Transaction Commit in a Realistic Fault Model

Brian A. Coan

and Jennifer Lundelius

Massachusetts Institute of Technology

Abstract: We study the transaction commit problem un-
der realistic timing assumptions. We identify an almost
asynchronous model, which we claim is more realistic than
some (synchronous) models that have been studied previ-
ously. In this model we give a randomized transaction com-
mit protocol based on Ben-Or’s randomized asynchronous
Byzantine agreement protocol. The expected number of
asynchronous rounds until our protocol terminates is a
small constant, and the number of failstop faults tolerated
is optimal. It is known that no deterministic protocol is
possible in this model. We motivate our definition of asyn-
chronous rounds by showing that no protocol in this model
can terminate in a bounded expected number of clock ticks,
even if processors are synchrenous. Defining asynchronous
rounds allows us to make the performance guarantee that
after a sufficient number of useful messages have been de-
livered our protocol will terminate.

1. Introduction

In a distributed database system a transaction may
be processed concurrently at several different processors.
Te maintain the integrity of the database these proces-
sors must take consistent action regarding the transaction.
Either the results of the transaction are installed in the
database at all processors (the transaction is committed),
or the results are installed at no processor (the transaction
is aborted). Furthermore, each processor must be able to

This work was supported by the Defense Advanced Re-
search Projects Agency (DARPA} under Contract N00014-83-
K-0125, by the National Science Foundation under Grant DCR-
83-02391, by the Office of Army Research under Contract
DAAG29-84-K-0058, and by the Office of Naval Research under
Contract N00014-85-K-0168.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

® 1986 ACM 0-89791-198-9/86/0800-0040 75¢

40

unilaterally abort the transaction. Ensuring that such con-
sistent action is taken is the transaction commit problem.

Qur transaction commit protocol works in an inter-
esting new timing model that is intermediate between the
synchronous and asynchronous models previously studied.
We model real systems in which messages are usually deliv-
ered within some known time bound but sometimes come
late. Many elegant transaction commit protocols [S] {DS]
have been developed for the strictly synchronous model.
The main difficulty in using these protocols in real sys-
tems is that a single violation of the timing assumptions
(i.e., a late message) can cause the protocol to produce the
wrong answer. The most common alternative model, the
comp!etely asynchronous model, unfortunately does not al-
low any solution to the transaction commit problem, either
randomized or deterministic.

The way in which we model this partially synchronous
system is to assume a completely asynchronous system, in
which relative processor speeds are unbounded and mes-
sages can take arbitrarily long to arrive, and to let the tim-
ing behavior affect the correciness conditions. The transac-
tion commit problem that we solve has the following cor-
rectness conditions. If every processor initially wants to
commit the transaction, then the common decision must
be to commit as long as no processors fail and all messages
arrive within some known fixed time bound. If any proces-
sor initially wants to abort the transaction, then the com-
mon decision must be to abort, no matter what the timing
behavior of the system is. A similar division is made in
[DLS|, in which properties that must always hold are sepe-
rated from properties that only need hold when the system
is well-behaved. In most other respects our model differs
from theirs.

The number of faults tolerated by our protocol is opti-
mal, since we prove a matching lower bound. Our protocol
works as long as more than half the processors are non-
faulty. An important property of our protocol is that it
degrades gracefully if the bound on the number of faulty
processors is exceeded — instead of producing a wrong an-
swer, the protocol simply fails to terminate. We assume
that the faulty processors fail by crashing. The fail-stop
assumption is realistic and is commonly made in the data-
base literature [S).

We prove that in our model no transaction commit
protocol can terminate in a bounded expected amount of
time. Consequently a new measure is needed to analyze
the time performance of our protocol. One of the con-
tributions of this paper is such a measure, which we call
an asynchronous round. Our definition of asynchronous
round is strong enough to allow us to show that our pro-
tocol terminates in a small constant expected number of
asynchronous rounds. In Section 2 we show that this no-
tion of asynchronous round is not unrealistically strong.

Randomization is needed in the protocol because a
result of [DDS] implies that no deterministic protocol is
possible, To analyze our randomized protocol, we must
define the adversary. Our notion of the adversary is drawn
from [CMS]. The adversary in our model chooses the order
in which processors take steps, when each message will be
delivered, and which processors fail and when. The adver-
sary is limited to killing just under half the processora. It
makes these decisions dynamically, during the execution of
the pratocol, using unlimited computational power. The
adversary has available at any point in the execution all
information about the hardware and software of the pro-
cessors, and the pattern of communication up to that time,
but it does not know the contents of the messages sent, nor
the local states of processors, nor the resulis of processors’
local coin flips, unless that information is deducible from
the pattern of commmunication. We will be careful to design
our protocol so that it is not deducible.

Qur protocol uses a solution to the agreement problem
as a subroutine. In the agreement problem each processor
begins with an initia! value, O or 1, and decides on a final
value. All nonfaulty processors’ final values must be equal,
and if all processors have the same initial value, then that
value must be the final value. Thus if one processor begins
with 0 and the rest with 1, either O or 1 is a correct an-
swer to the agreement problem, whereas in the transaction
commit problem, the answer must be 0 (if 0 is identified
with abort).

Our agreement subroutine is a modification of Ben-
Or’s asynchronous agreement protocol [Be]. The modifica-
tion lowers the expected running time from exponential to
constant. A previous modification with the same purpose
due to Rabin [R| requires & stronger model with a reli-
able distributor of coin flips. Chor, Merritt, and Shmoys
[CMS] achieve the improved running time in a model that
is stronger than Ben-Or's but more realistic than Rabin's.
However their asynchronous protocol tolerates less than
one-gixth of the processors failing. In the same model as
[CMS] we improve on the fault tolerance of their proto-
col, while still achieving a constant expected running time,
by supplying all processors with identical coin flips. A
key part of our transaction commit protocol is an explicit
strategy for distributing the identical coin flips. We believe
that this strategy is not applicable to the problem solved
in [CMS].

We caompare our transaction commit protocol to those
of Skeen [S] and Dwork and Skeen [DS]. Their protocols tol-
erate any number of processor faults. In contrast our pro-

41

tocol only handles less than half of the processors failing.
However if the bound on the number of faults is exceeded,
our protocol does not produce a wrong answer but merely
fails to terminate, By not producing a wrong answer, we
leave open the opportunity to recover. Late messages are
not a problem for our protocol because of our model, but
as we noted earlier they can cause the protocols in [S] and
[DS] to produce a wrong answer.

In summary, the principal contributions of our paper
are a realistic partially synchronous model, a method for
analyzing the time performance of protocols in this model,
an efficient fault-tolerant protocol for the transaction com-
mit problem, and lower bounds showing that the protocol
is optimal.

Following an exposition of our formal model in Sec-
tion 2, we present our randomized transaction commit pro-
tocol in Section 3. Section 4 contains the lower bound proof
showing that our protocol tolerates the maximal number
of faulty processors. Finally, in Section 5 we show that no
transaction commit protocol can terminate in a bounded
expected number of clock ticks as measured on any proces-
sor’s clock, even if processors are synchronous.

2. Model

Processors are modeled as state machines that com-
municate by sending messages but without atomic broad-
cast. Messages can take arbitrarily long to arrive. There
is no bound on the relative frequency with which proces-
sors take steps. Our protocol works even in a very weak
model in which there is no bound on the relative frequency
with which processors take steps. Our lower bound results
are shown for the stronger case in which processors run in
lockstep synchrony and possess atomic broadcast. In this
section we present the weaker model. In Sections 4 and 5
we indicate the necessary changes for the stronger model.
Our model is similar to those in [FLP] and [DDS].

2.1 Basic Model

A processor ig an infinite state machine, together with
a message buffer, and a random number generator. The
message buffer holds messages that have been sent to the
processor but not yet received, and is modeled as a set of
messages. The random number generator supplies an infi-
nite sequence of real numbers, distributed uniformly cver
the interval [0,1). The state machine’s transition func-
tion uses the current state, current random number and
messages received to compute the new state and messages
to be sent. Certain states are initial states, designated
{¢d, initval), where id is an integer and {nitval is either 0
or 1. The id element of the initial state is the processor’s
identification number. The inztval element is the proces-
sor’s initial value. Each processor can send up to one mes-
sage to every processor in one step. There is an integer
in each processor’s state, called its clock, that counts how
many steps the processor has taken so far. A protocol is a
set of n processors,

A configuration C consists of n states, one for each
processor, and n sets of messages, one for each processor’s

buffer. An fritial configuration has all processors in initial
states and all buffers equal to the empty set.

An event is denoted (p, M, f), in which processor p
receives the set of messages M (which can be empty), and
the random number f. A processor must be able to receive
at least » messages at a step (although it need not do so
at every step, of course.)

An event ¢ = (p, M, f) is applicable to configuration C
if every message in M is an element of #’s buffer in C. The
configuration resulting from applying & to C, denoted (C}),
is obtained from C by removing all messages in M from
p's buffer, changing p’s state according to its transition
function, and adding messages from p to the appropriate
buffers according to the transition function. Processor p's
transition function uses M, f, and p's state in C.

A schedule is a finite or infinite sequence of events.
A finite schedule 0 = ejez ... e, is applicable to configura-
tion C if e, is applicable to C, ey is applicable to e1(C),
etc. The resulting configuration is denoted o(C). An infi-
nite schedule is applicable to C if every finite prefix of the
schedule is applicable to C.

We define the run B obtained from configuration C,
and schedule o applicable to C;, denoted run(C,,r), as
follows. If & = e1ez... & is finite, then E is the sequence
Ci1e1Cze3 ... €xCxy1, where Oy = (Cy), 1 €1 < k. If
o = ejeg...is infinite, then R is the sequence CyeCqez .. .,
where, for all 1, Cre1Czes...6:C;y | = run(Cy,e1e3...€).
We also denote o by sched(R). Informally, a run is a sched-
ule together with its associated configurations.

Processer p is nonfaulty in an infinite run or schedule
if it takes an infinite number of steps; otherwise it is faulty.
An infinite run or schedule is faslure-free if no processor is
faulty in it. Since there is no restriction on how often rel-
ative to one another processors take steps and increment
their clocks, no particular degree of synchronization is nec-
essarily achieved.

A message sent by processor p at event e in infinite
schedule ¢ is guaranteed if e is not the last event of ¢ that
involves p. Given configuration C, an infinite run R is
t-admissible from C, for 0 <t < m, if

e sched(R) is applicable to C,
» at most ¢ processors are faulty in R, and

» all guaranteed messages sent to nonfaulty processors
in R are eventually received.

The notion of guaranteed messages is nsed to model
the lack of atomic broadcast. Since messages sent at a pro-
cessor’s last step do not have to be received, we effectively
model a processor failing in the middle of a broadcast.

There are two disjoint sets of deeision states, Yy and
Y1, such that if a processor enters a state in ¥ or ¥ it
stays in that set forever. A processor decides v when it
is in a state in ¥,. A run is deciding if every nonfaulty
processor decides. A configuration C has decision value 0
if there is some processor whose state in C is an element of

42

Yo; C has decision value 1 if there is some processor whose
state in C is an element of Y;.

2.2 Timing Constraints

We fix a positive constant K to be the number of clock
ticks within which a message can be delivered after it is
sent and not be considered late. We assume that K > 1;
otherwise messages would always be late, and our model
degenerates to that in [FLP]. A message m from p to ¢
is late in Tun R if any processor takes more than X steps
between the event when m is sent and the event when m
is received (if such an event exists), A run is on-time if it
contains no late messages.

Ideally we would like a processor to decide in a con-
stant expected number of its own clock ticks. Unfortu-
nately, as we prove in Section 5, we cannot do this, even
if processors run in lockstep synchrony. Instead, we char-
acterize the time performance of our protocol in terms of
the message system delivering enough useful messages, in
the following definition. Given an infinite run, a processor
is defined inductively to be in a particular asynechronous
round (or round) as follows. Asynchronous round 1 begins
for processor p when p first takes a step and ends when p’s
clock reads K. Asynchronous round r, r > 1, begins for
p at the end of p’s round r — 1 and ends either K clock
ticks after the end of round r — 1, or K clock ticks after p
receives the last message sent by a nonfaulty processor g
in ¢'s round r — 1, whichever happens later.

The reason we require a round to last at least K clock
ticks is to prevent a round from collapsing to nothing if
no messages are sent in the previous round. This enables
processors to make effective use of timeouts. Note that
if processors are synchronized, send imessages _o_nly at the
beginning of a round, and all message delays are exactly X,
then this definition is the same as the standard synchronous
round definition. Thus this definition is not unreasconably
strong.

2.3 Adversary

The adversary can be considered a scheduler — it de-
cides which processor takes a step next and what messages
are received. In the introduction we gave an informal de-
scription of the adversary. This subsection formalizes the
notion.

The message pattern of finite run B = Cre1...€xChyq,
where ¢; = (pg, M;, f;) for all 1 £ ¢ < k, is the sequence
of triples (p1, E1, P1) ... (Pks Bk, Pi), where FP; is the set of
processors to which messages were sent by event ¢;, and E;
is a set of integers indexing the events in the run that sent
the messages, M;, received in e;. The point of making this
definition is to isolate the pattern of message sending and
receiving while hiding the contents of the messages.

An adversary is a function that takes 4 set of n state
machines (the n processors without their random number
generators and message buffers) and a message pattern,
and returns a processor p and a set F of integers satisfying
the following condition. If ¢ is in &, then in the §*® element

of the message pattern, (p;, E;, F;), p is in F; (i.e., there
was a message sent to p at the 7** event), and in no element
of the message pattern does p receive this message.

A run is uniquely determined by an adversary A, an
initial configuration I, and a collection F of » infinite se-
quences of random numbers, one sequence for each proces-
sor. Denote this run by run(A, I, F'). The construction of
run(A, I, F) = C1e1Cqe; ... is inductive. Let C; = I. Sup-
pose the run up to configuration C; has been constructed.
Let p and E be the result of A acting on the message pat-
tern of run Cye; ... C;. Then g, consists of the processor p,
the messages sent to p in all the events indexed by E, and
the next unused random number in F for the processor p.
Finally, C;+1 = e.-(C‘,-).

If the adversary were not restricted in any way, it could
cause all processors to fail or no messages to be delivered,
and no protocol would be possible. We limit the power of
the adversary in the following reasonable way. We define a
t-admissible adversary to be an adversary such that for all
initial configurations I and all collections of n infinite se-
quences of random numbers F, run{A4, I, F) is t-admissible
and some nonfaulty processor receives a message in the run.

The expected value of any complexity measure for a
fixed randemized protocol is defined as follows. Let T be a
function that given a run returns the complexity measure
of interest for that run. For fixed adversary A and initial
configuration I, let the expected value of T, taken over
the random numbers F, be denoted E(T4,5). Define the
expected value for the protocol to be maxa r{E(T4 1)}

2.4 Problem Statement

Given infinite run R and integer r, let DONE(R, 1) be
the event that every nonfaulty processor decides by round
rof R. A protocol is t-nonblocking if for any t-admissible
adversary A and any initial configuration I,

r]im Pr[poNg(run(4,1, F),r)] = 1.

‘I'he definition of a t-admissible adversary includes the con-
dition that some nonfaulty processor receive a message in
order not to penalize a protocol for blocking if no nonfaulty
processor ever discovers that it should execute the protocol.
However, now there is the possibility of a trivial solution
to the problem: if no processor sends any messages, then
there is no t-admissible adversary and the t-nonblocking
condition is trivially satisfied. To take care of this degen-
erate case, we add to the definition of t-nonblocking the
requirernent that in any failure-free run, some processor
sends a message.

A protocol is a transaction commit protocol if for every
t-admissible run R:

e Agreement Condition: Every configuration in E has at
most one decision value.

o Abort Validity Condition: If R is deciding, then when-
ever the initial value of any processor is 0, then the
nonfaulty processors decide 0.

o Commit Validity Condition: If R is deciding, then
whenever the initial value of all processors is 1 and

43

R is failure-free and on-time, then the nonfaulty pro-
cessors decide 1.

Our goal is to design a ¢-nonblocking transaction com-
mit protacol.

The reason we require a processor to be able to re-
ceive at least » messages at one step is to rule out trivial
protocols in which nonfaulty processors swamp the mes-
sage system, causing messages to become late not because
the message system misbehaves, but because the ability of
the processors to handle all the incoming message traffic is
inadequate. For instance, the protocol “cause the run to
be not on-time by flooding the message system and then
abort” is not of much practical interest.

For completeness, we give a precise definition of the
agreement problem as well. A protocol is an agreement
protocol if for every ¢-admissible run R:

s Agreement Condition: Every configuration in R has at
most one decision value.

e Validity Condition: If R is deciding, then whenever
the initial value of every processor is 0 (resp. 1), then
the nonfaulty processors decide 0 (resp. 1).

3. The Randomized Commit Protocol

Our protocol to solve the transaction commit problem
uses a modification of the asynchronous agreement proto-
col in [Be] as a subroutine. Similar protocols are widely
used [Br] [CC] [CMS] [R]). We describe and analyze this
agreement protocol first, and then present the complete
transaction commit protocol. For the rest of this section,
we assume that n > 2¢.

3.1 Asynchronous Agreement Subroutine

The agreement subroutine is presented as Protocol 1.
Each processor p maintains a guess as to the decision in
variable zp, called its local valye. At the beginning of the
protocol, zp is p’s initial value. The protocol is structured

Code for processor p in stage s, s > 1:

Input parameters are Zy and coins; output parameter
is agreement value.

broadcast (1, s, z,,)

wait to receive n — ¢ messages of the form (1,8,%)
if more than n/2 messages are (1,s,v) for some v
then broadcast (2, s,v)
else broadcast (2,s, 1)

wait to receive n — t messages of the form (2,8, %)
if there are no (2, s,v) messages for any v
then z, « coins|s] if 5 < |coins|, else flip(1)
if there is a (2, s,v) message for some v
then z, +— v
if there are at least n — ¢ messages of the form
(2, s,v) for some v
then if already decided
then return(v)
else decide v

ERPRNe pawhNh »

=e

Protocol 1: Asynchronous Agreement Subroutine

in stages and each stage consists of two sets of message
exchanges. At stage s, processor p first sends its local value
to everyone and waits to receive » — t of these messages.
If more than n/2 of them contain some value, v, then p
sends v to everyone in the second set of stage s messages;
ctherwise p sends a special “I don't know” marker. Then
p waits for n — ¢ of the second set of stage s messages. If
there are at least n — { messages for some value v, then
p decides v. If there is at least one message for some v,
then p sets its local value to v. Otherwise, p chooses its
local value by either referring to a list of coin flips that is
initially supplied, or by flipping a local coin.

The “wait” construct used to describe the protocol
operates as follows. As a processor receives messages, it
posts them on an internal bulletin board. After a wait is
enccuntered in its program, each time a processor takes a
step it posts the messages received and then checks if the
condition following the wait has been achieved, by looking
at all the messages received so far. “Broadcast” means
send tc all processors, but does not imply atomicity. A
processor obtains ¢ random bits by invoking the procedure

flip(s).

We establish the correctness and time performance of
Protocol 1 for the agreement problem, when called with
z, set equal to p’s initial value and with ceins containing
at least n random bits. (Later when we use Protocol 1,
we will ensure that coins has this property — it is needed
for the good time performance, but not correctness.) We
call a message of the form (2,s,v), where v is not 1, an
S-message, because the receipt of such a message causes a
processor to set its local variable to ».

Lemma 1: If every nonfaulty processor’s local value is v at
the beginning of its stage s, then every nonfauity processor
decides v by the end of its stage s.

Proof: Since every nonfaulty processor’s local value is v,
each one sends (1, s, v) at instruction 1 of stage s. Thus at
instruction 2, they all receive at least n —¢ > n/2 messages
of the form (1,s,v), and they all send (2, s,v). Finally, at
instruction 6, they all receive at Jeast n — ¢ messages of the
form [2,s,v) and decide v. u]

Lemma 2: During any stage s, there is at most one value
sent in S-messages.

Proof: In order to send an S-message for some value v at
stage 8, a processor must receive more than n/2 messages of
the form (1, s,). Since processors do not send conflicting
messages in this fault model, less than n/2 messages of the
form (1, s, w) for w # v can be sent and thus received by a
processor. Thus, no processor will send an S-message for
w at stage s. o

Lemma 3: Suppose some nonfaulty processor decides v
at stage s. Then every nonfaulty processor also decides v
by stage s + 1.

Proof: Let r be the earliest stage at which any nonfaulty
processor decides, and let p be one of the processors that
does so. Without loss of generality, suppose p decides 1.

44

Now we show that no processor can decide 0 at stage r.
Since p decides 1, it receives S-messages for 1. By Lemma 2,
there are no S-messages for 0 in stage r, so no processor
can decide O at stage r.

Now we show that any nonfaulty processor that does
not decide at stage r decides 1 at stage r + 1. Since p
decides 1, it receives at least = — ¢ S-messages for 1 at
stage r. Thus every other processor receives at least one
S-message for 1 at stage r, and sets its local value to be 1.
By Lemma 1, they all decide 1 by stage » + 1.

To complete the proof of the lemma, we consider three
cases. If s = r, then the lemma follows directly from the
preceding argument. If 8 = r + 1, then every processor
decides v either in stage & or stage s — 1, and so certainly
decides v by stage s+ 1. For any other choice of s, it is not
possible for a nonfaulty processor to decide, m]

In the remainder of this section we analyze the ex-
pected running time of Protocol 1. In particular, we show
that it terminates in a small constant expected number of
rounds as long as |coins| > n.

The event we are interested in is that each nonfaulty
processor has decided by its stage s, in Protocol 1, denoted
DECIDE(s). Another event of interest, samg(s), is that all
processors that complete stage s set their local values to
the same value in stage s. Note that if sAME(s} occurs,
then DECIDE(s + 1) occurs.

We define the quantity random(p,s) for processor p
and stage s in run{A,I,F). If p completes stage s, then
random(p, s) is the random bit returned in the step cor-
responding to lines 7 through 15 of Protocol 1. Suppose
r < s is the latest stage that p completes and p took m
steps. Then random(p, s) is the {s + m)** element in the
random sequence for p. The goal is merely to obtain un-
used random bits for the analysis,

At each stage s of run R, let v(s} be the value sent
in an S-message, if an S-message is sent, otherwise let
v(s) be 0. Define the event maTcH(s), by: if s < n, then
the event is coinsfs] = v(s); if s > n, then the event is
random(p, s} = v(s) for all processors p. Pr[MaTcH(s)] =
1/2if s < n, and 1/2" if s > n. Note that MATCH(s) and
MATCH(s") are independent events for s # &',

Lemma 4: If MATCH(s) occurs in R, then SAME(s) occurs
in R.

Proof: Case 1: No S-message is sent in stage s of R, so
v(s) = 0. Thus each (operating) processor uses a random
number (from either coins or flip) to set its local value.

Since MaTCH(s) occurs, the processor sets its local value
to v(s).

Case 2: An S-message is sent in stage 8 of . The
value is v(s). Any processor in R that uses the S-message
to set its local value, sets its local value to v(s). By the
same argument as in Case 1, any processor in R that uses
a random number to set its local value, also sets its local
value to v(s}. o

Lemma 5: In Protocol 1, for any t-admissible adversary
A and initial configuration I,

lim Pr{pECIDE(s) is true in run(A, I, F)] = 1.
Linad -4
Proof: First note that
Pr[pecipE(Ss)] > PriMaTcor(1) V...V MaTCH(S — 1)].

The reason is that if the event on the right-hand side oc-
curs, then there is an s between 1 and s — 1 such that
MATCH(s') occurs. By Lemma 4, saME(s’) occurs, and
thus DECIDE(s’ + 1) occurs,

We next use the fact that the events MaTcH(s) are
independent.

Pr|MAaTcE(1) V...V MATCH(s — 1)]

= Pr[-(~MATcE(1) A ... A ~MATCH{8 — 1}]]
=1 - Pr{-MaTcH(1) A ... A MaTcr(s — 1)]

=1— ﬁ(l — Pr[maTcH(1)])
>1- (I —-1/27!

Since limy..oo(l — 1/2%)*~! = 0 we are done. n]

The next lemma shows that each stage takes only a
bounded number of asynchronous rounds.

Lemma 8: In Protocol 1, if each nonfaulty processor is in
at most asynchronous round r when it starts stage s, then
each is in at most asynchronous round r + 2 when it starts
stage s + 1.

Proof: All (1,s,*) messages sent by nonfaulty processors
are at most round r messages by assumption. No non-
faulty processor p can enter round r 4+ 1 until it has re-
ceived the last of the round r messages, including all the
(1,s,*) messages. Immediately after receiving the last of
these (if not before), p sends its (2, 8, *} messages, so0 all
(2,8, *) messages sent by nonfaulty processors are at most
round r + 1 messages. No nonfaulty processor p can enter
round r + 2 until it has received the last of the round r +1
messages, including all the (2, 3,) messages. Immediately
after receiving the last of these (if not before), p sends its
(1,8 + 1, *) messages, so these messages are at most round
r + 2 messages. a

Here is the main theorem showing the correctness of
Protocol 1.

Theorem 7: Protocol 1 is a t-nonblocking consensus pro-
tocol.

Proof: The -nonblocking property follows from Lemmas 5
and 6. The agreement condition follows from Lemma 3,
The validity condition follows from Lemma 1. O

The next lemma is used in the time analysis of our
transaction commit protocol.

Lemma 8: In Protocol 1, all nonfaulty processors decide
in a constant expected number of stages.

Proof: Let g, = Pr{-MATGH(8)] and let X be the number
of stages needed for all processors to decide, Let ¥ be the

45

number of stages needed for all processors to have the same
local value. Since X <Y +1, EX, the expected value of
X, 18

o
EX<E(Y+1)=1+E¥ =1+)_ s-Pr[Y¥ =4

a=1

<1+ f: s-Pr [(/\;’;; -wM.A.'rcH(i)) A MATCH(S)]

a1

o0
—143 s qmgeil-2,)
=1

[+ +] oo
=1+ (Z-‘-‘"hh"'%—l) - (Zs-qm---q.)

a=1 a=1
[~ =]
=2+ Z'h?z"'q,-
=1

For 1 < 3 < n,q, =1/2, and for later stages g, = 1—1/2".

ExX <2+ (qu---qa) + (cn---qn- Z qn+1---q.)

a=1 s=n+1

() o L0

2=1
1
<21+ (2" -1)
<4

3.2 Transaction Commit Protocol

Our transaction commit protocol is presented as Pro-
tocol 2. Throughout the protocol each processor keeps a
vote telling what it currently wants to do with the trans-
action. Abort corresponds to 0 and commit to 1. The
processor with id 0 is the coordinator, a distinguished pro-
cessor responsible for beginning the protocol. It fiips n
coins and sends the result (a random string of n 0's and
1’s) around in Go messages to all the processors. Recall
that we assume that the adversary cannot see the contents
of messages. Once a processor receives a GO message, it
relays it to indicate *I am participating in the protocol.”
If a processor does not receive a GO message from everyone
within a short peried of time, it changes its vote to abort
(if it had previously been commit). Then each processor
broadcasts its vote. At this point, any processor that has
abort as its vote can actually implement the abort. If a
processor receives n commit votes within a short time, it
uses 1 as its input zp to Protocol 1, otherwise it uses 0 as
its input. The other input is the Go message, which con-
tains the n coin flips. Then the processor calls Protocol 1.
If Protocol 1 returns 1, then the processor commits the
transaction, and if 0 is returned, the processor aborts the
transaction.

Although our code does not explicitly include it, an
important part of the protocol is that o messages are
piggybacked on every message sent, including those of Pro-
tocol 1. Thus as soon as a processor (other than the coor-
dinator) receives a message, it has received a Go message.

Code for processor p with initial state (id, initval);
initially vote « instval (1 for commit, 0 for abort):

-

if id = 0 then call flip(n) and broadcast results in
GO message

else wait for a GO message
broadcast co

wait for n @O messages or 2K clock ticks
if have not received n GO messages
then vote — O

LR

Choose input to Protocol 1

7. broadcast vote

8. wait for n vote messages or 2K clock ticks
9. if received n vote messages for commit
10. then z, « 1

11. else zp, — O

12. call Protocol 1 with £, and Go message

13. if Protocol 1 returns 1
14. then decide commIT
15. else decide ABORT

Protoco] 2: Randomized Transaction Commit Protocol

Theorem 9: Protocol 2 is a t-nonblocking transaction
commit protocol.

Proof: In order to be precise, we need to take care of
the fact that Protocol 2 calls Protocol 1 as a subroutine,
and thus not from an initial state, whereas the behavior of
Protocol 1 was analyzed for running from an initial config-
uration. But note that when Protocol 1 is called in Pro-
tocol 2, there are no messages in the buffers that can be
confused with messages of Protocol 1, every processor has
an initial value of 0 or 1, and every processor knows that
it is beginning Protocol 1.

Since we are only considering t-admissible adversaries,
some nonfaulty processor p does receive a message. Since
every message has the Go message piggybacked on it, p
now broadcasts Go. Consequently, eventually every non-
faulty processor will receive a GO message, and at most
4K clock ticks later it will begin Protocol 1. Pratocol 1 is
t-nonblocking by Theorem 7.

There are three parts to showing the protocol solves
the transaction commit problem. First, there is at most one
decision value because Protocol 1 satisfies the agreement
condition for the agreement problem. Second, suppose one
processor’s initial vote is to abort. Then at instruction 7 of
Protocol 2 it does not broadcast cornmit. Thus no proces-
50T receives n commit votes during instruction 8 and every
processor’s input to Protocol 1 is 0. By validity of Proto-
col 1, every processor decides 0, and at instruction 15 of
Protocol 2, every processor aborts,

Finally, suppose every processor initially wants to
commit, and the run is failure-free and on-time. We need to
show that all processors commit. The coordinator broad-
casts o at time 0 on its clock. By time K on each proces-
sor’s clock, all processors receive the coordinator’s Go and
broadcast co. By time 2K on each processor’s clock, all

46

processors receive n o messages. Thus at instruction 7,
all processors broadcast 1 as their vote messages.

Now we show that every processor p receives n vote
messages within 2K of its clock ticks after it broadcasts
its vote. Processor p broadcasts vote as soon as it receives
its n** Go message. Suppose its clock reads T then. Since
the run is on-time, every other processor receives its nt*
Go message, and broadcasts its vote, by the time p's clock
reads T + K. Thus p receives all n vote messages by the
time its clock reads T+ 2K. Then instruction 10 is ex-
ecuted, setting x, to 1. By validity of Protocol 1, every
processor decides 1, and at instruction 14 of Protocol 2,
every processor commits. m}

Theorem 10: In Protocol 2, all nonfaulty processors
decide in a constant expected number of asynchronous
rounds.

Proof: An arbitrary nonfaulty processor p receives its first
message when it is in at most asynchronous round 2, and
begins Protocol 1 at most 4K clock ticks after waking up.
Since each of p’s asynchronous rounds lasts at least K clock
ticks (as measured on p's clock), p beging Protocol 1 in at
most asynchronous round 6. By Lemma 6, when p begins
stage s of Protocol 1, it is in at most asynchronous round
2(s — 1) + 6. The expected number of stages of Protocal 1
is 4, by Lemma 8. Now the total is up to 12. Finally, in
at most two more asynchronous rounds processors return
from Protocol 1 and decide the fate of the transaction.
Therefore all nonfaulty processors decide in 14 expected
asynchronous rounds. o

Theorem 11: If more than t processors fail during a run
of Protocol 2, no two nonfaulty processors will make con-
flicting decisions.

Proof: Suppose more than ¢ processors fail in a run of Pro-
tocol 2, and in contradiction that some nonfaulty processor
p decides 0 and nonfaulty processor ¢ decides 1.

First we show that p and g cannot return from Proto-
col 1 at the same stage. If they do, say at stage s, then at
stage s — 1 p receives at least n — ¢ messages of the form
(2,s —1,0) while ¢ receives at least n — t messages of the
form (2,5 — 1,1). But this is not possible in the fail-stop
fault model.

Without loss of generality, assume that p returns at
stage 5, and ¢ has not yet returned. Since p returns at stage
s, p receives at least n —t messages of the form (2,5 —1,0)
at stage s — 1, Pick any nonfatlty processor 7. If r receives
n—t messages at instruction 6 of stage s—1, then r receives
at least one message of the form (2,5 — 1,0) and sets its
local value to 0. (If r does not receive n — ¢ messages
at instruction 8, it waits forever.) Thus all messages sent
at the beginning of stage s are of the form (1,s,0). If r
receives n — ¢ messages at instruction 2 of stage s, then,
since they are all of the form {1, 5,0), r broadcasts (2, s, 0).
(If r does not receive n—t messages at instruction 2, it waits
forever.) Thus all messages sent at the middle of stage s
are oft the form (2,s,0). If g receives n — ¢ messages at
instruction 6 of stage s, then, since they are all of the form
(2,5,0), g decides 0. If ¢ does not receive n —¢ messages at

instruction 6, it waits forever. If ¢ receives n — ¢ messages
at instruction 2 of stage s + 1, then it returns 0, otherwise
it waita forever.

We have shown that if p returns 0 then g either returns
0 or never returns, D

We make the following remarks in passing. (1) If the
run is failure-free and on-time, all the processors decide
within at most 8K clock ticks, 4% for Protocol 2 before
calling Protocol 1, and at most 2K for each stage of Pro-
tocol 1. (2) When the run is on-time (but not necessarily
failure-free), the expected number of clock ticks to termi-
nation is a constant. (3) By having the coordinator flip
more than n coins, the expected value in Lemma 8 can get
arbitrarily close to 3 and thus Protocol 2 can terminate in
close to 12 expected rounds.

4. Lower Bound on Number of Processors

The lower bounds proved in the next two sections hold
even if processors run in lockstep synchrony and possess an
atomic broadcast capability, We first give relevant details
of this stronger model.

A processor failure is represented by an explicit fairlure
step, denoted (p, L, f). After a failure step for p, pis in a
distinguished failed state. Thus failures can be evidenced
in finite runs. (Of course, processors cannot detect failures
because message delivery is asynchronous.)

Processors take steps in round-robin order, p; through
Pn; & schedule of the form (py, My, f1)-..(pps Mn, fn) is 2
cyele. To enforce the round-robin behavior, each config-
uration has a turn component, designating which proces-
sor’s turn it is to take a step. An initial configuration has
turn = 1, In order for an event e¢ = (p, x, f) to be appli-
cable to & configuration C, turn{C) must equal p, and if
p is in the failed state in C, then e must be a failure step.
After an event is applied, the resulting configuration’s turn
component is incremented by 1 (modulo x).

For purposes of our lower bound proofs, we assume
that the cycle when a message is sent is appended to it. The
delay of message m that is received in run R is the number
of the cycle to which the receiving event belongs minus
the cycle number appended to m. To model the lockstep
synchrony of processors, we require that all messages have
delay at least 1.

In this section we show that no protocol, even a ran-
domized one, can sclve the transaction commit problem
unless more than half the processors are nonfaulty. The
proof is similar to that for the coordinated attack problem
(see for example [HM]).

Let state(p,C) be the state of processor p in config-
uration C, and buff (p,C} be the state of p’s buffer in C.
Given a schedule o and a subset S of the processors, define
o|S to be the subsequence of o consisting of exactly those
events involving processors in 5. Also define kill(8,0) to
be the schedule obtained from o by replacing every event
(p, %, f) (where % can be M or L) with (p, L, f) whenever
p is in 5; similarly, define deafen(S,0) to be the schedule

47

obtained from o by replacing every event (p, *, f) (where *
can be M or 1) with (p,d, f) whenever p is in 5.

Lemma 12: Let o be a schedule applicable to configura-
tion C and r be a schedule applicable to configuration D).
Let S be a set of processors. If state(p,C) = state(p, D)
for all processors p in § and if o|§ = r|S, then for any
processor p in S, state(p,o(C)) = state(p,7(D)).

Proof: Use induction on the length of o|S, and the fact
that the transition functions are deterministic, given states,
messages and coin flips.]

Given a partition of the set of processors P into two
sets S and S’, define an fntergroup message (relative to 5
and 5') to be a message sent from a processor in § to a
processor in 8’ or vice versa.

Lenma 18: Let S and S’ be a partition of the set of
processors, and let C and D be two configurations such
that state(p, C) = state(p, D) and buff (p,C) C buff (p, D)
for all p in 8. Let ¢ be a schedule applicable to C in which
any intergroup thessage from §' to 5 that is received in o
is in buff (p, C}). Then

(a) the schedule ¢ = kill($’,0) is applicable to D;

(b) if no processor in ' is in a failed state in D, then the
schedule r = deafen(S’,0) is applicable to D.

Proof: We show {b); (a) is similar. We proceed by induc-
tion on the length i of &.

Basis: 1 =1. Letc =eandr=¢'. feisaneventforp
in S', then in ¢’ p receives no messages. This event is clearly
applicable to D since p has not failed in D. If ¢ is an event
for p in S, then since 7 = o and buff(p,C) C buff(p, D),
the fact that o is applicable to € implies that r is applicable
to D,

Induction: I > 1. Suppose the lemma is true for sched-
ules of length ! — 1 and show for length [. Let o = o’e be
a schedule of length {. Since ¢' has length [— 1, by the
induction hypothesis 7' = decfen(S’,0') is applicable to
D. We must show that ¢/ = deafen(S’,€) is applicable to
r'(D) = E. If e is an event for p in §', then p receives no
messages. This event is clearly applicable to F since p has
not failed in D and no subsequent steps are failure steps.

Suppose € = (p, M, f] for p in §. We must show that
each m in M is in buff (p, E). Choose m in M and let ¢
be the sender. If m is in buff (p,C) C buff (p, D), then m
is also in buff (p, B). Suppose m is not in buff(p, C). Then
by assumption on o, ¢ is in §. Let ¢”g be the prefix of o’
such that (¢"g)(C} is when m first appears in p’s buffer.
Thus, g sends m as a result of event g in run(C,¢'). Since
gis in S, 7"g is a prefix of 7/, where 7" = deafen(5’,0").
By the induction hypothesis, 7* is applicable to D, se by
Lemma 12, state(q,0”(C)) = state(qg,r"(D)). By the in-
ductive hypothesis, since the length of 0”g is less than I, g
is applicable to (D). Thus m is also sent in run(D,r’),
and m is in p’s buffer in E. O

Theoremn 14: There is no t-nonblocking transaction com-
mit protocol if n < 2¢.

Proof: Suppose n = 2t and that there is a t-nonblocking
transaction commit protocol with processors p; through
Pn-

Let A = {p1,-.-,p¢} 2nd B = {pt41,...,2n}. The
first ¢ events of a cycle form an A-semieyele (each processor
in A takes a step); the last ¢ events of a cycle form a B-
semicyele (each processor in B takes a step). Note that
an infinite schedule applicable to an initial configuration
consists of alternating A- and B-semicycles. Define a phase
to be a schedule consisting of one or more semicycles in
which all intergroup messages received (if any) flow in the
same direction (either from A to B, or from B to A).

Let I;; be the initial configuration in which all pro-
cessors have initial value 1. Since the protocol is a ¢-
nonblocking transaction commit protacol, given an adver-
sary that kills no processors and delivers in cycle 7 + 1 any
message sent in cycle j (so every run is failure-free and on-
time), there is at least one finite deciding run run(a, 111)
such that a{fy;) has decision value 1.

Let & = my ...my where each x; is a phase and, for all
1 < i< y—1, the intergroup messages received in m; flow

in the opposite direction from those received in 7iyy. (It
does not matter if such a partition of e iz not unique.)

Claim: There exist y-+ 1 finite failure-free schedules o;
through oy41 such that for each ¢, (1) oy = 7. .. ™1y,
(2) «; is applicable to Iy, (3) o;(J11) has decision value 1,
and (4) no intergroup message is received in run(e;, 1)
after C;y = (71 ... m—1)(I11)-

Proof of Clatm: We show the claim by descending in-
duction on f.

Basis: 1 =y + 1. Letting oy = o proves the claim.

Induction: 1 < y + 1. We assume the claim is true for
i + 1 and show it for 1. Without loss of generality, assume
intergroup messages received in 7; flow from 4 to B. (See
Figure 1.) Define f; to be deafen(B, m:41)- By Lemma
13, f; is applicable to C;—y. Since 8i|4 = mviq1|4,
Lemma 12 applies and each processor in A has the same
gtate in B1(C;_1) = F as it does in (7i%i41)(Ci-1), 50 each
decides 1 by F. No intergroup message is received in 8,
because processors in B receive no messages and processors
in A receive no intergroup messages in myviy1-

T

- s s P i— —_+ Cs e o » C, = I
[ll CD —‘—"—_""C] C; 2 1 B 1 De A ¥ [11)
BsA A4 B
Fi+1
g = deafﬂ"-(B- 7"-‘"!.‘+1) A+ B
B4+ A
F 4
Figure 1: run{e;, (1)
cycle y — 1 cycle §
Asc. 1 Bsc !) } A
D\—f—‘—\r\/ T AALE O
P = kill(A, p) P 3
B = deafefi(B, mivti 1) Yit
j Ay B
& = kijl(A,ﬂl) B¢ A
F
AB:1

E
621
B

B2 = dea

en(A, ;)

g

Figure 2; Constructing o, from o1

48

Suppose the first semicycle of a; is part of the j**
cycle of a;. (See Figure 2.) Let D be the configuration in
run{a;, I1;) immediately preceding the (§—1)** cycle of a;.
(4 =1, then let D = I ;.) Let p be the substring of o
between D and C;_1; p consists of an A-semicycle followed
by a B-semicycle, and possibly another A-semicycle. Let
p' = kill(A, p). By choice of o and p, any message received
in ¢’ by a processor p in B from a processor in A was sent
prior to cycle § — 1 and is in duff (p, D). By Lemma 13, p'
is applicable to D. Since p|B = p'|B, Lemma 12 implies
that state(p,p'(D)) = state(p, Ci_;) for all p in B.

Consider the schedule 6, = kili(4,8;,). (See Fig-
ure 2.) Since the processors in A fail and the proces-
sors in B receive no messages, §; is obviously applicable
to p'(D). Let E = & {p'(D})). Since §1|B = $,|B and
state(p, p'(D)) = state(p, Ci_,) for all p in B, Lemma 12
implies that state(p, E) = state(p, F) for all p in B.

By the t-nonblocking property, there must exist a fi-
nite deciding run from £ with schedule é;. Suppose the
decision value is v. By choice of &, all messages sent before
cycle ;7 — 1 are received by the end of cycle 5 in p. Since
?'|B = p|B, every processor in B receives in p’ all messages
sent to it before cycle j — 1, Thus in &2, processors in B
receive messages sent at cycle j — 1 or later. Since all pro-
cessore in A have been dead since cycle § — 1, B receives
no intergroup messages in 6o.

Let fa = deafen(4,8;). Pick p in B. From above,
state(p, E) = state(p, f1(Ci—1)). Let m be any message in
buff (p, B); m could only have been sent by a processor g in
B in cycle — 1 or later. Lemma 12 implies that g has the
same state in corresponding configurations in run(p’'é;, D)
and run(pf:,). Thus ¢ sends the same messages in the
two runs, and m is also in duff (p, F}. Now we can apply
Lemma 13 to show that 8 is applicable to F.

Since B2|B = & |B and state(p, F) = state(p, E) for
all p in B, Lemma 12 implies that each processor p in B
is in the same state in @3(F) as in 6;(E). So B decides
v in Bz(F); by the agreement condition, v = 1, because
processors in A have already decided 1 by F'. No intergroup
messages are received in 2 because none are in §;.

Let 4; = B182. We have shown that a; =7y ... 7017
satisfies properties (1), (2), (3) and (4). End of Claim.

Note that ¢ is a finite schedule in which no intergroup
messages are received. Construct schedule o = kill(A4, o).
By Lemma 13, ¢ is applicable to 7;;. Since ¢|F = «,]|8,
Lemma 12 implies that each processor in B has the same
state in o(7;;) as it does in o (1), and thus also decides
1 in e{I1).

Let Ip; be the initial configuration in which all proces-
sors in A have initial value 0 and all processors in B have
initial value 1. By Lemma 13, ¢ is applicable to fo;. Since
each processor in B begins with the same state in Iy, as
in Ii1, by Lemma 12 each has the same state in o(ly;) as
it does in o{f1;), and thus also decides 1 in ¢(fp1). But
by the abort validity condition as well as the -nonblocking
property, o(Jo1) must have decision value 0, which is a
contradiction. a

49

5. Lower Bound on Time

In this section we prove that no protocol can terminate
in a constant expected number of clock ticks. This result
provides additional justification for our definition of asyn-
chronous rounds, and says that in some sense our protecol
has “optimal” time performance.

For the result of this section to hold, we must make a
technical restriction on the class of possible protocols. We
assume that for any protocol P, there is a function f such
that for any processor p and any step s, processor p uses
at most f(s) random bits at-step s in any run of protocol
P. We need the following definitions in addition to the
definitions and Lemmas 12 and 13 from Section 4.

If p is a processor, then schedule ¢ is p-free if p only
takes failure steps in o.

A run is z-slow for some constant z if every message
received in the run has delay at least z. Given a config-
uration C, a schedule ¢ is x-slow relative to C if the run
obtained by applying ¢ to C is z-slow.

A seed is a set of n sequences of random numbers such
that either each sequence is infinite ot each sequence has
the same number of elements, and there is a one-to-one cor-
respondence between processors and sequences. The length
of F is the length of one sequence.

A run is F-compatible, for seed F, if for all processors p
and all { not exceeding the length of F, when p's clock reads
i, the random number that p receives is the ¢** element of
p’s sequence in F. Given configuration C, a schedule o is
F-compatible relative to C if run(C, o) is F-compatible.

For the remainder of this section, we fix an arbitrary
1-nonblocking transaction commit protocel. We are only
concerned with configurations reachable from some initial
configyration by a 1-admissible run.

Let V be a subset of {0,1}, = an integer, and F a
seed, Configuration C is {z, F,V }-valent if ¥V is the set
of decision values of all configurations that are reachable
from € by an z-slow F-compatible run.

Lemma 15: Choose some integer = and some finite seed F,
and fet I be the initial configuration in which all proces-
sors have initial value 1. If run(lh,7) is a finite failure-free
on-time deciding run that is F-compatible, then there ex-
ists & configuration in run(Iy,7) that is (z, F,{0,1})-valent.

Proof; Pick such a run run(l,7). By the commit validity
condition, 7(I;) = € has decision value 1. Thus zll runs
starting at C, including z-slow F-compatible runs, have
decision value 1, and hence C is (z, F,{1})-valent,

Let Io; be the initial configuration in which some pro-
cessor ¢ has initial value D and the rest have initial value
1. Since the protocol is 1-nonblocking and since F is finite,
there is a finite g-free z-slow F-compatible run run{o, In1)
such that o(fo;) has decision value 0, and by the agreement
condition, o{Io;) is O-valent.

By Lemma 13, & is also applicable to J;. By Lemma
12, all processors except g have the same state in o{I;) as in

I —C Oy w»C =7(h)
[o] o] [
’ E’:(’—:f) o

Figure 3: Demonstrating the existence of an
{z, F,{0, 1})-valent configuration

o{lo1), and decide O in o(I1). Thus 1, is either (z, F, {0}}-
valent or (z, F, {0, 1})-valent.

The valencies of I; and C imply that there must be
an event ¢ = (p, M, f) and two adjacent configurations
in run(Iy,7), Co and C, with C; = ¢{Cq), such that Cq
is either (z, F, {0})-valent or (z, F, {0, 1})-valent, and C is
either (z, F, {1})-valent or (z, F, {0,1})-valent. (See Figure
3.)

If either configuration is (z, F, {0,1})-valent, we are
done. Say neither is. Since the protocol is 1-nenblocking, F
is finite, no processor has failed so far, and Cy is {z, F,{0})-
valent, there is a finite p-free z-slow F-compatible run
run(a, Co) in which the nonfaulty processors decide 0. Say
o= (p, L1, f)o’. Since ¢ is applicable, F-compatible and
z-slow relative to €y, and C is (z, F, {1})-valent, all the
nonfaulty processors decide 1 in o/(C;). But all the pro-
cessors except p have the same state in o’(C}} as they do
in a(Cp) (by Lemma 12}, where they decide 0. This is a
contradiction. O

Given infinite run E, let T'(R) be the cycle when the
last nenfaulty processor decides.

Lemma 16: Choose a finite failure-free run R’ that de-
cides 1 and has all message delays equal to 1. Let F' be
the finite seed of R' and let y be the length of R'. For any
z > 0, choose a seed F of length y + x that extends F’.
Let C be an (z, F,{0,1})-valent configuration in R’. Then
there is a finite F-compatible run R containing C such that
T(R") > z for any infinite run R” which is an extension
of R.

Proof: First note that C exists by Lemma 15. Let
C = «fI). Consider the failure-free z-cycle schedule
o that is applicable and F-compatible relative to C in
which no processor receives a message. We show that
o(C) is (z, F, {0,1})-valent. The lemma follows by letting
R = run(l, ag).

50

Without loss of generality, assume o(C) is (z, F, {0}}-
valent. Then there is a configuration D in run(e,C) and
some event e = {p, M, f) in o such that DI is {z, F, {0,1})-
valent and e(D) is (z, F, {0})-valent. The only other event
applicable to D that can be part of an z-slow F-compatible
run is (p, L, f) = ¢, because all messages sent more than

z cycles ago have delay 1 and have already been received,
and because F is long enough to extend to e, (See Fig-
ure 4.) Since D is (z, F, {0,1})-valent, /(D) must be ei-
ther (z, F,{0,1})-valent or (z, F,{1})-valent. Thus there
is some finite p-free z-slow F-compatible run from &'(D)
that has decision value 1; let 7 be its schedule. Now + is
also applicable to e(17), and all processors except p have
the same state in 7(e(D)) as in 7(¢’(D)), so they decide 1,
contradicting the valency of ¢(D). O

Theorem 17: For any constant B, there is an adversary
A and an initial configuration I such that E(T4,1) > B.

Proof: Let A’ be the adversary that kills no processors
and sets all message delays to 1. Let I; be the initial
configuration in which all initial values are 1. Let R be
the set of all 2B-cycle failure-free runs from I such that
the message delay for all messages is 1. There is a finite
number of such runs.

Case 1: At most half the runs in R are deciding. Let
A=A'"and I'=1I,. Then E(T, ;) >2B/2=B.

Case 2: More than half the runs in R are deciding.
Let C be the set of all configurations present in some run
in R, and let m = |C|. Keep a count for each C in C,
initially 0. Let ¥ be the collection of all seeds with length
2mB. 7 is finite by the technical assumption made that at

each step a processor uses only a finite number of random
bits,

For each F in ¥ do the following. Let E be the F-
compatible run in R. If R is not deciding, do nothing. If R
is deciding, then by Lemma 15, there is a (2mB, F, {0,1})-
valent configuration € reachable from an initial configura-

delay Lo 2= M) o)
0/1 0/1 @ @
e’ - (f., J—rf) Tl

1
0/1]er[1]

-~

;

Figure 4: Demonstrating that o(C) is (z, F,{0,1})-valent

tion by some failure-free run B with delays 1. Thus C
is in C. Let ! be the length of R". Increment C’s count
by 1. By Lemma 16, there is a finite F-compatible run
R’ containing € such that T(R") > 2mAB, for any infi-
nite run R"” which is an extension of E’. Let Ac be the
adversary of R'. That is, As is the adversary which for
the first [events delivers messages after delay 1 and which
subsequently delivers messages after delay 2mB.

Since | = m, there is a € in C with count at least
& . -;- -|F|, because of the pigeonhole principle and the fact
that at least half the elements of ¥ cause a count to be
incremented.

Let 1 =I; and A = Ag. Then
1 1
E(TA'[) 2 'r—n- - E -2mB =B

because the fraction of all runs from I with adversary A
that contain ¢ is at least 1/2m and the value of T for each
of those runs is at least 2mpB.]

Acknowledgment
We would like to thank Barbara Liskov, Nancy Lynch,
and Bill Weihl for suggesting this problem to us.

References

[Be] M. Ben-Or, “Another Advantage of Free Choice:
Completely Asynchronous Agreement Protocols,”
Prac. 2% Ann. ACM Symp. on Principles of Dis-
tributed Computing, pp. 27-30, 1983.

[Br] G. Bracha, “An O(log n) Expected Rounds Ran-
domized Byzantine Generals Algorithm,” Proe. 17"
Ann. ACM Symp. on Theory of Computing, pp.
316-326, 1985.

[cc] B. Chor and B. Coan, “A Simple and Efficient Ran-

domized Byzantine Agreement Algorithm,” JEEE
Trans. on Software Engineering, vol. SE-11, no. 6,
pp. 531-539, 1985.

51

[CMS] B. Chor, M. Merritt, and D. Shmoys, “Simple
Constant-Time Ceonsensus Protocols in Realistic
Failure Models,” Proc. 4% Ann. ACM Symp. on
Prineiples of Distribuled Compuiing, pp. 152162,
1985,

[DDS] D. Dolev, C. Dwork, and L. Stockmeyer, “On the
Minimal Synchronism Needed for Distributed Con-
sensus,” Proe. 24** Ann. IEEE Symp. on Founda-

tions of Computer Seience, pp. 393~402, 1983.

[DLS] C. Dwork, N. Lynch, and L. Stockmeyer, “Consen-
sus in the Presence of Partial Synchrony,” Proc.
3" Ann. ACM Symp. on Principles of Distributed
Computing, pp. 103-118, 1984.

[DS] C. Dwork and D. Skeen, “The Inherent Cost of
Nonblocking Commitment,” Pro¢. 2"% Ann. ACM
Symp. on Principies of Distributed Computing, pp.
1-11, 1983.

[FLP] M. Fischer, N. Lynch, and M. Paterson, “Impos-
sibility of Distributed Consensus with One Faulty

Process,” J. ACM, vol. 32, no. 2, pp. 374-382, 1985.

[HM] J. Halpern and Y. Moses, “Knowledge and Com-
mon Knowledge in a Distributed Environment,”
Proc. 3" Ann. ACM Symp. on Principles of Dis-
tributed Computing, pp. 50-61, 1984 (revised as of

January 1986 as IBM-RJ-4421).

R] M. Rabin, “Randomized Byzantine Generals,” Proc.
24'* Ann. IEEE Symp. on Foundations of Com-

puter Seience, pp. 403-409, 1983.

D. Skeen, “Crash Recovery in a Distributed Data-
base System,” Ph.D. Thesis, Department of Elec-
trical Engineering and Computer Science, Univer-
sity of California, Berkeley, 1982, (Also available as
technical report UCB/BRL M82/45.)

