task. The

first instance may be sufficient to study the schedulability of

a system because firstly, all tasks have constrained or implicit

deadlines, i.e there is no interference between two successive

tasks. Secondly, the next activation period is at least equal

or better than a synchronous activation and energy level is

E ≥ Emin. This seems reasonable but it is wrong as illustrated

in Figure 2. In this counter-example we can see that despite

the system described in Table I successes during the lower

priority task’s response time (time 32), it fails one instance

later when the energy level is insufficient to satisfy the energy

demand at time 70. To be sure that we will encounter all

possible scenarios we must study a longer period bounded by

the hyper period. This gives us the possibility to study all

possible scenarios. So, the problem of finding a shorter study

period is still open.

C. Optimality ?

The aim of our work is to build an energy-aware schedula-

bility test for PFPALAP that can decide if a given task set is

timely and energetically feasible or not, i.e to check if all tasks

respect their deadlines while the battery level remains between

Emax and Emin. We begin with setting an assumption for

simplicity: we consider initially the battery to be infinite and

not bounded, i.e Emax = ∞, then we relax this hypothesis by

fixing a bound for the smallest battery capacity necessary to

keep the system feasible.

A schedulability test is the study of tasks execution accord-

ing to a scheduling policy during a study period that starts at

the critical instant in the worst case energy scenario. In this

period we have to test if there is no deadline miss nor energy

constraints violation. In our case, the algorithm is PFPALAP ,

the study period is the hyper period and the worst case scenario

is the simultaneous activation at the lowest possible battery

level i.e the initial energy level E0 = Emin as previously

mentioned. Now it remains to check if all jobs meet their

deadlines during the study period, and if the energy recharged

during an idle-period is sufficient to meet the energy demand

of the busy-period that follows. If the execution satisfies

these conditions along the study period, the system is feasible

because the periods that follow are at least better or equal

to the starting one and the system can execute continuously

without constraints violation. To make such verification, we

must first calculate the start dates and the length of idle and

busy periods and the energy demand of each one.

When the battery reaches its maximum level Emax before

the end of an idle period, we cannot continue to charge and



Figure 2. Lowest priority task response time is not the real study period for PFPALAP

we lose the energy that could be recharged between that

moment and the next execution begin. This leads to wast

energy if nothing is done to avoid that. In our case this

cannot happen because we suppose that Emax is infinite.

Since PFPALAP postpones jobs executions to charge battery

as much as possible before executing, our intuition is to

say that such scheduling policy is optimal. We know that

all schedulable task sets with PFPASAP are schedulable

with PFPALAP so no timing problems can occur and we

know also that in PFPALAP idle-periods are as longer as

possible which seems better for energy level. These simple

intuitions may appear convincing but when we tried to build a

formal proof we found a counter-example which invalidates

the optimality of PFPALAP . Figures 3 and 2 illustrate a

counter example where the task set described in Table I is

not schedulable with PFPALAP while it exists a feasible

schedule. Indeed, we simulated this system with YARTISS

[8]; and this simulation shows that it is feasible until the hyper

period. We can see that PFPALAP postpones executions as

late as possible which leads in this example to a very long busy

period which has a big energy demand and the energy charged

during the previous idle period is not sufficient, thus the

system failed energetically. When we schedule the same task

set with PFPASAP by introducing charging periods as much

as necessary when the battery is empty, jobs are scheduled as

soon as possible then we avoid some very long busy periods

and all jobs meet their deadline and idle periods are always

sufficient.

- Ci Ei Ti Di Pi

τ1 4 216 32 16 1

τ2 1 48 48 32 2

τ3 1 16 48 22 3

τ4 3 186 40 32 4

Table I
CONTER-EXAMPLE : WITH Emax = 300, Emin = 0 AND Pr(t) = 15

IV. BATTERY CAPACITY

The design of a system with Emax = ∞ assumption is

not realistic and schedulability test based on such assumption

is not very useful, so finding the lowest Emax value is

necessary. The exact capacity of the battery is difficult to

compute because it depends on tasks characteristics and we

cannot predict the lowest necessary capacity to satisfy energy

demand continuously before executing tasks. So to prevent

this, we can solve the problem partially by bounding Emax

value.

First, knowing that tasks have implicit or constrained dead-

lines we can limit the study period to the hyper period. Second,

the CPU utilization U gives us the proportion of time where

CPU is busy, the remaining time the processor is idle and the

system is only charging energy. So the highest level of energy

that can be reached during a cycle starting from the worst case



Figure 3. PFPALAP is not optimal

scenario of activation and energy is

Boundmax =

∫ (1−U)×HyperPeriod

0

Pr(t) dt.

This is because we suppose for all tasks that it consumes

more energy than we can charge during its execution time,

i.e Ei >
∫ Ci

0
Pr(t) dt. This bound is very pessimistic but

gives us a sufficient condition. If a task set is schedulable with

PFPALAP with Emax = ∞ and the given Emax is greater

than or equal to Boundmax, then it is feasible. By combining

the previous test with a battery capacity bound, we have a

sufficient condition for the feasibility of a task set.

V. CONCLUSION AND FUTURE WORKS

In this paper we presented some intuitive ideas to solve the

problem of the energy harvesting scheduling. Then we showed

that simple solutions are not always the best choices despite

their obviousness. We invalidated the optimality of PFPALAP

and showed that the classical study period is no more valid.

We also presented a sufficient schedulability test based on

PFPALAP algorithm and proposed a bound for the lowest

necessary battery capacity. It is not an optimal algorithm,

so a such schedulability test may be very pessimistic. For

this reason we will continue our research on this way by

exploring other scheduling policies and heuristics and try to

provide more optimistic feasibility conditions. We will study

carefully PFPASAP and other clairvoyant algorithms and try

to establish more optimistic or optimal feasibility conditions.

REFERENCES

[1] A. Allavena and D. Mossé, “Scheduling for frame-based embedded
systems with rechargeable batteries,” In Workshop on Power Management

for Real-Time and Embedded Systems (in conjunction with RTAS), 2001.
[2] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Lazy scheduling

for energy harvesting sensor nodes,” 5th IFIP Working Conference on

Distributed and Parallel Embedded Systems DIPES 2006, Braga, 11-13

Oct 06, 2006.
[3] R. Jayaseelan, T. Mitra, and X. Li, “Estimating the worst-case energy

consumption of embedded software,” in IEEE Real Time Technology and

Applications Symposium, 2006, pp. 81–90.
[4] M. Chetto, H. E. Ghor, and R. H. Chehade, “A real-time scheduling

framework for embedded systems with environmental energy harvesting,”
Computers and Electrical Engineering archive Volume 37 Issue 4, July,

2011, 2011.
[5] M. Chetto, D. Masson, and S. Midonnet, “Fixed priority scheduling

strategies for ambient energy-harvesting embedded systems,” Green Com-

puting and Communications (GreenCom), 2011 IEEE/ACM International

Conference, 2011.
[6] J. P. Lehoczky and S. Ramos-Thuel, “An optimal algorithm for scheduling

soft-aperiodic tasks fixed priority preemptive systems,” in proceedings of

the 13th IEEE Real-Time Systems Symposium, Phoenix, Arizona, Dec.
1992, pp. 110–123.

[7] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J. ACM,
vol. 20, no. 1, pp. 46–61, Jan. 1973. [Online]. Available:
http://doi.acm.org/10.1145/321738.321743

[8] Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet, and M. Qamhieh,
“Yartiss: A tool to visualize, test, compare and evaluate real-time
scheduling algorithms,” 3rd International Workshop on Analysis Tools

and Methodologies for Embedded and Real-time Systems, 2012.

http://doi.acm.org/10.1145/321738.321743

	Introduction and Related Work
	Model
	Target application description
	Formal description

	PFPALAP scheduling algorithm
	PFPALAP worst case scenario
	PFPALAP Study period
	Optimality ?

	Battery capacity
	Conclusion and Future works
	References

