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Abstract

We study the problem of house-hunting in ant colonies, where ants reach consensus on a
new nest and relocate their colony to that nest, from a distributed computing perspective. We
propose a house-hunting algorithm that is biologically inspired by Temnothorar ants. Each
ant is modelled as a probabilistic agent with limited power, and there is no central control
governing the ants. We show a (logn) lower bound on the running time of our proposed
house-hunting algorithm, where n is the number of ants. Further, we show a matching upper
bound of expected O(logn) rounds for environments with only one candidate nest for the ants
to move to. Our work provides insights into the house-hunting process, giving a perspective
on how environmental factors such as nest qualities or a quorum rule can affect the emigration
process.

1 Introduction

Recently, there has been an interest in the distributed computing community on studying biologically-
inspired algorithms [I]. Tissues found within the human body and insect colonies of ants and bees
are good examples of naturally occurring systems where there are many agents with limited power,
a global goal, and no central control. Interestingly, an ant colony as a whole exhibits a high level of
collective intelligence and is able to achieve global goals, such as relocating to new nests. It is puz-
zling how the distributed system is able to quickly reach consensus through local communications,
especially given the high noise levels observed in nature.

The house-hunting process in Temnothorax ant colonies is a naturally occurring algorithmic
task that is closely related to consensus, a fundamental problem in distributed computing theory.
The goal of the ants is to relocate the colony of ants to a new nest with superior quality. During
the house-hunting process, a colony is able to reach consensus on a new nest and execute the move
of the entire colony, even though each individual actively-scouting ant has information about only
a small subset of the new candidate nests.

In 2015, Ghaffari et al. [3] modeled the ant colony house-hunting process as a distributed
algorithm on independent random agents. They also showed theoretical guarantees on the number
of rounds required for various house-hunting algorithms under their model to converge. Recently,
Zhao et al. [13] developed a simulator that closely mimics the ants’ behaviors on both individual
and colony levels. The simulator is based on the agent-based model of ants’ house-hunting process
that Pratt et al. [10] created by studying videotaped behavior of ants. Zhao et al. showed that
their simulator is biologically plausible in that it accurately reflects many behaviors observed in
real ant colonies, and their simulator is also useful for predicting some of the behaviors of ants that
are harder for biologists to directly study in experiments. The algorithm presented by Zhao et al.



is more biologically plausible than those studied by Ghaffari et al., but one remaining challenge is
that there are no theoretical bounds on the convergence speed of the algorithm by Zhao et al.

We present an algorithm for the house-hunting emigration process that is structured like the
model considered by Ghaffari et al. [3] and additionally takes into account the more diverse behavior
of ants in different phases and states observed by Pratt et al. [10] in ant colonies and modelled by
Zhao et al. [I3] in computer simulations. As a result, our algorithm is more biologically plausible
while still tractable to rigorous analysis. Our model is a mathematical agent-based model. We
show that the theoretical guarantees on the running time of our algorithm are similar to those of
the algorithms considered by Ghaffari et al.

Our work has many implications for both the biology community and the computer science
community. Natural algorithms have evolved over time to have many advantageous properties. For
example, algorithmic tasks carried out by collections of living beings are usually highly adaptive
to different types of environments, robust to noise, and also optimized in terms of their speed
and accuracy. Thus, insights from these biological algorithms can inspire more robust, efficient
algorithms for distributed computer systems, such as robot swarms [5]. Additionally, using math-
ematical tools to analyze the house-hunting algorithm can allow for a better understanding of the
qualities of ant colonies that are harder for biologists to directly observe, such as the dependence
on various environmental parameters.

1.1 The House-Hunting Process

Temnothorax ants often search for and move to new nests, as living in favorable nests is important
to the survival of their colony. Their moving process is highly distributed, as each individual ant has
limited information and communication, and there is no central control governing the emigration
process.

Ant colonies are typically composed of active and passive ants [I0]. Active ants execute the
emigration while passive ants, such as brood items or inactive adult ants, are transported to new
nests by active ants.

Biologists have observed that the house-hunting process involves several stages. Active ants
search for nests, assess nests, recruit other ants, and also transport other ants. Once an active ant
has found a new nest of satisfactory quality, it moves on to the recruitment phase, where it recruits
other active ants to the new nest via tandem runs [0, 11]. Should the population of active ants
in a new nest surpass a quorum threshold, then active ants can commit to the new nest and begin
transporting (i.e. picking up and carrying) other ants from the old nest to the new nest [9]. These
transports speed up emigration to the new nest.

1.2 Main Results and Organization

Our main results are a biologically plausible house-hunting algorithm that is tractable to analysis,
a lower bound on the number of rounds that the algorithm takes to converge with high probability,
and an expected upper bound on the number of rounds required in single-nest emigrations (when
the environment contains the original home nest and one new nest). We incorporate biological
insights from [10] and [I3] into our house-hunting algorithm, which is presented in Section

In Section Section 3] we show a lower bound on the run-time for our model. In [3], Ghaffari
et al. showed a lower bound of Q(logn) on the number of rounds required for any house-hunting
algorithm under their model of house-hunting to converge with high probability. In Section [3] we
explain a subtle difference between our algorithm and the model considered by Ghaffari et al. While



this difference affects the lower bound proof, we show that the lower bound of €(logn) holds for
our model as well.

In Section [4] we consider the special case where there are two nests in the environment. We
show that the expected running time for our house-hunting algorithm is O(log n) rounds assuming
that the quorum threshold falls within a certain range. By our lower bound result, this upper
bound is tight up to a constant factor. It would be interesting to extend this expected upper bound
result to environments with more nests in future work.

Finally, in Section [5], we discuss possible modifications to the algorithm and directions for future
research.

2 Model

We present a model of Temnothorax ants’ house-hunting process that is both tractable to analy-
sis and biologically plausible. This algorithm is primarily inspired by the agent-based model for
house-hunting in ant colonies introduced in [I3]. Like the model in [I3], our algorithm has many
parameters that can be tuned to reflect the changing environmental conditions and varied behaviors
of ants observed in nature. Our model differs in that we reduce the number of internal variables
stored for each ant and the number of possible states that the ants can be in, thus simplifying the
rules for how ants change locations. These simplifications make the model tractable for proofs of
theoretical guarantees.

In our algorithm, active and passive ants in the colony play different roles in the emigration
process. Active ants transition through many states, including searching for a new nest, evaluating
a nest, and recruiting other ants to the nest by lead forward or transport runs. Passive ants, on
the other hand, change location only when transported by an active ant. The biological insights
for these design decisions come from [10].

2.1 Framework

The environment consists of at least two nests, one of which is the original home of the colony.
Each nest has an associated quality, which is a nonnegative real number. The ants are modeled
as identical finite state machines that execute computations synchronously in discrete rounds. In
each round, an active ant performs at most one call to each of the functions select_action(),
select_ant(), and transition(), which are defined in Section

We let n denote the total number of ants, and we let n, and n, denote the number of active
ants and passive ants, respectively, with n, = 6(n), n, = 0(n), and n, + n, = n. The location
of an ant a is denoted a.location, which is one of the nests in the environment. Every active ant
a has an associated state, denoted a.state, which is one of 9 possible states: At Nest;, Search;,
Quorum Sensing, Lead Forward, and Transport, for i € {E,C,T}. The subscripts E,C, and T
stand for Exploration, Canvassing, and Transport, three different phases of active ants described
in [I0]. For every ant a, the value of a.state begins as At Nestg and the value of a.location begins
as the original home nest of the colony. These values are updated by calls to the helper function
transition().

Active ants can probabilistically select one of two possible actions to take: advance or hold
(see Figure [1)). The action that an ant takes determines how its state and location are changed.
There are two instances where an action involves two ants. We say that an ant is committed to the
nest that it is in if it is in the At Nesty, Searchr, or Transport state. An ant that is committed
to the nest that it is in can transport other ants to that nest by advancing from the Transport
state. Similarly, an ant can recruit other active ants to the nest that it is in via a tandem run by



advancing from the Lead Forward state. Transports and tandem runs can fail to move a second
ant if that second ant has already transitioned on that round.

Like the model from [13], our model is parameterized by many adjustable constants. The
parameters p, and p, are the quality coefficient and population coefficient, respectively. They
represent the relative weight that ants give to the quality and population of a nest when evaluating
that nest. We denote by 0 the quorum threshold, or the fraction of all active ants that must be in
a nest before an active ant can commit to that nest and begin transporting ants to that nest. If
the fraction of active ants in the original home nest ever drops below the quorum threshold, we say
that that nest drops out of competition, and no active ant can commit to that nest after that point.

The constants cs, cf, ¢, and ¢; denote the search constant, the follow constant, the lead forward
constant, and the transport constant. These constants parameterize the probability that the corre-
sponding type of action succeeds. Finally, A controls for how noisy individual ants’ decision-making
is, with higher A values corresponding to lower individual noise level. All constants other than A
range between 0 and 1; A ranges from 1 to 16 [I3]. See Table 1] for an example of how these values
are set for experiments performed in [13].

Parameter Value Source

quality coefficient y, 0.25 | trial-and-error from [13]
population coefficient g, | 0.35 | trial-and-error from [I3]

quorum threshold ¢ 0.15 [9, 2]
search constant c; 0.025 | trial-and-error from [13]

follow constant cf 0.4 [4, 8]
lead forward constant ¢, | 0.6 | trial-and-error from [13]

transport constant ¢ 0.7 [10]
A 8 trial-and-error from [13]

Table 1: An example of a set of parameter values that are biologically plausible.

2.2 Helper Functions

This subsection defines the helper functions that are called in the house-hunting algorithm, which
is given in Section

select_action(a): The input is an ant a. Let n’ be a nest chosen uniformly at random from all
of the nests other than a.location. Let g be the quality of a.location, and let p and p, be the
number of ants and active ants in that nest, respectively. Finally, let ¢’ and p’ denote the quality
and population of nest n’. The ant probabilistically chooses an action u, sampled from a Bernoulli
random variable u € {advance, hold} with parameters that depend on a.state as shown in . The
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Figure 1: The State Transition Diagram. The solid arrows denote the ant choosing to advance; the
dashed arrows denote the ant choosing to hold. The transition probabilities are given in .

function select_action(a) returns (u,n’).
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0  otherwise

(1)
select_ant(a, n’, action): This function takes as input an ant a, a nest n’, and an action action.
If action is hold, then this function immediately returns null. First, we set @’ to null. If a.state
is Lead Forward and there is at least one active ant in nest n’, then let a’ be an active ant chosen
uniformly at random from n’. If a.state is Transport and there is at least one passive ant in nest
n/, then let a’ be a passive ant chosen uniformly at random from n’; if there are only active ants in
n’, let @’ be an active ant chosen uniformly at random from n’. We return a’ with probability cs
and null otherwise. Note that the returned ant cannot be a because a is not in nest n'.

transition(a,a’,n’, action): This function takes as input ants a and @, a nest n’, and an action
action. If a.state is Search; for any i € {F,C,T} and action is advance, then we set a.location
to n/. If a.state is Lead Forward or Transport and action is advance, then we set a’.location to
a.location. We set a.state to the state obtained by starting from a.state and following the arrow
corresponding to action in the state transition diagram (Figure . If @’ is not null, we set a’.state
to At Nestg.



2.3 Algorithm

With the helper functions defined, we are ready to present the house-hunting algorithm. Let P be
a permutation of all of the active ants chosen uniformly at random for every round.

Algorithm 1: One Round of the HOUSEHUNTING Algorithm

M: a set of ants, initially
for i =1 to |P| do
if ap;) ¢ M then
action,n’ := select_action(apj)
a’ := select_ant(ap;), n’, action)
if ' € M then

a' + null
transition(ap;),a’, n’, action)
M:=MU {ap(i)} U {CL/}

[T RN -G NIV

Algorithm 1 shows one round of the house-hunting algorithm. We repeat the procedure given
in Algorithm 1 until the algorithm converges. The house-hunting algorithm converges when all of
the passive ants have moved from the original home nest to the winning nest, a nest different than
the original home nest and has better quality. We note that not all of the active ants are required
to be in the winning nest when the algorithm converges since the active ant population is more
mobile.

In Algorithm 1, the set M serves to make sure that each ant transitions at most once: either
actively by initiating an action or passively by getting recruited. If there are conflicts among the
actions involving two ants (i.e. transports or tandem runs), then P serves as a tie breaker between
the conflicting actions. In short, for every active ant a; that has not been recruited via a tandem
run or transported by the time that all ants preceding a; in the permutation have transitioned in
a given round, the ant a; will probabilistically select an action to take using the select_action
function and select an accompanying ant a’ using the select_ant function. If a; is not successfully
transporting or leading forward, then a’ will be set to null. Finally, the transition helper function
updates the state and location of ants a; and @’ to reflect the changes caused by the action that
ant a; executed.

3 A Lower Bound

In this section, we asymptotically lower bound the number of rounds required for a colony of ants
to complete the house-hunting process with high probability. We use ideas from the lower bounds
on spreading a rumor in a graph from [7] and proof methods from [3]. We also use terminology
from [3]: an informed ant knows the id of the winning nest, and an ignorant ant does not know.
Ghaffari et al. [3] proved an asymptotic lower bound on the convergence rate of their algorithm
that grew logarithmically in the number of ants. There is a subtle difference between our algorithm
and that of Ghaffari et al. that affects how the proof of the lower bound proceeds. In the model
used by Ghaffari et al., if an active ant located in a nest Nest 1 is trying to perform a transport to
another nest Nest 2, then she randomly selects any other ant in Nest 1 to transport. In their model,
the probability that any passive ant gets transported on any given round can be upper bounded.
That is, if a minority of the ants in Nest 1 are active ants trying to transport, then the probability
that any given passive ant in Nest 1 gets transported is small. On the other hand, if the majority



of the ants in Nest 1 are trying to transport, then they have a significant chance of transporting
each other, rather than a passive ant in Nest 1.

In contrast, in our algorithm, each active ant has a bit more computation power in a single
round. An active ant located in Nest 2 can move to Nest 1 and transport an ant from Nest 1 to
Nest 2 in one round. Thus, the probability that a given passive ant in Nest 1 gets transported on
any given round cannot be upper bounded: when there are many active ants in Nest 2 trying to
transport ants from Nest 1 to Nest 2 and few passive ants in Nest 1, a passive ant in Nest 1 gets
transported with high probability.

Even though we are not able to lower bound the probability that any ignorant ant remains
ignorant in any given round of the simulation, we are able to lower bound this quantity for a
fraction of the passive ants, as shown in the following lemma. Our proof makes use of the quantity
m = Z—Z; we note that m is independent of n because n, = ©(n) and n, = O(n).

Lemma 3.1. Let m = Z—: If n, > 4, then for any given round where there are at least % tgnorant
passive ants in the original home nest, an ignorant passive ant in the original home nest remains
ignorant at the end of that round with probability at least

. 1 1
min 1 16m )

Proof. Let B > %” > 2 be the number of ignorant passive ants in the original home nest at the
beginning of a given round. The only way for an ignorant passive ant to become informed is for
that ant to be transported to the best nest by an active ant. There are at most n, active ants
transporting passive ants from the home nest to the best nest on any given round. While there
are passive ants in the original home nest, an active ant transporting from that nest chooses one of
those passive ants to transport uniformly at random. Thus, the probability that any given passive
ant does not get transported is at least
B—1\"
(7)

We define f(x) := (%_l)x Note that the function f(x) is monotonically increasing when x > 1.
We consider two cases and lower bound the probability that a passive ant in the original home nest
remains ignorant after a round in both cases.

Case 1: B > n,.
In this case, we have

Case 2: B < n,.



In this case, we have

Putting the two cases together finishes the proof of the lemma. O

In [3], Ghaffari et al. proved a lower bound of ©2(log n) on the running time of their house-hunting
algorithm. Their proof depended on a lemma that stated that all ignorant ants stay ignorant with
constant probability during each round; we showed in Lemma that this result is true for % of
the passive ants. This discrepancy by a constant factor does not affect the asymptotic behavior of
the algorithm. More formally, Lemma together with the proof of Theorem 3.2 from [3], imply

the following theorem:

Theorem 3.2. If n, > 4, then for any constant ¢ > 0, our proposed house-hunting algorithm
requires 2(logn) rounds for all of the passive ants to move from the original home nest to the
winning nest with probability at least #
Proof. Let p = min (%, ﬁ), which is a constant independent of n. Let S be the set of the first %”
passive ants to become informed. We will investigate the number of rounds required for the ants
in S to become informed with high probability. By Lemma [3.1], with probability at least p, an ant
in S that is ignorant at the beginning of round r remains ignorant at the end of round r.

For every ant a € S and every round r, let ¥, be a Bernoulli random variable with Pr[Y, =
1] = p". Let Y, = > cqY,". We define random variable S, to be the number of ants in S that
are ignorant after r rounds. Note that for every a € S and every round r, Pr[Y) = 1] = p" lower
bounds the probability that ant a is ignorant after r rounds. Thus, we have

Pr[S, <z] <PrlY, < z| for any 2 <n. (2)

2
For r = %logpq (Z—Z) —log,,-1(8¢), we have E[Y;] = |S]p" = 8¢y/n, and

E[Y, E[Y; :
Pr [Sr < El ]] < Pr [Yr < [2 ]] (Using (2))
E[Yy]
<e "8 (Chernoff bound)
g e—C\/ﬁ
<ic. <6ﬁ<1f0rx>0)
n x

2
Therefore, with probability at least 1— #, at least 4c4/n passive ants are ignorant after % log,,-1 (Z—Z) —

log,-1(8¢) = ©(logn) rounds. Thus, the number of rounds required for all of the passive ants to

move to the winning nest with probability at least - is Q(logn). O

nC



4 An Expected Upper Bound for Single Nest Emigration

In this section, we consider an environment with only two nests: Nest 0 (with quality ¢g), and Nest
1 (with quality ¢1 > qo). All of the ants are in Nest 0 in the At_Nestg state at the beginning of
Round 1, and we investigate how long it takes for the house-hunting algorithm to converge as the
number of ants n varies.

Since an active ant will change locations if it advances from a Search state, the frequency at
which ants are in Search states is of interest to us.

Definition 4.1. For every integer k > 0, random variable R[()k) is 1 if there are no active ants in

Nest 0 at the beginning of round k; otherwise, R(()k) is the fraction of active ants in Nest 0 that are in

one of the Search states (Searchg, Searchc, or Searchr) at the beginning of round k. Similarly, for
every integer k > 0, random variable ng) is 0 if there are no active ants in Nest 1 at the beginning

)

of round k; otherwise, R§k is the fraction of active ants in Nest 1 that are in one of the Search

states at the beginning of round k. Let fp := ming~1 E [R((]k)} and f1 := max; E [ng)} .

We do not explicitly compute fo and f; since this would require intensive computations. Instead,
we make the following useful observation:

Observation 4.2. We have fj, f1 > € for some constant € > 0 that is independent of n.

Proof. Since all ants start out in the At_Nesty state in Nest 0, we have R(()l) = 0. For k > 1,
Pr [R(()k) > 0} > 0 since there is the possibility that an active ant in Nest 0 stays in the At_Nestg

state until it moves to the Searchg state during the (k — 1) round. Thus, E [R((]k)] >0 for k> 1,
so fo > 0.

If fi =0, then that means that either no active ants ever enter Nest 1 or the expected fraction
of active ants in Nest 1 that are in a Search state is 0 for every round. Both of these statements
are clearly not true, so we have f; > 0 by contradiction.

Because the state transition diagram has an aperiodic recurrent class, the states are associ-
ated with steady-state probabilities. The states Searchc and Searcht are recurrent states, so their
steady-state probabilities are positive. The values E [Rz(k)} for i € {0,1} only depend on the
transition probabilities of the model and k, and they converge to the corresponding steady-state
probabilities, which also only depend on the transition probabilities. All of the transition probabil-
ities of the model can be upper and lower bounded by positive constants independent of n. Thus,
fo and fi can also be lower bounded by a constant independent of n. O

Recall from Section [2] that we say that the algorithm converges when all of the passive ants
are in the winning nest. In this section, we prove the following main theorem, which says that
the algorithm converges in expected O(logn) rounds in an environment with two nests, given some
restrictions on the parameters.

Theorem 4.3. We consider an environment with two nests: Nest 0 (with quality qo), and Nest 1
(with quality ¢1 > qo). All n ants start in Nest 0 in the At_Nestg state.
We define function a : R — R as follows:




where o = = A(pq(q1 — qo0) — pp)-

Let € > 0 be any small constant less than f—(l), and let random variable R, denote the number of
rounds required for at least a(e) of the active ants and all of the passive ants to move from Nest 0
to Nest 1.

If the quorum threshold satisfies 1 — ad -9 < ﬁ, then E[R.] = O(logn).

Na Na

We note that a condition of Theorem is that the quorum threshold must fall within a certain
range. In particular, we will see in Proposition [£.9] that the lower bound on the quorum threshold
guarantees that backward transports from Nest 1 to Nest 0 cease to happen after O(logn) rounds.
The upper bound on the quorum threshold simply guarantees that quorum will be met at Nest
1, allowing for transports to that nest. When we plug in the biologically plausible values A = 8,
fg = 25, pp = .35, q1 = 2, qo = 0, let € = .00001, and use the estimate % = 1, we find that the
condition becomes 6 € (.2315,.7685). If we instead plug in ¢; = 3, then the condition becomes
0 € (.0392,.9608). We thus see that the bounds on the quorum threshold required by the condition
of the theorem are reasonable and not overly restrictive.

We prove Theorem by separately examining the emigration of active and passive ants. We
examine active ant emigration in Section[4.I] and we examine passive ant emigration in Section [1.2]

4.1 Active Ant Emigration

In this subsection, we focus on the emigration of active ants. We use the quantities fy and f; to
study the expected number of ants that move between the nests during each round.

Lemma 4.4. Suppose that there are x active ants in Nest 0 at the beginning of a given round r > 1.
The expected number of ants that move from Nest 0 to Nest 1 during that round is at least

Cs - fO K4
1 4+ e—Meq(ar—q0)—pp)

Proof. We can see that active ants change location only when they advance from a Search state
or get recruited to a new nest by another active ant via a tandem run. In our model, a tandem
run can only cause an active ant to be recruited from an inferior nest to a nest with better quality.
Thus, tandem runs will only speed up the rate at which ants move from Nest 0 to Nest 1, so we
can disregard the population changes caused by tandem runs without loss of generality and focus
on ants that change locations by advancing from the Search state.

We denote by py and p; the population in Nest 0 and Nest 1 at the beginning of this round,
respectively. The probability p that an active ant in a Search state at Nest 0 advances, thus moving
to Nest 1, is

P— CS
P e N ala1—a0)+rp(p1—p0) /)
> min Cs
- po,p16{0,1,---,n}2 1+ e—)\(ﬂq(‘h—‘10)+Hp(p1—290)/n)
Cs

/
—P= 1 4+ e~ Meglar—q0)—pp)’
where the last line follows because p is minimized when p; — pg is minimized, which is achieved
when pg =n and p; = 0.

The expected number of ants in a Search state at Nest 0 at the beginning of this round is at
least fp - . Thus, the expected number of ants that go from Nest 0 to Nest 1 during this round is
at least fo-z-p'. O
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We can obtain the following lemma using the same reasoning that we used in the proof of
Lemma (4.4

Lemma 4.5. Suppose that there are x active ants in Nest 0 at the beginning of a given round. The
expected number of ants that move from Nest 1 to Nest 0 during that round is at most

s f1-(ng — )
1+ e~ Mug(q0—aq1)+up)

Proof. As in the proof of Lemma [£.4] we only focus on ants that move nests by advancing from a
Search state.

We denote by py and p; the population in Nest 0 and Nest 1 at the beginning of this round,
respectively. We upper bound the probability ¢ that an active ant in a Search state at Nest 1
advances, thus moving to Nest O:

Cs
T 1+ e Mualwo—a)Frp(po—p1)/m)

Cs
< ma
= popre{0nnny? 1+ e—Maldo—a1)+iip(po—p1)/n)

Cs
1+ e~ Mralqo—aq1)+up)’

q:

:q/ =

where the last line follows because ¢ is maximized when py — p; is maximized, which is achieved
when pg = n and p; = 0.

The expected number of ants in a Search state at Nest 1 at the beginning of this round is at
most f1 - (nq — ). Thus, the expected number of ants that go from Nest 1 to Nest 0 during this
round is at most f1 - (ng — ) - ¢'. O

Now, we put Lemma [4.4| and Lemma together to show that the number of rounds required
for a constant fraction of the active ant population to move to Nest 1 is independent of the size of
the ant colony.

Lemma 4.6. Let function a(-) and constant o be defined as in Theorem . Let random variable
A, denote the number of active ants in Nest 1 after r rounds. There exists a constant ¢, independent

of n, such that we have E[A.] > a(d) for any constant § € (0, %)

Proof. Let random variable Y, denote the number of ants that Nest 1 gains during a single round
r > 1 that begins with z active ants in Nest 0. Putting Lemma 4.4 and Lemma [4.5 together, we
have

E[Y,] > cs forx s fir(na—x)
Tl 4en 1+e @

=0 (B (i+e) - 1 +)

9<x<;(1)-ea+1) (1+ea)—na(1+ea))

@(w(f{)-e_a+1>—na>.

11



(2
(e (2)
— Q(n).

Thus, while there are at least n, — a(d) active ants in Nest 0, Nest 0 loses §2(n) active ants and
Nest 1 gains 2(n) active ants in expectation during every round. As a result, the expected number
of ants in Nest 0 drops down to at most n, — a(J) in a constant number of rounds. O

Now that we have shown that the number of rounds required for an expected a(e) active ants
to move to Nest 1 is independent of the size of the ant colony, we will use that result to determine
the expected number of rounds required for a(€) active ants to move to Nest 1. In particular, now
our random variable is the number of rounds, rather than the number of ants in Nest 1.

Proposition 4.7. Let function a(-) be defined as in Theorem . Let random variable Re denote
the number of rounds required for a(e) of the active ants to move from Nest 0 to Nest 1. We have
that E[R] = O(1).

Proof. Let 0 < § < € < f—(l). Let ¢ be the number of rounds required for an expected a(d) of the
active ants to move to Nest 1. By Lemma c is a constant independent of n.

We denote by the random variable A the number of active ants that Nest 1 gains in ¢ rounds.
By definition, E[A] = a(d) > a(e). Using the fact that A < n, we upper bound Pr[A < a(e)]:

E[A] < Pr[A <a(e)]ale)+ (1 —Pr[A <a(e)])n
n —a(d)

= Pr[A <a(e)] < ——

For any integer r > 1, we have that Pr[R, = r| is upper bounded by

Pr(R. > r] < Pr[A < a(e)]lE) < <n—a(5)> =

~— \n—ale)

because in order for R, > r, Nest 1 must have gained less than a(e) ants every consecutive ¢ rounds
since the start of the algorithm.
We thus have

E[R] =) Pr[Re=r]-r
r=1
= /n—a(d) H
=2 <n—a<e>> "
—o(1).

The last equality follows because Z:Zg is less than 1 and has no dependency on n since a(d), a(e) =

O(ng) = ©(n), so the factors of n in the numerator and denominator cancel out. O
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4.2 Passive Ant Emigration

Passive ants only change location when they are transported by active ants. Thus, we first examine
the changes in the number of transports as the algorithm proceeds. We start by proving a lemma
which will be useful in converting bounds on expected number of ants to bounds on expected
number of rounds.

Lemma 4.8. Consider n ants that probabilistically decide to leave on discrete rounds and never
come back. Let random variable R denote the number of rounds that it takes for all of the ants to
leave. Let 0 < ¢ < 1 be some constant independent of n. If the expected number of ants that leave
during any round is at least ¢ x [the number of ants remaining at the beginning of that round|, then

E[R] = O(logn).

Proof. Let r* = log;_, % After r* rounds, the expected number of ants remaining is at most
n(l—c" = 3.

Let random variable A denote the number of ants remaining after * rounds. By Markov’s
Inequality,

PrlA>1] <

N | =

Let random variable R; denote the number of rounds that it takes for all but at most 1 ant to
leave. For any integer ¢ > 0, we have that

We use this inequality to bound E[R;].
E[Ry] = ZPr[Rl =r|-r
r=1

(e}
<Y Prit-r" <Ry < (E+ )] (E+ 1)
t=0

gr*ti:;(;)t-(ﬂrl)
— O(logn).

Now, we investigate R — R1, that is, the number of additional rounds it takes for all of the ants
to leave after all but at most 1 ant already left.

M8

E[R—Ri]<» Pr[R—Ry>r|-r
r=1
< i(l —o) Loy
r=1
=0(1).
Thus, E[R] = E[R1] + E[R — R1] = O(logn) + O(1) = O(logn). O
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Proposition 4.9. Let a(-) be defined as in Theorem . Let random variable R denote the number
of rounds that the algorithm runs for before no more ants perform transports from Nest 1 to Nest
0 for the rest of the algorithm. If the quorum threshold satisfies 0 > 1 — %i), then E[R] = O(logn).

Proof. By Proposition [4.7 after an expected constant number of rounds, there will be at most
ng — a(e) active ants in Nest 0, which is below the number of active ants needed for the quorum
threshold to be reached in Nest 0. After the fraction of active ants that are in Nest 0 drops below
the quorum threshold 8, Nest 0 drops out of competition, and no more active ants will commit to
Nest 0 (i.e. advance from the Quorum Sensing state while in Nest 0). After this point, the number
of ants committed to Nest 0 cannot increase.

By the same reasoning from Lemma [£.4] a constant fraction of the ants committed to Nest 0
are expected to move to Nest 1 (thus becoming no longer committed to Nest 0) on any given round.
Hence, in expectation, the number of ants committed to Nest 0 decreases by a constant factor on
each round after the number of active ants in Nest 0 drops below quorum. Using Lemma we
can conclude that there will be no more ants committed to Nest 0 after expected O(logn) rounds,
which means that there will be no more ants that can perform transports from Nest 1 to Nest

0. O

By Proposition [4.9] we have that the effect of transports from Nest 1 to Nest 0 is negligible
after expected O(logn) rounds. We can now bound the expected number of rounds required for all
of the passive ants to be moved to Nest 1.

Proposition 4.10. Let random variable R denote the number of rounds required for all of the
passive ants to be transported to Nest 1. If the quorum threshold satisfies 1 — %i) <6< %z), we
have E[R] = O(logn).

Proof. We consider any given round of the algorithm; we let a; denote the number of active ants
transporting from Nest 0 to Nest 1 at the beginning of that round, and we let pg denote the number
of passive ants in Nest 0 at the beginning of that round. We assume that a; > 6 - n, and break
into two cases depending on how a; and py compare to each other.

Case 1: a1 < %po.

Each active ant in Nest 1 that is transporting (i.e. advancing from the Transport state) has at least
a 50% chance of successfully moving a passive ant to Nest 1 on this round. This is because less
than half of the passive ants in Nest 0 could have already been transported by a different active
ant in that round. Thus, in this case, the expected number of passive ants that get transported to
Nest 1 in this round is at least %E[al] in this case. When the fraction of active ants that are in
Nest 1 exceeds the quorum threshold, we have 2E[a1] = O(n,) = ©(n) = Q(po).

Case 2: a1 > %po.

The probability that a given passive ant does not get transported is at most

1
_ 1 al _ 1 3P0
(po > - (po )
Pbo DPo
- e,%) 1po

e

N[

Since every passive ant in Nest 0 has at least a constant probability of getting transported to Nest

1 in this case, the expected number of ants that get transported to Nest 1 in this round is Q(po).
By Proposition at least a(e) > 6 - n, active ants will be in Nest 1 after an expected

constant number of rounds, and by Proposition there will be no more ants performing backward
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transports from Nest 1 to Nest 0 after O(logn) rounds. After that, the expected number of passive
ants that are transported from Nest 0 to Nest 1 during each round will be Q(pg) in both Case 1 and
Case 2. Using Lemma [4.8, we can conclude that all passive ants will be in Nest 1 after expected
O(logn) rounds. O

Finally, putting Proposition [4.7] and Proposition together proves Theorem

5 Discussion and Future Work

We note that Theorem [4.3|involves a lower bound on the quorum threshold. Without such a lower
bound on the quorum threshold, we would not be able to show Proposition and the emigration
progress may be delayed due to backward transports from the superior nest to the inferior nest.
There is a lot of work in the biology community studying the role of the quorum threshold in the
house-hunting process. As we see with our result, mathematical analyses such as ours can provide
possible explanations for why ant colonies have evolved to use a quorum threshold.

For the sake of simplicity and for our analysis, we made many simplifications to the model
from [13], on which our algorithm is based. Though our model consists of fewer states in the state
transition diagram than the model in [I3], our analysis is robust to changes to the state transition
diagram, as long as all of the transition probabilities can be bounded by constants independent of
the number of ants and the ways that ants change location are unaffected. The other key difference
is that in the model from [I3], each ant consists of more internal variables (in addition to the state
and location of the ant, which are the two internal variables of ants that our model uses). For
example, in addition to location, the home nest, candidate nest, and previous candidate nest are
also stored for each ant. Because of this, the rules for location changes in the model in [I3] are
also more fine-grained, making analysis more complicated. It would be interesting to analyze a
house-hunting algorithm that is more similar to the one given in [I3] as the algorithm in [13] has
been shown to be biologically plausible by comparison with data from biologists [10].

In our model, recruitments via tandem runs can only happen from inferior nests to superior
nests, and the original home nest drops out of competition once the fraction of active ants in that
nest drops below the quorum threshold. One potential direction for future research is to analyze our
house-hunting algorithm with the modifications that the direction of tandem runs are unrestricted
and the original home nest never drops out of competition. These two modifications would make
the algorithm more general.

In Section 4l we obtain a running time result on single-nest emigrations. It would be interesting
to apply the ideas from Section [4]to derive a corresponding result for the general multi-nest setting.
This analysis may be more involved, but it would be interesting to see how including competing
nests in the environment affects running time.

See [3] for other possible extensions to the algorithm that may be included, potentially at the
expense of the runtime or simplicity of the algorithm. Some potential extensions include fault
tolerance and asynchrony, where the synchronous round assumption is relaxed.
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