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A b s t r a c t :  We study the transaction commit pro.blem un- 
der realistic timing assumptions. We identify an almost 
asynchronous model, which we claim is more realistic than 
some (synchronous) models that have been studied previ- 
ously. In this model we give a randomized transaction com- 
mit protocol based on Ben-Or's randomized asynchronous 
Byzantine agreement protocol. The expected number of 
asynchronous rounds until our protocol terminates is a 
small constant, and the number of failstop faults tolerated 
is optimal. It is known that no deterministic protocol is 
possible in this model. We motivate our definition of asyn- 
chronous rounds by showing that  no protocol in this model 
can terminate in a bounded expected number of clock ticks, 
even if processors are synchronous. Defining asynchronous 
rounds allows us to make the performance guarantee that  
after a sufficient number of useful messages have been de- 
livered our protocol will terminate. 

1.  I n t r o d u c t i o n  

In a distributed database system a transaction may 
be processed concurrently at several different processors. 
To maintain the integrity of the database these proces- 
sors must take consistent action regarding the transaction. 
Either the results of the transaction are installed in the 
database at all processors (the transaction is committed), 
or the results are installed at no processor (the transaction 
is aborted). Furthermore~ each processor must be able to 
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unilaterally abort the transaction. Ensuring that such con- 
sistent action is taken is the transaction commit problem. 

Our transaction commit protocol works in an inter- 
esting new timing model that  is intermediate between the 
synchronous and asynchronous models previously studied. 
We model real systems in which messages are usually deliv- 
ered within some known time bound but sometimes come 
late. Many elegant transaction commit protocols [S] [DS] 
have been developed for the strictly synchronous model. 
The main difficulty in using these protocols in real sys- 
tems is that  a single violation of the timing assumptions 
(i.e., a late message) can cause the protocol to produce the 
wrong answer. The most common alternative model, the 
completely asynchronous model, unfortunately does not al- 
low any solution to the transaction commit problem, either 
randomized or deterministic. 

The way in which we model this partially synchronous 
system is to assume a completely asynchronous system, in 
which relative processor speeds are unbounded and mes- 
sages can take arbitrarily long to arrive, and to let the tim- 
ing behavior affect the correctness conditions. The transac- 
tion commit problem that we solve has the following cor- 
rectness conditions. If every processor initially wants to 
commit the transaction, then the common decision must 
be to commit as long as no processors fail and all messages 
arrive within some known fixed time bound. If any proces- 
sor initially wants to abort the transaction, then the com- 
mon decision must be to abort, no matter  what the timing 
behavior of the system is. A similar division is made in 
[DLS], in which properties that  must always hold are sepa- 
rated from properties that only need hold when the system 
is well-behaved. In most other respects our model differs 
from theirs. 

The number of faults tolerated by our protocol is opti- 
mal, since we prove a matching lower bound. Our protocol 
works as long as more than half the processors are non- 
faulty. An important property of our protocol is that  it 
degrades gracefully if the bound on the number of faulty 
processors is exceeded - -  instead of producing a wrong an- 
swer, the protocol simply fails to terminate. We assume 
that  the faulty processors fail by crashing. The fail-stop 
assumption is realistic and is commonly made in the data- 
base literature IS]. 
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We prove that in our model no transaction commit 
protocol can terminate in a bounded expected amount of 
time. Consequently a new measure is needed to analyze 
the time performance of our protocol. One of the con- 
tributions of this paper is such a measure, which we call 
an asynchronous round. Our definition of asynchronous 
round is strong enough to allow us to show that our pro- 
tocol terminates in a small constant expected number of 
asynchronous rounds. In Section 2 we show that this no- 
tion of asynchronous round is not unrealistically strong. 

Randomization is needed in the protocol because a 
result of [DDS] implies that no deterministic protocol is 
possible. To analyze our randomized protocol, we must 
define the adversary. Our notion of the adversary is drawn 
from [CMS]. The adversary in our model chooses the order 
in which processors take steps, when each message will be 
delivered, and which processors fail and when. The adver- 
sary is limited to killing just under half the processors. It 
makes these decisions dynamically, during the execution of 
the protocol, using unlimited computational power. The 
adversary has available at any point in the execution all 
information about the hardware and software of the pro- 
cessors, and the pattern of communication up to that time, 
but it does not know the contents of the messages sent, nor 
the local states of processors, nor the results of processors' 
local coin flips, unless that  information is deducible from 
the pattern of communication. We will be careful to design 
our protocol so that it is not deducible. 

Our protocol uses a solution to the agreement problem 
as a subroutine. In the agreement problem each processor 
begins with an initial value, 0 or 1, and decides on a final 
value. All nonfaulW processors' final values must be equal, 
and if all processors have the same initial value, then that  
value must be the final value. Thus if one processor begins 
with 0 and the rest with 1, either 0 or 1 is a correct an- 
swer to the agreement problem, whereas in the transaction 
commit ploblem, the answer must be 0 (if 0 is identified 
with abort). 

Our agreement subroutine is a modification of Ben- 
Or's asynchronous agreement protocol [Be]. The modifica- 
tion lowers the expected running time from exponential to 
constant. A previous modification with the same purpose 
due to Rabin [R] requires a stronger model with a reli- 
able distributor of coin flips. Chor, Merritt, and Shmoys 
[CMS] achieve the improved running time in a model that 
is stronger than Ben-Or's but more realistic than Rabin's. 
However their asynchronous protocol tolerates less than 
one-sixth of the processors failing. In the same model as 
[CMS] we improve on the fault tolerance of their proto- 
col, while still achieving a constant expected running time, 
by supplying all processors with identical coin flips. A 
key part of our transaction commit protocol is an explicit 
strategy for distributing the identical coin flips. We believe 
that this strategy is not applicable to the problem solved 
in [CMS]. 

We compare our transaction commit protocol to those 
of Skeen [S] and Dwork and Skeen [DS]. Their protocols tol- 
erate any number of processor faults. In contrast our pro- 

tocol only handles less than half of the processors failing. 
However if the bound on the number of faults is exceeded, 
our protocol does not produce a wrong answer but merely 
fails to terminate. By not producing a wrong answer, we 
leave open the opportunity to recover. Late messages are 
not a problem for our protocol because of our model, but 
as we noted earlier they can cause the protocols in IS] and 
[DS] to produce a wrong answer. 

In summary, the principal contributions of our paper 
are a realistic partially synchronous model, a method for 
analyzing the time performance of protocols in this model, 
an efficient fault-tolerant protocol for the transaction com- 
mit problem, and lower bounds showing that the protocol 
is optimal. 

Following an exposition of our formal model in Sec- 
tion 2, we present our randomized transaction commit pro- 
tocol in Section 3. Section 4 contains the lower bound proof 
showing that our protocol tolerates the maximal number 
of faulty processors. Finally, in Section 5 we show that no 
transaction commit protocol can terminate in a bounded 
expected number of clock ticks as measured on any proces- 
sor's clock, even if processors are synchronous. 

2. M o d e l  

Processors are modeled as state machines that com- 
municate by sending messages but without atomic broad- 
east. Messages can take arbitrarily long to arrive. There 
is no bound on the relative frequency with which proces- 
sors take steps. Our protocol works even in a very weak 
model in which there is no bound on the relative frequency 
with which processors take steps. Our lower bound results 
are shown for the stronger case in which processors run in 
lockstep synchrony and possess atomic broadcast. In this 
section we present the weaker model. In Sections 4 and 5 
we indicate the necessary changes for the stronger model. 
Our model is similar to those in [FLP] and [DDS]. 

2.1 Bas ic  M o d e l  

A processor is an infinite state machine, together with 
a message buffer, and a random number generator. The 
message buffer holds messages that have been sent to the 
processor but not yet received, and is modeled as a set of 
messages. The random number generator supplies an infi- 
nite sequence of real numbers, distributed uniformly over 
the interval [0,1). The state machine's transition func- 
tion uses the current state, current random number and 
messages received to compute the new state and messages 
to be sent. Certain states are initial states, designated 
(id, initval), where id is an integer and initval is either 0 
or 1. The id element of the initial state is the processor's 
identification number. The initval element is the proces- 
sor's initial value. Each processor can send up to one mes- 
sage to every processor in one step. There is an integer 
in each processor's state, called its clock, that counts how 
many steps the processor has taken so far. A protocol is a 
set of n processors. 

A configuration C consists of n states, one for each 
processor, and n sets of messages, one for each processor's 
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buffer.  A n  initial configuration has  all processors  in ini t ial  
s t a tes  a n d  all buffers equal  to  the  empty  set.  

An event is deno ted  ( p , M , f ) ,  in which  processor  p 
receives the  set  of messages  M (which can  be  empty) ,  a n d  
the  r a n d o m  n u m b e r  f .  A processor  m u s t  be  able  to  receive 
at  least  n messages  a t  a s tep  ( a l though  it  need no t  do so 
a t  every s tep,  of course.)  

An  event  e = (p, M ,  f )  is applicable to  conf igura t ion  C 
if every message  in M is an  e lement  of p ' s  buffer in C. T h e  
conf igura t ion  resu l t ing  f rom apply ing  e to  C,  deno ted  e (C) ,  
is o b t a i n e d  f rom C by removing  all messages  in M f rom 
p's  buffer,  chang ing  p 's  s t a t e  according  to i ts t r a n s i t i o n  
func t ion ,  a n d  add ing  messages  f rom p to the  app rop r i a t e  
buffers accord ing  to the  t r a n s i t i o n  funct ion.  Processor  p 's  
t r a n s i t i o n  func t ion  uses M ,  f ,  a n d  p 's  s t a t e  in C.  

A schedule is a finite or inf ini te  sequence of events .  
A finite schedule  a = e l e 2 . . ,  ek is applicable to  configura-  
t ion  C if el  is appl icable  to  C,  e2 is appl icable  to  el(C),  
etc. T h e  resu l t ing  conf igura t ion  is deno ted  a(C). An infi- 
n i te  schedule  is appl icable  to  C if every finite prefix of the  
schedule  is appl icable  to  C.  

We define the  run R ob ta ined  f rom conf igura t ion  C1 
a n d  schedule  a appl icable  to  C1, deno ted  run(Cx,a),  as 
follows. If cr = e x e 2 . . . e k  is finite,  t h e n  R is t he  sequence 

ClelC2e2 . . .ekCk+l,  where  Ci+l = ei(Ci), 1 < i < k. If 
a = ele2 • ..  is infini te ,  t h e n  R is t he  sequence CxexCze2.. . ,  
where ,  for all i, ClexCze2. . .  eiCi+i = run(C1, ele2 . . .  el). 
We also deno te  a by sehed(R). Informally,  a r u n  is a sched- 
ule t oge the r  w i th  i ts associa ted conf igurat ions .  

Processor  p is nonfault~t in an  inf ini te  r u n  or schedule  
if i t  takes  an  inf ini te  n u m b e r  of s teps;  o therwise  i t  is fault~l. 
A n  infini te  r u n  or schedule  is failure-free if no  processor  is 
faul ty  in it. Since the re  is no  res t r i c t ion  on  how often rel- 
a t ive  to  one a n o t h e r  processors  take  s teps  and  inc remen t  
the i r  clocks, no  pa r t i cu l a r  degree of synchron iza t ion  is nec- 
essari ly achieved.  

A message  sen t  by processor  p a t  event  e in infini te  
schedule  a is guaranteed if e is no t  the  las t  event  of cr t h a t  
involves p. Given  conf igura t ion  C,  an  infini te  r u n  R is 
t-admissible f rom C,  for 0 < t < n,  if 

• sched(R) is appl icable  to  C,  

• a t  mos t  t processors  are  faul ty  in R,  and  

• all g u a r a n t e e d  messages  sent  to  nonfau l ty  processors  
in R are even tua l ly  received. 

T h e  no t ion  of g u a r a n t e e d  messages  is used to model  
the  lack of a tomic  b roadcas t .  Since messages  sent  a t  a pro-  
cessor 's  las t  s tep  do no t  have  to be  received, we effectively 
model  a processor  fai l ing in t he  midd le  of a b roadcas t .  

T h e r e  are two dis joint  sets  of decision states, Yo and  
Y1, such t h a t  if a processor  en ters  a s t a t e  in Y0 or YI it 
s tays  in t h a t  set  forever.  A processor  decides v w h e n  it 
is in a s t a t e  in  Yr. A r u n  is deciding if every nonfan l ty  
processor  decides. A conf igura t ion  C has  decision value 0 
if t he re  is some processor  whose  s t a t e  in C is a n  e lement  of 

Y0; C has  decision va lue  1 if t he re  is some processor  whose  
s t a t e  in C is an  e lement  of Y1. 

2 .2  T i m i n g  C o n s t r a i n t s  

We fix a posi t ive  c o n s t a n t  K to be  t he  n u m b e r  of clock 
ticks w i th in  which  a message  can  be  del ivered af ter  i t  is 
sent  a n d  no t  be  cons idered  late. We assume t h a t  K ~ 1; 
o therwise  messages  would always be  late,  a n d  our  model  
degenera tes  to  t h a t  in [FLP]. A message  m f rom p to  q 
is late in r u n  R if any  processor  takes  more  t h a n  K s teps  
be tween  t he  event  w h e n  m is sent  a n d  the  event  w h e n  ra  
is received (if such  a n  event  exists).  A r u n  is on-time if it 
con ta ins  no  la te  messages.  

Ideal ly we would  like a processor  to  decide in a con-  
s t a n t  expec ted  n u m b e r  of i ts  own clock ticks. Unfo r tu -  
nately,  as we prove in Sect ion 5, we c a n n o t  do this ,  even 
if processors  r u n  in lockstep synchrony.  Ins tead ,  we char-  
acter ize the  t ime  pe r fo rmance  of our  pro tocol  in t e r m s  of 
the  message  s y s t e m  del iver ing enough  useful messages ,  in 
the  following defini t ion.  Given  an  infini te  run ,  a processor  
is defined induct ive ly  to  be  in a pa r t i cu la r  asynchronous 
round (or round) as follows. Asynch ronous  r o u n d  1 begins  
for processor  p w h e n  p first takes a s tep  a n d  ends  w h e n  p 's  
clock reads  K .  Asynch ronous  r o u n d  r ,  r > 1, begins  for 
p a t  the  end  of p ' s  r o u n d  r - 1 and  ends  e i the r  K clock 
ticks af ter  the  end  of r o u n d  r - 1, or  K clock ticks af ter  p 
receives the  las t  message  sent  by  a nonfau l ty  processor  q 
in q's r o u n d  r - 1, whichever  h a p p e n s  later .  

T h e  reason  we requi re  a r o u n d  to  las t  a t  least  K clock 
t icks is to  p reven t  a r o u n d  f rom col lapsing to n o t h i n g  if 
no  messages  are sent  in t he  prev ious  round .  Th i s  enables  
processors  to  make  effective use  of t imeouts .  N o t e  t h a t  
if processors  are  synchron ized ,  send  messages  only  a t  the  
beg inn ing  of a round ,  a n d  all message  delays are  exact ly  K ,  
t h e n  th i s  def in i t ion is t he  same  as t he  s t a n d a r d  synch ronous  
r o u n d  defini t ion.  T h u s  th is  def ini t ion is no t  u n r e a s o n a b l y  
s t rong.  

2 .3  A d v e r s a r y  

T h e  adve r sa ry  can  be  cons idered  a scheduler  - -  i t  de- 
cides which  processor  takes  a s tep  nex t  and  w h a t  messages  
are received. In t he  i n t roduc t i on  we gave a n  in formal  de- 
sc r ip t ion  of the  adversary.  Th i s  subsec t ion  formalizes  t he  
not ion .  

T h e  message pattern of finite r u n  R = C l e l  • . .  ekCk+l, 
where  ei = (pi,Mi, fl) for all 1 < i < k, is t he  sequence 
of t r ip les  (Pl ,  E l ,  P1) . . .  (Pk, Ek,  Pk),  where  Pi is the  set  of 
processors  to  which  messages  were sent  by even t  el, and El 
is a set  of in tegers  indexing  the  events  in the  r u n  t h a t  sen t  
the  messages ,  Mi ,  received in ei. T h e  po in t  of m a k i n g  th i s  
def ini t ion is to  isolate t he  p a t t e r n  of message  send ing  a n d  
receiving whi le  h id ing  the  con ten t s  of t he  messages.  

An  adversary is a func t ion  t h a t  takes a set  of n s t a t e  
mach ines  ( the  n processors  w i t h o u t  the i r  r a n d o m  n u m b e r  
genera to r s  a n d  message  buffers) a n d  a message  p a t t e r n ,  
and  r e t u r n s  a processor  p a n d  a set  E of integers  sa t i s fy ing 
the  following condi t ion .  If i is in E ,  t h e n  in the  i ts e lement  
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of the  message pat tern ,  (pi,Ei, Pi), p is in Pi (i.e., there 
was a message sent to p at the i th event),  and in no element 
of the message pa t te rn  does p receive this message. 

A run is uniquely  determined by an adversary A, an 
initial configuration I ,  and a collection F of n infinite se- 
quences of random numbers,  one sequence for each proces- 
sor. Denote  this run by run(A , I ,  F). The construct ion of 
run(A,  I,  F) = C l e l C 2 e 2 . . .  is inductive. Let C1 = I .  Sup- 
pose the  run up to configuration Ci has been constructed.  
Let p and E be the result  of A acting on the message pat-  
tern of run  Clei . . .  Ci. Then  ci consists of the processor p, 
the messages sent to p in all the  events indexed by E ,  and 
the next  unused random number  in F for the processor p. 
Finally, Ci+x = ei(Ci). 

If the adversary were not  restr icted in any way, it could 
cause all processors to fail or no messages to be delivered, 
and no protocol  would be possible. We limit the power of 
the adversary in the following reasonable way. We define a 
t-admissible adversary to be an adversary such that  for all 
initial configurations I and all collections of n infinite se- 
quences of r andom numbers F, run(A,  I,  F) is t-admissible 
and some nonfaulty processor receives a message in the run. 

The  expected value of any complexity measure for a 
fixed randomized protocol  is defined as follows. Let T be a 
function tha t  given a run  returns the complexity measure 
of interest  for tha t  run. For fixed adversary A and initial 
configuration I ,  let the expected value of T,  taken over 
the r andom numbers F ,  be denoted E(TA,x). Define the 
expected value for the protocol  to be maxA, i {E(TAj )} .  

2.4 P r o b l e m  S t a t e m e n t  

Given infinite run  R and integer r, let DONE(R, r) be 
the event tha t  every nonfaulty processor decides by round 
r of R.  A protocol is t-nonblocking if for any t-admissible 
adversary A and any initial configuration I ,  

l im Pr[DON~(run(A, I, F), r)] = 1. 
r - - + o o  

The  definition of a t-admissible adversary includes the con- 
dit ion tha t  some nonfaulty processor receive a message in 
order not  to penalize a protocol  for blocking if no nonfaul ty 
processor ever discovers tha t  it should execute the protocol.  
However, now there is the possibility of a tr ivial  solution 
to the problem: if no processor sends any messages, then 
there is no t-admissible adversary and the t-nonblocking 
condit ion is tr ivially satisfied. To take care of this degen- 
erate case, we add to the definition of t-nonblocking the 
requirement  tha t  in any failure-free run,  some processor 
sends a message. 

A protocol  is a transaction commit protocol if for every 
t-admissible run R: 

• Agreement Condition: Every configuration in R has at 
most  one decision value. 

• Abort Validity Condition: If R is deciding, then when- 
ever the initial value of any processor is 0, then the 
nonfaulty processors decide 0. 

• Commit Validity Condition: If R is deciding, then 
whenever  the initial value of all processors is 1 and 

R is failure-free and on-t ime,  then the nonfaulty pro- 
cessors decide 1. 

Our  goal is to design a t-nonblocking transact ion com- 
mi t  protocol.  

The  reason we require a processor to be able to re- 
ceive at least n messages at one step is to rule out  tr ivial  
protocols in which nonfanlty processors swamp the mes- 
sage system, causing messages to become late not  because 
the message system misbehaves, but  because the ability of 
the processors to handle  all the  incoming message traffic is 
inadequate.  For instance, the protocol  "cause the run to 
be not  on- t ime by flooding the message system and then 
abor t"  is not  of much practical  interest. 

For completeness,  we give a precise definition of the 
agreement  problem as well. A protocol  is an agreement 
protocol if for every t-admissible run R: 

* Agreement Condition: Every configuration in R has at 
most  one decision value. 

• Validity Condition: If R is deciding, then whenever 
the initial value of every processor is 0 (resp. 1), then 
the nonfaul ty processors decide 0 (resp. 1). 

3.  T h e  R a n d o m i z e d  C o m m i t  P r o t o c o l  

Our protocol  to solve the t ransact ion commit  problem 
uses a modif icat ion of the asynchronous agreement  proto- 
col in [Be] as a subroutine.  Similar  protocols are widely 
used [Br] [CC] [CMS] [R]. We describe and analyze this 
agreement  protocol  first, and then present the complete  
t ransact ion commit  protocol.  For the rest of this section, 
we assume tha t  n > 2t. 

3 .1  A s y n c h r o n o u s  A g r e e m e n t  S u b r o u t i n e  

The  agreement  subrout ine is presented as Protocol  1. 
Each processor p maintains a guess as to the decision in 
variable xp, called its local value. At the beginning of the 
protocol,  xp is p's initial value. The  protocol is s t ructured 

Code for processor p in stage s, s ~ 1: 

Input  parameters  are xp and coins; output  parameter  
is agreement  value. 

1. broadcast  (1, s, xp) 

2 .  wait  to receive n - t messages of the form (1, s, *) 
3. if more than  n / 2  messages are (1, s, v) for some v 
4. then broadcast  (2, s, v) 
5 .  else broadcast  ( 2 ,  s ,  _1_) 

6. wait  to receive n - t messages of the form ( 2 ,  s ,  *) 
7. if there are no (2, s, v) messages for any v 
8. then xp ~- coins[s] if s ~ Icoinsl, else f l ip( l )  
9. if there is a (2, s, v) message for some v 
10. then zp ~ v 
11. if there are at least n - t messages of the form 

(2, s, v) for some v 
12. then if already decided 
13. then return(v)  
14. else decide v 

P r o t o c o l  1: Asynchronous Agreement  Subrout ine 
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in stages and each stage consists of two sets of message 
exchanges. At s tage s, processor p first sends its local value 
to everyone and waits to receive n - t of these messages. 
If more than  n / 2  of them contain some value, t~, then p 
sends v to everyone in the second set of stage s messages; 
otherwise p sends a special "I don ' t  know" marker.  Then  
p waits for n - t of the second set of s tage s messages.  If 
there  are at  least n - t messages for some value v, then  
p decides t~. If there is at least one message for some v, 
then p sets its local value to v. Otherwise,  p chooses its 
local value by ei ther  referring to a list of coin flips tha t  is 
initially supplied, or  by flipping a local coin. 

The  "wait" construct  used to describe the protocol  
operates  as follows. As a processor receives messages, it 
posts t hem on an internal bullet in board.  After  a wait  is 
encountered in its program, each t ime a processor takes a 
step it posts  the messages received and then checks if the 
condit ion following the wait  has been achieved, by looking 
at all the  messages received so far. "Broadcast"  means 
send to all processors, but  does not  imply atomicity. A 
processor obtains  i r andom bits by invoking the procedure 
f l ip(i) .  

We establish the correctness and t ime performance of 
Pro toco l  1 for the  agreement  problem, when called wi th  
zp set equal to p's initial value and with  coins containing 

at lhast n r andom bits. (Later when we use Protocol  1, 
we will ensure tha t  coins has this proper ty  - -  it is needed 
for the  good t ime performance,  but  not  correctness.) We 
call a message of the  form (2 , s ,v ) ,  where v is not  ± ,  an 
S-racssage, because the  receipt of such a message causes a 
processor to set its local variable to t~. 

L e m m a  1: / f  every nonfaulty processor 's  local value is t~ at 
the beginning of  its stage s, then every nonfaulty processor  
decides v by the end of  its stage s. 

P r o o f :  Since every nonfaul ty processor 's local value is v, 
each one sends (1, s, v) at instruct ion 1 of stage s. Thus at 
instruct ion 2, they all receive at least n - t > n / 2  messages 
of the  form (1, s, v), and they all send (2, s, v). Finally, at 
instruct ion 6, they all receive at least n - t messages of the 
form (2, s, v) and decide v. O 

L e m m a  2: Dur ing  any stage s, there is at most  one value 
sent in S-messages.  

P r o o f :  In order  to send an S-message for some value v at 
s tage s, a processor must  receive more than  n / 2  messages of 
the form (1, s, v). Since processors do not  send conflicting 
messages in this fault  model ,  less than  n/2 messages of the 
form (1, s, w) for to ~ v can be sent and thus received by a 
processor.  Thus,  no processor will send an S-message for 
to at s tage s. El 

L e m m a  3: Suppose some nonfaulty processor decides v 
at stage s. Then every nonfaulty processor  also decides v 
by s tage  s + 1 .  

P r o o f :  Let  r be the earliest stage at which any nonfaul ty 
processor decides, and let p be one of the processors tha t  
does so. Wi thou t  loss of generality, suppose p decides 1. 

Now we show tha t  no processor can decide 0 at s tage r. 
Since p decides 1, it receives S-messages for 1. By L e m m a  2, 
there are no S-messages for 0 in stage r,  so no processor 
can decide 0 at s tage r. 

Now we show tha t  any nonfaul ty processor tha t  does 
not  decide at stage r decides 1 at s tage r + 1. Since p 
decides 1, it receives at least n - t S-messages for 1 at 
s tage r. Thus every other  processor receives at least one 
S-message for 1 at stage r, and sets its local value to be  1. 
By Lemma  1, they all decide 1 by stage r + 1. 

To complete  the  proof  of the lemma,  we consider three 
cases. If s = r, then  the  l emma follows directly f rom the  
preceding argument .  If s = r + 1, then  every processor 
decides t~ ei ther in s tage s or  s tage s - 1, and so certainly 
decides v by stage s -4-1. For any other  choice of s, it is not  
possible for a nonfaul ty processor to decide. [] 

In the remainder  of this section we analyze the  ex- 
pected running t ime of Protocol  1. In part icular ,  we show 
tha t  it te rminates  in a small  constant  expected number  of 
rounds as long as [coins[ _~ n. 

The  event  we are interested in is tha t  each nonfaul ty 
processor has decided by its s tage s, in Protocol  1, denoted 
DECIDE(S). Another  event  of interest,  SAME(S), is tha t  all 
processors tha t  complete  s tage s set their  local values to 
the same value in stage s. Note tha t  if SAME(S) occurs, 
then DECIDE(S ~ 1) occurs. 

We define the  quant i ty  random(p, s) for processor p 
and stage s in run (A ,  I ,  F ) .  If p completes s tage s, then  
random(p, s) is the  r andom bit  re turned  in the step cor- 
responding to lines 7 through 15 of Protocol  1. Suppose 
r < s is the  latest  s tage tha t  p completes  and p took m 
steps. Then  random(p ,  s) is the  (s + m) th element in the 
r andom sequence for p. The  goal is merely to obta in  un- 
used r andom bits for the  analysis. 

At each stage s of run  R,  let v(s) be  the value sent 
in an S-message,  if an S-message is sent, otherwise let 
t~(s) be 0. Define the  event MATCH(S), by: if s < n, then 
the event  is coinsIs ] = t~(s); if s > n, then  the  event is 
random(p,s)  = v(s) for all processors p. Pr[MATCH(S)] = 
1/2 if s < n, and 1/2 '~ if s > n. Note tha t  MATCH(S) and 
MATCH(S t) are independent  events for s ~ s I. 

Lemma 4: ~FMATCH(S) OCCURS in R, then SAME(s) occurs 
i n R .  

P r o o f i  Case ./: No S-message is sent in s tage s of R ,  so 
v(s) = 0. Thus each (operating) processor uses a r andom 
number  (from either coins  or f l ip) to set its local value. 
Since MATCH(S) Occurs, the processor sets its local value 
to ~(s). 

Case 2: An S-message is sent in stage s of R. The  
value is v(s). Any processor in R tha t  uses the S-message 
to set its local value, sets its local value to v(s).  By the 
same argument  as in Case 1, any processor in R tha t  uses 
a r andom number  to set its local value, also sets its local 
value to v(s). [] 
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L e m m a  5: In Protocol 1, for any t-admissible adversary 
A and initial configuration I ,  

81i2noo PrID~OID~(4 is true in run(A, X, F)] = 1. 

P r o o f :  Firs t  note tha t  

Pr[DECIDB(S)] > Pr[MATCH(1) V . . .  V MATCH(8 - -  1)]. 

The  reason is tha t  if the event on the r ight-hand side oc- 
curs, then  there is an s t between 1 and s - 1 such tha t  
MATCH(S t) occurs. By Lemma  4, SAME(S t) occurs, and 
thus DECIDE(8  t + 1) occurs. 

We next  use the fact tha t  the events MATCH(S) are 
independent.  

Pr[MATC.(1) V . . .  V MATCH(S -- 1)] 

= Pr[-~(-~MATCH(1) A . . .  A -~MATCH(8 --  1))] 

= 1 - Pr[--MATCH(1) A . . .  A -~MATCH(S -- 1)] 

= 1 -- 1 -- Pr[MATCH(i)]) 
i= l  

1 -- (1 -- 1/2n) . -1  

Since lima-~co(1 - 1 /2")  ' - 1  = 0 we are done. [] 

The  next  l emma shows tha t  each stage takes only a 
bounded number  of asynchronous rounds.  

L e m m a  6: /n Pro tocol  1, if'each nonfaulty processor is in 
at most  asynchronous round r when it s tar ts  s tage s, then 
each is in at  most  asynchronous round r + 2 when it s tar ts  
s tage s + 1. 

P r o o f :  All (1, s, *) messages sent by nonfaulty processors 
are at  most  round r messages by assumption.  No non- 
faulty processor p can enter round r + 1 until it has re- 
ceived the  last of the  round r messages, including all the  
(1, s, *) messages. Immedia te ly  after receiving the last of 
these (if not  before), p sends its (2, s, *) messages, so all 
(2, s, *) messages sent by nonfaulty processors are at most  
round r + 1 messages. No nonfaulty processor p can enter 
round r + 2 unti l  it has received the last of the round r + 1 
messages, including all the (2, s, *) messages. Immedia te ly  
after receiving the  last of these (if not  before), p sends its 
(1, s + 1, *) messages, so these messages are at most  round 
r + 2 m e s s a g e s .  [] 

Here is the  main  theorem showing the correctness of 
Protocol  1. 

T h e o r e m  Y: Protocol 1 is a t-nonblocklng consensus pro- 
tocol. 

P r o o f :  The  t-nonblocking proper ty  follows from Lemmas 5 
and 6. The  agreement  condit ion follows from Lemma  3. 
The  validity condit ion follows f rom Lemma  1. [] 

The  next  l emma is used in the t ime analysis of our 
t ransact ion commit  protocol.  

L e m m a  8: In Protocol I,  all nonfaul ty  processors decide 
in a constant expected number of  stages. 

P r o o f :  Let  q, = Pr[--,MATCH(S)] and let X be the number  
of stages needed for all processors to decide. Let Y be the 

number  of stages needed for all processors to have the same 
local value. Since X < Y + 1, E X ,  the  expected value of 
X ,  is 

oo 

E X _ < E ( Y + I )  = I + E Y - ~ I + E s .  P r [ Y = s ]  
8 = 1  

= l + E s . q l q , . . . q , _ l ( 1 - - q ,  ) 
s =  l 

= l - l - ( ~ s ' q ' q ' " ' q * - l ) - - C = ~ l  

= 2 + E q l q 2 . . . q a .  

For 1 < s < n, qa : 1/2, and for later stages q, = 1 - 1 /2" .  

E X  < 2 + q l " ' q *  + ql " ' q n  " qn+l " ' q .  
s = n + l  

= 2 +  ~ + ~ .  1 - ~  
a----1 a-----n+I 

< 2 + 1 + ~ ( 2 " - 1 )  
< 4  Q 

3.2 T r a n s a c t i o n  C o m m i t  P r o t o c o l  

Our  t ransact ion commit  protocol  is presented as Pro-  
tocol 2. Throughou t  the protocol  each processor keeps a 
vote telling what  it currently wants to do with  the trans- 
action. Abor t  corresponds to 0 and commit  to 1. The  
processor wi th  id 0 is the coordinator, a dist inguished pro- 
cessor responsible for beginning the protocol.  It  flips n 
coins and sends the result  (a r andom str ing of n O's and 
1%) around in GO messages to all the  processors. Recall  
tha t  we assume tha t  the  adversary cannot  see the contents 
of messages. Once a processor receives a Go message, it 
relays it to indicate "I am par t ic ipat ing in the protocol." 
If a processor does not  receive a Go message from everyone 
within  a short  per iod of t ime, it changes its vote  to abor t  
(if it had previously been commit) .  Then  each processor 
broadcasts  its vote. At this point,  any processor tha t  has 
abor t  as its vote  can actually implement  the abort .  If a 
processor receives n commit  votes wi thin  a short  t ime,  it 
uses 1 as its input  xp to Protocol  1, otherwise it uses 0 as 
its input.  The  other  input  is the GO message, which con- 
tains the  n coin flips. Then  the processor calls Protocol  1. 
If Protocol  1 re turns  1, then the processor commits  the 
t ransact ion,  and if 0 is re turned,  the processor aborts  the 
t ransact ion.  

Al though our  code does not  explicitly include it, an 
impor tan t  par t  of the protocol  is tha t  Go messages are 
piggybacked on every message sent, including those of Pro-  
tocol  1. Thus as soon as a processor (other than  the  coor- 
dinator)  receives a message, i t  has received a Go message. 
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Code  for processor  p w i th  ini t ia l  s t a t e  (id, i n i t v a l ) ;  
in i t ia l ly  vote ~-- i n l t va !  (1 for commi t ,  0 for abor t ) :  

1. if id  -- 0 t h e n  call f l i p ( n )  a n d  b roadcas t  resul t s  in 
Go message  

2. else wai t  for a Go message  
3. b r o a d c a s t  Go 

4. wai t  for n GO messages  or 2K clock ticks 
5. if have  no t  received r~ Go messages  
6. t h e n  vote  ~-- 0 

Choose  i n p u t  to  Pro tocol  1 

7. b r o a d c a s t  vote 
8. wai t  for n vote messages  or 2K clock t icks 
9. if received n vote messages for c o m m i t  
10. t h e n  zp ~-- 1 
11. else xp ~ 0 

12. call P ro toco l  1 w i th  xp a n d  Go message 

13. if P ro toco l  1 r e t u r n s  1 
14. t h e n  decide CO~¢nVUT 
15. else decide ABORT 

P r o t o c o l  2: R a n d o m i z e d  Transac t ion  C o m m i t  Pro toco l  

T h e o r e m  9:  Protoco l  2 is a t -nonblock ing  transact ion 
c o m m i t  protocol .  

P r o o f :  In o rder  to  be  precise,  we need to  take  care  of 
the  fact  t h a t  Pro toco l  2 calls Pro tocol  1 as a sub rou t ine ,  
and  t hus  no t  f rom an  ini t ia l  s ta te ,  whereas  the  behav io r  of 
Pro toco l  1 was ana lyzed  for r u n n i n g  f rom an  ini t ia l  config- 
u ra t ion .  B u t  no te  t h a t  w h e n  Pro tocol  1 is called in P ro -  
tocol  2, t he re  are no  messages  in the  buffers t h a t  can  b e  
confused w i th  messages  of Pro toco l  1, every processor  has  
a n  in i t ia l  value  of 0 or 1, a n d  every processor  knows t h a t  
i t  is beg inn ing  Pro toco l  1. 

Since we are  only  cons ider ing  t -admiss ib le  adversar ies ,  
some nonfau l ty  processor  p does receive a message.  Since 
every message  has  t he  Go message  piggybacked on  it, p 
now b r o a d c a s t s  GO. Consequent ly ,  eventua l ly  every non-  
fau l ty  processor  will receive a Go message,  a n d  a t  mos t  
4 K  clock t icks la te r  it will beg in  Pro toco l  1. P ro toco l  1 is 
t -nonblocking  by  T h e o r e m  7. 

T h e r e  are th ree  pa r t s  to  showing the  pro tocol  solves 
the  t r a n s a c t i o n  c o m m i t  p rob lem.  F i rs t ,  t he re  is a t  mos t  one 
decision value  because  Pro toco l  1 satisfies the  ag reement  
cond i t ion  for the  agreement  p rob lem.  Second, suppose  one  
processor ' s  ini t ia l  vote  is to  abor t .  T h e n  a t  i n s t ruc t ion  7 of 
P ro tocoI  2 i t  does no t  b roadcas t  commi t .  T h u s  no  proces-  
sor  receives n c o m m i t  votes  dur ing  ins t ruc t ion  8 and  every 
processor ' s  i n p u t  to  Pro toco l  1 is 0. By val id i ty  of P ro to -  
col 1, every processor  decides 0, and  a t  i n s t ruc t i on  15 of 
Pro toco l  2, every processor  abor t s .  

Finally,  suppose  every processor  ini t ia l ly  wan t s  to  
commi t ,  a n d  the  r u n  is failure-free and  on- t ime.  We need  to 
show t h a t  all processors  commi t .  T h e  coord ina to r  b r o a d -  
cas ts  Go a t  t ime  0 on  its clock. By t ime  K on each proces-  
sor ' s  clock, all processors  receive the  coo rd ina to r ' s  GO a n d  
b roadcas t  Go. By t ime  2 K  on  each processor ' s  clock, all 

processors  receive n Go messages.  T h u s  a t  i n s t ruc t ion  7, 
all processors  b roadcas t  1 as the i r  vote messages.  

Now we show t h a t  every processor  p receives n vote 
messages  w i th in  2 K  of i ts clock ticks af ter  i t  b roadcas t s  
i ts  vote.  Processor  p b roadcas t s  vote as soon as i t  receives 
i ts n th Go message.  Suppose  its clock reads  T then .  Since 
t he  r u n  is on- t ime ,  every o the r  processor  receives i ts n th 
Go message,  a n d  b roadcas t s  i ts  vote,  by  the  t ime  p 's  clock 
reads  T + K .  T h u s  p receives all n vote messages  by  t he  
t ime  its clock reads  T + 2K .  T h e n  in s t ruc t i on  10 is ex- 
ecuted,  s e t t i ng  z~ to 1. By val idi ty  of Pro toco l  1, every 
processor  decides 1, a n d  a t  i n s t ruc t ion  14 of Pro toco l  2, 
every processor  commits .  [3 

T h e o r e m  10:  /n  P ro toco l  2, a/l  nonfau l ty  processors  
decide in a cons tan t  expec t ed  n u m b e r  o f  asynchronous  
rounds. 

P r o o f :  A n  a r b i t r a r y  nonfau l ty  processor  p receives its first  
message  w h e n  it  is in a t  mos t  a synchronous  r o u n d  2, a n d  
beg ins  P ro toco l  1 a t  mos t  4 K  clock ticks af ter  waking  up.  
Since each of p ' s  a synchronous  r o u n d s  lasts  a t  least  K clock 
ticks (as m e a s u r e d  on  p 's  clock), p begins  Pro toco l  1 in a t  
mos t  a synch ronous  r o u n d  6. By L e m m a  6, w h e n  p beg ins  
s tage  s of P ro toco l  1, i t  is in a t  m o s t  a synchronous  r o u n d  
2(s - 1) + 6. T h e  expec ted  n u m b e r  of s tages  of Pro toco l  1 
is 4, by  L e m m a  8. Now the  t o t a l  is up  to  12. Finally,  in  
a t  mos t  two more  a synchronous  r o u n d s  processors  r e t u r n  
f rom Pro toco l  1 a n d  decide the  fa te  of the  t r ansac t ion .  
There fore  all nonfau l ty  processors  decide in 14 expec ted  
a synchronous  rounds .  O 

T h e o r e m  11:  /?  more  than  t processors  fail  dur ing  a run  
o f  Pro toco l  2, no  two non fau l t y  processors  wil l  m a k e  con- 
f l ict ing decisions. 

P r o o f :  Suppose  more  t h a n  t processors  fall in a r u n  of P ro -  
tocol  2, a n d  in con t r ad i c t ion  t h a t  some nonfau l ty  processor  
p decides 0 a n d  nonfau l ty  processor  q decides 1. 

F i r s t  we show t h a t  p and  q c a n n o t  r e t u r n  f rom Pro to -  
col 1 a t  t he  s ame  s tag  e. If t hey  do, say a t  s tage  s, t h e n  a t  
s tage s - 1 p receives a t  least  n - t messages  of t he  fo rm 
(2, s - 1, 0) whi le  q receives a t  least  n - t messages  of t h e  

fo rm (2, s - 1 ,1) .  B u t  th is  is no t  possible  in t he  fai l -s top 
faul t  model .  

W i t h o u t  loss of generali ty,  a s sume  t h a t  p r e t u r n s  a t  
s tage  s, and  q has  no t  yet  r e tu rned .  Since p r e t u r n s  a t  s tage  
s, p receives a t  least  n - t messages  of t he  fo rm (2, s - 1, 0) 
a t  s tage  s - 1. Pick any nonfau l ty  processor  r .  If  r receives 
n - t  messages  a t  i n s t ruc t i on  6 of s tage  s -  1, t h e n  r receives 
a t  least  one  message  of the  fo rm (2, s - 1,0) a n d  sets  i ts  
local va lue  to  0. (If r does no t  receive n - t messages  
a t  i n s t ruc t i on  6, i t  wai ts  forever.)  T h u s  all messages  sen t  
a t  t he  b e g i n n l n g  of s tage  s are of the  fo rm (1 , s , 0 ) .  If  r 
receives n - t messages  a t  i n s t ruc t ion  2 of s tage  s, t hen ,  
since t hey  are  all of the  fo rm (1, s, 0), r b roadcas t s  (2, 6, 0). 
( i f  r does no t  receive n - t  messages  a t  i n s t ruc t ion  2, i t  wai ts  
forever.)  T h u s  all messages  sent  a t  t he  midd le  of s tage  8 
are of~the fo rm (2, 6, 0). If q receives n - t messages  a t  
i n s t ruc t i on  6 of s tage  6, t hen ,  s ince they  are all of the  fo rm 
(2 ,6 ,0) ,  q decides 0. If  q does no t  receive n - t  messages  a t  
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instruct ion 6, it waits forever. If  q recelves n - -  t messages 
at instruct ion 2 of stage s + 1, then it re turns  0, otherwise 
it waits forever. 

We have shown tha t  if p returns 0 then q either re turns  
0 or never returns.  [] 

We make the following remarks in passing. (1) If the 
run  is failure-free and on-t ime,  all the  processors decide 
within  at  most  8 K  clock ticks, 4.~ for Protocol  2 before 
calling Protocol  1, and at most  2 K  for each stage of Pro-  
tocol 1. (2) When the run is on- t ime (but not  necessarily 
failure-free), the expected number  of clock ticks to termi- 
nat ion is a constant.  (3) By having the coordinator  flip 
more than  n coins, the expected value in Lemma 8 can get 
arbi t rar i ly  close to 3 and thus Protocol  2 can te rmina te  in 
close to 12 expected rounds.  

4. L o w e r  B o u n d  on  N u m b e r  o f  P r o c e s s o r s  

The  lower bounds  proved in the  next  two sections hold 
even if processors run  in lockstep synchrony and possess an 
a tomic broadcas t  capability. We first give relevant details 
of this s t ronger  model.  

A processor failure is represented by an explicit  failure 
step, denoted (p , .L , f ) .  After  a failure step for P, P is in a 
dist inguished failed state- Thus failures can be evidenced 

in finite runs. (Of course, processors cannot  detect  failures 
because message delivery is asynchronous.) 

Processors take steps in round-robin order,  Px through 
Pn; a schedule of the form ( p x , M x , f z ) . . .  (p,~,Mn,f,~) is a 
cycle. To enforce the round-robin behavior ,  each config- 
urat ion has a turn component ,  designating which proces- 
sor 's  tu rn  it is to take a step. An initial configuration has 
turn = 1. In order for an event  e = (p ,* , f )  to be appli- 
cable to a configuration C,  turn(C) must  equal 9, and if 
p is in the failed s ta te  in C,  then e must  be a failure step. 
After  an event  is applied, the resulting configuration's  turn 
component  is incremented by 1 (modulo n). 

For purposes of our  lower bound  proofs, we assume 
tha t  the  cycle when a message is sent is appended to it. The  
delay of message m tha t  is received in run R is the number  
of the  cycle to which the receiving event belongs minus 
the cycle number  appended to m. To model  the lockstep 
synchrony of processors, we require tha t  all messages have 
delay at least 1. 

In this section we show tha t  no protocol,  even a ran- 
domized one, can solve the t ransact ion commit  problem 
unless more than  half  the  processors are nonfaulty. The  
proof is similar to tha t  for the coordinated at tack problem 
(see for example  [HM]). 

Let state(p, C) be the s ta te  of processor p in config- 
urat ion C,  and buff(p,C) be the s ta te  of p's buffer in C. 
Given a schedule cr and a subset  S of the processors, define 
a [S  to be the subsequence of cr consisting of exactly those 
events involving processors in S. Also define kill(S, tr) to 
be the schedule obta ined from cr by replacing every event 
(p, *, f )  (where * can be M or _l_) .with (P,-1-, f )  whenever  
p is in S; similarly, define deafen(S, cr) to be the schedule 

obta ined f rom tr by replacing every event  (9, *, f )  (where * 
can be M or .L) wi th  (9, 0, f )  whenever  p is in S. 

L e m m a  12:  Let tr be a schedule applicable to configura- 
tion C and r be a schedule applicable to configuration D. 
Let S be a set of processors. I f  state(p,C) = state(p,D) 
for all processors p in S and if  a[S -- ~'[S, then for any 
processor p in S, state(p, or(C)) = state(p, r (D)) .  

P r o o f :  Use induct ion on the length of trlS, and the fact 
tha t  the t ransi t ion functions are determinist ic ,  given states,  
messages and coin flips. 

Given a par t i t ion of the  set of processors P into two 
sets S and S t, define an intergroup message (relative to S 
and S ~) to be a message sent from a processor in S to a 
processor in S( or vice versa. 

L e m m a  13:  Let S and S t be a partition of the set of 
processors, and let C and D be two configurations such 
that state(p, C) = state(p, D) and buff(p, C) C buff(p, D) 
for all p in S. Let o be a schedule applicable to C in which 
any intergroup message from S ~ to S that is received in a 
is in buff(p, C). Then 

(a) the schedule ~b = kill(S ~, or) is applicable to D; 

(b) if  no processor in S '  is in a failed s ta te  in D, then the 
schedule r = deafen(S',tr) is applicable to D. 

P r o o f :  We show (b); (a) is similar. We proceed by induc- 
t ion on the length l of o. 

Ba~sis: l = 1. Let  cr = e and r = e ~. If e is an event for p 
in S :, then in e: p receives no messages. This event is clearly 
applicable to D since p has not  failed in D.  If e is an event  
for p in S ,  then since ~ = cr and buff(p,C) C buff(p,D), 
the  fact tha t  cr is applicable to C implies tha t  r is applicable 
to D.  

Induction: l > 1. Suppose the  lemma is t rue for sched- 
ules of length l - 1 and show for length I. Let cr = ~ r ' e  be 
a schedule of length I. Since cr ~ has length l - 1, by the 
induct ion hypothesis r ~ = deafen(S~,~r ') is applicable to 
D.  We must  show tha t  • ~ = deafen(St, e) is applicable to 
r l (D)  = E .  If e is an event for p in S I, then p receives no 
messages. This  event  is clearly applicable to E since p has 
not  failed in D and no subsequent steps are failure steps. 

Suppose e = (9, M,  f ]  for p in S. We must  show tha t  
each m in M is in buff(p, E). Choose m in M and let q 
be the  sender. If m is in buff(p, C) C buff(p, D), then m 
is also in buff(p, E). Suppose m is not  in buff(p, C). Then  
by assumption on tT, q is in S.  Let  a " g  be the prefix of t~ t 
such tha t  (or"g)(C) is when m first appears in p's buffer. 
Thus,  q sends m as a result  of event g in run(C, al). Since 
q is in S,  r " g  is a prefix of r I, where 1"" = deafen(SI, cr"). 
By the induct ion hypothesis,  1"" is applicable to D,  so by 
Lemma  12, state(q, tT"(C)) = state(q,r"(D)).  By the in- 
duct ive hypothesis ,  since the length of a " g  is less than  l, g 
is applicable to r " ( D ) .  Thus m is also sent in run(D, r~), 
and m is in p's buffer in E .  [] 

T h e o r e m  14:  There  is no t-nonblocking t ransact ion com- 
mi t  protocol  if n <_ 2t. 
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Proof."  Suppose n = 2t and tha t  there is a t-nonblocking 
t ransact ion commi t  protocol  wi th  processors px through 

P n .  

Let A = {Pl . . . . .  Pt} and B = {Pt+l . . . .  ,Pn}. The  
first t events of a cycle form an A-semicycle (each processor 
in A takes a step); the last t events of a cycle form a B-  
semicycle (each processor in B takes a step). Note tha t  
an infinite schedule applicable to an initial configurat ion 
consists of a l ternat ing A- and B-semicycles.  Define a phase 
to be a schedule consisting of one or more semicycles in 
which all intergroup messages received (if any) flow in the  
same direct ion (either f rom A to B ,  or f rom B to A). 

Let  111 be  the initial configuration in which all pro- 
cessors have initial value 1. Since the protocol  is a t- 
nonblocking t ransact ion commit  protocol,  given an adver-  
sary tha t  kills no processors and delivers in cycle j + 1 any 
message sent in cycle j (so every run is failure-free and on- 
t ime),  there  is at least one finite deciding run run(a, 111) 
such tha t  a(111) has decision value 1. 

Let  a = ~rl . . .  ~ru where each r i  is a phase and, for all 
1 < i < y - 1, the  intergroup messages received in ~i flow 

in the  opposi te  direction f rom those received in ~'i+t. (It 
does not  ma t t e r  if such a par t i t ion  of a is not  unique.)  

Claim: There  exist y +  1 finite failure-free schedules a t  
th rough a~+l  such tha t  for each i ,  (1) al = ~fl...~ri-r'li, 
(2) a i  is applicable to 111, (3) cq(111) has decision value 1, 
and (4) no intergroup message is received in run(al, 11x) 
after C i - 1  = (Irl...~/-i)(111). 

Proof of Claim: We show the claim by descending in- 
duct ion on i. 

Basis: i = y + 1. Let t ing au+ l  = a proves the  claim. 

Induction: i < y + 1. We assume the  claim is t rue for 
i + 1 and show it for i. Wi thou t  loss of generality, assume 
intergroup messages received in 7ri flow from A to B.  (See 
Figure  1.) Define fll to be deafenCB, Tf¢Ti+l). By L e m m a  
13, fll is applicable to C i -1 .  Since flt[A = 1ri'vi+xlA, 
L e m m a  12 applies and each processor in A has the  same 
s ta te  in f l l (C i -1 )  = F as it does in (~ ' i~ i+t) (Ci-1) ,  so each 
decides 1 by F .  No intergroup message is received in ~1 
because processors in B receive no messages and processors 
in A receive no intergroup messages in wi~i+l .  

7rl 
In = Co ~ C1 " * Ci-2 

~ i -  1 
~ C i - t  

A ~ - B  
B ~ - A  

fll = deafen(B, 7fi"~i+l) 

7ri 
" Ci • • • C y : a ( l n )  

B ~ A  
A ~ - B  

~i+ 1 
A C - B  

B C - A  

F 

F i g u r e  1: run(cti, It t) 

/f...~. cycle_ j - 1 cycle 

A-s.c. : B-s.c. . 

J,~ fll -= dcafel~(B, ~'~' I-t) 

F 
7nq 

"= deatenCa' ') 

ii'Ti t.1 

IA B 
~ B ~ A  

F i g u r e  2: Construct ing oti from a i + l  
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Suppose the first semicycle of 7r~ is par t  of the j th  
cycle of o~. (See Figure 2.) Let D be the configuration in 
run(oz,,/11) immediately preceding the ( j -  1) at cycle of o~i. 
(If j -- 1, then let D = 111.) Let p be the substr ing of c~i 
between D and  C i - l ;  p consists of an A-semicycle followed 
by a B-semicycle, and possibly another  A-semicycle. Let 
pl = kill(A, p). By choice of o~ and p, any message received 
in pt by a processor p in B from a processor in A was sent 
prior to cycle j - 1 and is in buff(p, D). By Lemma 13, pl 
is applicable to D. Since pIB = ptlB, Lemma 12 implies 
tha t  state(p,p~(D)) = state(p, C~-1) for all p in B. 

Consider the schedule 51 -- kill(A,~l).  (See Fig- 
ure 2.) Since the processors in A fail and the proces- 
sors in B receive no messages, 51 is obviously applicable 
to p ' (D) .  Let E = 51(p'(D)). Since //lIB = ~ i [B  and  
state(p, p'(D)) = state(p, C~-1) for all p in B,  Lemma 12 
implies tha t  state(p, E) = state(p, F) for all p in B. 

By the t-nonblocking property, there must  exist a fi- 
ni te  deciding run  from E with schedule t/2. Suppose the 
decision value is v. By choice of c~, all messages sent before 
cycle j - 1 are received by the end of cycle j in p. Since 
ptlB = p[B, every processor in B receives in pl all messages 
sent to it before cycle j - 1. Thus in 62, processors in B 
receive messages sent at cycle j - 1 or later. Since all pro- 
cessors in A have been dead since cycle j - 1, B receives 
no intergroup messages in 62. 

Let /32 = deafen(A, 62). Pick p in B. From above, 
state(p,E) = state(p,l~l(C~-l)). Let m be any message in 
buff(p, E);  m could only have been sent by a processor q in 
B in cycle j - 1 or later. Lemma 12 implies tha t  q has the 
same state in corresponding configurations in run(pelf1, D) 
and run(p131, D). Thus q sends the same messages in the 
two runs,  and m is also in buff(p,F). Now we can apply 
Lemma 13 to show that  fig is applicable to F .  

Since 132]B -- 5zlB and  state(p,F) = state(p,E) for 
all p in B,  Lemma 12 implies tha t  each processor p in B 
is in the same state  in ~z(F)  as in 5z(E). So B decides 
v in fl2(F); by the agreement condit ion,  v = 1, because 
processors in A have already decided 1 by F .  No intergroup 
messages are received in 82 because none are in/~z. 

Let '7~ = J31~2. We have shown that  c~i = ~'1 . - .  ~ri-l"Ti 
satisfies properties (1), (2), (3) and (4). End of Claim. 

Note tha t  a l  is a finite schedule in which no intergroup 
messages are received. Construct  schedule a -- kill(A, a l ) .  
By Lemma 13, a is applicable to 111. Since alB = al lB,  
Lemma 12 implies tha t  each processor in B has the same 
state in a(I11) as it does in a 1 ( I l l ) ,  and thus also decides 
1 in a ( I l l ) .  

Let lol  be the initial  configuration in which all proces- 
sors in A have initial  value 0 and all processors in B have 
initial  value 1. By Lemma 13, a is applicable to Iol.  Since 
each processor in B begins with the same state in Ioi  as 
in I l l ,  by Lemma 12 each has the same state in a(Iol) as 
it does in a(/11),  and thus also decides 1 in o'(Iol). But  
by the abor t  validity condit ion as well as the t-nonblocking 
property, a ( Io l )  mus t  have decision value 0, which is a 
contradiction.  [3 

5.  L o w e r  B o u n d  o n  T i m e  

In this section we prove that  no protocol can te rminate  
in a constant  expected number  of clock ticks. This result  
provides addit ional  justif ication for our  definition of asyn- 
chronous rounds,  and  says tha t  in some sense our protocol 
has "optimal" t ime performance. 

For the result  of this section to hold, we must  make a 
technical restriction on the class of possible protocols. We 
assume tha t  for any protocol P ,  there is a function f such 
that  for any processor p and  any step 8, processor p uses 
at most  f ( s )  r andom bits at-step s in any run  of protocol 
P .  We need the following definitions in addi t ion to the 
definitions and  Lemmas 12 and 13 from Section 4. 

If p is a processor, then schedule a is p-free if p only 
takes failure steps in a. 

A run  is x-slow for some constant  z if every message 
received in the run  has delay at least x. Given a config- 
ura t ion C, a schedule a is x-slow relative to C if the run  
obta ined by applying cr to C is z-slow. 

A seed is a set of n sequences of r andom numbers  such 
that  either each sequence is infinite or each sequence has 
the same number  of elements, and  there is a one-to-one cor- 
respondence between processors and  sequences. The length 
of F is the length of one sequence. 

A run  is F-compatible, for seed F ,  if for all processors p 
and all i not  exceeding the length of F ,  when p's clock reads 
i, the r andom number  tha t  p receives is the i th element of 
p's sequence in F .  Given configuration C, a schedule a is 
F-compatible relative to C if run(C, a) is F-compat ible .  

For the remainder  of this section, we fix an arbi t rary  
1-nonblocking t ransact ion commit  protocol. We are only 
concerned with configurations reachable from some initial  
configuration by a 1-admissible run.  

Let V be a subset  of {0,1}, z an integer, and  F a 
seed. Configuration C is {z,F,V}-valent if V is the set 
of decision values of all configurations tha t  are reachable 
from C by an z-slow F-compat ib le  run.  

L e m m a  15: Choose some integer x and  some finite seed F, 
and  let I1 be the initial configuration in which all proces- 
sors have initial value I. If  run(I1, r) is a finite failure-free 
on-tlme deciding run  that  is F-compatible, then there ex- 
ists a con~guration in run(X,, r) that is ( x, F, {0,1D-valent. 

P r o o f :  Pick such a r un  run( I1 ,  r).  By the commit  validity 
condit ion,  r(I1) : C has decision value 1. Thus all runs  
s tar t ing  at C,  including x-slow F-compat ib le  runs,  have 
decision value 1, and hence C is (z, F, {1})-valent. 

Let /01  be the initial  configuration in which some pro- 
cessor q has init ial  value 0 and  the rest have initial  value 
1. Since the protocol is 1-nonblocking and since F is finite, 
there is a finite q-free a-slow F-compat ib le  run  run (a ,  I01) 
such tha t  a ( Io l )  has decision value 0, and  by the agreement 
condit ion,  a(I01) is 0-valent. 

By Lemma 13, a is also applicable to 11. By Lemma 
12, all processors except q have the same state in a(I1) as in 

49 



Il 
= (p, M, f), 

Co Cl 

oj 

C = r(I i )  

F i g u r e  3: Demonstrating the existence of an 
(x, F, {0,1})-valent configuration 

a(Iol), and decide 0 in a ( h ) .  Thus /1  is either (z, F, {0} ) -  
valent or (z, F, (0,  0 ) -valent .  

The valencies of I1 and C imply that there must be 
an event e = (p, M , / )  and two adjacent configurations 
in runi I l , r ) ,  Co and C1 with C1 = eiC0 ), such that C0 
is either i x, F, {0})-valent or ix, F, {0,1})-valent, and C1 is 
either ( x, F, {1})-valent or (x, F, {0,1})-valent. iSee Figure 
3.) 

If either configuration is (x, F, {0,1})-valent, we are 
done. Say neither is. Since the protocol is 1-nonblocking, F 
is finite, no processor has failed so far, and Co is (x, F, {0})- 
valent, there is a finite p--free x-slow F-compatible run 
run(a, Co) in which the nonfanlty processors decide 0. Say 
a = (p, _1_, f)o/ .  Since o/ is applicable, F-compatible and 
z-slow relative to C1, and C1 is (z, F, {1})-valent, all the 
nonfaulty processors decide 1 in a'(C1). But all the pro- 
cessors except p have the same state in a'(C1) as they do 
in a(C0) (by Lemma 12), where they decide 0. This is a 
contradiction. [] 

Given infinite run R, let T(R)  be the cycle when the 
last nonfaulty processor decides. 

L e m m a  16: Choose a finite failure-free run R'  that de- 
cides 1 and has all message delays equal to 1. Let F '  be 
the finite seed of R '  and let y be the length of Rq For any 
x > 0, choose a seed F of length y + x that extends F'. 
Let C be an (x, F, {0, l})-valent configuration in R'. Then 
there is a finite F-compatible run R containing C such that 
T ( R ' )  > x for any infinite run R"  which is an extension 
of R. 

Proof :  First note that C exists by Lemma 15. Let 
C = a i I  ). Consider the failure-free x-cycle schedule 
a that is applicable and F-compatible relative to C in 
which no processor receives a message. We show that 
a(C) is (x, F, {0, 1})-valent. The lemma follows by letting 
R = runiI ,  ~a). 

Without loss of generality, assume a(C) is (x, F, (O})- 
valent. Then there is a configuration D in run(a, C) and 
some event e = (p, M, f) in a such that D is (z, F, {0,1})- 
valent and e(D) is (x, F, {0})-valent. The only other event 
applicable to D that can be part of an x-slow F-compatible 
run is (p, _l_,/) = e', because all messages sent more than 

x cycles ago have delay 1 and have already been received, 
and because F is long enough to extend to e. (See Fig- 
ure 4.) Since D is (x,F, {0,1})-valent, e'(D) must be ei- 
ther (x, F, {0,1})-valent or (z, F, {1})-valent. Thus there 
is some finite p-free z-slow F-compatible run from e'(D) 
that has decision value 1; let r be its schedule. Now r is 
also applicable to e(D), and all processors except p have 
the same state in r(e(D)) as in r(e'(D)), so they decide 1, 
contradicting the valency of e(D). [] 

T h e o r e m  17: For any constant B, there is an adversary 
A and an initial configuration I such that E(TA,i) _> B. 

Proof :  Let A' be the adversary that kills no processors 
and sets all message delays to 1. Let 11 be the initial 
configuration in which all initial values are 1. Let ~ be 
the set of all 2B-cycle failure-free runs from I1 such that 
the message delay for all messages is 1. There is a finite 
number of such runs. 

Case i: At most half the runs in ~ are deciding. Let 
A = A' and I = 11. Then E(TAd)  _> 2B/2  = B. 

Case 2: More than half the runs in ~ are deciding. 
Let ¢ be the set of all configurations present in some run 
in ~,  and let m = ]el. Keep a count for each C in C, 
initially 0. Let jr be the collection of all seeds with length 
2roB. Jr is finite by the technical assumption made that at 
each step a processor uses only a finite number of random 
bits. 

For each F in jr do the following. Let R be the F-  
compatible run in ~. If R is not deciding, do nothing. If R 
is deciding, then by Lemma 15, there is a (2rnB, F, {0,1})- 
valent configuration C reachable from an initial configura- 

I1 
delay 1 e = (p, M, f,) 

* C * D e (D)  * a ( C )  

D D 

~ o r ~  

m 
F i g u r e  4: Demonstrating that a(C) is (x,F, {0,1})-valent 
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tion by some failure-free run R" with delays 1. Thus C 
is in C. Let l be the length of R". Increment C's count 
by 1. By Lemrna 16, there is a finite F-compat ible  run 
R '  containing C such that  T(R") > 2roB, for any infi- 
nite run R '~ which is an extension of R' .  Let A c  be the 
adversary of R '. That  is, A c  is the adversary which for 
the first I events delivers messages after delay 1 and which 
subsequently delivers messages after delay 2roB. 

Since ICI = m, there is a C in C with count at least 
1 1 ~ -  ~- IJrl, because of the pigeonhole principle and the fact 

that  at least half the elements of 3 r cause a count to be 
incremented. 

Let I = / 1  and A = Ac .  Then 

E(TAj )  > . . . .  1 1 2mB = B 
- m  2 

because the fraction of all runs from I with adversary A 
that  contain C is at least 1/2m and the value of T for each 
of those runs is at least 2mE. [] 
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