
T r a n s a c t i o n C o m m i t i n a R e a l i s t i c F a u l t M o d e l

B r i a n A. C o a n a n d J e n n i f e r L u n d e l i u s
M a s s a c h u s e t t s I n s t i t u t e of T echno logy

A b s t r a c t : We study the transaction commit pro.blem un-
der realistic timing assumptions. We identify an almost
asynchronous model, which we claim is more realistic than
some (synchronous) models that have been studied previ-
ously. In this model we give a randomized transaction com-
mit protocol based on Ben-Or's randomized asynchronous
Byzantine agreement protocol. The expected number of
asynchronous rounds until our protocol terminates is a
small constant, and the number of failstop faults tolerated
is optimal. It is known that no deterministic protocol is
possible in this model. We motivate our definition of asyn-
chronous rounds by showing that no protocol in this model
can terminate in a bounded expected number of clock ticks,
even if processors are synchronous. Defining asynchronous
rounds allows us to make the performance guarantee that
after a sufficient number of useful messages have been de-
livered our protocol will terminate.

1. I n t r o d u c t i o n

In a distributed database system a transaction may
be processed concurrently at several different processors.
To maintain the integrity of the database these proces-
sors must take consistent action regarding the transaction.
Either the results of the transaction are installed in the
database at all processors (the transaction is committed),
or the results are installed at no processor (the transaction
is aborted). Furthermore~ each processor must be able to

This work was supported by the Defense Advanced Re-
search Projects Agency (DARPA) under Contract N00014-83-
K-0125, by the National Science Foundation under Grant DCR-
83-02391, by the Office of Army Research under Contract
DAAG29-84-K-0058, and by the Office of Naval Research under
Contract N00014-85-K-0168.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

unilaterally abort the transaction. Ensuring that such con-
sistent action is taken is the transaction commit problem.

Our transaction commit protocol works in an inter-
esting new timing model that is intermediate between the
synchronous and asynchronous models previously studied.
We model real systems in which messages are usually deliv-
ered within some known time bound but sometimes come
late. Many elegant transaction commit protocols [S] [DS]
have been developed for the strictly synchronous model.
The main difficulty in using these protocols in real sys-
tems is that a single violation of the timing assumptions
(i.e., a late message) can cause the protocol to produce the
wrong answer. The most common alternative model, the
completely asynchronous model, unfortunately does not al-
low any solution to the transaction commit problem, either
randomized or deterministic.

The way in which we model this partially synchronous
system is to assume a completely asynchronous system, in
which relative processor speeds are unbounded and mes-
sages can take arbitrarily long to arrive, and to let the tim-
ing behavior affect the correctness conditions. The transac-
tion commit problem that we solve has the following cor-
rectness conditions. If every processor initially wants to
commit the transaction, then the common decision must
be to commit as long as no processors fail and all messages
arrive within some known fixed time bound. If any proces-
sor initially wants to abort the transaction, then the com-
mon decision must be to abort, no matter what the timing
behavior of the system is. A similar division is made in
[DLS], in which properties that must always hold are sepa-
rated from properties that only need hold when the system
is well-behaved. In most other respects our model differs
from theirs.

The number of faults tolerated by our protocol is opti-
mal, since we prove a matching lower bound. Our protocol
works as long as more than half the processors are non-
faulty. An important property of our protocol is that it
degrades gracefully if the bound on the number of faulty
processors is exceeded - - instead of producing a wrong an-
swer, the protocol simply fails to terminate. We assume
that the faulty processors fail by crashing. The fail-stop
assumption is realistic and is commonly made in the data-
base literature IS].

© 1986 A C M 0-89791-198-9/86/0800-0040 75¢ 40

We prove that in our model no transaction commit
protocol can terminate in a bounded expected amount of
time. Consequently a new measure is needed to analyze
the time performance of our protocol. One of the con-
tributions of this paper is such a measure, which we call
an asynchronous round. Our definition of asynchronous
round is strong enough to allow us to show that our pro-
tocol terminates in a small constant expected number of
asynchronous rounds. In Section 2 we show that this no-
tion of asynchronous round is not unrealistically strong.

Randomization is needed in the protocol because a
result of [DDS] implies that no deterministic protocol is
possible. To analyze our randomized protocol, we must
define the adversary. Our notion of the adversary is drawn
from [CMS]. The adversary in our model chooses the order
in which processors take steps, when each message will be
delivered, and which processors fail and when. The adver-
sary is limited to killing just under half the processors. It
makes these decisions dynamically, during the execution of
the protocol, using unlimited computational power. The
adversary has available at any point in the execution all
information about the hardware and software of the pro-
cessors, and the pattern of communication up to that time,
but it does not know the contents of the messages sent, nor
the local states of processors, nor the results of processors'
local coin flips, unless that information is deducible from
the pattern of communication. We will be careful to design
our protocol so that it is not deducible.

Our protocol uses a solution to the agreement problem
as a subroutine. In the agreement problem each processor
begins with an initial value, 0 or 1, and decides on a final
value. All nonfaulW processors' final values must be equal,
and if all processors have the same initial value, then that
value must be the final value. Thus if one processor begins
with 0 and the rest with 1, either 0 or 1 is a correct an-
swer to the agreement problem, whereas in the transaction
commit ploblem, the answer must be 0 (if 0 is identified
with abort).

Our agreement subroutine is a modification of Ben-
Or's asynchronous agreement protocol [Be]. The modifica-
tion lowers the expected running time from exponential to
constant. A previous modification with the same purpose
due to Rabin [R] requires a stronger model with a reli-
able distributor of coin flips. Chor, Merritt, and Shmoys
[CMS] achieve the improved running time in a model that
is stronger than Ben-Or's but more realistic than Rabin's.
However their asynchronous protocol tolerates less than
one-sixth of the processors failing. In the same model as
[CMS] we improve on the fault tolerance of their proto-
col, while still achieving a constant expected running time,
by supplying all processors with identical coin flips. A
key part of our transaction commit protocol is an explicit
strategy for distributing the identical coin flips. We believe
that this strategy is not applicable to the problem solved
in [CMS].

We compare our transaction commit protocol to those
of Skeen [S] and Dwork and Skeen [DS]. Their protocols tol-
erate any number of processor faults. In contrast our pro-

tocol only handles less than half of the processors failing.
However if the bound on the number of faults is exceeded,
our protocol does not produce a wrong answer but merely
fails to terminate. By not producing a wrong answer, we
leave open the opportunity to recover. Late messages are
not a problem for our protocol because of our model, but
as we noted earlier they can cause the protocols in IS] and
[DS] to produce a wrong answer.

In summary, the principal contributions of our paper
are a realistic partially synchronous model, a method for
analyzing the time performance of protocols in this model,
an efficient fault-tolerant protocol for the transaction com-
mit problem, and lower bounds showing that the protocol
is optimal.

Following an exposition of our formal model in Sec-
tion 2, we present our randomized transaction commit pro-
tocol in Section 3. Section 4 contains the lower bound proof
showing that our protocol tolerates the maximal number
of faulty processors. Finally, in Section 5 we show that no
transaction commit protocol can terminate in a bounded
expected number of clock ticks as measured on any proces-
sor's clock, even if processors are synchronous.

2. M o d e l

Processors are modeled as state machines that com-
municate by sending messages but without atomic broad-
east. Messages can take arbitrarily long to arrive. There
is no bound on the relative frequency with which proces-
sors take steps. Our protocol works even in a very weak
model in which there is no bound on the relative frequency
with which processors take steps. Our lower bound results
are shown for the stronger case in which processors run in
lockstep synchrony and possess atomic broadcast. In this
section we present the weaker model. In Sections 4 and 5
we indicate the necessary changes for the stronger model.
Our model is similar to those in [FLP] and [DDS].

2.1 Bas ic M o d e l

A processor is an infinite state machine, together with
a message buffer, and a random number generator. The
message buffer holds messages that have been sent to the
processor but not yet received, and is modeled as a set of
messages. The random number generator supplies an infi-
nite sequence of real numbers, distributed uniformly over
the interval [0,1). The state machine's transition func-
tion uses the current state, current random number and
messages received to compute the new state and messages
to be sent. Certain states are initial states, designated
(id, initval), where id is an integer and initval is either 0
or 1. The id element of the initial state is the processor's
identification number. The initval element is the proces-
sor's initial value. Each processor can send up to one mes-
sage to every processor in one step. There is an integer
in each processor's state, called its clock, that counts how
many steps the processor has taken so far. A protocol is a
set of n processors.

A configuration C consists of n states, one for each
processor, and n sets of messages, one for each processor's

41

buffer. A n initial configuration has all processors in ini t ial
s t a tes a n d all buffers equal to the empty set.

An event is deno ted (p , M , f) , in which processor p
receives the set of messages M (which can be empty) , a n d
the r a n d o m n u m b e r f . A processor m u s t be able to receive
at least n messages a t a s tep (a l though it need no t do so
a t every s tep, of course.)

An event e = (p, M , f) is applicable to conf igura t ion C
if every message in M is an e lement of p ' s buffer in C. T h e
conf igura t ion resu l t ing f rom apply ing e to C, deno ted e (C) ,
is o b t a i n e d f rom C by removing all messages in M f rom
p's buffer, chang ing p 's s t a t e according to i ts t r a n s i t i o n
func t ion , a n d add ing messages f rom p to the app rop r i a t e
buffers accord ing to the t r a n s i t i o n funct ion. Processor p 's
t r a n s i t i o n func t ion uses M , f , a n d p 's s t a t e in C.

A schedule is a finite or inf ini te sequence of events .
A finite schedule a = e l e 2 . . , ek is applicable to configura-
t ion C if el is appl icable to C, e2 is appl icable to el(C),
etc. T h e resu l t ing conf igura t ion is deno ted a(C). An infi-
n i te schedule is appl icable to C if every finite prefix of the
schedule is appl icable to C.

We define the run R ob ta ined f rom conf igura t ion C1
a n d schedule a appl icable to C1, deno ted run(Cx,a), as
follows. If cr = e x e 2 . . . e k is finite, t h e n R is t he sequence

ClelC2e2 . . .ekCk+l, where Ci+l = ei(Ci), 1 < i < k. If
a = ele2 • .. is infini te , t h e n R is t he sequence CxexCze2.. . ,
where , for all i, ClexCze2. . . eiCi+i = run(C1, ele2 . . . el).
We also deno te a by sehed(R). Informally, a r u n is a sched-
ule t oge the r w i th i ts associa ted conf igurat ions .

Processor p is nonfault~t in an inf ini te r u n or schedule
if i t takes an inf ini te n u m b e r of s teps; o therwise i t is fault~l.
A n infini te r u n or schedule is failure-free if no processor is
faul ty in it. Since the re is no res t r i c t ion on how often rel-
a t ive to one a n o t h e r processors take s teps and inc remen t
the i r clocks, no pa r t i cu l a r degree of synchron iza t ion is nec-
essari ly achieved.

A message sen t by processor p a t event e in infini te
schedule a is guaranteed if e is no t the las t event of cr t h a t
involves p. Given conf igura t ion C, an infini te r u n R is
t-admissible f rom C, for 0 < t < n, if

• sched(R) is appl icable to C,

• a t mos t t processors are faul ty in R, and

• all g u a r a n t e e d messages sent to nonfau l ty processors
in R are even tua l ly received.

T h e no t ion of g u a r a n t e e d messages is used to model
the lack of a tomic b roadcas t . Since messages sent a t a pro-
cessor 's las t s tep do no t have to be received, we effectively
model a processor fai l ing in t he midd le of a b roadcas t .

T h e r e are two dis joint sets of decision states, Yo and
Y1, such t h a t if a processor en ters a s t a t e in Y0 or YI it
s tays in t h a t set forever. A processor decides v w h e n it
is in a s t a t e in Yr. A r u n is deciding if every nonfan l ty
processor decides. A conf igura t ion C has decision value 0
if t he re is some processor whose s t a t e in C is a n e lement of

Y0; C has decision va lue 1 if t he re is some processor whose
s t a t e in C is an e lement of Y1.

2 .2 T i m i n g C o n s t r a i n t s

We fix a posi t ive c o n s t a n t K to be t he n u m b e r of clock
ticks w i th in which a message can be del ivered af ter i t is
sent a n d no t be cons idered late. We assume t h a t K ~ 1;
o therwise messages would always be late, a n d our model
degenera tes to t h a t in [FLP]. A message m f rom p to q
is late in r u n R if any processor takes more t h a n K s teps
be tween t he event w h e n m is sent a n d the event w h e n ra
is received (if such a n event exists). A r u n is on-time if it
con ta ins no la te messages.

Ideal ly we would like a processor to decide in a con-
s t a n t expec ted n u m b e r of i ts own clock ticks. Unfo r tu -
nately, as we prove in Sect ion 5, we c a n n o t do this , even
if processors r u n in lockstep synchrony. Ins tead , we char-
acter ize the t ime pe r fo rmance of our pro tocol in t e r m s of
the message s y s t e m del iver ing enough useful messages , in
the following defini t ion. Given an infini te run , a processor
is defined induct ive ly to be in a pa r t i cu la r asynchronous
round (or round) as follows. Asynch ronous r o u n d 1 begins
for processor p w h e n p first takes a s tep a n d ends w h e n p 's
clock reads K . Asynch ronous r o u n d r , r > 1, begins for
p a t the end of p ' s r o u n d r - 1 and ends e i the r K clock
ticks af ter the end of r o u n d r - 1, or K clock ticks af ter p
receives the las t message sent by a nonfau l ty processor q
in q's r o u n d r - 1, whichever h a p p e n s later .

T h e reason we requi re a r o u n d to las t a t least K clock
t icks is to p reven t a r o u n d f rom col lapsing to n o t h i n g if
no messages are sent in t he prev ious round . Th i s enables
processors to make effective use of t imeouts . N o t e t h a t
if processors are synchron ized , send messages only a t the
beg inn ing of a round , a n d all message delays are exact ly K ,
t h e n th i s def in i t ion is t he same as t he s t a n d a r d synch ronous
r o u n d defini t ion. T h u s th is def ini t ion is no t u n r e a s o n a b l y
s t rong.

2 .3 A d v e r s a r y

T h e adve r sa ry can be cons idered a scheduler - - i t de-
cides which processor takes a s tep nex t and w h a t messages
are received. In t he i n t roduc t i on we gave a n in formal de-
sc r ip t ion of the adversary. Th i s subsec t ion formalizes t he
not ion .

T h e message pattern of finite r u n R = C l e l • . . ekCk+l,
where ei = (pi,Mi, fl) for all 1 < i < k, is t he sequence
of t r ip les (Pl , E l , P1) . . . (Pk, Ek, Pk), where Pi is the set of
processors to which messages were sent by even t el, and El
is a set of in tegers indexing the events in the r u n t h a t sen t
the messages , Mi , received in ei. T h e po in t of m a k i n g th i s
def ini t ion is to isolate t he p a t t e r n of message send ing a n d
receiving whi le h id ing the con ten t s of t he messages.

An adversary is a func t ion t h a t takes a set of n s t a t e
mach ines (the n processors w i t h o u t the i r r a n d o m n u m b e r
genera to r s a n d message buffers) a n d a message p a t t e r n ,
and r e t u r n s a processor p a n d a set E of integers sa t i s fy ing
the following condi t ion . If i is in E , t h e n in the i ts e lement

42

of the message pat tern , (pi,Ei, Pi), p is in Pi (i.e., there
was a message sent to p at the i th event), and in no element
of the message pa t te rn does p receive this message.

A run is uniquely determined by an adversary A, an
initial configuration I , and a collection F of n infinite se-
quences of random numbers, one sequence for each proces-
sor. Denote this run by run(A , I , F). The construct ion of
run(A, I, F) = C l e l C 2 e 2 . . . is inductive. Let C1 = I . Sup-
pose the run up to configuration Ci has been constructed.
Let p and E be the result of A acting on the message pat-
tern of run Clei . . . Ci. Then ci consists of the processor p,
the messages sent to p in all the events indexed by E , and
the next unused random number in F for the processor p.
Finally, Ci+x = ei(Ci).

If the adversary were not restr icted in any way, it could
cause all processors to fail or no messages to be delivered,
and no protocol would be possible. We limit the power of
the adversary in the following reasonable way. We define a
t-admissible adversary to be an adversary such that for all
initial configurations I and all collections of n infinite se-
quences of r andom numbers F, run(A, I, F) is t-admissible
and some nonfaulty processor receives a message in the run.

The expected value of any complexity measure for a
fixed randomized protocol is defined as follows. Let T be a
function tha t given a run returns the complexity measure
of interest for tha t run. For fixed adversary A and initial
configuration I , let the expected value of T, taken over
the r andom numbers F , be denoted E(TA,x). Define the
expected value for the protocol to be maxA, i {E(TAj)} .

2.4 P r o b l e m S t a t e m e n t

Given infinite run R and integer r, let DONE(R, r) be
the event tha t every nonfaulty processor decides by round
r of R. A protocol is t-nonblocking if for any t-admissible
adversary A and any initial configuration I ,

l im Pr[DON~(run(A, I, F), r)] = 1.
r - - + o o

The definition of a t-admissible adversary includes the con-
dit ion tha t some nonfaulty processor receive a message in
order not to penalize a protocol for blocking if no nonfaul ty
processor ever discovers tha t it should execute the protocol.
However, now there is the possibility of a tr ivial solution
to the problem: if no processor sends any messages, then
there is no t-admissible adversary and the t-nonblocking
condit ion is tr ivially satisfied. To take care of this degen-
erate case, we add to the definition of t-nonblocking the
requirement tha t in any failure-free run, some processor
sends a message.

A protocol is a transaction commit protocol if for every
t-admissible run R:

• Agreement Condition: Every configuration in R has at
most one decision value.

• Abort Validity Condition: If R is deciding, then when-
ever the initial value of any processor is 0, then the
nonfaulty processors decide 0.

• Commit Validity Condition: If R is deciding, then
whenever the initial value of all processors is 1 and

R is failure-free and on-t ime, then the nonfaulty pro-
cessors decide 1.

Our goal is to design a t-nonblocking transact ion com-
mi t protocol.

The reason we require a processor to be able to re-
ceive at least n messages at one step is to rule out tr ivial
protocols in which nonfanlty processors swamp the mes-
sage system, causing messages to become late not because
the message system misbehaves, but because the ability of
the processors to handle all the incoming message traffic is
inadequate. For instance, the protocol "cause the run to
be not on- t ime by flooding the message system and then
abor t" is not of much practical interest.

For completeness, we give a precise definition of the
agreement problem as well. A protocol is an agreement
protocol if for every t-admissible run R:

* Agreement Condition: Every configuration in R has at
most one decision value.

• Validity Condition: If R is deciding, then whenever
the initial value of every processor is 0 (resp. 1), then
the nonfaul ty processors decide 0 (resp. 1).

3. T h e R a n d o m i z e d C o m m i t P r o t o c o l

Our protocol to solve the t ransact ion commit problem
uses a modif icat ion of the asynchronous agreement proto-
col in [Be] as a subroutine. Similar protocols are widely
used [Br] [CC] [CMS] [R]. We describe and analyze this
agreement protocol first, and then present the complete
t ransact ion commit protocol. For the rest of this section,
we assume tha t n > 2t.

3 .1 A s y n c h r o n o u s A g r e e m e n t S u b r o u t i n e

The agreement subrout ine is presented as Protocol 1.
Each processor p maintains a guess as to the decision in
variable xp, called its local value. At the beginning of the
protocol, xp is p's initial value. The protocol is s t ructured

Code for processor p in stage s, s ~ 1:

Input parameters are xp and coins; output parameter
is agreement value.

1. broadcast (1, s, xp)

2 . wait to receive n - t messages of the form (1, s, *)
3. if more than n / 2 messages are (1, s, v) for some v
4. then broadcast (2, s, v)
5 . else broadcast (2 , s , _1_)

6. wait to receive n - t messages of the form (2 , s , *)
7. if there are no (2, s, v) messages for any v
8. then xp ~- coins[s] if s ~ Icoinsl, else f l ip(l)
9. if there is a (2, s, v) message for some v
10. then zp ~ v
11. if there are at least n - t messages of the form

(2, s, v) for some v
12. then if already decided
13. then return(v)
14. else decide v

P r o t o c o l 1: Asynchronous Agreement Subrout ine

43

in stages and each stage consists of two sets of message
exchanges. At s tage s, processor p first sends its local value
to everyone and waits to receive n - t of these messages.
If more than n / 2 of them contain some value, t~, then p
sends v to everyone in the second set of stage s messages;
otherwise p sends a special "I don ' t know" marker. Then
p waits for n - t of the second set of s tage s messages. If
there are at least n - t messages for some value v, then
p decides t~. If there is at least one message for some v,
then p sets its local value to v. Otherwise, p chooses its
local value by ei ther referring to a list of coin flips tha t is
initially supplied, or by flipping a local coin.

The "wait" construct used to describe the protocol
operates as follows. As a processor receives messages, it
posts t hem on an internal bullet in board. After a wait is
encountered in its program, each t ime a processor takes a
step it posts the messages received and then checks if the
condit ion following the wait has been achieved, by looking
at all the messages received so far. "Broadcast" means
send to all processors, but does not imply atomicity. A
processor obtains i r andom bits by invoking the procedure
f l ip(i) .

We establish the correctness and t ime performance of
Pro toco l 1 for the agreement problem, when called wi th
zp set equal to p's initial value and with coins containing

at lhast n r andom bits. (Later when we use Protocol 1,
we will ensure tha t coins has this proper ty - - it is needed
for the good t ime performance, but not correctness.) We
call a message of the form (2 , s ,v) , where v is not ± , an
S-racssage, because the receipt of such a message causes a
processor to set its local variable to t~.

L e m m a 1: / f every nonfaulty processor 's local value is t~ at
the beginning of its stage s, then every nonfaulty processor
decides v by the end of its stage s.

P r o o f : Since every nonfaul ty processor 's local value is v,
each one sends (1, s, v) at instruct ion 1 of stage s. Thus at
instruct ion 2, they all receive at least n - t > n / 2 messages
of the form (1, s, v), and they all send (2, s, v). Finally, at
instruct ion 6, they all receive at least n - t messages of the
form (2, s, v) and decide v. O

L e m m a 2: Dur ing any stage s, there is at most one value
sent in S-messages.

P r o o f : In order to send an S-message for some value v at
s tage s, a processor must receive more than n / 2 messages of
the form (1, s, v). Since processors do not send conflicting
messages in this fault model , less than n/2 messages of the
form (1, s, w) for to ~ v can be sent and thus received by a
processor. Thus, no processor will send an S-message for
to at s tage s. El

L e m m a 3: Suppose some nonfaulty processor decides v
at stage s. Then every nonfaulty processor also decides v
by s tage s + 1 .

P r o o f : Let r be the earliest stage at which any nonfaul ty
processor decides, and let p be one of the processors tha t
does so. Wi thou t loss of generality, suppose p decides 1.

Now we show tha t no processor can decide 0 at s tage r.
Since p decides 1, it receives S-messages for 1. By L e m m a 2,
there are no S-messages for 0 in stage r, so no processor
can decide 0 at s tage r.

Now we show tha t any nonfaul ty processor tha t does
not decide at stage r decides 1 at s tage r + 1. Since p
decides 1, it receives at least n - t S-messages for 1 at
s tage r. Thus every other processor receives at least one
S-message for 1 at stage r, and sets its local value to be 1.
By Lemma 1, they all decide 1 by stage r + 1.

To complete the proof of the lemma, we consider three
cases. If s = r, then the l emma follows directly f rom the
preceding argument . If s = r + 1, then every processor
decides t~ ei ther in s tage s or s tage s - 1, and so certainly
decides v by stage s -4-1. For any other choice of s, it is not
possible for a nonfaul ty processor to decide. []

In the remainder of this section we analyze the ex-
pected running t ime of Protocol 1. In part icular , we show
tha t it te rminates in a small constant expected number of
rounds as long as [coins[_~ n.

The event we are interested in is tha t each nonfaul ty
processor has decided by its s tage s, in Protocol 1, denoted
DECIDE(S). Another event of interest, SAME(S), is tha t all
processors tha t complete s tage s set their local values to
the same value in stage s. Note tha t if SAME(S) occurs,
then DECIDE(S ~ 1) occurs.

We define the quant i ty random(p, s) for processor p
and stage s in run (A , I , F) . If p completes s tage s, then
random(p, s) is the r andom bit re turned in the step cor-
responding to lines 7 through 15 of Protocol 1. Suppose
r < s is the latest s tage tha t p completes and p took m
steps. Then random(p , s) is the (s + m) th element in the
r andom sequence for p. The goal is merely to obta in un-
used r andom bits for the analysis.

At each stage s of run R, let v(s) be the value sent
in an S-message, if an S-message is sent, otherwise let
t~(s) be 0. Define the event MATCH(S), by: if s < n, then
the event is coinsIs] = t~(s); if s > n, then the event is
random(p,s) = v(s) for all processors p. Pr[MATCH(S)] =
1/2 if s < n, and 1/2 '~ if s > n. Note tha t MATCH(S) and
MATCH(S t) are independent events for s ~ s I.

Lemma 4: ~FMATCH(S) OCCURS in R, then SAME(s) occurs
i n R .

P r o o f i Case ./: No S-message is sent in s tage s of R , so
v(s) = 0. Thus each (operating) processor uses a r andom
number (from either coins or f l ip) to set its local value.
Since MATCH(S) Occurs, the processor sets its local value
to ~(s).

Case 2: An S-message is sent in stage s of R. The
value is v(s). Any processor in R tha t uses the S-message
to set its local value, sets its local value to v(s). By the
same argument as in Case 1, any processor in R tha t uses
a r andom number to set its local value, also sets its local
value to v(s). []

44

L e m m a 5: In Protocol 1, for any t-admissible adversary
A and initial configuration I ,

81i2noo PrID~OID~(4 is true in run(A, X, F)] = 1.

P r o o f : Firs t note tha t

Pr[DECIDB(S)] > Pr[MATCH(1) V . . . V MATCH(8 - - 1)].

The reason is tha t if the event on the r ight-hand side oc-
curs, then there is an s t between 1 and s - 1 such tha t
MATCH(S t) occurs. By Lemma 4, SAME(S t) occurs, and
thus DECIDE(8 t + 1) occurs.

We next use the fact tha t the events MATCH(S) are
independent.

Pr[MATC.(1) V . . . V MATCH(S -- 1)]

= Pr[-~(-~MATCH(1) A . . . A -~MATCH(8 -- 1))]

= 1 - Pr[--MATCH(1) A . . . A -~MATCH(S -- 1)]

= 1 -- 1 -- Pr[MATCH(i)])
i= l

1 -- (1 -- 1/2n) . -1

Since lima-~co(1 - 1 /2") ' - 1 = 0 we are done. []

The next l emma shows tha t each stage takes only a
bounded number of asynchronous rounds.

L e m m a 6: /n Pro tocol 1, if'each nonfaulty processor is in
at most asynchronous round r when it s tar ts s tage s, then
each is in at most asynchronous round r + 2 when it s tar ts
s tage s + 1.

P r o o f : All (1, s, *) messages sent by nonfaulty processors
are at most round r messages by assumption. No non-
faulty processor p can enter round r + 1 until it has re-
ceived the last of the round r messages, including all the
(1, s, *) messages. Immedia te ly after receiving the last of
these (if not before), p sends its (2, s, *) messages, so all
(2, s, *) messages sent by nonfaulty processors are at most
round r + 1 messages. No nonfaulty processor p can enter
round r + 2 unti l it has received the last of the round r + 1
messages, including all the (2, s, *) messages. Immedia te ly
after receiving the last of these (if not before), p sends its
(1, s + 1, *) messages, so these messages are at most round
r + 2 m e s s a g e s . []

Here is the main theorem showing the correctness of
Protocol 1.

T h e o r e m Y: Protocol 1 is a t-nonblocklng consensus pro-
tocol.

P r o o f : The t-nonblocking proper ty follows from Lemmas 5
and 6. The agreement condit ion follows from Lemma 3.
The validity condit ion follows f rom Lemma 1. []

The next l emma is used in the t ime analysis of our
t ransact ion commit protocol.

L e m m a 8: In Protocol I, all nonfaul ty processors decide
in a constant expected number of stages.

P r o o f : Let q, = Pr[--,MATCH(S)] and let X be the number
of stages needed for all processors to decide. Let Y be the

number of stages needed for all processors to have the same
local value. Since X < Y + 1, E X , the expected value of
X , is

oo

E X _ < E (Y + I) = I + E Y - ~ I + E s . P r [Y = s]
8 = 1

= l + E s . q l q , . . . q , _ l (1 - - q ,)
s = l

= l - l - (~ s ' q ' q ' " ' q * - l) - - C = ~ l

= 2 + E q l q 2 . . . q a .

For 1 < s < n, qa : 1/2, and for later stages q, = 1 - 1 /2" .

E X < 2 + q l " ' q * + ql " ' q n " qn+l " ' q .
s = n + l

= 2 + ~ + ~ . 1 - ~
a----1 a-----n+I

< 2 + 1 + ~ (2 " - 1)
< 4 Q

3.2 T r a n s a c t i o n C o m m i t P r o t o c o l

Our t ransact ion commit protocol is presented as Pro-
tocol 2. Throughou t the protocol each processor keeps a
vote telling what it currently wants to do with the trans-
action. Abor t corresponds to 0 and commit to 1. The
processor wi th id 0 is the coordinator, a dist inguished pro-
cessor responsible for beginning the protocol. It flips n
coins and sends the result (a r andom str ing of n O's and
1%) around in GO messages to all the processors. Recall
tha t we assume tha t the adversary cannot see the contents
of messages. Once a processor receives a Go message, it
relays it to indicate "I am par t ic ipat ing in the protocol."
If a processor does not receive a Go message from everyone
within a short per iod of t ime, it changes its vote to abor t
(if it had previously been commit) . Then each processor
broadcasts its vote. At this point, any processor tha t has
abor t as its vote can actually implement the abort . If a
processor receives n commit votes wi thin a short t ime, it
uses 1 as its input xp to Protocol 1, otherwise it uses 0 as
its input. The other input is the GO message, which con-
tains the n coin flips. Then the processor calls Protocol 1.
If Protocol 1 re turns 1, then the processor commits the
t ransact ion, and if 0 is re turned, the processor aborts the
t ransact ion.

Al though our code does not explicitly include it, an
impor tan t par t of the protocol is tha t Go messages are
piggybacked on every message sent, including those of Pro-
tocol 1. Thus as soon as a processor (other than the coor-
dinator) receives a message, i t has received a Go message.

45

Code for processor p w i th ini t ia l s t a t e (id, i n i t v a l) ;
in i t ia l ly vote ~-- i n l t va ! (1 for commi t , 0 for abor t) :

1. if id -- 0 t h e n call f l i p (n) a n d b roadcas t resul t s in
Go message

2. else wai t for a Go message
3. b r o a d c a s t Go

4. wai t for n GO messages or 2K clock ticks
5. if have no t received r~ Go messages
6. t h e n vote ~-- 0

Choose i n p u t to Pro tocol 1

7. b r o a d c a s t vote
8. wai t for n vote messages or 2K clock t icks
9. if received n vote messages for c o m m i t
10. t h e n zp ~-- 1
11. else xp ~ 0

12. call P ro toco l 1 w i th xp a n d Go message

13. if P ro toco l 1 r e t u r n s 1
14. t h e n decide CO~¢nVUT
15. else decide ABORT

P r o t o c o l 2: R a n d o m i z e d Transac t ion C o m m i t Pro toco l

T h e o r e m 9: Protoco l 2 is a t -nonblock ing transact ion
c o m m i t protocol .

P r o o f : In o rder to be precise, we need to take care of
the fact t h a t Pro toco l 2 calls Pro tocol 1 as a sub rou t ine ,
and t hus no t f rom an ini t ia l s ta te , whereas the behav io r of
Pro toco l 1 was ana lyzed for r u n n i n g f rom an ini t ia l config-
u ra t ion . B u t no te t h a t w h e n Pro tocol 1 is called in P ro -
tocol 2, t he re are no messages in the buffers t h a t can b e
confused w i th messages of Pro toco l 1, every processor has
a n in i t ia l value of 0 or 1, a n d every processor knows t h a t
i t is beg inn ing Pro toco l 1.

Since we are only cons ider ing t -admiss ib le adversar ies ,
some nonfau l ty processor p does receive a message. Since
every message has t he Go message piggybacked on it, p
now b r o a d c a s t s GO. Consequent ly , eventua l ly every non-
fau l ty processor will receive a Go message, a n d a t mos t
4 K clock t icks la te r it will beg in Pro toco l 1. P ro toco l 1 is
t -nonblocking by T h e o r e m 7.

T h e r e are th ree pa r t s to showing the pro tocol solves
the t r a n s a c t i o n c o m m i t p rob lem. F i rs t , t he re is a t mos t one
decision value because Pro toco l 1 satisfies the ag reement
cond i t ion for the agreement p rob lem. Second, suppose one
processor ' s ini t ia l vote is to abor t . T h e n a t i n s t ruc t ion 7 of
P ro tocoI 2 i t does no t b roadcas t commi t . T h u s no proces-
sor receives n c o m m i t votes dur ing ins t ruc t ion 8 and every
processor ' s i n p u t to Pro toco l 1 is 0. By val id i ty of P ro to -
col 1, every processor decides 0, and a t i n s t ruc t i on 15 of
Pro toco l 2, every processor abor t s .

Finally, suppose every processor ini t ia l ly wan t s to
commi t , a n d the r u n is failure-free and on- t ime. We need to
show t h a t all processors commi t . T h e coord ina to r b r o a d -
cas ts Go a t t ime 0 on its clock. By t ime K on each proces-
sor ' s clock, all processors receive the coo rd ina to r ' s GO a n d
b roadcas t Go. By t ime 2 K on each processor ' s clock, all

processors receive n Go messages. T h u s a t i n s t ruc t ion 7,
all processors b roadcas t 1 as the i r vote messages.

Now we show t h a t every processor p receives n vote
messages w i th in 2 K of i ts clock ticks af ter i t b roadcas t s
i ts vote. Processor p b roadcas t s vote as soon as i t receives
i ts n th Go message. Suppose its clock reads T then . Since
t he r u n is on- t ime , every o the r processor receives i ts n th
Go message, a n d b roadcas t s i ts vote, by the t ime p 's clock
reads T + K . T h u s p receives all n vote messages by t he
t ime its clock reads T + 2K . T h e n in s t ruc t i on 10 is ex-
ecuted, s e t t i ng z~ to 1. By val idi ty of Pro toco l 1, every
processor decides 1, a n d a t i n s t ruc t ion 14 of Pro toco l 2,
every processor commits . [3

T h e o r e m 10: /n P ro toco l 2, a/l nonfau l ty processors
decide in a cons tan t expec t ed n u m b e r o f asynchronous
rounds.

P r o o f : A n a r b i t r a r y nonfau l ty processor p receives its first
message w h e n it is in a t mos t a synchronous r o u n d 2, a n d
beg ins P ro toco l 1 a t mos t 4 K clock ticks af ter waking up.
Since each of p ' s a synchronous r o u n d s lasts a t least K clock
ticks (as m e a s u r e d on p 's clock), p begins Pro toco l 1 in a t
mos t a synch ronous r o u n d 6. By L e m m a 6, w h e n p beg ins
s tage s of P ro toco l 1, i t is in a t m o s t a synchronous r o u n d
2(s - 1) + 6. T h e expec ted n u m b e r of s tages of Pro toco l 1
is 4, by L e m m a 8. Now the t o t a l is up to 12. Finally, in
a t mos t two more a synchronous r o u n d s processors r e t u r n
f rom Pro toco l 1 a n d decide the fa te of the t r ansac t ion .
There fore all nonfau l ty processors decide in 14 expec ted
a synchronous rounds . O

T h e o r e m 11: /? more than t processors fail dur ing a run
o f Pro toco l 2, no two non fau l t y processors wil l m a k e con-
f l ict ing decisions.

P r o o f : Suppose more t h a n t processors fall in a r u n of P ro -
tocol 2, a n d in con t r ad i c t ion t h a t some nonfau l ty processor
p decides 0 a n d nonfau l ty processor q decides 1.

F i r s t we show t h a t p and q c a n n o t r e t u r n f rom Pro to -
col 1 a t t he s ame s tag e. If t hey do, say a t s tage s, t h e n a t
s tage s - 1 p receives a t least n - t messages of t he fo rm
(2, s - 1, 0) whi le q receives a t least n - t messages of t h e

fo rm (2, s - 1 ,1) . B u t th is is no t possible in t he fai l -s top
faul t model .

W i t h o u t loss of generali ty, a s sume t h a t p r e t u r n s a t
s tage s, and q has no t yet r e tu rned . Since p r e t u r n s a t s tage
s, p receives a t least n - t messages of t he fo rm (2, s - 1, 0)
a t s tage s - 1. Pick any nonfau l ty processor r . If r receives
n - t messages a t i n s t ruc t i on 6 of s tage s - 1, t h e n r receives
a t least one message of the fo rm (2, s - 1,0) a n d sets i ts
local va lue to 0. (If r does no t receive n - t messages
a t i n s t ruc t i on 6, i t wai ts forever.) T h u s all messages sen t
a t t he b e g i n n l n g of s tage s are of the fo rm (1 , s , 0) . If r
receives n - t messages a t i n s t ruc t ion 2 of s tage s, t hen ,
since t hey are all of the fo rm (1, s, 0), r b roadcas t s (2, 6, 0).
(i f r does no t receive n - t messages a t i n s t ruc t ion 2, i t wai ts
forever.) T h u s all messages sent a t t he midd le of s tage 8
are of~the fo rm (2, 6, 0). If q receives n - t messages a t
i n s t ruc t i on 6 of s tage 6, t hen , s ince they are all of the fo rm
(2 ,6 ,0) , q decides 0. If q does no t receive n - t messages a t

46

instruct ion 6, it waits forever. If q recelves n - - t messages
at instruct ion 2 of stage s + 1, then it re turns 0, otherwise
it waits forever.

We have shown tha t if p returns 0 then q either re turns
0 or never returns. []

We make the following remarks in passing. (1) If the
run is failure-free and on-t ime, all the processors decide
within at most 8 K clock ticks, 4.~ for Protocol 2 before
calling Protocol 1, and at most 2 K for each stage of Pro-
tocol 1. (2) When the run is on- t ime (but not necessarily
failure-free), the expected number of clock ticks to termi-
nat ion is a constant. (3) By having the coordinator flip
more than n coins, the expected value in Lemma 8 can get
arbi t rar i ly close to 3 and thus Protocol 2 can te rmina te in
close to 12 expected rounds.

4. L o w e r B o u n d on N u m b e r o f P r o c e s s o r s

The lower bounds proved in the next two sections hold
even if processors run in lockstep synchrony and possess an
a tomic broadcas t capability. We first give relevant details
of this s t ronger model.

A processor failure is represented by an explicit failure
step, denoted (p , .L , f) . After a failure step for P, P is in a
dist inguished failed state- Thus failures can be evidenced

in finite runs. (Of course, processors cannot detect failures
because message delivery is asynchronous.)

Processors take steps in round-robin order, Px through
Pn; a schedule of the form (p x , M x , f z) . . . (p,~,Mn,f,~) is a
cycle. To enforce the round-robin behavior , each config-
urat ion has a turn component , designating which proces-
sor 's tu rn it is to take a step. An initial configuration has
turn = 1. In order for an event e = (p ,* , f) to be appli-
cable to a configuration C, turn(C) must equal 9, and if
p is in the failed s ta te in C, then e must be a failure step.
After an event is applied, the resulting configuration's turn
component is incremented by 1 (modulo n).

For purposes of our lower bound proofs, we assume
tha t the cycle when a message is sent is appended to it. The
delay of message m tha t is received in run R is the number
of the cycle to which the receiving event belongs minus
the cycle number appended to m. To model the lockstep
synchrony of processors, we require tha t all messages have
delay at least 1.

In this section we show tha t no protocol, even a ran-
domized one, can solve the t ransact ion commit problem
unless more than half the processors are nonfaulty. The
proof is similar to tha t for the coordinated at tack problem
(see for example [HM]).

Let state(p, C) be the s ta te of processor p in config-
urat ion C, and buff(p,C) be the s ta te of p's buffer in C.
Given a schedule cr and a subset S of the processors, define
a [S to be the subsequence of cr consisting of exactly those
events involving processors in S. Also define kill(S, tr) to
be the schedule obta ined from cr by replacing every event
(p, *, f) (where * can be M or _l_) .with (P,-1-, f) whenever
p is in S; similarly, define deafen(S, cr) to be the schedule

obta ined f rom tr by replacing every event (9, *, f) (where *
can be M or .L) wi th (9, 0, f) whenever p is in S.

L e m m a 12: Let tr be a schedule applicable to configura-
tion C and r be a schedule applicable to configuration D.
Let S be a set of processors. I f state(p,C) = state(p,D)
for all processors p in S and if a[S -- ~'[S, then for any
processor p in S, state(p, or(C)) = state(p, r (D)) .

P r o o f : Use induct ion on the length of trlS, and the fact
tha t the t ransi t ion functions are determinist ic , given states,
messages and coin flips.

Given a par t i t ion of the set of processors P into two
sets S and S t, define an intergroup message (relative to S
and S ~) to be a message sent from a processor in S to a
processor in S(or vice versa.

L e m m a 13: Let S and S t be a partition of the set of
processors, and let C and D be two configurations such
that state(p, C) = state(p, D) and buff(p, C) C buff(p, D)
for all p in S. Let o be a schedule applicable to C in which
any intergroup message from S ~ to S that is received in a
is in buff(p, C). Then

(a) the schedule ~b = kill(S ~, or) is applicable to D;

(b) if no processor in S ' is in a failed s ta te in D, then the
schedule r = deafen(S',tr) is applicable to D.

P r o o f : We show (b); (a) is similar. We proceed by induc-
t ion on the length l of o.

Ba~sis: l = 1. Let cr = e and r = e ~. If e is an event for p
in S :, then in e: p receives no messages. This event is clearly
applicable to D since p has not failed in D. If e is an event
for p in S , then since ~ = cr and buff(p,C) C buff(p,D),
the fact tha t cr is applicable to C implies tha t r is applicable
to D.

Induction: l > 1. Suppose the lemma is t rue for sched-
ules of length l - 1 and show for length I. Let cr = ~ r ' e be
a schedule of length I. Since cr ~ has length l - 1, by the
induct ion hypothesis r ~ = deafen(S~,~r ') is applicable to
D. We must show tha t • ~ = deafen(St, e) is applicable to
r l (D) = E . If e is an event for p in S I, then p receives no
messages. This event is clearly applicable to E since p has
not failed in D and no subsequent steps are failure steps.

Suppose e = (9, M, f] for p in S. We must show tha t
each m in M is in buff(p, E). Choose m in M and let q
be the sender. If m is in buff(p, C) C buff(p, D), then m
is also in buff(p, E). Suppose m is not in buff(p, C). Then
by assumption on tT, q is in S. Let a " g be the prefix of t~ t
such tha t (or"g)(C) is when m first appears in p's buffer.
Thus, q sends m as a result of event g in run(C, al). Since
q is in S, r " g is a prefix of r I, where 1"" = deafen(SI, cr").
By the induct ion hypothesis, 1"" is applicable to D, so by
Lemma 12, state(q, tT"(C)) = state(q,r"(D)). By the in-
duct ive hypothesis , since the length of a " g is less than l, g
is applicable to r " (D) . Thus m is also sent in run(D, r~),
and m is in p's buffer in E . []

T h e o r e m 14: There is no t-nonblocking t ransact ion com-
mi t protocol if n <_ 2t.

47

Proof." Suppose n = 2t and tha t there is a t-nonblocking
t ransact ion commi t protocol wi th processors px through

P n .

Let A = {Pl Pt} and B = {Pt+l ,Pn}. The
first t events of a cycle form an A-semicycle (each processor
in A takes a step); the last t events of a cycle form a B-
semicycle (each processor in B takes a step). Note tha t
an infinite schedule applicable to an initial configurat ion
consists of a l ternat ing A- and B-semicycles. Define a phase
to be a schedule consisting of one or more semicycles in
which all intergroup messages received (if any) flow in the
same direct ion (either f rom A to B , or f rom B to A).

Let 111 be the initial configuration in which all pro-
cessors have initial value 1. Since the protocol is a t-
nonblocking t ransact ion commit protocol, given an adver-
sary tha t kills no processors and delivers in cycle j + 1 any
message sent in cycle j (so every run is failure-free and on-
t ime), there is at least one finite deciding run run(a, 111)
such tha t a(111) has decision value 1.

Let a = ~rl . . . ~ru where each r i is a phase and, for all
1 < i < y - 1, the intergroup messages received in ~i flow

in the opposi te direction f rom those received in ~'i+t. (It
does not ma t t e r if such a par t i t ion of a is not unique.)

Claim: There exist y + 1 finite failure-free schedules a t
th rough a~+l such tha t for each i , (1) al = ~fl...~ri-r'li,
(2) a i is applicable to 111, (3) cq(111) has decision value 1,
and (4) no intergroup message is received in run(al, 11x)
after C i - 1 = (Irl...~/-i)(111).

Proof of Claim: We show the claim by descending in-
duct ion on i.

Basis: i = y + 1. Let t ing au+ l = a proves the claim.

Induction: i < y + 1. We assume the claim is t rue for
i + 1 and show it for i. Wi thou t loss of generality, assume
intergroup messages received in 7ri flow from A to B. (See
Figure 1.) Define fll to be deafenCB, Tf¢Ti+l). By L e m m a
13, fll is applicable to C i -1 . Since flt[A = 1ri'vi+xlA,
L e m m a 12 applies and each processor in A has the same
s ta te in f l l (C i -1) = F as it does in (~ ' i~ i+t) (Ci-1) , so each
decides 1 by F . No intergroup message is received in ~1
because processors in B receive no messages and processors
in A receive no intergroup messages in wi~i+l .

7rl
In = Co ~ C1 " * Ci-2

~ i - 1
~ C i - t

A ~ - B
B ~ - A

fll = deafen(B, 7fi"~i+l)

7ri
" Ci • • • C y : a (l n)

B ~ A
A ~ - B

~i+ 1
A C - B

B C - A

F

F i g u r e 1: run(cti, It t)

/f...~. cycle_ j - 1 cycle

A-s.c. : B-s.c. .

J,~ fll -= dcafel~(B, ~'~' I-t)

F
7nq

"= deatenCa' ')

ii'Ti t.1

IA B
~ B ~ A

F i g u r e 2: Construct ing oti from a i + l

48

Suppose the first semicycle of 7r~ is par t of the j th
cycle of o~. (See Figure 2.) Let D be the configuration in
run(oz,,/11) immediately preceding the (j - 1) at cycle of o~i.
(If j -- 1, then let D = 111.) Let p be the substr ing of c~i
between D and C i - l ; p consists of an A-semicycle followed
by a B-semicycle, and possibly another A-semicycle. Let
pl = kill(A, p). By choice of o~ and p, any message received
in pt by a processor p in B from a processor in A was sent
prior to cycle j - 1 and is in buff(p, D). By Lemma 13, pl
is applicable to D. Since pIB = ptlB, Lemma 12 implies
tha t state(p,p~(D)) = state(p, C~-1) for all p in B.

Consider the schedule 51 -- kill(A,~l). (See Fig-
ure 2.) Since the processors in A fail and the proces-
sors in B receive no messages, 51 is obviously applicable
to p ' (D) . Let E = 51(p'(D)). Since //lIB = ~ i [B and
state(p, p'(D)) = state(p, C~-1) for all p in B, Lemma 12
implies tha t state(p, E) = state(p, F) for all p in B.

By the t-nonblocking property, there must exist a fi-
ni te deciding run from E with schedule t/2. Suppose the
decision value is v. By choice of c~, all messages sent before
cycle j - 1 are received by the end of cycle j in p. Since
ptlB = p[B, every processor in B receives in pl all messages
sent to it before cycle j - 1. Thus in 62, processors in B
receive messages sent at cycle j - 1 or later. Since all pro-
cessors in A have been dead since cycle j - 1, B receives
no intergroup messages in 62.

Let /32 = deafen(A, 62). Pick p in B. From above,
state(p,E) = state(p,l~l(C~-l)). Let m be any message in
buff(p, E); m could only have been sent by a processor q in
B in cycle j - 1 or later. Lemma 12 implies tha t q has the
same state in corresponding configurations in run(pelf1, D)
and run(p131, D). Thus q sends the same messages in the
two runs, and m is also in buff(p,F). Now we can apply
Lemma 13 to show that fig is applicable to F .

Since 132]B -- 5zlB and state(p,F) = state(p,E) for
all p in B, Lemma 12 implies tha t each processor p in B
is in the same state in ~z(F) as in 5z(E). So B decides
v in fl2(F); by the agreement condit ion, v = 1, because
processors in A have already decided 1 by F . No intergroup
messages are received in 82 because none are in/~z.

Let '7~ = J31~2. We have shown that c~i = ~'1 . - . ~ri-l"Ti
satisfies properties (1), (2), (3) and (4). End of Claim.

Note tha t a l is a finite schedule in which no intergroup
messages are received. Construct schedule a -- kill(A, a l) .
By Lemma 13, a is applicable to 111. Since alB = al lB,
Lemma 12 implies tha t each processor in B has the same
state in a(I11) as it does in a 1 (I l l) , and thus also decides
1 in a (I l l) .

Let lol be the initial configuration in which all proces-
sors in A have initial value 0 and all processors in B have
initial value 1. By Lemma 13, a is applicable to Iol. Since
each processor in B begins with the same state in Ioi as
in I l l , by Lemma 12 each has the same state in a(Iol) as
it does in a(/11), and thus also decides 1 in o'(Iol). But
by the abor t validity condit ion as well as the t-nonblocking
property, a (Io l) mus t have decision value 0, which is a
contradiction. [3

5. L o w e r B o u n d o n T i m e

In this section we prove that no protocol can te rminate
in a constant expected number of clock ticks. This result
provides addit ional justif ication for our definition of asyn-
chronous rounds, and says tha t in some sense our protocol
has "optimal" t ime performance.

For the result of this section to hold, we must make a
technical restriction on the class of possible protocols. We
assume tha t for any protocol P , there is a function f such
that for any processor p and any step 8, processor p uses
at most f (s) r andom bits at-step s in any run of protocol
P . We need the following definitions in addi t ion to the
definitions and Lemmas 12 and 13 from Section 4.

If p is a processor, then schedule a is p-free if p only
takes failure steps in a.

A run is x-slow for some constant z if every message
received in the run has delay at least x. Given a config-
ura t ion C, a schedule a is x-slow relative to C if the run
obta ined by applying cr to C is z-slow.

A seed is a set of n sequences of r andom numbers such
that either each sequence is infinite or each sequence has
the same number of elements, and there is a one-to-one cor-
respondence between processors and sequences. The length
of F is the length of one sequence.

A run is F-compatible, for seed F , if for all processors p
and all i not exceeding the length of F , when p's clock reads
i, the r andom number tha t p receives is the i th element of
p's sequence in F . Given configuration C, a schedule a is
F-compatible relative to C if run(C, a) is F-compat ible .

For the remainder of this section, we fix an arbi t rary
1-nonblocking t ransact ion commit protocol. We are only
concerned with configurations reachable from some initial
configuration by a 1-admissible run.

Let V be a subset of {0,1}, z an integer, and F a
seed. Configuration C is {z,F,V}-valent if V is the set
of decision values of all configurations tha t are reachable
from C by an z-slow F-compat ib le run.

L e m m a 15: Choose some integer x and some finite seed F,
and let I1 be the initial configuration in which all proces-
sors have initial value I. If run(I1, r) is a finite failure-free
on-tlme deciding run that is F-compatible, then there ex-
ists a con~guration in run(X,, r) that is (x, F, {0,1D-valent.

P r o o f : Pick such a r un run(I1 , r). By the commit validity
condit ion, r(I1) : C has decision value 1. Thus all runs
s tar t ing at C, including x-slow F-compat ib le runs, have
decision value 1, and hence C is (z, F, {1})-valent.

Let /01 be the initial configuration in which some pro-
cessor q has init ial value 0 and the rest have initial value
1. Since the protocol is 1-nonblocking and since F is finite,
there is a finite q-free a-slow F-compat ib le run run (a , I01)
such tha t a (Io l) has decision value 0, and by the agreement
condit ion, a(I01) is 0-valent.

By Lemma 13, a is also applicable to 11. By Lemma
12, all processors except q have the same state in a(I1) as in

49

Il
= (p, M, f),

Co Cl

oj

C = r(I i)

F i g u r e 3: Demonstrating the existence of an
(x, F, {0,1})-valent configuration

a(Iol), and decide 0 in a (h) . Thus /1 is either (z, F, {0}) -
valent or (z, F, (0, 0) -valent .

The valencies of I1 and C imply that there must be
an event e = (p, M , /) and two adjacent configurations
in runi I l , r) , Co and C1 with C1 = eiC0), such that C0
is either i x, F, {0})-valent or ix, F, {0,1})-valent, and C1 is
either (x, F, {1})-valent or (x, F, {0,1})-valent. iSee Figure
3.)

If either configuration is (x, F, {0,1})-valent, we are
done. Say neither is. Since the protocol is 1-nonblocking, F
is finite, no processor has failed so far, and Co is (x, F, {0})-
valent, there is a finite p--free x-slow F-compatible run
run(a, Co) in which the nonfanlty processors decide 0. Say
a = (p, _1_, f)o/ . Since o/ is applicable, F-compatible and
z-slow relative to C1, and C1 is (z, F, {1})-valent, all the
nonfaulty processors decide 1 in a'(C1). But all the pro-
cessors except p have the same state in a'(C1) as they do
in a(C0) (by Lemma 12), where they decide 0. This is a
contradiction. []

Given infinite run R, let T(R) be the cycle when the
last nonfaulty processor decides.

L e m m a 16: Choose a finite failure-free run R' that de-
cides 1 and has all message delays equal to 1. Let F ' be
the finite seed of R ' and let y be the length of Rq For any
x > 0, choose a seed F of length y + x that extends F'.
Let C be an (x, F, {0, l})-valent configuration in R'. Then
there is a finite F-compatible run R containing C such that
T (R ') > x for any infinite run R" which is an extension
of R.

Proof : First note that C exists by Lemma 15. Let
C = a i I). Consider the failure-free x-cycle schedule
a that is applicable and F-compatible relative to C in
which no processor receives a message. We show that
a(C) is (x, F, {0, 1})-valent. The lemma follows by letting
R = runiI , ~a).

Without loss of generality, assume a(C) is (x, F, (O})-
valent. Then there is a configuration D in run(a, C) and
some event e = (p, M, f) in a such that D is (z, F, {0,1})-
valent and e(D) is (x, F, {0})-valent. The only other event
applicable to D that can be part of an x-slow F-compatible
run is (p, _l_,/) = e', because all messages sent more than

x cycles ago have delay 1 and have already been received,
and because F is long enough to extend to e. (See Fig-
ure 4.) Since D is (x,F, {0,1})-valent, e'(D) must be ei-
ther (x, F, {0,1})-valent or (z, F, {1})-valent. Thus there
is some finite p-free z-slow F-compatible run from e'(D)
that has decision value 1; let r be its schedule. Now r is
also applicable to e(D), and all processors except p have
the same state in r(e(D)) as in r(e'(D)), so they decide 1,
contradicting the valency of e(D). []

T h e o r e m 17: For any constant B, there is an adversary
A and an initial configuration I such that E(TA,i) _> B.

Proof : Let A' be the adversary that kills no processors
and sets all message delays to 1. Let 11 be the initial
configuration in which all initial values are 1. Let ~ be
the set of all 2B-cycle failure-free runs from I1 such that
the message delay for all messages is 1. There is a finite
number of such runs.

Case i: At most half the runs in ~ are deciding. Let
A = A' and I = 11. Then E(TAd) _> 2B/2 = B.

Case 2: More than half the runs in ~ are deciding.
Let ¢ be the set of all configurations present in some run
in ~, and let m =]el. Keep a count for each C in C,
initially 0. Let jr be the collection of all seeds with length
2roB. Jr is finite by the technical assumption made that at
each step a processor uses only a finite number of random
bits.

For each F in jr do the following. Let R be the F-
compatible run in ~. If R is not deciding, do nothing. If R
is deciding, then by Lemma 15, there is a (2rnB, F, {0,1})-
valent configuration C reachable from an initial configura-

I1
delay 1 e = (p, M, f,)

* C * D e (D) * a (C)

D D

~ o r ~

m
F i g u r e 4: Demonstrating that a(C) is (x,F, {0,1})-valent

50

tion by some failure-free run R" with delays 1. Thus C
is in C. Let l be the length of R". Increment C's count
by 1. By Lemrna 16, there is a finite F-compat ible run
R ' containing C such that T(R") > 2roB, for any infi-
nite run R '~ which is an extension of R' . Let A c be the
adversary of R '. That is, A c is the adversary which for
the first I events delivers messages after delay 1 and which
subsequently delivers messages after delay 2roB.

Since ICI = m, there is a C in C with count at least
1 1 ~ - ~- IJrl, because of the pigeonhole principle and the fact

that at least half the elements of 3 r cause a count to be
incremented.

Let I = / 1 and A = Ac . Then

E(TAj) > 1 1 2mB = B
- m 2

because the fraction of all runs from I with adversary A
that contain C is at least 1/2m and the value of T for each
of those runs is at least 2mE. []

A c k n o w l e d g m e n t

We would like to thank Barbara Liskov, Nancy Lynch,
and Bill Weihl for suggesting this problem to us.

R e f e r e n c e s

[Be] M. Ben-Or, "Another Advantage of Free Choice:
Completely Asynchronous Agreement Protocols,"
Proe. 2 nd Ann. ACM Syrup. on Principles o[Dis-
tributed Computing, pp. 27-30, 1983.

[Br] G. Bracha, "An O(log n) Expected Rounds Ran-
domized Byzantine Generals Algorithm," Proe. 17 th
Ann. ACM Syrup. on Theory of Computing, pp.
316-326~ 1985.

[CC] B. Chor and B. Coan, "A Simple and Efficient Ran-
domized Byzantine Agreement Algorithm," IEEE
Trans. on Software Engineering, vol. SE-11, no. 6,
pp. 531-539, 1985.

[CMS]

[DDS]

[DLS]

IDS]

[FLP]

I~M]

[R]

[sj

B. Chor, M. Merritt , and D. Shmoys, "Simple
Constant-Time Consensus Protocols in Realistic
Failure Models," Proc. 4 th Ann. ACM Syrup. on
Principles of Distributed Computing, pp. 152-162,
1985.

D. Dolev, C. Dwork, and L. Stockmeyer, "On the
Minimal Synchronism Needed for Distributed Con-
sensus," Proc. 24 th Ann. IEEE Syrup. on Founda-
tions of Computer Science, pp. 393-402, 1983.

C. Dwork, N. Lynch, and L. Stockmeyer, "Consen-
sus in the Presence of Partial Synchrony," Proe.
3 rd Ann. ACMSymp. on Principles of Distributed
Computing, pp. 103-118, 1984.

C. Dwork and D. Skeen, "The Inherent Cost of
Nonblocking Commitment," Proc. 2 na Ann. ACM
Syrup. on Principles of Distributed Computing, pp.
i - i i , 1983.

M. Fischer, N. Lynch, and M. Paterson, "Impos-
sibility of Distributed Consensus with One Faulty
Process," J. ACM, vo]. 32, no. 2, pp. 374-382, 1985.

J. Halpern and Y. Moses, "Knowledge and Com-
mon Knowledge in a Distributed Environment,"
Proe. 3 rd Ann. ACM Syrup. on Principles of Dis-
tributed Computing, pp. 50-61, 1984 (revised as of
January 1986 as IBM-R J-4421).

M. Rabin, "Randomized Byzantine Generals," Proc.
24 th Ann. IEEE Syrup. on Foundations of Com-
puter Science, pp. 403-409, 1983.

D. Skeen, "Crash Recovery in a Distributed Data-
base System," Ph.D. Thesis, Department of Elec-
trical Engineering and Computer Science, Univer-
sity of California, Berkeley, 1982. (Also available as
technical report UCB/BRL M82/45.)

51

