
INFORMATION AND COMPUTATION 74, 1599171 (1987)

Simulating Synchronous Processors*

JENNIFER LUNDELIUS WELCH

Laboratory for Computer Science,
Massachusetts Institute of Technology

In this paper we show how a distributed system with synchronous processors and
asynchronous message delays can be simulated by a system with both
asynchronous processors and asynchronous message delays in the presence of
various types of processor faults. Consequently, the result of Fischer, Lynch, and
Paterson (1985, J. Assoc. Compuf. Mach. 32, 374382) that no consensus protocol
for asynchronous processors and communication can tolerate one failstop fault,
implies a result of Dolev, Dwork, and Stockmeyer (1987, J. Assoc. Comput. Mach.
34) that no consensus protocol for synchronous processors and asynchronous
communication can tolerate one failstop fault. ‘CT’ 1987 Academx Press. Inc.

1. INTRODUCTION

In this paper we show how a distributed system with synchronous
processors and asynchronous message delays can be simulated by a system
in which both processors and messages are asynchronous, in the presence
of various types of processor failures. One application of this result is that
now a result of Dolev et al. (1987), that no fault-tolerant consensus
protocol is possible in a distributed system with asynchronous com-
munication even if processors are synchronous, follows easily from the
result of Fischer et al. (1985), that no fault-tolerant consensus protocol is
possible when communication and processors are asynchronous.

The equivalence of a system with synchronous processors and
asynchronous communication to one in which both processors and com-
munication are asynchronous has been a folk theorem in distributed com-
puting circles for some time. One of the contributions of this paper is to
present a careful statement and proof of this result, using a variant of Lam-
port clocks (Lamport, 1978). We have made precise a notion of simulation
particularly suited to showing impossibility results. The novel feature of

* This work was supported by the Defense Advanced Research Projects Agency (DARPA)
under Contract N00014-83-K-0125, by the National Science Foundation under Grants DCR-
83-02391 and CCR-8611442, by the Office of Army Research under Contract DAAG29-84-K-
0058, and by the Office of Naval Research under Contract NOOO14-85-K-0168.

159
0890-5401/87 $3.00

Copyright !(l 1987 by Academic Press. Inc.
All rights of reproduction in any form reserved.

160 JENNIFER LUNDELIUS WELCH

this paper is applying the simulation result to obtain an easy proof of the
impossibility of fault-tolerant consensus for synchronous processors and
asynchronous communication.

The sense in which we show that the two systems are equivalent is that
no processor can tell if it is in one system or the other. Of course, an out-
side observer can tell the difference. For instance, if all the processors are to
perform some action at their tenth step, the effect could be quite different
with synchronous processors (where the actions would happen at the same
real time) than with asynchronous processors (where the actions do not
necessarily happen at the same real time). Thus, the notion of simulation
that we define preserves local views, but not global views.

We observe that the only situation visible to a processor in the system
with asynchronous processors that cannot happen in the system with syn-
chronous processors is for the processor to receive a message at its ith step
that was sent at the sender’s jth step, where j> i. To avoid this anomalous
situation, our simulation tags all messages with the sender’s current step
number; then processors save messages that arrive too early, and wait to
process them until they are no longer early. (Compare Lamport clocks,
which cause the local clock, or step counter, to skip ahead when a message
with too large a timestamp arrives.)

Neiger and Toueg (1986) have independently developed the same
simulation technique. However, they do not consider faults, and they apply
the simulation to different problems, namely, determining when one can
substitute these modified Lamport clocks for real time clocks while main-
taining correctness, and determining when a variant of common
knowledge, achieved with the help of this simulation, can be substituted for
the standard notion of common knowledge. Their paper formally charac-
terizes types of behavior that can be preserved by this simulation.

Our formal model is presented in Section 2. In Section 3 we show how to
do the simulation for Byzantine processor faults. Simplifications for weaker
fault models are presented in Section 4. Finally, Section 5 demonstrates
that the result of Dolev er al. (1987) follows from that of Fischer et al.
(1985).

2. MODEL

We model a general distributed system in which processors communicate
by sending messages. Conceptually, there is a global clock that measures
time in integer ticks. At each tick, some processors take steps, in which
they can atomically receive messages, change state and send messages. A
message buffer holds messages between the sending and receiving times.
A protocol determines for each processor the state changes and messages

SIMULATING SYNCHRONOUS PROCESSORS 161

sent, given the old state and messages received. A run of the protocol
specifies at each tick which processors take steps and which messages are
received. Various kinds of faulty processor behaviors are introduced next.
After formally defining what a system is in this general model, we define the
type of simulation we are concerned with.

2.1. Basic Model

Messages are assumed to be unique and are tagged with both the sen-
der’s and recipient’s names by the message system. The message buffer
holds messages that have been sent but not yet received. It is modeled as a
set of messages. A processor is a deterministic state machine with a set of
states, and a transition function that uses the current state and messages
received to compute the new state and messages to be sent (at most one
message to each processor). Certain states are designated initial states. A
protocol is a set of n processors. In our terminology, a processor is more
than just bare hardware-it includes the local algorithm for changing state
and sending messages. A protocol is the collection of all the local
algorithms.

A step of processor p is designated either a, indicating that p does some
computation, or 1, indicating that p does nothing. An CI step is an active
step. A processor history for processor p, H,, consists of an infinite
sequence d,s, dzsz... of states di of p alternating with steps s, of p such that
d, is an initial state, and if si = I, then d, = d,, , The ith state of H, is
denoted state(H,, i), and the ith step step(H,,, i). Given processor history
H,, and integer i, define active(H,, i) to be the number of active steps in H,,
up to and including the ith step. A message buffer history H, is an infinite
sequence M, M, where each Mi is a set of messages and M, = a, such
that if message m is in Mi and not in Mi+ , , then nz is not in M, for any
j > i. The ith element of H, is denoted by msgs(H,, i).

A run R of protocol P consists of n processor histories H,, one for each
processor p in P, and a message buffer history H, such that the following
are true. Suppose message m has sender p and recipient q, and i is the
smallest integer such that m is in msgs(H,, i): (1) Then step(H,, i- 1) is
active. We say m is sent by p at step i - 1. (2) Furthermore, if j is the
greatest integer such that m is in msgs(H,, j), then step(H,, j) is active.
We say m is received by q at step j.

Given a processor history H,,, define states(H,) to be the (finite or
infinite) sequence of states d, d,..., where d, = state(H,, 1) and d,, , is the
state following the ith active step in H,. (The do-nothing steps have been
eliminated and the state transitions isolated.) For a run
R= (HB, {ffplpcp 3) define states(R) to be {states(H,,)J,,,.

Various types of processor faults are now considered, classified by
their observable effects. Suppose processor p has processor history

162 JENNIFER LUNDELIUS WELCH

H,=d,s,d,s,... in run R. Fix i and let M be the set of messages received
by p at step si, and let M’ be the set of messages sent by p at step si.
Processor p operates correctly at step sj, if dj+ I is the result ofp’s transition
function applied to di and M, and if M’ is exactly the set of messages retur-
ned by p’s transition function applied to di and M. Processor p exhibits an
omission failure upon sending at si if di+ r is the result of p’s transition
function applied to d; and a subset S of M, and M’ is a strict subset of the
set of messages returned by p’s transition function applied to di and S.
Processor p exhibits an omission failure upon receiving at si if p does not
operate correctly at si, but p’s transition function applied to d, and a
(strict) subset of M produces di+, and a set of messages of which M’ is a
subset. A message not used by the transition function or not placed in the
message buffer is omitted. (Note that these definitions allow a processor to
exhibit an omission failure upon both sending and receiving at the same
step.) Processor p exhibits a Byzantine failure at s, if di+ r and M’ cannot be
described as the result of p’s operating correctly or p’s exhibiting an
omission failure upon sending or receiving.

Processor p is nonfaulty in run R if it takes an infinite number of active
steps and operates correctly at each one; otherwise p is faulty. Faulty
processor p is failstop-faulty in run R if it takes only a finite number of
active steps and operates correctly at each one. Faulty processor p is
omission-faulty in run R if p is not failstop-faulty and at each active step p
either operates correctly or exhibits an omission failure upon sending
or receiving. Faulty processor p is Byzantine-faulty in run R if p is
not failstop-faulty or omission-faulty, and at each active step p operates
correctly, exhibits an omission failure, or exhibits a Byzantine failure.

The next definition concerns communication faults. A message m sent in
an infinite run is lost if the recipient takes infinitely many active steps but
never receives m.

2.2. Systems

We are interested in restricting the allowable runs (of any protocol) in
different ways. Fix a protocol P. Let runs(P) be the set of all runs of P.
Define the universe of all runs, U, to be Ua,, p runs(P). A system is a subset
of U. The system U can be characterized as having unreliable,
asynchronous communication, since it includes runs in which messages are
lost and runs in which messages remain in the buffer for arbitrarily long
periods of time. Similarly, U has asynchronous processors, since there is no
restriction on the number of 1 steps between consecutive active steps in a
processor history. There is also no restriction on the number or types of
processor faults exhibited, when all the runs of U are considered.

The following systems are used as building blocks in this paper:

SIMULATING SYNCHRONOUS PROCESSORS 163

l System SP. The set of all runs such that if a processor takes a i
step, then all subsequent steps of that processor are J. steps. This system
has synchronous processors. The processors can know the global clock
value, because it is the same as the number of active steps they have taken.

l System RC. The set of all runs such that no messages are lost. This
system has asynchronous, but reliable, communication.

We can restrict the number and type of faults to be considered by
defining:

l System FS(t). The set of all runs such that at most t processors are
failstop-faulty, and the rest are nonfaulty.

l System OM(t). The set of all runs such that at most t processors
are omission-faulty or failstop-faulty, and the rest are nonfaulty.

l System BZ(t). The set of all runs such that at most t processors are
Byzantine-faulty, omission-faulty, or failstop-faulty, and the rest are non-
faulty.

2.3. Simulations

A simulation function f,, for processors p’ and p is a function from states
of p’ to states of p. Extend f,, to map sequences of states of p’ to sequences
of states of p by definingf,.(d,d,...) =f,.(d,)f,(&)....

Run R’ = (H,,, {H,,} PIE p’) of protocol P’ simulates run R =
(HB, (HP}PEP) of protocol P via set F= {f,,: P’EP’} of simulation
functions, if there exists a one-to-one correspondence c between processors
of P’ and processors of P with the following properties. Fix p’ in P’, and let
p = c(p’): (1) The simulation function fpC for p’ and p satisfies
f,.(states(H,.)) = states(H,). (2) If p’ is nonfaulty in R’, then p is nonfaulty
in R. We say processor p’ simulates processor p for runs R and R’ via f,,.
(The simulation function f,, does not necessarily cause p’ to simulate p for
other pairs of runs.)

Protocol P’ in system A’ simulates protocol P in system A if there exists
a set F of simulation functions such that (1) for every run R’ of P’ in
system A’, there exists a run R of P in system A such that R’ simulates R
via F, and (2) for every run R of P in system A, there is a run R’ of P’ in
system A’ such that R’ simulates R via F. We call P’ a simulation protocol
for P relative to A’ and A.

System A’ simulates system A if, for any protocol P, there exists a
protocol P’ such that protocol P’ in system A’ simulates protocol P in
system A.

This definition of simulation is very strong, since the correspondence
between runs of the simulation protocol and runs of the original protocol
must be onto. However, for showing lower bounds or impossibility results,

164 JENNIFER LUNDELIUS WELCH

this strength is good, and in fact is necessary for the application in Sec-
tion 5. A more appropriate definition for upper bounds would not require
the correspondence to be onto, but would need some condition on the
responses of the simulation protocol to various inputs of the original
protocol, in order to rule out trivial solutions. As discussed in the introduc-
tion, this definition of simulation concentrates on the sequences of
individual processors’ state transitions and is not concerned with global
behavior that is only detectable by an observer outside the system.

3. SIMULATING SYNCHRONOUS PROCESKIRS WITH BYZANTINE FAULTS

Our goal is to show that if the communication system is asynchronous,
then synchronous processors “don’t help”-i.e., a system with asyn-
chronous processors and asynchronous communication can simulate (the
state transitions of) a system with synchronous processors and
asynchronous communication, even if there is any number of Byzantine-
faulty processors. The main idea of the simulation is for each asynchronous
processor to keep track of how many active steps it has taken and append
this number on each message (of the synchronous protocol) sent. The only
situation visible to the processors in the asynchronous case that cannot
occur in the synchronous case is for a processor at its ith active step to
receive a message that was sent at the sender’s jth active step, where j> i.
To avoid this anomaly, such “early” messages are simply saved up until
the recipient has passed its jth active step, and then they are used in the
simulation.

Although the model of computation presented in this paper gives
processors the ability to receive and send messages in the same atomic step,
and to send messages to all the processors at one step, this power is not
necessary for the simulation to work. If the model is weakened so that
processors can send at most one message at a step, or can only send or
receive at a step, but not both, (as studied by Dolev et al. (1987)), the same
simulation will show that asynchronous processors can simulate syn-
chronous processors when communication is asynchronous.

Subsection 3.1 describes the simulation protocol for a given synchronous
protocol in more detail. In Subsection 3.2, we show how to map a run of
the simulation protocol to a run of the simulated protocol. The proof of the
main result is presented in Subsection 3.3.

3.1. Simulation Protocol

Fix t between 1 and n. Let system Sl(t) be the intersection of systems
BZ(t) and RC and SP. This is the system with at most t Byzantine-faulty
processors, reliable asynchronous communication, and synchronous

SIMULATING SYNCHRONOUS PROCESSORS 165

processors. Let system Al(t) be the intersection of systems BZ(t) and RC.
This is the system with at most t Byzantine-faulty processors, reliable
asynchronous communication, and asynchronous processors.

Fix a protocol P. We define a simulation protocol P’ for P relative to
Al(t) and Sl(t) as follows. Each processor p’ in P’ is assigned a processor p
in P to simulate; it knows the states and transition function for p as well as
the processor correspondence c. Each state d of p’ has a component d.sim.
It also has components d.early, which is a set of messages (to be described
below), and d.counter, which tells the sequence number of the next active
step p’ will take. Every message m that p’ sends in the step following state d
has the value of d.counter appended to it, in a tag called m.tag. Each
processor also keeps the necessary information to decide if message m from
p’ is the first message from p’ with the tag value m.tag. (More than one
such message is only sent if p’ is Byzantine-faulty.)

We first describe the states of p’. An initial state d of p’ has d.sim equal to
an initial state of p, d.earfy = Iz, and dxounter = 1. There is one initial state
of p’ for each initial state of p. Noninitial states are obtained by starting
from an initial state and applying p”s transition function (some number of
times).

We now describe p”s transition function. Suppose that p’ is in state d
and receives the set of messages M. Let E be the set of all messages m in
Mu d.earfy such that m is the first message received from the sender with
the tag value m.tag. Let M’ be the set of all messages m in E such that
m.tug < d.counter. Then p’ calculates the result of the transition function for
p applied to d.sim and M’ (after removing the tug components of the
messages and applying c to the sender’s name). Call the results the state d”
and the message set M”. Let d’ be the new state of p’; d’.sim is set equal to
d”, d’.earIy is set equal to E- M’, and d’.counter is set equal to d.coun-
ter + 1. The messages sent are those in M”, each tagged with d.counter.

3.2. Constructing Corresponding Runs

Pick a run R’ = (H,., {H,,} p, E p,) of P’ in system Al(t). We describe a
particular run R of protocol P corresponding to R’. (In the next subsection
we show that R is in Sl(t).)

We define the message buffer history H,. Suppose processor p’, at its ath
active step, sends message m’ with tag b to processor q’. (As will be dis-
cussed in Section 4, if p’ is not Byzantine-faulty, then a = 6.) Let m be the
message obtained from m’ by deleting the tag and changing the sender to p
and the recipient to q. If b is anything other than a positive integer (for
instance, missing) or if m’ is not the first message received by q’ from p’
with tag b, then nothing corresponding to m’ is present in H,. Otherwise,
let i= min(a+ 1, b+ 1). (The goal is for m to be sent in R either at the
same active step when p’ actually sends m’, or when p’ claims, via the tag,

643:74!?-6

166 JENNIFER LUNDELIUS WELCH

to have sent it, whichever is earlier.) Suppose q’ receives m’ at its [th active
step. Let j = max(b + 1, I). If m’ is never received in H,,, or if q’ takes fewer
than j active steps, then m is in msgs(H,, k) precisely for all k 2 i.
Otherwise m is in msgs(H,, k) precisely for i < k < j. No other messages
are present. Clearly H, is a message history.

We define inductively the processor history HP = d,s,d,s,... for
processor p in P, which is simulated by processor p’ in P’. Let
H,, = d;s;d;s;.... For the basis, d, = d; Am. Suppose the processor history
up to di has been defined. If there are fewer than i active steps in H,., then
sj=A and di+,= di. Otherwise, s, = LX, and di+, = dj.sim, where di is the
state following the ith active step in H,,. Clearly, the sequence H, is a
processor history for p in P.

LEMMA 1. R = (HB> {Hp)pth as defined above, is a run of protocol
P.

Proof: We already know that the HP’s are processor histories for P. We
must show that the message buffer behaves properly. Suppose message m
has sender p and recipient q, and i is the smallest integer such that m is in
msgs(H,, i). (1) By construction of R, there exists a such that m’ (m with
tag b) is sent at p”s ath active step, and i - 1 = min(a, b). Thus p’ takes at
least i- 1 active steps, so step(H,, i- 1) is active. (2) Suppose m is received
in R. Let j be the greatest integer such that m is in msgs(H,, j). By con-
struction of R, there exists I such that m is received at q”s Ith active step,
j = max(b + 1,1), and q’ takes at least j active steps. Thus, step(H,, j) is
active. 1

3.3. Results

This subsection contains the proof that the simulation protocol actually
works. For the remainder of this section, fix a run R’ of P’ in Al(t), and
construct run R from R’ as above. Recall that processor p’ in P’ simulates
processor p in P for runs R’ and R.

LEMMA 2. Processor p’ takes an infinite number of active steps in R’ if
and only if p takes an infinite number of active steps in R.

Proof. By construction of R. 1

Nonfaulty, sending omission-faulty and failstop-faulty behaviors are
preserved by the simulation. However, if a processor p’ exhibits an
omission failure upon receiving in R’ and the message omitted is early, then
p in R may exhibit a weaker form of faulty behavior (or perhaps be non-
faulty). Similarly, if a processor p’ exhibits a Byzantine failure in R’ and the
Byzantine nature of the error only affects the tag on a message, then p in R

SIMULATING SYNCHRONOUS PROCESSORS 167

may exhibit a weaker form of faulty behavior (or perhaps be nonfaulty).
Lemmas 3 and 4 demonstrate these facts.

LEMMA 3. I” p’ is not Byzantine-faulty and p’ operates correctly at
step(Hp., i), then p operates correctly at step(H,, j), where j= active(H,,,, i).

Proof: Suppose at step(H,., i), p’ applies p’s transition function to the
set of messages M’, and that p receives the set of messages A4 at
step(H,, j). The following argument shows that M’ = M. We say that a
message m’ of R’ and a message m of R correspond if the text is the same
and the senders and recipients are corresponding processors (with respect
to the simulation). Message m is in M’ if and only if there is some
corresponding message m’ such that m’ is the first message received from
the sender in H,. with tag value m’.tag, m’.tag is a positive integer, and
m’.tag < j. These three conditions are true if and only if IM is in M.

By construction of R, state(H,,, j) = state(H,,., i).sim. Since p’ operates
correctly at step(H,., i), and it applies p’s transition function to state(H,,, j)
and M, and since state(H,, j + 1) = state(H,,, i + I).sim, p changes state
correctly at step(H,,, j).

Suppose p’ sends the set of messages N’ at step(H,,,, i) and p sends the
set of messages N at step(H,,, j). Since p’ operates correctly, we can deduce
that state(H,,, i).counter = j, all the tags of messages in N’ are equal to j,
there is at most one message sent to each processor, and no other messages
from p’ have tag j (because p’ is not Byzantine-faulty). Thus, if m’ is in N’,
then a corresponding m is in N, and if m is in N, then a corresponding m’ is
in N’. Thus, p sends the correct messages at step(H,, ,j). 1

LEMMA 4. (a) If processor p’ is nonfaulty in R’, then processor p is non-
faulty in R.

(b) If processor p’ is failstop-faulty in R’, then processor p is failstop-
faulty in R.

(c) If processor p’ is omission-faulty in R’, then processor p is
omission-faulty, failstop-faulty or nonfaulty in R.

Proof: Parts (a) and (b) follow from Lemmas 2 and 3.
(c) The hypothesis that p’ is omission-faulty in R’ is equivalent to

assuming that at each active step (of which there are either a finite or
infinite number), p’ either operates correctly or exhibits an omission failure,
and there is some active step at which p’ exhibits an omission failure.

By Lemma 3, if p’ operates correctly at step(H,., i), then p operates
correctly at step(H,,, j), where j = active(H,,, i).

Suppose p’ exhibits an omission failure upon sending at step(H,., i).

168 JENNIFER LUNDELIUS WELCH

Then by construction of R, p exhibits an omission failure upon sending at
step(Hp, j), where j = active(H,. , i).

Suppose p’ exhibits an omission failure upon receiving at step(Hp., i),
and one of the messages omitted is m. Let a = active(H,,., i) and m.tug = b.
If b < a, then by construction of R, p exhibits an omission failure upon
receiving at step(Hp, a) (p’ should have used m in the simulation when m
was received). If b 3 a, then by construction of R, p could exhibit an
omission failure upon receiving at step(hl,, b + 1) (p’ should have saved m
and used it in the simulation when its counter reached b + 1). However, it
might be the case that the presence or absence of message m is immaterial
to p’s state change and set of messages sent, in which case p operates
correctly at step(lY,, b + 1).

Thus, at each active step in R, p either operates correctly, or exhibits an
omission failure. The result follows. 1

LEMMA 5. R is in system Sl (t).

Proof. R is in system SP since, by construction of R, once a processor
takes a 2 step, all subsequent steps are 2 steps.

Since R’ is in system BZ(t), at least n - t processors are nonfaulty in R’.
By Lemma 4, at least n - t processors are nonfaulty in R. Thus, R is in
system BZ(t).

Next we show that R is in system RC. Suppose message m is sent in R by
processor p to processor q, and q takes infinitely many active steps. In R’,
p’ sends message m’ (m with tag b for some positive integer b) to q’. Since
R’ is in system RC, and since by Lemma 2 q’ takes infinitely many active
steps, m’ eventually arrives in R’, say at q”s lth active step. Then m is
received at step(H,, j), where j = max(b + 1,l). 1

THEOREM 6. System Al(t) simulates system Sl(t), for any value of t,

Proqf Fix any protocol P. Let P’ be the protocol defined above. We
must show that protocol P’ in system Al(t) simulates protocol P in system
Sl(t). Let the correspondence c between processors in P’ and processors in
P be that implicit in the construction of P’. Define a set F = (f,. : p’ E P’ > of
simulation functions as follows. Fix p’ in P’ and let p = 4~‘). Define
simulation function f,, from states of p’ to states of p to be f,.(J) = d’.sim.

The first direction is showing that for every run R’ of P’ in system Al(t),
there exists a run R of P in system Sl(t) such that R’ simulates R via F.
Given a run R’ of P’ in system Al(t), let R be the run constructed as
above. By Lemma 1, R is a run of P. By Lemma 5, R is in system Sl(t).
Now we must show that R’ simulates R via F. By construction of R,
f,,(states(H,,)) = states(Z3p). Furthermore, if p’ is nonfaulty in R’, then p is
nonfaulty in R, by Lemma 4.

SIMULATING SYNCHRONOUS PROCESSORS 169

The second direction is showing that given a run R of P in S 1 (f), there is
a run R’ of P’ in system Al(t) such that R’ simulates R via F. The idea of
the construction is to let processors in R’ take the same steps at exactly the
same ticks as do the processors they are simulating in R and to let the
message delays be exactly the same. The key is to observe that a run in
which processors are synchronous is also in the system with asynchronous
processors (i.e., Sl(t) is a subset of Al(t)). The following merely formalizes
the idea and adds the appropriate tags to the messages.

Let R= (HB, {Hp)pcp). Define a message buffer history H,. as follows.
Suppose message m from processor p to processor q is in msgs(HB, i) for
some i, and let b be the smallest integer such that m is in msgs(H,, h).
Then message m’, equal to m with tag b - 1, from processor p’ to processor
q’, is in msgs(H,,, i). No other messages are in msgs(Hi,., i).

Define processor history H,,. = d’, s’, nl,s;... as follows. Let d’, be the initial
state of p’ with sim component equal to state(H,, 1). Suppose H,, has been
defined up to dj. Then si = step(HP, i). Ifs, = I., then d:+ , = d,!; otherwise let
d:, , .sim = state(H,,, i+ l), di,, .counter = d:.counfer + 1, and di+ , .early =
a. This defines the states of H,..

It is straightforward to show that R’ = (H,,, {H,,, > ,,, t p,) is a run of P’
in system Al(t), and that R’ simulates R via F. 1

4. SIMULATING SYNCHRONOUS PROCESSORS WITH WEAKER FAULTS

If the strongest type of processor fault allowed is omission, then the
simulation and proofs can be slightly simplified. Fix t between 1 and n. Let
system S2(t) be the intersection of systems OM(t) and RC and SP. Let
system A2(r) be the intersection of systems OM(t) and RC. The same
simulation as in Section 3 can be used, except it is no longer necessary to
check if a message is the first one with that tag value. Since no Byzantine
faults are considered, the message tag is always the correct active step
count, so in constructing a run of the simulated protocol, variables a and b
are always equal. Furthermore, Lemma 4 implies that each simulated
processor has the same behavior (or better) as its simulating processor.

THEOREM 7. System A2(t) simulates s.vstem S2(t), ,for any value of t,
l<t<n.

The same simplifications apply if the only type of faults is failstop. Fix t
between 1 and n. Let system S3(t) be the intersection of systems FS(t) and
RC and SP. Let system A3 be the intersection of systems FS(t) and RC.

THEOREM 8. System A3(t) simulates system S3(t), for any value of
t, 1 dtdn.

170 JENNIFER LUNDELIUS WELCH

5. APPLICATION

An important result in the theoretical study of distributed systems is that
no consensus protocol operating in a system with asynchronous processors
and asynchronous communication can be guaranteed to terminate, if it
must tolerate even one failstop processor fault (Fischer et al., 1985). This
result was subsequently extended (Dolev et al., 1987) to show that no con-
sensus protocol operating in a system with asynchronous communication,
but with processors in lockstep synchrony, can be guaranteed to terminate,
if it must tolerate even one failstop processor fault. The proof of Dolev et
al. (1987) followed the spirit of the proof of Fischer et aZ. (1985) but
required additional machinery and a more involved argument.

The result of Dolev et al. (1987) can be seen to be a corollary of the
result of Fischer et al. (1985), using Theorem 8 of this paper.

Given a system S, a consensus protocol P for S is a protocol that satisfies
the following: (1) Each processor’s set of non-initial states has two disjoint
subsets, the O--n& states and the lTfinal states. Once a processor enters a u-
final state, it is always in a u-final state. (2) There exists a run of P in S in
which a processor enters a O-final state, and there exists a run of P in S in
which a processor enters a l-final state. (3) For every run of P in system S,
if some processor enters a u-final state, then no processor enters a w-final
state for w # ~1. (4) For every run of P in system S, some processor enters a
u-final state, for some D.

The model of Fischer et al. (1985) corresponds in our model to the
system A3(1) obtained from the intersection of systems FS(1) and RC, i.e.,
the system with asynchronous processors, at most one of which is failstop-
faulty, and reliable but asynchronous communication.

THEOREM 9 (Fischer et al. 1985, Theorem I). There is no consensus
protocol for system A3(1).

The model of Dolev et af. (1987) corresponds in our model to the system
S3(1) obtained from the intersection of systems FS(1) and SP and RC, i.e.,
the system with lockstep-synchronous processors, at most one of which is
failstop-faulty, and reliable but asynchronous communication.

THEOREM 10 (Dolev et al. 1987, Theorem IO). There is no consensus
protocol,for system S3(1).

We now show that Theorem 10 follows from Theorem 9 using the results
of this paper.

THEOREM 11. If there is no consensus protocol for system A3(1), then
there is no consensus protocol for system S3(1).

SIMULATING SYNCHRONOUS PROCESSORS 171

Proof Suppose in contradiction that there is a consensus protocol P
for system S3(1). By Theorem 8, system A3(1) simulates system S3(1).
Thus, there exists a simulation protocol P’ such that P’ in system A3(1)
simulates P in system S3(1). The protocol P’ can be used to construct a
consensus protocol for system A3(1) simply by letting u-final states of P’ be
those states d such that d.sim is a u-final state of P. Since P is a consensus
protocol for system S3(1), there is a run R, of P in system S3(1) in which
some processor enters a O-final state and another run R, of P in system
S3(1) in which some processor enters a l-final state. Since P’ in A3(1)
simulates P in S3(1), there is a run Rl, of P’ in system A3(1) that simulates
R,, i.e., in which some processor enters a O-final state, and another run R’,
of P’ in system A3(1) that simulates R,, i.e., in which some processor
enters a l-final state. Since P is a consensus protocol for S3(1). and since P

is simulated by P’, there is no run of P’ in system A3(1) with processors in
conflicting final states, and some processor eventually enters a final state in
every run in system A3(1). Thus there is a consensus protocol for system
A3(I), contradicting the hypothesis. i

ACKNOWLEDGMENT

I thank Nancy Lynch for suggesting this problem to me and for many helpful ideas. Gil
Neiger, Larry Stockmeyer, and the referee pointed out several errors and many points of
confusion.

RECEIVED June 30, 1986; ACTEPTED February 25, 1987

REFERENCES

DOLEV. D., DWORK. C., ANII STOCKMEYER, L. (1987). On the minimal synchronism needed
for distributed consensus, J. A.wc. Comput. Much. 34.

FISCHER, M., LYNCH, N., AND PATERSON. M. (1985) Impossibility of distributed consensus
with one faulty process. J. Assoc. Cornput. Mach. 32, 374-382.

LAMPORT, L. (1978), Time, clocks, and the ordering of events in a distributed system, Con~r.
ACM 21, 558-565.

NEIGER. G., AND TOUEG, S. (1986) “Substituting for Real Time and Common Knowledge
in Asynchronous Distributed Systems.” TR86-790, Department of Computer Science.
Cornell University.

Primed in Belgium

