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In this paper we show how a distributed system with synchronous processors and 
asynchronous message delays can be simulated by a system with both 
asynchronous processors and asynchronous message delays in the presence of 
various types of processor faults. Consequently, the result of Fischer, Lynch, and 
Paterson (1985, J. Assoc. Compuf. Mach. 32, 374382) that no consensus protocol 
for asynchronous processors and communication can tolerate one failstop fault, 
implies a result of Dolev, Dwork, and Stockmeyer (1987, J. Assoc. Comput. Mach. 
34) that no consensus protocol for synchronous processors and asynchronous 
communication can tolerate one failstop fault. ‘CT’ 1987 Academx Press. Inc. 

1. INTRODUCTION 

In this paper we show how a distributed system with synchronous 
processors and asynchronous message delays can be simulated by a system 
in which both processors and messages are asynchronous, in the presence 
of various types of processor failures. One application of this result is that 
now a result of Dolev et al. (1987), that no fault-tolerant consensus 
protocol is possible in a distributed system with asynchronous com- 
munication even if processors are synchronous, follows easily from the 
result of Fischer et al. (1985), that no fault-tolerant consensus protocol is 
possible when communication and processors are asynchronous. 

The equivalence of a system with synchronous processors and 
asynchronous communication to one in which both processors and com- 
munication are asynchronous has been a folk theorem in distributed com- 
puting circles for some time. One of the contributions of this paper is to 
present a careful statement and proof of this result, using a variant of Lam- 
port clocks (Lamport, 1978). We have made precise a notion of simulation 
particularly suited to showing impossibility results. The novel feature of 
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this paper is applying the simulation result to obtain an easy proof of the 
impossibility of fault-tolerant consensus for synchronous processors and 
asynchronous communication. 

The sense in which we show that the two systems are equivalent is that 
no processor can tell if it is in one system or the other. Of course, an out- 
side observer can tell the difference. For instance, if all the processors are to 
perform some action at their tenth step, the effect could be quite different 
with synchronous processors (where the actions would happen at the same 
real time) than with asynchronous processors (where the actions do not 
necessarily happen at the same real time). Thus, the notion of simulation 
that we define preserves local views, but not global views. 

We observe that the only situation visible to a processor in the system 
with asynchronous processors that cannot happen in the system with syn- 
chronous processors is for the processor to receive a message at its ith step 
that was sent at the sender’s jth step, where j> i. To avoid this anomalous 
situation, our simulation tags all messages with the sender’s current step 
number; then processors save messages that arrive too early, and wait to 
process them until they are no longer early. (Compare Lamport clocks, 
which cause the local clock, or step counter, to skip ahead when a message 
with too large a timestamp arrives.) 

Neiger and Toueg (1986) have independently developed the same 
simulation technique. However, they do not consider faults, and they apply 
the simulation to different problems, namely, determining when one can 
substitute these modified Lamport clocks for real time clocks while main- 
taining correctness, and determining when a variant of common 
knowledge, achieved with the help of this simulation, can be substituted for 
the standard notion of common knowledge. Their paper formally charac- 
terizes types of behavior that can be preserved by this simulation. 

Our formal model is presented in Section 2. In Section 3 we show how to 
do the simulation for Byzantine processor faults. Simplifications for weaker 
fault models are presented in Section 4. Finally, Section 5 demonstrates 
that the result of Dolev er al. (1987) follows from that of Fischer et al. 
(1985). 

2. MODEL 

We model a general distributed system in which processors communicate 
by sending messages. Conceptually, there is a global clock that measures 
time in integer ticks. At each tick, some processors take steps, in which 
they can atomically receive messages, change state and send messages. A 
message buffer holds messages between the sending and receiving times. 
A protocol determines for each processor the state changes and messages 
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sent, given the old state and messages received. A run of the protocol 
specifies at each tick which processors take steps and which messages are 
received. Various kinds of faulty processor behaviors are introduced next. 
After formally defining what a system is in this general model, we define the 
type of simulation we are concerned with. 

2.1. Basic Model 

Messages are assumed to be unique and are tagged with both the sen- 
der’s and recipient’s names by the message system. The message buffer 
holds messages that have been sent but not yet received. It is modeled as a 
set of messages. A processor is a deterministic state machine with a set of 
states, and a transition function that uses the current state and messages 
received to compute the new state and messages to be sent (at most one 
message to each processor). Certain states are designated initial states. A 
protocol is a set of n processors. In our terminology, a processor is more 
than just bare hardware-it includes the local algorithm for changing state 
and sending messages. A protocol is the collection of all the local 
algorithms. 

A step of processor p is designated either a, indicating that p does some 
computation, or 1, indicating that p does nothing. An CI step is an active 
step. A processor history for processor p, H,, consists of an infinite 
sequence d,s, dzsz... of states di of p alternating with steps s, of p such that 
d, is an initial state, and if si = I, then d, = d,, , The ith state of H, is 
denoted state( H,, i), and the ith step step(H,,, i). Given processor history 
H,, and integer i, define active(H,, i) to be the number of active steps in H,, 
up to and including the ith step. A message buffer history H, is an infinite 
sequence M, M, . . . . where each Mi is a set of messages and M, = a, such 
that if message m is in Mi and not in Mi+ , , then nz is not in M, for any 
j > i. The ith element of H, is denoted by msgs( H,, i). 

A run R of protocol P consists of n processor histories H,, one for each 
processor p in P, and a message buffer history H, such that the following 
are true. Suppose message m has sender p and recipient q, and i is the 
smallest integer such that m is in msgs(H,, i): (1) Then step(H,, i- 1) is 
active. We say m is sent by p at step i - 1. (2) Furthermore, if j is the 
greatest integer such that m is in msgs(H,, j), then step( H,, j) is active. 
We say m is received by q at step j. 

Given a processor history H,,, define states(H,) to be the (finite or 
infinite) sequence of states d, d,..., where d, = state( H,, 1) and d,, , is the 
state following the ith active step in H,. (The do-nothing steps have been 
eliminated and the state transitions isolated.) For a run 
R= (HB, {ffplpcp 3 ) define states(R) to be {states(H,,)J,,,. 

Various types of processor faults are now considered, classified by 
their observable effects. Suppose processor p has processor history 
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H,=d,s,d,s,... in run R. Fix i and let M be the set of messages received 
by p at step si, and let M’ be the set of messages sent by p at step si. 
Processor p operates correctly at step sj, if dj+ I is the result ofp’s transition 
function applied to di and M, and if M’ is exactly the set of messages retur- 
ned by p’s transition function applied to di and M. Processor p exhibits an 
omission failure upon sending at si if di+ r is the result of p’s transition 
function applied to d; and a subset S of M, and M’ is a strict subset of the 
set of messages returned by p’s transition function applied to di and S. 
Processor p exhibits an omission failure upon receiving at si if p does not 
operate correctly at si, but p’s transition function applied to d, and a 
(strict) subset of M produces di+, and a set of messages of which M’ is a 
subset. A message not used by the transition function or not placed in the 
message buffer is omitted. (Note that these definitions allow a processor to 
exhibit an omission failure upon both sending and receiving at the same 
step.) Processor p exhibits a Byzantine failure at s, if di+ r and M’ cannot be 
described as the result of p’s operating correctly or p’s exhibiting an 
omission failure upon sending or receiving. 

Processor p is nonfaulty in run R if it takes an infinite number of active 
steps and operates correctly at each one; otherwise p is faulty. Faulty 
processor p is failstop-faulty in run R if it takes only a finite number of 
active steps and operates correctly at each one. Faulty processor p is 
omission-faulty in run R if p is not failstop-faulty and at each active step p 
either operates correctly or exhibits an omission failure upon sending 
or receiving. Faulty processor p is Byzantine-faulty in run R if p is 
not failstop-faulty or omission-faulty, and at each active step p operates 
correctly, exhibits an omission failure, or exhibits a Byzantine failure. 

The next definition concerns communication faults. A message m sent in 
an infinite run is lost if the recipient takes infinitely many active steps but 
never receives m. 

2.2. Systems 

We are interested in restricting the allowable runs (of any protocol) in 
different ways. Fix a protocol P. Let runs(P) be the set of all runs of P. 
Define the universe of all runs, U, to be Ua,, p runs(P). A system is a subset 
of U. The system U can be characterized as having unreliable, 
asynchronous communication, since it includes runs in which messages are 
lost and runs in which messages remain in the buffer for arbitrarily long 
periods of time. Similarly, U has asynchronous processors, since there is no 
restriction on the number of 1 steps between consecutive active steps in a 
processor history. There is also no restriction on the number or types of 
processor faults exhibited, when all the runs of U are considered. 

The following systems are used as building blocks in this paper: 
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l System SP. The set of all runs such that if a processor takes a i 
step, then all subsequent steps of that processor are J. steps. This system 
has synchronous processors. The processors can know the global clock 
value, because it is the same as the number of active steps they have taken. 

l System RC. The set of all runs such that no messages are lost. This 
system has asynchronous, but reliable, communication. 

We can restrict the number and type of faults to be considered by 
defining: 

l System FS(t). The set of all runs such that at most t  processors are 
failstop-faulty, and the rest are nonfaulty. 

l System OM(t). The set of all runs such that at most t  processors 
are omission-faulty or failstop-faulty, and the rest are nonfaulty. 

l System BZ(t). The set of all runs such that at most t  processors are 
Byzantine-faulty, omission-faulty, or failstop-faulty, and the rest are non- 
faulty. 

2.3. Simulations 

A simulation function f,, for processors p’ and p is a function from states 
of p’ to states of p. Extend f,, to map sequences of states of p’ to sequences 
of states of p by definingf,.(d,d,...) =f,.(d,)f,(&).... 

Run R’ = (H,,, {H,,} PIE p’) of protocol P’ simulates run R = 
(HB, (HP}PEP) of protocol P via set F= {f,,: P’EP’} of simulation 
functions, if there exists a one-to-one correspondence c between processors 
of P’ and processors of P with the following properties. Fix p’ in P’, and let 
p = c(p’): (1) The simulation function fpC for p’ and p satisfies 
f,.(states(H,.)) = states(H,). (2) If p’ is nonfaulty in R’, then p is nonfaulty 
in R. We say processor p’ simulates processor p for runs R and R’ via f,,. 
(The simulation function f,, does not necessarily cause p’ to simulate p for 
other pairs of runs.) 

Protocol P’ in system A’ simulates protocol P in system A if there exists 
a set F of simulation functions such that (1) for every run R’ of P’ in 
system A’, there exists a run R of P in system A such that R’ simulates R 
via F, and (2) for every run R of P in system A, there is a run R’ of P’ in 
system A’ such that R’ simulates R via F. We call P’ a simulation protocol 
for P relative to A’ and A. 

System A’ simulates system A if, for any protocol P, there exists a 
protocol P’ such that protocol P’ in system A’ simulates protocol P in 
system A. 

This definition of simulation is very strong, since the correspondence 
between runs of the simulation protocol and runs of the original protocol 
must be onto. However, for showing lower bounds or impossibility results, 
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this strength is good, and in fact is necessary for the application in Sec- 
tion 5. A more appropriate definition for upper bounds would not require 
the correspondence to be onto, but would need some condition on the 
responses of the simulation protocol to various inputs of the original 
protocol, in order to rule out trivial solutions. As discussed in the introduc- 
tion, this definition of simulation concentrates on the sequences of 
individual processors’ state transitions and is not concerned with global 
behavior that is only detectable by an observer outside the system. 

3. SIMULATING SYNCHRONOUS PROCESKIRS WITH BYZANTINE FAULTS 

Our goal is to show that if the communication system is asynchronous, 
then synchronous processors “don’t help”-i.e., a system with asyn- 
chronous processors and asynchronous communication can simulate (the 
state transitions of) a system with synchronous processors and 
asynchronous communication, even if there is any number of Byzantine- 
faulty processors. The main idea of the simulation is for each asynchronous 
processor to keep track of how many active steps it has taken and append 
this number on each message (of the synchronous protocol) sent. The only 
situation visible to the processors in the asynchronous case that cannot 
occur in the synchronous case is for a processor at its ith active step to 
receive a message that was sent at the sender’s jth active step, where j> i. 
To avoid this anomaly, such “early” messages are simply saved up until 
the recipient has passed its jth active step, and then they are used in the 
simulation. 

Although the model of computation presented in this paper gives 
processors the ability to receive and send messages in the same atomic step, 
and to send messages to all the processors at one step, this power is not 
necessary for the simulation to work. If the model is weakened so that 
processors can send at most one message at a step, or can only send or 
receive at a step, but not both, (as studied by Dolev et al. (1987)), the same 
simulation will show that asynchronous processors can simulate syn- 
chronous processors when communication is asynchronous. 

Subsection 3.1 describes the simulation protocol for a given synchronous 
protocol in more detail. In Subsection 3.2, we show how to map a run of 
the simulation protocol to a run of the simulated protocol. The proof of the 
main result is presented in Subsection 3.3. 

3.1. Simulation Protocol 

Fix t between 1 and n. Let system Sl(t) be the intersection of systems 
BZ(t) and RC and SP. This is the system with at most t Byzantine-faulty 
processors, reliable asynchronous communication, and synchronous 
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processors. Let system Al(t) be the intersection of systems BZ(t) and RC. 
This is the system with at most t Byzantine-faulty processors, reliable 
asynchronous communication, and asynchronous processors. 

Fix a protocol P. We define a simulation protocol P’ for P relative to 
Al(t) and Sl(t) as follows. Each processor p’ in P’ is assigned a processor p 
in P to simulate; it knows the states and transition function for p as well as 
the processor correspondence c. Each state d of p’ has a component d.sim. 
It also has components d.early, which is a set of messages (to be described 
below), and d.counter, which tells the sequence number of the next active 
step p’ will take. Every message m that p’ sends in the step following state d 
has the value of d.counter appended to it, in a tag called m.tag. Each 
processor also keeps the necessary information to decide if message m from 
p’ is the first message from p’ with the tag value m.tag. (More than one 
such message is only sent if p’ is Byzantine-faulty.) 

We first describe the states of p’. An initial state d of p’ has d.sim equal to 
an initial state of p, d.earfy = Iz, and dxounter = 1. There is one initial state 
of p’ for each initial state of p. Noninitial states are obtained by starting 
from an initial state and applying p”s transition function (some number of 
times). 

We now describe p”s transition function. Suppose that p’ is in state d 
and receives the set of messages M. Let E be the set of all messages m in 
Mu d.earfy such that m is the first message received from the sender with 
the tag value m.tag. Let M’ be the set of all messages m in E such that 
m.tug < d.counter. Then p’ calculates the result of the transition function for 
p applied to d.sim and M’ (after removing the tug components of the 
messages and applying c to the sender’s name). Call the results the state d” 
and the message set M”. Let d’ be the new state of p’; d’.sim is set equal to 
d”, d’.earIy is set equal to E- M’, and d’.counter is set equal to d.coun- 
ter + 1. The messages sent are those in M”, each tagged with d.counter. 

3.2. Constructing Corresponding Runs 

Pick a run R’ = (H,., {H,,} p, E p, ) of P’ in system Al(t). We describe a 
particular run R of protocol P corresponding to R’. (In the next subsection 
we show that R is in Sl(t).) 

We define the message buffer history H,. Suppose processor p’, at its ath 
active step, sends message m’ with tag b to processor q’. (As will be dis- 
cussed in Section 4, if p’ is not Byzantine-faulty, then a = 6.) Let m be the 
message obtained from m’ by deleting the tag and changing the sender to p 
and the recipient to q. If b is anything other than a positive integer (for 
instance, missing) or if m’ is not the first message received by q’ from p’ 
with tag b, then nothing corresponding to m’ is present in H,. Otherwise, 
let i= min(a+ 1, b+ 1). (The goal is for m to be sent in R either at the 
same active step when p’ actually sends m’, or when p’ claims, via the tag, 

643:74!?-6 
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to have sent it, whichever is earlier.) Suppose q’ receives m’ at its [th active 
step. Let j = max(b + 1, I). If m’ is never received in H,,, or if q’ takes fewer 
than j active steps, then m is in msgs(H,, k) precisely for all k 2 i. 
Otherwise m is in msgs(H,, k) precisely for i < k < j. No other messages 
are present. Clearly H, is a message history. 

We define inductively the processor history HP = d,s,d,s,... for 
processor p in P, which is simulated by processor p’ in P’. Let 
H,, = d;s;d;s;.... For the basis, d, = d; Am. Suppose the processor history 
up to di has been defined. If there are fewer than i active steps in H,., then 
sj=A and di+,= di. Otherwise, s, = LX, and di+, = dj.sim, where di is the 
state following the ith active step in H,,. Clearly, the sequence H, is a 
processor history for p in P. 

LEMMA 1. R = (HB> {Hp)pth as defined above, is a run of protocol 
P. 

Proof: We already know that the HP’s are processor histories for P. We 
must show that the message buffer behaves properly. Suppose message m 
has sender p and recipient q, and i is the smallest integer such that m is in 
msgs(H,, i). (1) By construction of R, there exists a such that m’ (m with 
tag b) is sent at p”s ath active step, and i - 1 = min(a, b). Thus p’ takes at 
least i- 1 active steps, so step(H,, i- 1) is active. (2) Suppose m is received 
in R. Let j be the greatest integer such that m is in msgs(H,, j). By con- 
struction of R, there exists I such that m is received at q”s Ith active step, 
j = max(b + 1,1), and q’ takes at least j active steps. Thus, step(H,, j) is 
active. 1 

3.3. Results 

This subsection contains the proof that the simulation protocol actually 
works. For the remainder of this section, fix a run R’ of P’ in Al(t), and 
construct run R from R’ as above. Recall that processor p’ in P’ simulates 
processor p in P for runs R’ and R. 

LEMMA 2. Processor p’ takes an infinite number of active steps in R’ if 
and only if p takes an infinite number of active steps in R. 

Proof. By construction of R. 1 

Nonfaulty, sending omission-faulty and failstop-faulty behaviors are 
preserved by the simulation. However, if a processor p’ exhibits an 
omission failure upon receiving in R’ and the message omitted is early, then 
p in R may exhibit a weaker form of faulty behavior (or perhaps be non- 
faulty). Similarly, if a processor p’ exhibits a Byzantine failure in R’ and the 
Byzantine nature of the error only affects the tag on a message, then p in R 
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may exhibit a weaker form of faulty behavior (or perhaps be nonfaulty). 
Lemmas 3 and 4 demonstrate these facts. 

LEMMA 3. I” p’ is not Byzantine-faulty and p’ operates correctly at 
step(Hp., i), then p operates correctly at step( H,, j), where j= active(H,,,, i). 

Proof: Suppose at step(H,., i), p’ applies p’s transition function to the 
set of messages M’, and that p receives the set of messages A4 at 
step(H,, j). The following argument shows that M’ = M. We say that a 
message m’ of R’ and a message m of R correspond if the text is the same 
and the senders and recipients are corresponding processors (with respect 
to the simulation). Message m is in M’ if and only if there is some 
corresponding message m’ such that m’ is the first message received from 
the sender in H,. with tag value m’.tag, m’.tag is a positive integer, and 
m’.tag < j. These three conditions are true if and only if IM is in M. 

By construction of R, state(H,,, j) = state(H,,., i).sim. Since p’ operates 
correctly at step(H,., i), and it applies p’s transition function to state( H,,, j) 
and M, and since state( H,, j + 1 ) = state( H,,, i + I ).sim, p changes state 
correctly at step(H,,, j). 

Suppose p’ sends the set of messages N’ at step(H,,,, i) and p sends the 
set of messages N at step( H,,, j). Since p’ operates correctly, we can deduce 
that state(H,,, i).counter = j, all the tags of messages in N’ are equal to j, 
there is at most one message sent to each processor, and no other messages 
from p’ have tag j (because p’ is not Byzantine-faulty). Thus, if m’ is in N’, 
then a corresponding m is in N, and if m is in N, then a corresponding m’ is 
in N’. Thus, p sends the correct messages at step(H,, ,j). 1 

LEMMA 4. (a) If processor p’ is nonfaulty in R’, then processor p is non- 
faulty in R. 

(b) If processor p’ is failstop-faulty in R’, then processor p is failstop- 
faulty in R. 

(c) If processor p’ is omission-faulty in R’, then processor p is 
omission-faulty, failstop-faulty or nonfaulty in R. 

Proof: Parts (a) and (b) follow from Lemmas 2 and 3. 
(c) The hypothesis that p’ is omission-faulty in R’ is equivalent to 

assuming that at each active step (of which there are either a finite or 
infinite number), p’ either operates correctly or exhibits an omission failure, 
and there is some active step at which p’ exhibits an omission failure. 

By Lemma 3, if p’ operates correctly at step(H,., i), then p operates 
correctly at step( H,,, j), where j = active( H,,, i). 

Suppose p’ exhibits an omission failure upon sending at step( H,., i). 
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Then by construction of R, p exhibits an omission failure upon sending at 
step(Hp, j), where j = active( H,. , i). 

Suppose p’ exhibits an omission failure upon receiving at step(Hp., i), 
and one of the messages omitted is m. Let a = active(H,,., i) and m.tug = b. 
If b < a, then by construction of R, p exhibits an omission failure upon 
receiving at step(Hp, a) (p’ should have used m in the simulation when m 
was received). If b 3 a, then by construction of R, p could exhibit an 
omission failure upon receiving at step(hl,, b + 1) (p’ should have saved m 
and used it in the simulation when its counter reached b + 1). However, it 
might be the case that the presence or absence of message m is immaterial 
to p’s state change and set of messages sent, in which case p operates 
correctly at step(lY,, b + 1). 

Thus, at each active step in R, p either operates correctly, or exhibits an 
omission failure. The result follows. 1 

LEMMA 5. R is in system Sl (t). 

Proof. R is in system SP since, by construction of R, once a processor 
takes a 2 step, all subsequent steps are 2 steps. 

Since R’ is in system BZ(t), at least n - t processors are nonfaulty in R’. 
By Lemma 4, at least n - t processors are nonfaulty in R. Thus, R is in 
system BZ( t). 

Next we show that R is in system RC. Suppose message m is sent in R by 
processor p to processor q, and q takes infinitely many active steps. In R’, 
p’ sends message m’ (m with tag b for some positive integer b) to q’. Since 
R’ is in system RC, and since by Lemma 2 q’ takes infinitely many active 
steps, m’ eventually arrives in R’, say at q”s lth active step. Then m is 
received at step( H,, j), where j = max(b + 1,l). 1 

THEOREM 6. System Al(t) simulates system Sl(t), for any value of t, 

Proqf Fix any protocol P. Let P’ be the protocol defined above. We 
must show that protocol P’ in system Al(t) simulates protocol P in system 
Sl(t). Let the correspondence c between processors in P’ and processors in 
P be that implicit in the construction of P’. Define a set F = (f,. : p’ E P’ > of 
simulation functions as follows. Fix p’ in P’ and let p = 4~‘). Define 
simulation function f,, from states of p’ to states of p to be f,.(J) = d’.sim. 

The first direction is showing that for every run R’ of P’ in system Al(t), 
there exists a run R of P in system Sl(t) such that R’ simulates R via F. 
Given a run R’ of P’ in system Al(t), let R be the run constructed as 
above. By Lemma 1, R is a run of P. By Lemma 5, R is in system Sl( t). 
Now we must show that R’ simulates R via F. By construction of R, 
f,,(states(H,,)) = states(Z3p). Furthermore, if p’ is nonfaulty in R’, then p is 
nonfaulty in R, by Lemma 4. 
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The second direction is showing that given a run R of P in S 1 (f), there is 
a run R’ of P’ in system Al(t) such that R’ simulates R via F. The idea of 
the construction is to let processors in R’ take the same steps at exactly the 
same ticks as do the processors they are simulating in R and to let the 
message delays be exactly the same. The key is to observe that a run in 
which processors are synchronous is also in the system with asynchronous 
processors (i.e., Sl(t) is a subset of Al(t)). The following merely formalizes 
the idea and adds the appropriate tags to the messages. 

Let R= (HB, {Hp)pcp ). Define a message buffer history H,. as follows. 
Suppose message m from processor p to processor q is in msgs(HB, i) for 
some i, and let b be the smallest integer such that m is in msgs(H,, h). 
Then message m’, equal to m with tag b - 1, from processor p’ to processor 
q’, is in msgs( H,,, i). No other messages are in msgs(Hi,., i). 

Define processor history H,,. = d’, s’, nl,s;... as follows. Let d’, be the initial 
state of p’ with sim component equal to state( H,, 1). Suppose H,, has been 
defined up to dj. Then si = step( HP, i). Ifs, = I., then d:+ , = d,!; otherwise let 
d:, , .sim = state(H,,, i+ l), di,, .counter = d:.counfer + 1, and di+ , .early = 
a. This defines the states of H,.. 

It is straightforward to show that R’ = (H,,, {H,,, > ,,, t p,) is a run of P’ 
in system Al(t), and that R’ simulates R via F. 1 

4. SIMULATING SYNCHRONOUS PROCESSORS WITH WEAKER FAULTS 

If the strongest type of processor fault allowed is omission, then the 
simulation and proofs can be slightly simplified. Fix t between 1 and n. Let 
system S2(t) be the intersection of systems OM(t) and RC and SP. Let 
system A2(r) be the intersection of systems OM(t) and RC. The same 
simulation as in Section 3 can be used, except it is no longer necessary to 
check if a message is the first one with that tag value. Since no Byzantine 
faults are considered, the message tag is always the correct active step 
count, so in constructing a run of the simulated protocol, variables a and b 
are always equal. Furthermore, Lemma 4 implies that each simulated 
processor has the same behavior (or better) as its simulating processor. 

THEOREM 7. System A2(t) simulates s.vstem S2(t), ,for any value of t, 
l<t<n. 

The same simplifications apply if the only type of faults is failstop. Fix t 
between 1 and n. Let system S3(t) be the intersection of systems FS(t) and 
RC and SP. Let system A3 be the intersection of systems FS(t) and RC. 

THEOREM 8. System A3(t) simulates system S3(t), for any value of 
t, 1 dtdn. 
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5. APPLICATION 

An important result in the theoretical study of distributed systems is that 
no consensus protocol operating in a system with asynchronous processors 
and asynchronous communication can be guaranteed to terminate, if it 
must tolerate even one failstop processor fault (Fischer et al., 1985). This 
result was subsequently extended (Dolev et al., 1987) to show that no con- 
sensus protocol operating in a system with asynchronous communication, 
but with processors in lockstep synchrony, can be guaranteed to terminate, 
if it must tolerate even one failstop processor fault. The proof of Dolev et 
al. (1987) followed the spirit of the proof of Fischer et aZ. (1985) but 
required additional machinery and a more involved argument. 

The result of Dolev et al. (1987) can be seen to be a corollary of the 
result of Fischer et al. (1985), using Theorem 8 of this paper. 

Given a system S, a consensus protocol P for S is a protocol that satisfies 
the following: (1) Each processor’s set of non-initial states has two disjoint 
subsets, the O--n& states and the lTfinal states. Once a processor enters a u- 
final state, it is always in a u-final state. (2) There exists a run of P in S in 
which a processor enters a O-final state, and there exists a run of P in S in 
which a processor enters a l-final state. (3) For every run of P in system S, 
if some processor enters a u-final state, then no processor enters a w-final 
state for w # ~1. (4) For every run of P in system S, some processor enters a 
u-final state, for some D. 

The model of Fischer et al. (1985) corresponds in our model to the 
system A3( 1) obtained from the intersection of systems FS( 1) and RC, i.e., 
the system with asynchronous processors, at most one of which is failstop- 
faulty, and reliable but asynchronous communication. 

THEOREM 9 (Fischer et al. 1985, Theorem I). There is no consensus 
protocol for system A3( 1). 

The model of Dolev et af. (1987) corresponds in our model to the system 
S3( 1) obtained from the intersection of systems FS( 1) and SP and RC, i.e., 
the system with lockstep-synchronous processors, at most one of which is 
failstop-faulty, and reliable but asynchronous communication. 

THEOREM 10 (Dolev et al. 1987, Theorem IO). There is no consensus 
protocol,for system S3( 1). 

We now show that Theorem 10 follows from Theorem 9 using the results 
of this paper. 

THEOREM 11. If there is no consensus protocol for system A3(1), then 
there is no consensus protocol for system S3( 1). 
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Proof Suppose in contradiction that there is a consensus protocol P 
for system S3( 1). By Theorem 8, system A3( 1) simulates system S3( 1). 
Thus, there exists a simulation protocol P’ such that P’ in system A3(1) 
simulates P in system S3( 1). The protocol P’ can be used to construct a 
consensus protocol for system A3( 1) simply by letting u-final states of P’ be 
those states d such that d.sim is a u-final state of P. Since P is a consensus 
protocol for system S3( 1 ), there is a run R, of P in system S3( 1) in which 
some processor enters a O-final state and another run R, of P in system 
S3( 1) in which some processor enters a l-final state. Since P’ in A3( 1) 
simulates P in S3( 1 ), there is a run Rl, of P’ in system A3( 1) that simulates 
R,, i.e., in which some processor enters a O-final state, and another run R’, 
of P’ in system A3(1) that simulates R,, i.e., in which some processor 
enters a l-final state. Since P is a consensus protocol for S3( 1). and since P 

is simulated by P’, there is no run of P’ in system A3( 1) with processors in 
conflicting final states, and some processor eventually enters a final state in 
every run in system A3( 1). Thus there is a consensus protocol for system 
A3( I), contradicting the hypothesis. i 
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