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ABSTRACT

A very general enumeration formula for occurrences of a pattern, or sat of patterns, in the class ci

ordered trees with a given number of edges is presented. and its wide usefulness is demonstrated.

I NTRQDUCTION

An ordered or (plane—planted) tree is a tree in which the order
of the outgoing edges of each node is significant. We denote by’ T5 the class
of trees of n edges. For example, theta are S trees in

The number of trees in T is the veil—known Catal&ai niber 1 (zn)
U

Our main result is a closed—form exoression for the number of
occurrences of multisets of patterns in classes of ordered trees. Its proof is
based on an extension of the Cycle Lemma. This enumeration formula is widely
applicable, and many known results fit within its framework.

We first discuss the notion of patterns and their occurrences in
trees (Section 2), and then present the Cycle Lea and its extension to trees
(Section 3). This is followed by the ernzneracion fortnula (Section 4) and tts
applications (Section 5).
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2 PATTERNS AND THEIR OCCURRENCES

A pattern is like a tree except that some of its nodes are
designated open slots and some of its edges are designated closed slots and
do not end in nodes. For example, the pattern

A
occurs wherever a node has a grandchild through its yo.mgest child. Slots in a
pattern represent arbitrary trees and are depicted as triangles; closed slots as
shaded triangle, hanging off a node; open slots as unshaded triangles hanging off
an edge. An open slot ‘matches’ any subtree, including the empty tree (consistins
of a single node) • while a closed slot acts like a variable number of open slats
and ‘matches’ any number (Including zero) of edges along with the subtrees
& open slots) below them. (Thus, there is no reason in having adjacent closed
álots in a pattern.) For example, the above pattern occurs five times in the
class (see figure in Section 1): twice in the first tree (once at the root
and once at its child) • tvice in the second (once for each of the two grand
children), and once in the fourth.

Precise definitions of patterns and their occurrences follov : A
pattern is said to occur at a subtree of an ordered tree according to the
following rules:
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1) The leaf pactern

.

occurs at the empty subtree

I

2) The closed slot pattern

,
occurs at an subtrees.

3) The ooen slot pattern

occurs at au unary nodes.
I I 0’

4) If p and p are patterns occurring at subtrees S and S respectively.
then the adjoined pattern

occurs at the subtree

If then is more than one way of partitioning . into s and a’ - so that p’
occurs at a and p’ at c, then they give rise to aultiple occurrences of p at a.

Thus, i a can be divided in It vays into s and a , and ,...,

and s’ and p’ occurs times at 4 and
p*

n times at s
. then p occurs

+ n times at a.

5) If the pattert p occurs n times at a subtree s, then the extended pattern

occurs u times at the tree

/L
6) It follows that if are patterns occurringn10n21.... times a:

subtren aj, Ski respectively, then the comoosite pattern

occurs n1. n .a times at the subtree2-
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once in the first tree, twice in the second, and three times in the third. It

does not occur in the fourth tree at •ll, since any tvo such relations share the

grandparent node.

Tot example, the pattern

occurs at any node that has a childless grandchild with an older sibling. It
occurs four times in the tree

)

three times at the root and once at its oldest child.

Let p1, p2,
•••

p be distinct patterns. The multiset con

taining fl1 copies of p. n2 copies of 2••’•’ n copies of , is denoted by

• “a.’ °z * P2’sUk*Pk)
S multiset of patterns is satd to occur in tree if each of its individual

patterns occurs, and the (non—slot) nodes of the occurrences are disjoint.

For example, the pattern

atches any grandparent—grandchild retatia,i becwetn two nodes. The sultiset of
tvo such patterns occurs six times among the four trees
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3 THE CYCLE LEMMA FOR TREES

A sequence
l’2’••’Pt of boxes and circles is called

k—dominatsnj if for every position i, 1 c i <1, the nurther of boxes

in p1tp2.. .p is more than k times the number of circles (It is a

positive integer). For example, the sequence 0 0 0 0 0 0 0 0 CC 0

is2—dominating; the sequence 0 0 0 D 0 0 0 0 0 is 1—dominating

(or just dominating) but cot 2—dominating; the sequences

0 0 0 0 0 00 0 0 and 0 0 0 0 0 0 0 0 0 are not even 1-dominating.

The following lemma has been rediscovered many times. Though

it is not difficult to prove, it is a powerful tool in entmeration argumeuts.

Cycle tea (Dvoreczky and ?fotain [1947)): For any sequenceP1P2..P o

a boxes and u circles1 a ) ku, then exist exactly a—ku cyclic permutations

jj+l”’a+nP1..•P1_1.1 <j Cm+n, that are k—dominating.

For example, of the nine cyclic permutations of the sequence

C 0 0 0 0 C 0 0 0 of six boxes and three circles, only three are dominating:

0000ooCoo,000000000 and000000000 . None are

2—dominating. As a special. case of this lea, if a — n+l, then there is a

unique dominating permutation. See, for exazpie, Raney [1960) or Dershowitz asi&

tilts [19S3.

As a corollary we get the Cycle Lea for Trees, giving the number

of cyclic permutations of patterns of trees that can be grafted together. It ap

plies to any “simply generated” family of trees (see Flajolet and Steyaert [19801).

like ordered trees or binary trees.
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We first define the grafting operation. If p

patterns, then the graft of p and p’ is the pattern p o p’

replacing the rightmost (open or closed) slot of p with p.

sequence (p. p’) when p’ contains no slots.

For example, if p and p’ are as follows:

and p’ are two

obtained by

and is the

pa

—

This grafting operation can be extended to sequences of patterns.

The graft of a sequence of patterns is the sequence obtained by performing all

possible

p1 = p2

then

)
pop — o p a

grafting

e r

operations between adjacent patterns.

example, if

p4 — PS

z5çç
then

p1 0 p2 o p3 o p4 o P5 —
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This opEration is well defined due to the following property:

Lemma: The grafting operation is associative.

Proof: (by diagram); Let p1, p2. p3 be three patterns. There are four

cases to be considered, according as p2 and p3 either do or do not contain

slots. The interesting case is when p2 and p3 each have at least one slot.

Then -

AoA\oA-Mv AcMA

with only the rightmost slot pictured. The other three cases are simpler.

The corollary now follows:

Cycle teumia far Trees: For any sequence p1, p2. ..., p of m patterns, con

taining a (open or closed) clots, in> n, there exist exactly m — n cyclic permu

tations
jj+l pm Pl ... jl’

1 Sj !m, that can be grafted together to

form a forest of (in — n) slotless trees.

Proof: To see this, we adapt the Cycle Lera with each pattern acting as a box

followed by as many circles as the pattern has slots. Arrange the m patterns

on a cycle. Since there are more patterns than slots, there must be at least

one pattern p without slots that is followed by a pattern p’ with slots. Graft

p to p’. Continue grafting in this manner until no slots are left, Clearly m —

trees remain. Any of the m — ii patterns at the roots of the remaining trees

could be at the end of a cyclic permutation whose graft yields a forest of in — ii

slotless trees. •

For example, the sequence

•/NZ
of nine patterns can be grafted into a forest beginning with the second or sixth

one and continuing around. In either case, the forest obtained contains the two

trees
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4 MAIN RESULT

Our main result is the following enumeration formula for occur
rences of a multiset of patterns in the class of ordered trees with a
given nber of edges:

TheoremI The total number of occurrences of a multiset
of patterns among all ordered trees with n edges

is
1 + \ ( 2n-o—2e +

n—e+d+l I H I.no, j’”’kJ

where a is the total number of edges in the patterns (excluding slots), s is
th. total number of (open and closed) slots, d is the nomber of open slots, and

n—I + 4+1 is the total number of patterns.
-

By the second factor in the formula, we intend the multinomial cçeffl—
cient -

(n—e + d+1) I
n0!n1! ...%!(u—a + l — H

which is taken to be 0 when m > n — a + d + 1.

For example, the number of occurrences of the multiset of patterns

(three leaves, two nodes of degree at least two, and one leaf belc. level one)
in the class of l4ZO ordered trees with tight edges is C n—B, kaz. cr’3’ c2

m6, a—S. .elO, d—4)

1 / 7 \ (a\_l6
7 j3.2.1 \2)
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Proof: The m given patterns include rn + e—d nodes. That leaves (n+1)—(*e_d) i

the nodes in a tree unrestricted, for each of which we add single closed slot pat—

tens -

The (s—d) + (.1+1) — (it + e—d) • a + l—o—e + s closed slots we now have can each be

replaced with an open slot pattern of the tori

containing among themselves the n—c edges unaccounted for in the given patterns,

in ((a + 1—rn—a + a) + (n—e)—l\ (zn—c—2e + a
I I—I

n—c I C—.

ways. The m + (a + 1)—Cm + e—d)—n-. + d + 1 patterns can be placed on a cycle in

fa—e+d+1 \
• ) nfl.

By the Cycle Lana for trees, such a cycle of patterns — containing a — e t d

slots and n + 1 — e + d patterns — corresponds to a unique tree. (We use here

the Cycle Lenna for Trees with only open slots.)

Each possible arraugeteng of patterns vu the cycle yields a different

occurrence. Since only open slots are filled, the patterns do not share nodes. •

The above theorem generalizes

• (Rarary, Prins, and Tutte (1964)) the Catalan number

1 2n
p.1 1

for unrestricted ordered trees with n edges (k •—1. resdO):

1

n—a + d + 1
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• (Cayley (1859)) the Catalan number

1 f2r*l

lrtl\ r

for unrestricted binary trees with r binary nodes and hence n4 leaves
(n’.Zr, kfl, u0—r, u1 r.i,,r1r.ed—s—2r);

• (Tutte (19643) the multjnomlal formula
I f ii+l

n+l

for enuoerating trees with n1 nodes ot degree i and a total of u edges(k’.n. ru + 1, es’4n);
• (Ylajolet and Steysert (1980)) the binomial formula

(2n—Ze + s—i

for occurrences of a single pattern (with no closed slots and uc leaves)among all ordered trees with a edges (k—a. tel).

Such a theorem can also be proved using generating functions
(Sceyaert [l9S3))
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5 APPLICATIONS

The theorem 0f the previous section has wide applicabiltty. We

give here some representative illustrations.

Examole 1. The number of ordered trees with n edges and

exactly I leaves is equal to the number of occurrences of the patterns

- c Z

(Z leaves and n+1—t nodjesof degree at least one), since there can be ociy oat

occurrence per tree. By letting k—i, n0’t,n1n+1—Z, rn#1, es,t1—t &n+.1—L,

d s”2(n+1—Z) in the theorem, we get

if n+1 jfn—i\ 1 jn+i\ (n—i\

ni-11.n+1—tJt—lJ
S ti-l \ £ I t—ij

These well—known numbers appear in Narayana [1959) in the cGntezt

of ballots and in Riordan [19681 in reference to a cotunication problem.

See also Dershowit: and Zaks [19803, where these numbers are derived using

the Cyci. La.

. S
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Examole 2. The number of left children having righc leaves among all binary
trees with r internal nodes is equal to the number of occurrences of the patterns

(a left chIld with a right leaf and the remaining r-2 nodes). Dy letting n—2r,
Ic—i, a01, n1n—2, rr—i, e2r, d’2r—2, and s—2r—2 in the theorem, we get

1 (2r.-l \(r—l\ (2r—2\
2r—l jl,r—21\ a iii r )

This formula is derived in Drinck and Too [i981j using generating functions. See
also Couyo.s—Eeauchaips f3S75.
Exa=ole 3. The nu,rber of ordered trees with n edges, t leaves, and no wary
nodes is equal to the number of occurrences of the patterns

______

C”.’-,

;*..

Cf leaves and u+1—f nodes wLth at lease two edges). By letting k—i, t0t,
n1n+l—L, m”n+, ea2(n+1—f). d”2(n+l—, and v.3(n+l—f) in the theorem, we get

1 jn.1 t-2\

£ I
Siing this fr all n, we get

t
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for any given rnmber of leaves I. These numbers were investigated by Schrd.r
118701; their relation to polygon partitions is discussed in MoCZkifl (194S);
their relation to trees appears in Knuth (1968). See also Donaghey (1977,1980).
Donaghey and Shapiro 11977), and Rogers and Shapiro (19fl).
Examole 4. The number of ternary trees with r internal nodes and a leaf £ levels
directly below the root may be determined in the following manner: Let the
pattern p be

\=MI

The desired ner Li I

a

(a leaf directly beneath a node, but not beneath a non—root node) • where each
pattert denotes the niber of times it occurs in the class of r—node ternary trees.
3y letting n.ir, k1, n01, n1r—t, m—r—f+1, e—3r, and ds—3r—t in the theorem,we get

1 3r—t+i 3r—l\ lag—fl
3r-Z+1 ( i.r-t ) ( a I r-t )

for the pattern p; by letting n3r, k—1 D’l,n1—r—f—1, rr—L, e—3r. and ds
3r—t—l in the theorem, ye get

____

f Sr—f )(3r_2) 13r—f—l\1

—i 1Sr—f I ,r—L-l 0 i; rf—i s

for each of the excluded patterns. Thus, the desired number af occurrences is

(Sr_f1 (3r—t—1 (Sr—f \
r—f 3ir—f—l ) 3r—L \ r—L ,1
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This is the same as th, number of or@ered forests of 21 ternary trees with a total

of r—f internal nodes. Similarly, it Can be shown that the rnmiber of I tree

forests of t—ary trees with a total of r internal nodes (of degree t) is

£ (tr+t
tr+L r
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