
Correctness of Vehicle Control Systems: A CaseStudybyHenri B. WeinbergB.S., Computer ScienceYale University, 1992Submitted to the Department of Electrical Engineering and ComputerSciencein partial ful�llment of the requirements for the degree ofMaster of Science in Electrical Engineering and Computer Scienceat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYFebruary 1996c
 Massachusetts Institute of Technology 1996. All rights reserved.Author : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Certi�ed by : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Nancy A. LynchProfessor of Computer Science and EngineeringThesis SupervisorAccepted by : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Frederic R. MorgenthalerChairman, Departmental Committee on Graduate Students



2



Correctness of Vehicle Control Systems: A Case StudybyHenri B. WeinbergSubmitted to the Department of Electrical Engineering and Computer Scienceon March 20, 1996, in partial ful�llment of therequirements for the degree ofMaster of Science in Electrical Engineering and Computer ScienceAbstractA hybrid system is one in which digital components and analog components inter-act. Typical examples of hybrid systems are real-time process-control systems suchas automated factories or automated transportation systems, in which the digitalcomponents monitor and control continuous physical processes in the analog compo-nents. The computer science community has developed formal models and methodsfor reasoning about digital systems, while the control theory community has donethe same for analog systems. However, systems that combine both types of activityappear to require new methods. The development and application of such methodsis an active area of current research.One of the formal tools that has been developed is the hybrid I/O automaton(HIOA) model [1]. In this case study, we show how this model can be used to spec-ify and verify part of an automated transportation system | a vehicle decelerationmaneuver. We investigate how techniques such as automata composition, invariantassertions, and simulation mappings can be applied to systems of communicating dig-ital and analog components. The purpose of the case study is to test the applicabilityof these computer science based techniques to the area of automated transit. In par-ticular, we are concerned that HIOA techniques express hybrid systems faithfully andthat they allow clear and scalable proofs of signi�cant properties of these systems.In the deceleration maneuver, digital controller slows a train to a target velocityrange within a given distance. We examine four versions of the deceleration maneuver,each with a di�erent model of the communication between controller and train: plain,delay, feedback, and feedback with delay. For each case we give a model of the non-controller portion of the system, de�ne correctness of a controller, give an example ofa correct controller, and prove that it is correct. This case study contains full proofsof the correctness of the various controllers. However, some of the proofs are onlysketched, when similar formal proofs appear in other chapters.Thesis Supervisor: Nancy A. LynchTitle: Professor of Computer Science and Engineering
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Chapter 1IntroductionA hybrid system is one in which digital components and analog components inter-act. Typical examples of hybrid systems are real-time process-control systems suchas automated factories or automated transportation systems, in which the digitalcomponents monitor and control continuous physical processes in the analog compo-nents. The computer science community has developed formal models and methodsfor reasoning about digital systems, while the control theory community has donethe same for analog systems. However, systems that combine both types of activityappear to require new methods. The development and application of such methodsis an active area of current research.One of the formal tools that has been developed is the hybrid I/O automatonmodel [1]. In this case study, we show how this model can be used to specify andverify part of an automated transportation system| a vehicle deceleration maneuver.We investigate how techniques such as automata composition, invariant assertions,and simulation mappings can be applied to systems of communicating digital andanalog components. The purpose of the case study is to test the applicability of thesecomputer science based techniques to the area of automated transit. In particular,we are concerned that HIOA techniques express hybrid systems faithfully and thatthey allow clear and scalable proofs of signi�cant properties of these systems.Formal FrameworkThe hybrid I/O automaton model is an extension of the timed I/O automaton modelof [2, 3, 4, 5] inspired by the phase transition system model of [6] and the similarhybrid system model of [7]. A hybrid I/O automaton (HIOA) is a (possibly) in�nitestate labeled transition system. The states of a HIOA are the valuations of a set ofvariables. Certain states are distinguished as start states. The transitions of a HIOAare of two types: continuous and discrete. A HIOA's discrete transitions are labeledwith actions. Both the variables and the actions of a HIOA are partitioned into threecategories: input, output, and internal. A hybrid execution of a HIOA is a sequence of15



transitions that describes a possible behavior of the system over time. A hybrid traceof a HIOA is the externally visible part of an execution (i.e. the non-internal part).We say that one HIOA implements a second, more abstract HIOA if the tracesof the �rst are included in those of the second. This captures the notion that theimplementation HIOA has no external behavior that isn't allowed by the speci�cationHIOA. When two HIOAs are composed in parallel, they synchronize on shared in-put/output actions and shared input/output variables. Under certain easily checkedconditions, the parallel composition of two HIOAs is itself a HIOA. An importantproperty of HIOA's is substituitivity: in a system composed of HIOAs, substitutingimplementations of the components yields an implementation of the entire system.As has been the case in previous work with timed I/O automata, most of theproofs in this HIOA based case study use invariant assertions and simulations. Anassertion is a predicate on states; an invariant assertion is one that is true in everyreachable state. Invariant assertions are usually proved by induction on the lengthof an execution. A simulation is a mapping between states of two HIOA that canbe used to show that that one HIOA implements another. The proof that a givenmapping is a simulation is another form of induction on the length of an executionof the implementation; the induction matches individual steps in the implementationwith corresponding steps or sequences of steps in the speci�cation. Even proofs oftiming properties can be performed using these techniques; the key idea is to buildtiming information into the state where it can be tested by assertions.This type of formalism has several bene�ts. First, the inductive structure and styl-ized nature of the proofs makes them easy to write, check, and understand. In somecases, this structure has allowed the proofs to be checked using automated theoremproving techniques. Second, the implementation relation allows the description of asystem at di�erent levels of abstraction. Assertions proved on the high level modelsextend to the lower level models via the simulation mapping. This hierarchy helpsmanage the complexity of the overall speci�cation and it helps simplify the proofsbecause assertions are usually easier to prove on the more abstract models. Third and�nally, the methods are not completely automatic. They require the user to supplyinvariants and simulations, which serve as useful documentation of the system. In anexploratory work such as this case study, the insight gained through a manual processis particularly useful because it may lead to developments in the underlying modelsand methods.The Deceleration ManeuverTypical examples of automated transportation systems include the Raytheon Per-sonal Rapid Transit System and the California PATH project [8, 9, 10]. In thesehybrid systems, a number of computer controlled vehicles share a network of tracksor highways. The digital part of the system is the computer vehicle controller and theanalog part of the system is the vehicle, its engine, the guideway, and so forth. In [8]



the control of the transportation system is described hierarchically. The higher levelsof such a hierarchical system coordinate and determine strategy while the lowest levelperforms speci�c maneuvers.This case study focuses on a single maneuver: the task of decelerating a vehicleto a target speed within a certain distance. Such a maneuver might be invoked, forexample, when a vehicle is approaching an area whose maximum allowable velocityis lower than the vehicle's current velocity. We model a vehicle and its controller astwo communicating HIOAs. We do not model the invocation of the maneuver nor dowe investigate either complex vehicle physics or complex control schemes. Instead wehave considered four variations on the communication between vehicle and controller.The four variations arise from the inclusion or exclusion of two parameters: feedbackand delay. The �rst case is the simplest: no feedback and no delay. The secondcase introduces a communication delay between the controller and the vehicle. Thethird case introduces feedback without delay; the vehicle periodically sends sensoryinformation to the controller. The fourth case involves both feedback and delay. Foreach case, we give a formal speci�cation of what it means for a controller to correctlyimplement the deceleration maneuver, then we give an example implementation ofsuch a controller and formally verify that it correctly implements the maneuver.Related WorkThis case study is part of a long-term project in the M.I.T. Theory of DistributedSystems research group on modeling, verifying, and analyzing problems arising inautomated transit systems. A survey of the project appears in [11]. The case study,[12, 13], examines the train and gate problem from traditional railroad control. In[14], the author uses abstraction to relate continuous and discrete control of a vehiclemaneuver. Safety systems for automated transit are examined in [15].The development of models and veri�cation methods for timing-based systems isan active research area within computer science. The timed I/O automaton modelis similar, for example, to a model of Alur and Dill [16], to one of Lamport [17]and to one of Henzinger, Manna and Pnueli [18]. In contrast to those formalisms, thedevelopment and use of the timed I/O automaton model has focused on compositionalproperties [19], implementation relations [20], and semi-automated proof checking [21]with less emphasis on syntactic forms, temporal logics, and fully automatic analysis.Just as timed I/O automata have been extended to hybrid I/O automata to treathybrid systems, so have other real-time models. For example, the timed transitionsystem model of [18] is extended to the phase transition system model in [6]. Phasetransition systems are analogous to hybrid I/O automata: their transitions correspondto our discrete steps; their activities correspond to our trajectories. The hybrid systemmodel of [7] is similar to the phase transition system model except that it includessynchronization labels that correspond to our actions. This allows a notion of parallelcomposition in the hybrid system model. The hybrid system model di�ers from the



HIOA model because it has no input/output distinction on either labels (actions) orvariables.The methods of invariant assertions, abstraction mappings, forward and backwardsimulations, history and prophecy variables are used in many places in computerscience. We will not attempt to attribute all these notions. An overview of thesemethods, for untimed and timed systems, appears in [22, 2, 3].Roy Johnson and Steve Spielman at Raytheon are leading the design and develop-ment of a prototype advanced personal rapid transit system, based partly on conceptsdeveloped by Dr. Edward Anderson of the Taxi2000 Corp. Prof. Shankar Sastry andhis colleagues at Berkeley have studied intelligent highway systems [8, 9, 10] and spe-ci�c scenarios that arise therein. For example, they have considered equipping carswith \smart" cruise controls that can adapt to other cars in the vicinity [9]. Anotherproject involving formal modeling of train control systems, using some computer sci-ence techniques, was carried out by Schneider and co-workers [23]. Their emphasiswas on the use of an extension of Dijkstra's weakest-precondition calculus to derivecorrect solutions. Other case studies in modeling hybrid systems include two analy-ses of steam boiler controllers | one using timed I/O automaton methods [24] andanother using the automated proof checker PVS [25] | and a project using a varietyof techniques to model and verify controllers for aircraft landing gear [26].OutlineIn Chapter 2 we give a complete but terse treatment of the HIOA model and thenotational conventions used in this case study. In Chapters 3, 4, 5, and 6, we presenta succession of di�erent variations on the deceleration maneuver: no delay and nofeedback in Chapter 3; delay and no feedback in Chapter 4; feedback and no delay inChapter 5; and both feedback and delay in Chapter 6. We conclude in Chapter 7.



Chapter 2Model: Hybrid I/O AutomataThe hybrid I/O automaton model [1] is based on the timed I/O automaton modelof [2, 3, 4, 5], but includes more explicit treatment of continuous behavior. To makethis report self contained, this chapter gives a complete but terse treatment of theHIOA model with an emphasis on those aspects used in subsequent chapters. Thepresentation is based on [1] and [27].The chapter is organized as follows. We begin by introducing the notion of atrajectory; trajectories are functions that represent the continuous evolution of state.We proceed to de�ne hybrid I/O automata (HIOA) and their executions and traces.Next, we de�ne a simulation relation between a pair of HIOAs and the operationsof composition and of action and variable hiding. We conclude by presenting twonotational forms for automata: standard and MMT-speci�cations.2.1 TrajectoriesThroughout this chapter, we �x a time axis T , which is a subgroup of (R;+), thereal numbers with addition. In subsequent chapters we use T = R exclusively, butthe model permits T =Zand the degenerated time axis T = f0g. An interval I is aconvex subset of T . We denote intervals as usual: [t1; t2] = ft 2 T j t1 � t � t2g, etc.For I an interval and t 2 T , we de�ne I + t �= ft0 + t j t0 2 Ig.We assume a universal set V of variables. Variables in V are typed, where thetype of a variable, such as reals, integers, etc., indicates the domain over which thevariable ranges. Let Z � V. A valuation of Z is a mapping that associates to eachvariable of Z a value in its domain. We write Z for the set of valuations of Z. Often,valuations will be referred to as states.A trajectory over Z is a mapping w : I ! Z, where I is a left-closed interval ofT with left endpoint equal to 0. With dom(w) we denote the domain of w and withtrajs(Z ) the collection of all trajectories over Z. We say w is an I-trajectory if it isa trajectory with domain I. If w is a trajectory then w:ltime , the limit time of w, isthe supremum of dom(w). Similarly, de�ne w:fstate, the �rst state of w, to be w(0),19



and if dom(w) is right-closed, de�ne w:lstate , the last state of w, to be w(w:ltime).A trajectory with domain [0; 0] is called a point trajectory. If s is a state then de�ne}(s) to be the point trajectory that maps 0 to s.For w a trajectory and t 2 T�0, we de�ne w E t �= w d [0; t] and w C t �= w d [0; t).(Here d denotes the restriction of a function to a subset of its domain.) Note thatw C 0 is not a trajectory. By convention, w E1 = w C1 �= w. Similarly we de�ne,for w a trajectory and I a left-closed interval with minimal element l, the restrictionw y I to be the function with domain (I \ dom(w))� l given by w y I (t) �= w(t+ l).Note that w y I is a trajectory i� l 2 dom(w).If w is a trajectory over Z and Z 0 � Z, then the projection w # Z 0 is the trajectoryover Z 0 with domain dom(w) de�ned by w # Z 0 (t)(z) �= w(t)(z). The projectionoperation is extended to sets of trajectories by pointwise extension. Also, if w is atrajectory over Z and z 2 Z, then the projection w # z is the function from dom(w)to the domain of z de�ned by w # z (t) �= w(t)(z).If w is a trajectory with a right-closed domain I = [0; u], w0 is a trajectory withdomain I 0, and if w:lstate = w0:fstate, then we de�ne the concatenation w _ w0 to bethe trajectory with domain I [ (I 0 + u) given byw _ w0 (t) �= � w(t) if t 2 I;w0(t� u) otherwise.We extend the concatenation operator to a countable sequence of trajectories: if wiis a trajectory with domain Ii, 1 � i < 1, where all Ii are right-closed, and ifwi:lstate = wi+1:fstate for all i, then we de�ne the in�nite concatenation, writtenw1 _ w2 _ w3 : : : , to be the least function w such that w(t +Pj<i wj:ltime) = wi(t)for all t 2 Ii.A trajectory w is closed if its domain is a (�nite) closed interval and full if itsdomain equals T�0. For W a set of trajectories, Closed(W ) and Full(W ) denote thesubsets of closed and full trajectories in W , respectively. Trajectory w is a pre�x oftrajectory w0, notation w � w0, if either w = w0 or w0 = w _ w00, for some trajectoryw00. With Pref (W ) we denote the pre�x-closure of W : Pref (W ) �= fw j 9w0 2 W :w � w0g. Set W is pre�x closed if W = Pref (W ). A trajectory in W is maximal ifit is not a pre�x of any other trajectory in W . We write Max (W ) for the subset ofmaximal trajectories in W .2.2 Hybrid I/O AutomataA hybrid I/O automaton (HIOA) A = (U;X; Y;�in;�int;�out;�;D;W) consists ofthe following components:� Three disjoint sets U , X and Y of variables, called input , internal and outputvariables, respectively.



Variables in E �= U [ Y are called external , and variables in L �= X [ Y arecalled locally controlled . We write V �= U [ L.� Three disjoint sets �in, �int, �out of input , internal and output actions, respec-tively.We assume that �in contains a special element e, the environment action, whichrepresents the occurrence of a discrete transition outside the system that is un-observable, except (possibly) through its e�ect on the input variables. Actionsin �ext �= �in [ �out are called external , and actions in �loc �= �int [ �out arecalled locally controlled . We write � �= �in [ �loc.� A nonempty set � � V of initial states satisfyingInit (start states closed under change of input variables)8s; s0 2 V : s 2 � ^ sdL = s0dL =) s0 2 �� A set D � V � ��V of discrete transitions satisfyingD1 (input action enabling)8s 2 V; a 2 �in 9s0 2 V : s a�! s0D2 (environment action only a�ect inputs)8s; s0 2 V : s e�! s0 =) sdL = s0dLD3 (input variable change enabling)8s; s0; s00 2 V; a 2 � : s a�! s0 ^ s0dL = s00dL =) s a�! s00Here we used s a�! s0 as shorthand for (s; a; s0) 2 D.� A set W of trajectories over V satisfyingT1 (existence of point trajectories)8s 2 V : }(s) 2 WT2 (closure under subintervals)8w 2 W; I left-closed, non-empty subinterval of dom(w): w y I 2 WT3 (completeness)(8t 2 T�0 : w y [0; t] 2 W) =) w 2 WAxiom Init says that a system has no control over the initial values of its inputvariables: if one valuation is allowed then any other valuation is allowed also.Axiom D1 is a slight generalization of the input enabling condition of the (clas-sical) I/O automaton model: it says that in each state each input action is enabled,including the environment action e. The second axiom D2 says that e cannot changelocally controlled variables. Axiom D3 expresses that, since input variables are notunder control of the system, these variables may be changed in an arbitrary way after



any discrete action. The three axioms together imply the converse of D2, i.e., if twostates only di�er in their input variables then there exists an e transition betweenthem. Axioms D1-3 play a crucial role in our study of parallel composition. In par-ticular D2 and D3 are used to avoid cyclic constraints during the interaction of twosystems.AxiomsT1-3 state some natural conditions on the set of trajectories that we needto set up our theory: existence of point trajectories, closure under subintervals, andthe fact that a full trajectory is in W i� all its pre�xes are in W.Notation Let A be a HIOA as described above. If s 2 V and l 2 L, then we writes a�! l i� there exists an s0 2 V such that s a�! s0 and s0dL = l. In the sequel, thecomponents of a HIOA A will be denoted by VA, UA, �A, �A, etc. Sometimes, thecomponents of a HIOA Ai will also be denoted by Vi, Ui, �i, �i, etc.2.3 Hybrid ExecutionsA hybrid execution fragment of A is a �nite or in�nite alternating sequence � =w0a1w1a2w2 � � � , where:1. Each wi is a trajectory in WA and each ai is an action in �A.2. If � is a �nite sequence then it ends with a trajectory.3. If wi is not the last trajectory in � then its domain is a right-closed interval andwi:lstate ai+1�!A wi+1:fstate.An execution fragment records all the discrete changes that occur in the evolutionof a system, plus the \continuous" state changes that take place in between. Thethird item says that the discrete actions in � span between successive trajectories.We write h-frag(A) for the set of all hybrid execution fragments of A.If � = w0a1w1a2w2 � � � is a hybrid execution fragment then we de�ne the limittime of �, notation �:ltime , to be Piwi:ltime. Further, we de�ne the �rst state of�, �:fstate, to be w0:fstate.We distinguish several sorts of hybrid execution fragments. A hybrid executionfragment � is de�ned to be� an execution if the �rst state of � is an initial state,� �nite if � is a �nite sequence and the domain of its �nal trajectory is a right-closed interval,� admissible if �:ltime =1,� Zeno if � is neither �nite nor admissible, and



� a sentence if � is a �nite execution that ends with a point trajectory.If � = w0a1w1 � � � anwn is a �nite hybrid execution fragment then we de�ne the laststate of �, notation �:lstate , to be wn:lstate. A state of A is de�ned to be reachableif it is the last state of some �nite hybrid execution of A.A �nite hybrid execution fragment � = w0a1w1a2w2 � � � anwn and a hybrid execu-tion fragment �0 = w00a01w01a02w02 � � � of A can be concatenated if wn _ w00 is de�nedand a trajectory of A. In this case, the concatenation � _ �0 is the hybrid executionfragment de�ned by� _ �0 �= w0a1w1a2w2 � � � an(wn _ w00)a01w01a02w02 � � �A variable v of a HIOA A is called continuous if v is not modi�ed by any discretesteps of A and for all trajectories w of A, w # fvg is a continuous function. Let� = w0a1w1a2w2 � � � be a hybrid execution fragment of A. Then we de�ne � # fvg asfollows:� # fvg = (w0 # fvg)_ (w1 # fvg)_ (w2 # fvg) : : :The following theorem is simple to prove.Theorem 2.3.1 If v is a continuous variable of HIOA A and � is an executionfragment of A, then � # fvg is a continuous function.2.4 Hybrid TracesSuppose � = w0a1w1a2w2 � � � is a hybrid execution fragment of A. In order to de�nethe hybrid trace of �, let
 = (w0 # EA)vis(a1 )(w1 # EA)vis(a2 )(w2 # EA) � � � ;where, for a an action, vis(a) is de�ned equal to � if a is an internal action or e, andequal to a otherwise. Here � is a special symbol which, as in the theory of processalgebra, plays the role of the `generic' invisible action. An occurrence of � in 
 iscalled inert if the �nal state of the trajectory that precedes the � equals the �rststate of the trajectory that follows it (after hiding of the internal variables). Thehybrid trace of �, written htrace(�), is de�ned to be the sequence obtained from 
 byremoving all inert � 's and concatenating the surrounding trajectories.The hybrid traces of A are the hybrid traces that arise from all the �nite andadmissible hybrid executions of A. We write h-traces(A) for the set of hybrid tracesof A.HIOA's A1 and A2 are comparable if they have the same external interface, i.e.,U1 = U2, Y1 = Y2, �in1 = �in2 and �out1 = �out2 . If A1 and A2 are comparable thenA1 � A2 is de�ned to mean that the hybrid traces of A1 are included in those of A2:A1 � A2 �= h-traces(A1 ) � h-traces(A2 ). If A1 � A2 then we say that A1 implementsA2.



2.5 Simulation RelationsLet A and B be comparable HIOA's. A simulation from A to B is a relation R �VA � VB satisfying the following conditions, for all states r and s of A and B,respectively:1. If r 2 �A then there exists s 2 �B such that r R s.2. If r a�!A r0 and r R s and both r and s are reachable states then B has a �niteexecution fragment � with s = �:fstate, htrace(}(r) a }(r 0)) = htrace(�) andr0 R �:lstate.3. If r R s and w is a closed trajectory of A with r = w:fstate and both r and sare reachable states then B has a �nite execution fragment � with s = �:fstate,htrace(w) = htrace(�) and w:lstate R �:lstate .Note that by Condition 3 and the existence of point trajectories (axiom T1), rRsand r and s reachable implies that rdEA = sdEB.Theorem 2.5.1 If A and B are comparable HIOA's and there is a simulation fromA to B, then A � B.The de�nition of simulation given above is weaker than the one given in [1]. Wehave added the restriction that r and s be reachable states in Conditions 2 and 3.Theorem 2.5.1 is true with or without this restriction.2.6 Parallel Composition and HidingWe say that HIOA's A1 and A2 are compatible if, for i 6= j,Xi \ Vj = Yi \ Yj = �inti \ �j = �outi \ �outj = ;:If A1 and A2 are compatible then their composition A1kA2 is de�ned to be the tupleA = (U;X; Y;�in;�int;�out;�;D;W) given by� U = (U1 [ U2)� (Y1 [ Y2), X = X1 [X2, Y = Y1 [ Y2� �in = (�in1 [ �in2 )� (�out1 [ �out2 ), �int = �int1 [ �int2 , �out = �out1 [ �out2� � = fs 2 V j sdV1 2 �1 ^ sdV2 2 �2g� De�ne, for i 2 f1; 2g, projection function �i : � ! �i by �i(a) �= a if a 2 �iand �i(a) �= e otherwise. Then D is the subset of V � ��V given by(s; a; s0) 2 D () sdV1 �1(a)�!1 s0dV1 ^ sdV2 �2(a)�!2 s0dV2



� W is the set of trajectories over V given byw 2 W () w # V1 2 W1 ^ w # V2 2 W2Notation We extend the projection notation �i (i = 1; 2) to states, trajectories andhybrid executions in the obvious way.Proposition 2.6.1 A1kA2 is a HIOA.Theorem 2.6.2 Suppose A1; A2 and B are HIOA's with A1 � A2, and each of A1and A2 is compatible with B. Then A1kB � A2kB.Two natural hiding operations can be de�ned on any HIOA A:(1) If S � �outA , then ActHide(S;A) is the HIOA B that is equal to A except that�outB = �outA � S and �intB = �intA [ S.(2) If Z � YA, then VarHide(Z;A) is the HIOA B that is the equal to A except thatYB = YA � Z and XB = XA [ Z.Theorem 2.6.3 Suppose A and B are HIOA's with A � B, and let S � �outA andZ � YA.Then ActHide(S;A) � ActHide(S;B) and VarHide(Z;A) � VarHide(Z;B).2.7 Standard HIOA NotationIn this section we introduce the notational conventions for de�ning HIOAs that arestandard for this case study. An example HIOA called skew-timer described instandard notation appears in Table 2.1. The automaton skew-timermodels a faultycount-down timer with an inaccurate clock. The table identi�es the actions, variables,discrete transitions, and trajectories of skew-timer. We explain each of these inturn.� The actions are classi�ed as input, output, and internal. A set of actions maybe de�ned by giving an action name with a parameter and a range for theparameter. The actions set-timer(x) for x 2 R�0 are an example. We say\the action set-timer" to mean the set of related actions \set-timer(x) forx 2 R�0".� The variables are also classi�ed as input, output, and internal. Since there areno input variables to skew-timer, that category does not appear. Variablesare speci�ed with a name and a type; an initial value is given for internal andoutput variables.



� The discrete transitions are speci�ed using precondition-e�ect, Pascal-like codeas in [28, 29]. Each set of transitions which shares an action label (or set ofrelated action labels) is speci�ed as one precondition-e�ect block. For example,the �rst block describes all set-timer labeled transitions. Because set-timeris an input action there is no precondition for this block | in other words,the precondition is true (see Axiom D1). The notation := is the usual Pascalassignment notation. The notation :2 is similar but denotes assignment from aset. If a variable is not mentioned in the e�ect clause, then it is unchanged bythe transition.� The trajectories are speci�ed as all the trajectories w that satisfy the givenset of conditions. The expression w:rate denotes the projection of w onto thevariable rate.Informally, the behavior of skew-timer is as follows: it has a clock whose ratevaries non-deterministically between 0 and 2; when it receives a set-timer(x) in-put action, it will later output alarm when its clock says that x time has passed;however, there may be an internal fault action, which causes the timer to be non-deterministically set to any value; the togo output variable reports the time remaininguntil the timer expires. The variable deadline is used to encode the value of clockthat will trigger the expiration of the timer.2.8 MMT Speci�cationsThe HIOA model is powerful; however, a useful subclass of HIOA can be speci�ed ina convenient notation called an MMT-speci�cation. The name \MMT" derives fromthe names Merritt, Modugno, and Tuttle, the authors of [30] where they present amodel which corresponds to this subclass. We prefer to view it as a subclass with aparticular notation, rather than as a separate formalism. This section is based on asimilar exposition in [27]. We give a formal de�nition of an MMT-speci�cation, of amapping from an MMT-speci�cation to a HIOA, and an example MMT-speci�cationtogether with its translation into standard notation.An MMT-speci�cation M = (A;T; bl; bu) consists of the following components:� A HIOA A with no external variables and only point trajectories.� A task set T which is a collection of disjoint subsets of locally controlled actionsof A.� A lower bound map bl : T ! R�0.� An upper bound map bu : T ! R�0.



Table 2.1 The skew-timer automaton.Actions: Input: set-timer(x) for x 2 R�0Output: alarmInternal: faultVars: Output: togo 2 R�0 [ f1g, initially1Internal: clock 2 R�0, initially 0rate 2 [0; 2], initially 1deadline 2 R�0 [ f1g, initially1Discrete Transitions:set-timer(x):E�: togo := xdeadline := clock + xalarm:Pre: deadline = clockE�: deadline :=1togo :=1fault:Pre: togo 6= 0E�: togo :2 R�0deadline := clock + togoTrajectories:w:rate is an integrable functionfor all t 2 dom(w)w(t):deadline = w(0):deadlinew(t):clock = w(0):clock + R t0 w(s):rate dsw(t):clock � w(t):deadlineif w(0):deadline =1 thenw(t):togo =1elsew(t):togo = w(t):deadline �w(t):clock



The HIOA A speci�es the behavior of the automaton which is not related totiming; its trajectories are irrelevant so we assume they are point trajectories. Theremaining elements of the MMT-speci�cation de�ne its timing behavior. The tasksare sets of actions of A that have related timing behavior; we denote individual tasksby Ci where i ranges over an index set. The bound functions specify the timingbehavior of tasks by giving a lower and upper time bound for the execution of eachtask. We require that for each tasks Ci 2 T , bl(Ci) � bu(Ci). An action a is enabledin state s when for some s0, (s; a; s0) is a discrete step of A. A task Ci is enabledin a state if at least one of its actions is enabled. The lower time-bound on a taskspeci�es how long the task must be continuously enabled before one of its actions canbe performed. The upper time-bound on a task speci�es how long the task can becontinuously enabled before one of its actions must be performed. We formalize thisdescription by describing the equivalent hybrid I/O automaton.Let M = (A;T; bl; bu) be an MMT-speci�cation where and letA = (U;X; Y;�in;�int;�out;�;D;W)and V = U [X [ Y . By our assumption that M is an MMT-speci�cation we knowthat U = Y = ; and W contains only point trajectories.Then A0 = hybrid(M) is a hybrid I/O automaton with the following components:� The variables of A0 are the same as those of A plus the following internal vari-ables: now of type R�0; and �rst(Ci) and last(Ci) of type R [ f1g for allCi 2 T .� The actions of A0 are the same as those of A.� The start states A0 are all the states s of A0 where sdV 2 �, s:now = 0, and foreach Ci 2 T if Ci is enabled in sdV then �rst(Ci) = bl(Ci) and last(Ci) = bu(Ci);otherwise, �rst(Ci) = 0 and last(Ci) =1.� The discrete steps of A0 are all (s; a; s0) where:1. s0:now = s:now2. (sdV; a; s0dV ) 2 D3. for each Ci 2 T(a) If a 2 Ci, then s:�rst(Ci) � s:now.(b) If Ci is enabled in both sdV and s0dV , and a 62 Ci,then s0:�rst(Ci) = s:�rst(Ci) and s0:last(Ci) = s:last(Ci).(c) If Ci is enabled in s0dV and either a 2 Ci or Ci is not enabled in sdV ,then s0:�rst(Ci) = s0:now + bl(Ci) and s0:last(Ci) = s0:now + bu(Ci).(d) If Ci is not enabled in s0dV then s0:�rst(Ci) = 0 and s0:last(Ci) =1.



� The trajectories of A0 are exactly those trajectories w where the following holdfor all t 2 dom(w):1. w(t):now = w(0):now + t (now is a clock variable)2. w(t) # V = w(0) # V (original variables remain unchanged)3. for all Ci 2 T(a) w(t):now � w(0):last(Ci) (time does not pass deadlines)(b) w(t):�rst(Ci) = w(0):�rst(Ci) (deadlines remain unchanged)(c) w(t):last(Ci) = w(0):last(Ci)One di�erence between the exposition here and in [27], is that we do not requirethat the upper bound of a task be non-zero. Such a requirement would guaranteecertain properties that are required in [27] but that are beyond the scope of thisexposition.A simple example MMT-speci�cation ping-pong appears in Table 2.2; its corre-sponding HIOA hybrid(ping-pong) appears in Table 2.3 in standard notation. Thenotation PING = fpingg : [3; 4], means that task PING consists of the singletonset of actions fpingg and has lower and upper time bounds of 3 and 4, respectively.Informally, the behavior of ping-pong is as follows: it alternates performing pingand pong output actions; it begins with a ping action after 3 to 4 time units; everyping action is followed by a pong action in 7 to 20 time units; every pong action isfollowed by a ping action in 3 to 4 time units.In subsequent chapters we ignore the distinction between the MMT-speci�cationand its corresponding hybrid I/O automaton. When possible, we will use MMT-speci�cations and not give the corresponding standard notation. However, we willrefer in proofs to the deadline variables last(�) and first(�). These deadline variableshave some useful properties:Theorem 2.8.1 If M = (A;T; bl; bu) is an MMT-speci�cation and A0 = hybrid(M),then in all reachable states s of A0 and for all Ci 2 T the following hold:1. s:�rst(Ci) � s:last(Ci)2. s:now � s:last(Ci)3. if Ci is enabled in sdV then 0 � last(Ci)� now � bu(Ci)The use of deadline variables is key to the assertional proof style. To prove in-variant assertions inductively it is often helpful that the entire future behavior of thesystem is determined by the current state. Deadline variables encode future timingbehavior in the current state. For an example see Lemma 3.6.4.



Table 2.2 The ping-pong MMT-speci�cation.Actions: Output: ping and pongVars: Internal: count 2 N, initially 0Discrete Transitions:ping:Pre: count is evenE�: count := count+ 1pong:Pre: count is oddE�: count := count+ 1Tasks:PING = fpingg : [3; 4]PONG = fpongg : [7; 20]Notation All HIOAs that result from MMT-speci�cations have the now variable.So that we may compose these HIOAs and others that have a similar now variable, weadopt a convention for the now variable. We reserve the now identi�er only for real-valued variables that begin at zero and progress linearly with time at slope exactlyone | in other words, variables which represent the current time. These variablesmust be internal or output variables. When two automata are composed that bothhave now variables, we implicitly rename the variables to some other unique namesbut refer to both of these variables as if they were named now.



Table 2.3 The hybrid(ping-pong) automaton.Actions: Output: ping and pongVars: Internal: count 2 N, initially 0now 2 R�0�rst(PING) 2 R�0 [ f1g, initially 3last(PING) 2 R�0 [ f1g, initially 4�rst(PONG) 2 R�0 [ f1g, initially 0last(PONG) 2 R�0 [ f1g, initially1Discrete Transitions:ping:Pre: count is even�rst(PING) � nowE�: count := count+ 1�rst(PING) := 0last(PING) :=1�rst(PONG) := now + 7last(PONG) := now + 20pong:Pre: count is odd�rst(PONG) � nowE�: count := count+ 1�rst(PING) := now + 3last(PING) := now + 4�rst(PONG) := 0last(PONG) :=1Trajectories:w:�rst(PING), w:last(PING), w:�rst(PONG), andw:last(PONG) are all constant functionsfor all t 2 dom(w)w(t):now = w(0):now+ tw(t):now � w(t):last(PING)w(t):now � w(t):last(PONG)





Chapter 3Deceleration Case 1:No Delay and No FeedbackIn the deceleration problem we model a computer-controlled train moving along atrack. The task of the train's controller is to slow the train within a given distance.In this chapter we consider a very simple model of the train and the controller. Thetrain has two modes, braking and not braking. The controller can instantly e�ect achange in the mode of the train (relaxed in Chapters 4 and 6). The controller receivesno information from the train (relaxed in Chapters 5 and 6). The braking strength ofthe train varies nondeterministically within known bounds. We model both the trainand the controller as hybrid I/O automata. Figure 3-1 illustrates the componentsand their communication.In the following sections we describe the parameters of the speci�cation, give ahybrid I/O automaton model for the train, de�ne correctness of a controller for thistrain, give an example correct controller, and prove that it is correct.3.1 ParametersAll the parameters of the speci�cation are constants denoted by c with some dotsabove it and a subscript. Dots above the constant identify the type of the constant:position (no dots), velocity (one dot), or acceleration (two dots). The dots are a purelysyntactic device used to express the type of the constant; they do not represent anoperation of di�erentiation on some function. The subscript identi�es the particularFigure 3-1 Overview of Basic Deceleration Modeltrain brakeOn, brakeOff A Controller33



constant. Initial values of the train's position, velocity and acceleration are cs; _cs; �cs.The goal of the deceleration maneuver is to slow the train to a velocity in the interval[ _cminf; _cmaxf] at position cf. When the train is not braking its acceleration is exactlyzero. When the train is braking its acceleration varies nondeterministically between[�cmin; �cmax], both negative. The range is intended to model inherent uncertainty inbrake performance. We impose the following constraints on the parameters:1. cs < cf2. _cs > _cmaxf � _cminf > 03. �cs = 04. �cmin � �cmax < 05. cf � cs � _c2maxf� _c2s2�cmax6. _cmaxf� _cs�cmax � _cminf� _cs�cminThe �rst three constraints are self-explanatory: initial position is before �nal posi-tion; initial velocity is higher than target velocity range which is positive; and initialacceleration is zero. Since braking is stronger when acceleration is more negative,notice in the fourth constraint that �cmin is the strongest braking strength, and �cmaxthe weakest. The �fth constraint ensures that with the weakest possible braking thereis still enough distance to reach the highest allowable speed by position cf. The righthand side of this equation uses a familiar equation for \change in distance for changein velocity" from constant acceleration Newtonian physics. To understand the sixthconstraint consider that since the controller receives no sensory information from thetrain, it must decide a priori how long to brake. The sixth constraint ensures thatthe least amount of time the controller must brake is less than the greatest amountof time that it can brake.3.2 The train AutomatonWe model the train as a single HIOA called train which appears in Table 3.1. Thenotation used in the table is explained in Section 2.7. The train's physical state ismodeled using three variables: x; _x; �x. As with the constants, the dots on _x and �xare a syntactic device; the fact there there is a di�erential relationship between theevolution of these variables is a consequence of the de�nition of the trajectory setfor train. The train accepts commands to turn the brake on or o� through discreteactions brakeOn and brakeOff. It stores the state of the brake in variable b. Whilebraking the train applies an acceleration that is nondeterministic at every point but is



constrained to be an integrable function with range in the interval [�cmin; �cmax]. Whilenot braking the train has exactly zero acceleration. The variable now represents thecurrent time; when using assertions to reason about the timing behavior of systems,it is convenient to have an explicit state variable which records the current time.Table 3.1 The train automaton.Actions: Input: brakeOn and brakeOffVars: Output: x 2 R, initially x = cs_x 2 R, initially _x = _cs�x 2 R, initially �x = �csb, a boolean, initially falsenow 2 R�0, initially 0Discrete Transitions:brakeOn:E�: b := true�x :2 [�cmin; �cmax]brakeOff:E�: b := false�x := 0Trajectories:if w(0):b = true thenw:�x is an integrable function with range [�cmin; �cmax]elsew:�x = 0for all t 2 I the following hold:w(t):b = w(0):bw(t):now = w(0):now+ tw(t): _x = w(0): _x+ R t0 w(s):�x dsw(t):x = w(0):x+ R t0 w(s): _x ds3.3 Properties of trainThe following two lemmas and three corollaries all relate the initial state and �nalstates of a trajectory. They establish standard facts of mechanics which we provehere for completeness. In a treatment of a system with more complex dynamics weexpect that the lemmas of this section could be replaced with similar results based



on whatever methods from continuous mathematics were appropriate for the speci�capplication. We do not claim that the dynamics of train are complex or that themathematics used in the proofs in this section is sophisticated.In the next two lemmas we characterize the train's behavior when not brakingand when braking, respectively. Below and throughout this work, if s and s0 arestates and x is a variable, we often write x for s:x and x0 for s0:x when s and s0 areunderstood.Lemma 3.3.1 Let w be a closed trajectory of train whose initial and �nal statesare s and s0, respectively, and let � = now0 � now. If b = false then the followinghold:1. �x0 = �x = 02. _x0 = _x3. x0 = x+ _x�Proof: By the de�nitions of _x and x in train and integration.Lemma 3.3.2 Let w be a closed trajectory of train whose initial and �nal statesare s and s0, respectively, and let � = now0 � now. If b = true then the followinghold:1. _x+ �cmin� � _x0 � _x+ �cmax�2. x+ _x�+ 12�cmin�2 � x0 � x+ _x�+ 12�cmax�2Proof: We prove only the right hand side of the two inequalities; the other side issymmetric. Let z be a trajectory of train with the domain I the same as w; andlet z(t):�x = �cmax for all t 2 I and z(0): _x = w(0): _x and z(0):x = w(0): _x. Notice thatw(t):�x � z(t):�x for all t 2 I. Because de�nite integrals preserve inequalities, we knowthat for all t 2 I; w(t): _x � z(t): _x and w(t):x � z(t):x. Furthermore, by integration,we know that z(t): _x = w(0):x+ �cmax�. This establishes the �rst inequality. Also byintegration, we know that z(t):x = w(0):x+w(0): _x�+ 12�cmax�2. This establishes thesecond inequality.The following corollaries further describe the train's behavior during braking.The �rst bounds change in time by change in velocity. The second bounds change inposition by change in the square of velocity.Corollary 3.3.3 Let w be a closed trajectory of train whose initial and �nal statesare s and s0, respectively and let � = now0 � now. If b = true then the followingholds: _x0 � _x�cmin � � � _x0 � _x�cmax



Proof: We use Lemma 3.3.2. The steps for only one side are shown:_x0 � _x+ �cmax� by Lemma 3.3.2_x0 � _x � �cmax� subtract�cmax � 0 assumption_x0� _x�cmax � � divisionCorollary 3.3.4 Let w be a closed trajectory of train whose initial and �nal statesare s and s0, respectively and let � = now0 � now. If b = true and 0 � _x0 then thefollowing holds:( _x0)2 � _x22�cmin � x0 � x � ( _x0)2 � _x22�cmaxProof:Again, we show only the right hand side of the inequality. Let � = now0�now.Let z be a trajectory as in the proof of Lemma 3.3.2 and let f denote the �nal stateof z. To make the following algebra easier to read, we let _u0 = f: _x and u0 = f:x. Asusual, x = s:x; _x = s: _x; x0 = s0:x; and _x0 = s0: _x._u0 = _x+ �cmax� integrationu0 = x+ _x�+ 12�cmax�2 integration� = _u0� _x�cmax solve for �u0 = x+ _x _u0� _x2�cmax + 12�cmax( _u0)2�2 _x _u0+ _x2�c2max substitutionu0 = x+ 12�cmax (2 _x _u0 � 2 _x2 + ( _u0)2 � 2 _x _u0 + _x2) distributeu0 = x+ ( _u0)2� _x22�cmax cancelx0 � u0 as in Lemma 3.3.2x0 � x+ ( _u0)2� _x22�cmax transitivity0 � _x0 antecedent_x0 � _u0 as in Lemma 3.3.2_u0 < _x (�cmax < 0)x0 � x+ ( _x0)2� _x22�cmax substitutionx0 � x � ( _x0)2� _x22�cmax subtraction3.4 De�nition of Controller CorrectnessWe de�ne a brake-controller to be a hybrid I/O automaton with no external vari-ables, no input actions, and output actions brakeOn, and brakeOff. A correct brake-controller is one that when composed with train, yields a HIOA whose hybrid tracessatisfy the following formal axioms:



Timeliness There exists a constant t 2 R�0 such that for all hybrid traces if thereexists a state of the trace in which now = t, then there is a state of the trace inwhich x = cf.Safety In all states of all hybrid traces the following holds:x = cf =) _cminf � _x � _cmaxf.These can be stated informally as: (Timeliness) there is a length of time after whichwe can be sure that the train has reached cf; and (Safety) when it gets there, it hasachieved an appropriate speed. The formal de�nitions of hybrid traces and relatedconcepts appear in Chapter 2. Note that in (3.4) the state where x = cf can occurduring time passage, i.e. within a trajectory. For conveniencewe call the �rst propertythe \timeliness" property and the second property the \safety" property.A controller which stops time before the system reaches cf is a correct controlleraccording to the above de�nition. In general, one would like to avoid such vacuouscorrectness results. This issue is beyond the scope of our investigation, but it istreated in some depth in [1, 4, 5]. None of the of the example controllers presentedin this case study stop time.The following theorem says that the timeliness and safety properties are preservedby the implementation relation (see Section 2.4); in other words, an implementationof a correct brake-controller is itself a correct brake-controller. This theorem is notused in this chapter but rather in Chapter 4.Theorem 3.4.1 Let B be a correct brake-controller and let A � B. Then A is alsoa correct brake-controller.Proof: By Theorem 2.6.2, Ajjtrain � Bjjtrain. Timeliness: Let t be the constantwhich satis�es the timeliness property for B. We show that it also satis�es thetimeliness property for A. Let � be a trace of Ajjtrain; then � is also a trace ofBjjtrain and the property holds on � by the correctness of B. Safety: Similarly.3.5 Example Controller: one-shotIn this section we give an example of a correct brake-controller called one-shot.There is a broad spectrum of correct controllers from which to choose an example |from fully deterministic controllers to highly non-deterministic controllers. A fullydeterministic controller would have exactly one in�nite execution (ignoring e tran-sitions). We have chosen to present a controller that is highly non-deterministic:one-shot exhibits all the possible timings of exactly one brakeOn action followed byexactly one brakeOff action which a correct controller might exhibit. In other words,one-shot exhibits all the correct braking strategies which involve exactly one appli-cation of the brake. We can imagine controllers with more non-determinism which



exhibit not only behaviors with single brake applications but also behaviors with mul-tiple brake applications. We chose one-shot as an example for three reasons. First,it is easily expressed using an MMT-speci�cation. Second, it has enough interestingbehavior that the proofs of this section illustrate non-trivial proof techniques. Thirdand last, in Chapter 4 we use a simulation proof to show that the composition ofa similar controller and a delay bu�er is an implementation of this controller. Thecorrectness of the delayed controller then follows from the correctness of one-shot.First we de�ne some convenient constants:A = 1_cs �cf � cs � _c2maxf � _c2s2�cmax �B = _cmaxf � _cs�cmaxC = _cminf � _cs�cminThe �rst, A, is the longest amount of time a correct controller can wait before invokingthe brake. The others, B and C, are lower and upper bounds, respectively, on theamount of time a correct controller should apply the brake if it only brakes once.These constants are used as the time bounds on the tasks of one-shot.Table 3.2 The one-shot automaton (MMT-speci�cation)Actions: Output: brakeOn and brakeOffVars: Internal: phase 2 fidle; braking; doneg, initially idleDiscrete Transitions:brakeOn:Pre: phase = idleE�: phase := brakingbrakeOff:Pre: phase = brakingE�: phase := doneTasks:ON = fbrakeOng : [0; A]OFF = fbrakeOffg : [B;C]The formal description of one-shot appears in Table 3.2. The notation usedin the table, called MMT-speci�cation, is explained in Section 2.8. The controller iscalled \one-shot" because it applies the brake only once. The automaton's executionsconsist of three phases idle, braking, and done. It waits between zero and A time



Figure 3-2 Example Execution of one-shot-sys_x_cmaxf_cminf cs xcf_cs
units (idle phase), then it applies the brake for at least B and at most C time units(braking phase), and then removes the brake (donephase). The ON task governsthe transitions from idle to braking and the OFF task governs the transitions frombraking to done.3.6 Correctness of one-shotIn this section we prove the correctness of the one-shot controller. Recall that thecomposition of train and one-shot is called one-shot-sys. We will present lem-mas and corollaries that establish the timeliness and safety properties for the hybridexecutions of one-shot-sys. Before giving the proof, we provide some motivationand an overview.Figure 3-2 depicts a possible execution of one-shot-sys. The vertical axis isvelocity and the horizontal axis is position. Since the vehicle is always moving forward,the graph can be read as if time progresses from left to right. The solid line representsthe actual behavior of the train in this example execution. The initial 
at segmentcorresponds to the idle phase; the downward curve, the braking phase; and the �nal
at segment, the done phase. The shape of the downward curve in this executionis meant to re
ect a constant deceleration, but this is the exception rather than therule. The train's deceleration can vary nondeterministically during braking as longas it remains integrable. As achieved deceleration varies between �cmin and �cmax thecurve becomes more or less steep, respectively.The dotted lines represent upper and lower bounds that we will prove. The lowerbound will yield the timeliness property. The meaning of the lower bound is obvious:we will show that the controller never allows the speed to fall below the minimum



�nal velocity. The upper bound (combined with the lower bound) will yield thesafety property. The meaning of the upper bound is less obvious: from each pointon the upper bound, if the controller initiated braking and the train achieved onlythe weakest possible braking (�cmax) the train would slow to exactly _cmaxf at the �nalposition. Points below this curve are safe because immediately braking for su�cientlylong will slow the train to strictly less than _cmaxf before the �nal position. Points abovethis line are unsafe because even with immediate braking, the train may achieve onlythe weakest possible braking | in that case the train will remain strictly above therequired _cmaxf velocity at the �nal position.Now we proceed to the details of the proof. In the following two sections, weprove a variety of properties, almost all of which are invariant assertions. We makeextensive use of the deadline variables such as last(ON) which are implicit in theMMT-speci�cation of one-shot. These variables allow assertions to encode claimsabout timing behavior. The proofs o�er an argument for the clarity and simplicity ofthe assertional proof style. Almost all of the proofs involve only very local reasoningabout steps of the system. The only proof which is not based on an assertion style,that of Lemma 3.6.8, relies on Theorem 2.3.1.Section 3.6.1 establishes the timeliness property; Section 3.6.2 establishes thesafety property. Together they yield the correctness of the controller which is sum-marized in Theorem 3.6.14.3.6.1 TimelinessIn this section we prove the timeliness property, namely that there is a bound t on thetime it takes to reach cf. Our method is to prove that at all times there is a positivelower bound on velocity, speci�cally _cminf. We do this by characterizing velocity foreach of the three phases: idle in Lemma 3.6.3, braking in Lemma 3.6.4, and done inLemma 3.6.5. Some of the results are more general than necessary for the timelinessproperty because they will be used in the next section for proving the safety property.The following two technical lemmas will be used to eliminate certain cases in laterinductive arguments. The �rst says that there is only one idle phase and it occursat the beginning of the execution. The second says that there are some dependenciesamong the values of the variables b, �x, and phase.Lemma 3.6.1 In all reachable states of one-shot, if (phase = idle) then the fol-lowing hold:1. �rst(ON) = 02. last(ON) = AProof: Trivial induction.Lemma 3.6.2 In all reachable states of one-shot-sys the following hold:



1. b =) �x 2 [�cmin; �cmax]2. :b =) �x = 03. b() (phase = braking)Proof: Trivial induction.The following lemma characterizes the velocity and position of the train duringthe controller's idle phase.Lemma 3.6.3 In all reachable states of one-shot-sys, if phase = idle the follow-ing hold:1. _x = _cs2. x = cs + (now) _csProof: By induction. The interesting case is trajectories where we note that �x = 0and Lemma 3.3.1 applies. Some trivial algebra yields the desired result.The following lemma characterizes the velocity of the train during braking. It isinteresting because it involves assertion-style reasoning about the controller's deadlinevariables. While the controller is in the braking phase, last(OFF)�now is the greatestamount of time the train will continue braking. This time must be bounded in orderto avoid slowing down below the minimum �nal speed, _cminf. A similar result holdsfor �rst(OFF) and the upper bound on velocity.Lemma 3.6.4 In all reachable states of one-shot-sys, if phase = braking thefollowing hold:1. last(OFF)� now � _cminf� _x�cmin2. �rst(OFF)� now � _cmaxf� _x�cmaxProof: By induction. The two interesting cases are the ON task that sets phase =braking and trajectories while phase = braking. For the ON task the pre-state hasphase = idle and Lemma 3.6.3 and the de�nitions of B and C yield the desiredresults as follows (only (2) is shown):B = _cmaxf� _cs�cmax by de�nition_x = _cs = _x0 by Lemma 3.6.3�rst(OFF)0 = now0 + B one-shot de�nition�rst(OFF)0 � now0 = _cmaxf� _x�cmax substitute & subtractFor trajectories, we use Lemma 3.6.2 and the equation from Corollary 3.3.3. Sub-traction and expansion of � = now0 � now yields the desired results as follows (only



(2) is shown):now0 � now � _x0� _x�cmax by Corollary 3.3.3.�rst(OFF)� now � _cmaxf� _x�cmax inductive hypothesis�rst(OFF)� now0 � _cmaxf� _x0�cmax substitute and cancelThe following corollary uses basic properties of deadline variables and the preced-ing lemma to prove that as we exit the braking phase and thereafter, we are in thetarget velocity range.Corollary 3.6.5 In all reachable states of one-shot-sys, if phase = done the fol-lowing holds:_cmaxf � _x � _cminfProof: By induction. The interesting cases are the OFF action and trajectories inthe done phase. For the OFF action we know that in the pre-state phase = brakingso Lemma 3.6.4 applies. Furthermore �rst(OFF) � now � last(OFF) by a propertyof MMT automata. From this we can conclude that _cmaxf � _x � _cminf (details for oneside shown below). For trajectories, we know that �x = 0 so _x = _x0, by Lemma 3.6.2and Lemma 3.3.1.�rst(OFF)� now � _cmaxf� _x�cmax from Lemma 3.6.4�rst(OFF) � now from Theorem 2.8.1�rst(OFF)� now � 0 subtraction0 � _cmaxf� _x�cmax transitivity0 > �cmax assumption0 � _cmaxf � _x multiply_x � _cmaxf subtractThe following lemma and associated corollary combines the above phase-by-phaseresults to yield the global result and the time bound.Lemma 3.6.6 In all reachable states of one-shot-sys the following holds:_x � _cminfProof: We consider cases of phase. When phase = idle Lemma 3.6.3 gives _x = _csand by assumption _cs > _cmaxf � _cminf. When phase = braking, Lemma 2.8.1 givesnow � last(OFF) and Lemma 3.6.4 gives the desired result. Finally when phase =done, Corollary 3.6.5 applies.



Corollary 3.6.7 In all reachable states of one-shot-sys the following holds:x � cs + _cminf(now)Proof: Lemma 3.6.6 establishes that in all reachable states (including those in trajec-tories) _x � _cminf. At all times x� cs is the integral of _x. It is a property of de�nite in-tegrals that lower bounds are preserved. Therefore x�cs � R now0 _cminf dt = _cminf(now).The following lemma establishes the timeliness property.Lemma 3.6.8 Let � be a trace of one-shot-sys. If there exists a state s of � inwhich s:now = cf�cs_cminf , then there is a state s0 of � in which s0:x = s0:cf.Proof: By Corollary 3.6.7 we know that in state s, s:x � cf. We observe that nodiscrete action modi�es x and that for all trajectories w of the system, w:x is acontinuous function. Therefore x is a continuous variable of one-shot-sys (see endof Section 2.3). Let �0 be an execution of one-shot-sys whose trace is �. Letf = �0 # fxg. By Theorem 2.3.1, f is a continuous function. We know f(s:now) � cfand that f(0) = cs < cf. By the intermediate value theorem, it follows that for somet where 0 � t � s:now, f(t) = cf. We conclude that a state where x = cf is achievedin �0 and hence in �.3.6.2 SafetyIn this section we prove the safety property, namely that the following formula is aninvariant of the system:(x = cf =) _cminf � _x � _cmaxf)We have already shown that at all times _cminf � _x, therefore we need only establishthe other half of the inequality. To prove this invariant we prove a stronger invariant:x � cf =) cf � x � _c2maxf� _x22�cmaxIntuitively, this invariant says that before reaching the �nal position there must beenough distance left to brake, even at the weakest braking. It has as a special casethe safety property (note that �cmax is negative). This is a common technique forproving an invariant: not all invariants can be proven inductively but there is usuallya strengthening of the invariant which can. Once again, we prove the invariant foreach phase(3.6.9, 3.6.10, 3.6.11) and combine the results (3.6.12). The safety propertyis proved in corollary 3.6.13.Lemma 3.6.9 In all reachable states of one-shot-sys, if phase = idle then cf �x � _c2maxf� _x22�cmax .



Proof: By Lemmas 2.8.1 and 3.6.1 we know now � A. Using the equations for _xand x from Lemma 3.6.3 we substitute and simplify, yielding the desired result (seede�nition of A).now � 1_cs �cf � cs � _c2maxf� _c2s2�cmin � from now � Acs + (now) _cs � cf � _c2maxf� _c2s2�cmin multiply by _cs and addcsx = cs + (now) _cs from Lemma 3.6.3x � cf � _c2maxf� _c2s2�cmin = and � transitivecf � x � _c2maxf� _c2s2�cmin subtract cf and reversesignLemma 3.6.10 In all reachable states of one-shot-sys, if phase = braking thencf � x � _c2maxf� _x22�cmaxProof: By induction. The interesting cases are the ON task and trajectories whilephase = braking. In the ON task case Lemma 3.6.9 applies to the pre-state; sincenone of the state variables mentioned in the formula change during the ON task theformula still holds. In the trajectory case, we substitute from Lemma 3.3.4 into theinductive hypothesis and simplify.cf � x � _c2maxf� _x22�cmax inductive hypothesisx0 � x � _x02� _x22�cmax from Lemma 3.3.4cf � x� x0 + x � _c2maxf� _x2� _x02+ _x22�cmax subtractcf � x0 � _c2maxf� _x022�cmax cancelLemma 3.6.11 In all reachable states of one-shot-sys, if x � cf and phase = donethen cf � x � _c2maxf� _x22�cmaxProof: Directly using Lemma 3.6.5. The left hand side is bounded below by zerobecause x � cf. The right hand side is bounded above by zero because _x � _cmaxf.Corollary 3.6.12 In all reachable states of one-shot-sys, if x � cf thencf � x � _c2maxf� _x22�cmax



Proof: Directly using Corollaries 3.6.9, 3.6.10, and 3.6.11.Corollary 3.6.13 In all reachable states of one-shot-sys:cf = x =) _cmaxf � _x � _cminfProof: Directly using 3.6.12 and 3.6.6.We conclude this chapter with a theorem which summarizes the correctness resultfor the one-shot controller.Theorem 3.6.14 The following are true of one-shot-sys:Timeliness For all hybrid traces � of one-shot-sys, if in some state of � now =x�cs_cminf , then for some state in � x = cf.Safety In all states of all hybrid traces of one-shot-sys, the following holds:x = cf =) _cminf � _x � _cmaxf.In other words, one-shot is a correct brake-controller.Proof:We establish the timeliness property for hybrid executions of one-shot-sys inLemma 3.6.8; we establish the safety property for hybrid executions of one-shot-sysin Corollary 3.6.13. The properties extend to the hybrid traces of one-shot-sysbecause each hybrid trace is the projection of some hybrid execution. Controllercorrectness is de�ned in Section 3.4.



Chapter 4Deceleration Case 2:Delay and No FeedbackIn this chapter we extend the model of the train by nondeterministically delaying thebraking commands. Rather than modify the train automaton itself, we introduce anew automaton called buffer that will serve as a bu�er between the train and acontroller. Figure 4-1 illustrates the components and their communication.In the following sections we present buffer, modify the correctness criteria toaccount for the buffer, give an example controller called del-one-shot, and provethat it is correct. The proof uses a simulation mapping to show that the com-position of del-one-shot and buffer implements one-shot; the correctness ofdel-one-shot then follows (in part) from Theorem 3.4.1.4.1 The buffer AutomatonThe bu�er stores a single command from the controller. It forwards it to the trainafter some delay. For each command, the delay is nondeterministically chosen fromthe interval [��; �+] (where 0 � �� � �+).The buffer automaton appears in Table 4.1. It is largely self explanatory. Thevariable request stores a command while it is being bu�ered. The history variableviolation becomes true when a new command from the controller arrives before theprevious one has exited the bu�er, that is when the bu�er over
ows. We use violationFigure 4-1 Overview of Delay Deceleration Model A Controllertrain brakeOff buffer bufBrakeOffbrakeOn bufBrakeOn47



Table 4.1 The buffer automaton.Actions: Inputs: bufBrakeOn and bufBrakeOffOutputs: brakeOn and brakeOffVars: Internal: request 2 fon; off; noneg, initially noneviolation, boolean, initially falseDiscrete Transitions:bufBrakeOn:E�: Cases of request,on : no e�ectoff : violation := truenone : request := onbufBrakeOff:E�: Cases of request,on : violation := trueoff : no e�ectnone: request := offbrakeOn:Pre: request = onE�: request := nonebrakeOff:Pre: request = offE�: request := noneTasks:BUFF = fbrakeOn; brakeOffg : [��; �+]to 
ag this error condition.4.2 De�nition of Controller Correctness, RevisitedWe modify the de�nition of a correct controller to account for the bu�er. Let � be anoperator on automata which hides the actions bufBrakeOn and bufBrakeOff (see Sec-tion 2.6). A correct bu�ered-brake-controller is a HIOA C with no external variablesand with output actions bufBrakeOn and bufBrakeOff such that the composition�(Cjjbuffer)jjtrain is a correct brake-controller as de�ned in Section 3.4. The useof the hiding operator � in the correctness de�nition is a technical convenience.



4.3 Parameters, RevisitedNot only do we need to place restrictions on the value of the new parameters (��; �+),but we also need to revise the constraints among the original parameters in light ofthese new ones. Intuitively, the controller is subject to more uncertainty and thereforeneeds less stringent requirements. The further constraints can be viewed as forcingthe target velocity range, [ _cminf; _cmaxf] to be wider and hence the controller's taskeasier. These are the additional constraints:1. 0 � �� � �+2. _cs � _cmaxf + �cmax�+3. _cmaxf � _cminf + �cmin�+4. _cmaxf� _cs�cmax + �+ � �� � _cminf� _cs�cmin � �+ + ��The �rst constraint ensures that the delay interval is well-de�ned. The nexttwo are necessary to ensure that the bu�er does not over
ow. The last constraintreplaces constraint number six in Section 3.1; the new version accounts not only forthe nondeterminism of the braking strength but also for the bu�er. The other �veoriginal constraints remain as well but are not shown here. Note that these constraintsin this chapter are more restrictive than the constraints from Chapter 3.4.4 Example Controller: del-one-shotHere we give an example of a valid bu�ered-brake-controller called del-one-shot.This automaton is identical to one-shot of Section 3.4 except in the names of itsactions and the duration of its phases. The output actions brakeOn, brakeOff arereplaced by bufBrakeOn, bufBrakeOff. The time bounds A;B;C are replaced byA0; B 0; C 0. These new bounds are:A0 =max(0; A� �+)B0 =B + �+ � ��C 0 =C � �+ + ��We also name the following compositions of automata:del-one-shot-and-buf= �(bufferjjdel-one-shot)del-one-shot-sys= trainjjdel-one-shot-and-buf



4.5 Correctness of del-one-shotThe proof of correctness of the controller requires proofs of the timeliness and safetyproperties. First, we prove that the bu�er never over
ows in Section 4.5.1. In Sec-tion 4.5.2 we prove timeliness and safety using a simulation mapping to the unbu�eredcase of Chapter 3. The timeliness and safety results of the unbu�ered case extend viathe simulation to this case.4.5.1 Non-ViolationNon-violation is proved directly.Lemma 4.5.1 In all reachable states of del-one-shot-and-bufthe following holds:violation = false:Proof: Violation occurs when request 6= none and a bufBrakeOn or bufBrakeOffaction takes place. Since these actions are controlled by the ON and OFF tasks itis su�cient to show that �rst(ON) and �rst(OFF) are greater than now wheneverrequest 6= none. The following invariant of del-one-shot-sys is su�cient:request 6= none =) last(BUFF) � min(�rst(ON);�rst(OFF))This follows from a simple inductive argument that uses the new constraints on thetarget velocities and the de�nition of B0.4.5.2 Timeliness and SafetyIn this section we prove the timeliness and safety properties for del-one-shot-sysvia a simulation mapping. The simulation maps states of del-one-shot-and-bufto states of the original controller, one-shot. Note that the use of the hidingoperator � in the de�nition of del-one-shot-and-buf makes the two automatacomparable (Section 2.5). We use the simulation and Theorem 2.5.1 to show thatdel-one-shot-and-buf implements one-shot. Then, the timeliness and safetyproperties of del-one-shot follow from Theorem 2.6.2.The intuition that suggests this type of proof is as follows: one-shot exhibitsall possible behaviors that engage the brake exactly once and that satisfy the time-liness and safety properties. Therefore, the automaton one-shot is itself a form ofspeci�cation for those behaviors | that is, every correct brake-controller which onlyengages the brake once is an implementation of one-shot. Since the example con-troller of this chapter, del-one-shot, only brakes once, we expect that it satis�esthe timeliness and safety properties if and only if the composition of del-one-shotand buffer implements one-shot. One direction of the \if and only if" comes from



Figure 4-2 Comparison of one-shot-sys and del-one-shot-sys.
train brakeOff buffer bufBrakeOffdel-one-shot-sys brakeOn bufBrakeOn del-one-shottrain brakeOff one-shotone-shot-sys brakeOn

Theorem 3.4.1 and is the proof method we use. The other direction is based on ourclaim that one-shot exhibits all possible behaviors that engage the brake exactlyonce.Notice that the safety and timeliness properties only mention variables in train.In light of this, it may appear counter-intuitive that the simulation mapping ex-cludes the train. Consider Figure 4-2, which shows the automata and inter-automatoncommunication of one-shot-sys and del-one-shot-sys together. The dark ver-tical line represents a common interface in both systems, namely the interface totrain. A consequence of our simulation mapping is that the external behavior ofdel-one-shot-and-buf is a subset of the external behavior of one-shot. Theirexternal behavior is precisely the behavior across the dark line and this is all theinput that train receives; therefore train's behavior in the bu�ered case is a subsetof its behavior in the unbu�ered case. Therefore, the timeliness and safety proper-ties, which involve only variables of train, extend from the unbu�ered case to thebu�ered case.In the following three subsections we give some supporting lemmas, the simulationmapping, and then the �nal correctness result in Theorem 4.5.6.Supporting LemmasThe following lemma helps reduce the number of cases that need to be considered inthe simulation proof.Lemma 4.5.2 In all reachable states of del-one-shot-and-buf exactly one of thefollowing is true:1. phase = idle ^ request = none2. phase = braking^ request = on3. phase = braking^ request = none



4. phase = done ^ request = off5. phase = done ^ request = noneFurthermore, all transitions lead from a state in one category to a state in the sameor immediately subsequent category.Proof: Simple induction, uses Lemma 4.5.1.The following two technical lemmas help make the simulation proof more readable.Both lemmas concern the time bounds on the idle phase.Lemma 4.5.3 In all reachable states of del-one-shot, the following holds:phase = idle =) �rst(ON) = 0 ^ last(OFF) = A0Proof: Exactly analogous to Lemma 3.6.1.Lemma 4.5.4 In all reachable states of del-one-shot-and-bufthe following holds:(phase = braking^ request 6= none) =) last(BUFF) � A0 + �+ = AProof: Simple induction, uses Lemma 4.5.2.SimulationIn this section we present a simulation relation R from del-one-shot-and-buf toone-shot. The key insight is that since external behavior must be preserved, thetiming of external actions must coincide, speci�cally brakeOn and brakeOff.Let s denote a state in the implementation (del-one-shot-and-buf), and udenote a state in the speci�cation (one-shot); the states are related via R (denotedsRu) when the following two conditions hold:1. u:now = s:now2. By cases of s:phase:(a) idle, then u:phase = idle(b) braking, by cases of s:request:i. on, then u:phase = idleii. none, then u:phase = braking andu:�rst(OFF) � s:�rst(OFF) + �� andu:last(OFF) � s:last(OFF) + �+(c) done, by cases of s:request:



Figure 4-3 Overview of Simulation Mappingidleidle brakingon offdone donebraking(a) (b) (c)
Timeone-shotdel-one-shot-and-bufrequestphasephaseMapping Clause 2 i ii i iii. off, then u:phase = braking andu:�rst(OFF) � s:�rst(BUFF) andu:last(OFF) � s:last(BUFF)ii. none, then u:phase = doneIntuitively, the simulation is mapping the \virtual" phases of the implementation,del-one-shot-and-buf, to the actual phases of the speci�cation, one-shot. Thisis illustrated in Figure 4-3. The �gure depicts an execution of one-shot abovea corresponding execution of del-one-shot. A virtual phase of del-one-shotisthe portion of its execution that corresponds to an actual phase of one-shot. Forexample the virtual idle phase consists of the period between the �rst and seconddotted line. The second and third dotted lines represent the times when brakeOn andbrakeOff actions occur, respectively. The �gure also shows how mapping clause 2applies to di�erent portions of the execution.The proof that the relation R is in fact a simulation mapping appears below. Theform of simulation proofs is that of an exhaustive case analysis. To those familiarwith the style of simulation proofs, this one is straightforward and unremarkable.Lemma 4.5.5 The above relation R is a simulation mapping fromdel-one-shot-and-buf to one-shot.Proof: Let s follow from s0 in one discrete transition labeled by action � or in onetrajectory and let sRu. We must �nd u0 such that s0Ru0 and there exists an executionfragment from u to u0 with the same trace as �. We break by cases depending on thetype of step and its label:



1. If s leads to s0 via a trajectory then we must show that there is an equivalenttrajectory enabled from u. Since the barriers to time progress are the last(�)variables, it is su�cient to show that they are all greater in the speci�cation.More exactly:minfu:last(ON); u:last(OFF)g� minfs:last(ON); s:last(OFF); s:last(BUFF)gCases by u:phase:(a) u:phase = idleThe OFF task is disabled in u so u:last(OFF) =1 and we are concernedonly with u:last(ON). From the relation R we can break into the followingtwo cases:i. s:phase = idle { then s:last(OFF) = 1 and s:last(BUFF) = 1 (byautomaton de�nition and Lemma 4.5.2). By Lemmas 3.6.1 and 4.5.3u:last(ON) = A and s:last(ON) = A0 and by de�nition A � A0.ii. s:phase = braking ^ s:request 6= none { Follows from Lemmas 3.6.1and 4.5.4.(b) u:phase = brakingThe ON task is disabled in u so u:last(ON) = 1 and we are concernedonly with u:last(OFF). From the relationR we can break into the followingtwo cases:i. s:phase = braking ^ s:request = none { then s:last(ON) = 1 ands:last(BUFF) = 1. By clause 2(b)ii of the relation u:last(OFF) =s:last(OFF) + �+.ii. s:phase = done^ s:request 6= none { then s:last(ON) = s:last(OFF) =1. By clause 2(c)i of the relation u:last(OFF) = s:last(BUFF).(c) u:phase = doneTrivial. Both tasks OFF and ON are disabled in u, so u:last(OFF) =u:last(ON) =1.2. If � is bufBrakeOn then let u0 = u and the execution fragment be empty. Wemust show that s0Ru0. Note that s:phase = idle by the de�nition of thedel-one-shot automaton. Also note that s:request = none by Lemma 4.5.1(non-violation). The results follows by clause 2a of the relation.3. If � is bufBrakeOff then it is similar to the previous case. We let u0 = u andthe execution fragment is empty. It follows from clause 2(c)i that s0Ru0.4. If � is brakeOn then let u0 be the unique state that follows u via the brakeOnaction and let the execution fragment contain only that action. We must show



that brakeOn is enabled in u and that s0Ru0. Note that s:request = on by thede�nition of the buffer automaton. By Lemma 4.5.2 we know that s:phase =braking. Therefore by clause 2a of the relation we know that u:phase = idle.Since u:�rst(ON) = 0 by Lemma 3.6.1, brakeOn is enabled in u. It remainsto show that u0 satis�es the relation. Since s0 satis�es the antecedent of clause2(b)ii, u0 must satisfy its consequent. By the de�nitions of B;B0; C;C 0 it does.5. If � is brakeOff then we proceed much as in the above case. Let u0 be the uniquestate that follows u via the brakeOff action and let the execution fragment con-tain only that action. First, s:request = off by the de�nition of the bufferautomaton. By Lemma 4.5.2, s:phase = done. By clause 2(c)i of the rela-tion we know that u:phase = braking and that [u:�rst(OFF); u:last(OFF)] �[s:�rst(BUFF); s:last(BUFF)] and brakeOff is enabled in s, therefore it is en-abled in u. Finally s0Ru0 by clause 2(c)ii.These are all the cases of �.Using the SimulationIn this section we use the above simulation to prove that del-one-shot is a correctbu�ered-brake-controller.Theorem 4.5.6 Automaton del-one-shot is a correct bu�ered-brake-controller.We must show that del-one-shot-and-buf is a correct brake-controller.By Lemma 4.5.5 and Theorem 2.5.1:del-one-shot-and-buf� one-shotBy Theorem 3.4.1 and Theorem 3.6.14 del-one-shot-and-buf is a correct brake-controller.





Chapter 5Deceleration Case 3:Feedback and No DelayIn this chapter we describe a more complex model of the deceleration problem wherethe train provides the controller with sensor feedback at periodic intervals. We de�nea new train automaton called sensor-train. We also de�ne correctness conditions,give an example controller and prove that it is correct. Figure 5-1 illustrates thecomponents and their communication.5.1 The sensor-train AutomatonThe sensor-train automaton appears in Table 5.1. It accepts accel(a) messageswhich are requests to accelerate at a rate a 2 [�cmin + �cerr; �cmax]. If a is the requestedacceleration then the achieved acceleration of the train is in the interval [a� �cerr; a].This is similar to the behavior of train from Section 3.2 in that the accelerationis non-deterministically chosen from an interval. It di�ers in that the controller canchoose one of the endpoints of the �xed length interval and hence adjust the intervalup or down. The train provides sensor information periodically; it sends a statusmessage giving the current values of its variables acc, _x, and x every �s time units.The variable acc stores the most recent acceleration request. The variable next is adeadline variable which stores the time of the next status action.Figure 5-1 Overview of Feedback Deceleration ModelA Controlleraccel(a)status(a; v; p)sensor-train 57



Table 5.1 The sensor-train automaton.Actions: Inputs: accel(a) for a 2 [�cmin+ �cerr; �cmax]Outputs: status(a; v; p) for a; v; p 2 RVars: Outputs: x 2 R, initially x = cs_x 2 R, initially _x = _cs�x 2 R, initially �x = �csacc 2 [�cmin + �cerr; �cmax], initially �csnext 2 R�0, initially 0now 2 R�0, initially 0Discrete Transitions:accel(a):E�: acc := a�x :2 [a� �cerr; a]status(a; v; p):Pre: a = acc, v = _x, p = x and now = nextE�: next := now+ �sTrajectories:w:acc and w:next are constant functionsw:�x is an integrable function with range [w(0):acc� �cerr; w(0):acc]For all t 2 I the following hold:w(t):now = w(0):now+ tw(t):now � nextw(t): _x = w(0): _x+ R t0 w(s):�x dsw(t):x = w(0):x+ R t0 w(s): _x ds5.2 Properties of sensor-trainThe following two properties of sensor-train are similar to the properties of trainproved in Lemmas 3.3.2 and 3.3.4. The �rst bounds change in velocity by change intime. The second bounds change in position by change in velocity.Lemma 5.2.1 For all closed trajectories w of sensor-train where s is the initialand s0 is the �nal state of w the following holds:acc(now0 � now) � _x0 � _x � (acc� �cerr)(now0 � now)Proof: As in the �rst part of Lemma 3.3.2, except that acc and (acc � �cerr) replace�cmax and �cmin respectively.



Lemma 5.2.2 For all closed trajectories w of sensor-train where s is the initialand s0 is the �nal state of w, if acc � 0 and 0 < _x0 then the following holds:( _x0)2 � _x22acc � x0 � x � ( _x0)2 � _x22(acc � �cerr)Proof: Similar to Lemma 3.3.4, except that acc and (acc� �cerr) replace �cmax and �cminrespectively.The following property is like the now � last(�) property for MMT automata,Theorem 2.8.1.Lemma 5.2.3 In all reachable states of sensor-train the following holds:0 � next � now � �sProof: Simple induction.5.3 De�nition of Controller Correctness, RevisitedWe de�ne a correct controller-under-feedback to be a hybrid I/O automaton with noexternal variables and with output actions accel(a) for a 2 [�cmin + �cerr; �cmax] thatwhen composed with sensor-train yields an automaton whose hybrid traces satisfythe timeliness and safety properties from Section 3.4. These are restated here forconvenience:Timeliness There exists a constant t 2 R�0 such that for all hybrid traces if thereexists a state of the trace in which now = t, then there is a state of the trace inwhich x = cf.Safety In all states of all hybrid traces the following holds:x = cf =) _cminf � _x � _cmaxf.5.4 Parameters, RevisitedIn order to guarantee that a valid controller exists, we impose the following constraintson the parameters:1. cs < cf2. _cs > _cmaxf � _cminf > 03. �cerr > 04. �s > 0



5. �cmin < �cmin + �cerr < 0 � �cmax � �cerr < �cmax6. cf � cs � _c2maxf� _c2s2(�cmin+�cerr)7. _cmaxf � _cminf � ��cmin�sNote that these constraints supersede the original constraints given in Chapter 3.Informally the constraints say the following: (1) the �nal position is past the initialposition; (2) the task is to decelerate the train to a well-de�ned interval but notto reverse the train; (3) the uncertainty in acceleration is non-zero; (4) the intervalbetween sensor observations is non-zero; (5) certain commands to the train can guar-antee periods of strictly negative or non-negative acceleration; (6) there is enoughdistance to brake, given the weakest braking that can occur after a request for thestrongest braking; (7) the target interval of velocities is wide enough. Constraint 7is only one of a number of constraints that make the target velocity interval wideenough for there to be some correct controller. We chose this form of constraint 7because it is necessary for the correctness of the example controller of this chapter.Recall that in the description of sensor-train the initial values of both acc and�x are set to �cs. In order to avoid a tedious treatment of certain initial conditions,we assume that the train is initially at a convenient acceleration. Let �cs be theacceleration needed to reach _cmaxf at exactly cf, as follows:�cs = _c2maxf� _c2s2(cf � cs)Notice that �cs is negative.5.5 Example Controller: zig-zagControlling the train in the presence of sensory feedback appears to require a sub-stantially di�erent algorithm from that in the non-feedback case. Here we give anexample valid controller-under-feedback called zig-zag. The system composed ofsensor-train and zig-zag is called zig-zag-sys. We describe zig-zag in Ta-ble 5.2.We explain informally the behavior of zig-zag. The controller takes no actionunless it receives a status(a; v; p) message in which v � _cmaxf; this is guaranteedto occur eventually and before the �nal position because of our choice of the initialnegative acceleration �cs. This is an arbitrary choice in the design of zig-zag| thereare other correct controllers that adjust the acceleration earlier. Once the controller isinformed that the velocity of the train in below _cmaxf, it immediately send an accel(a)message where a is the acceleration which will accelerate the train from its currentvelocity to _cmaxf in �s time (if that acceleration is higher than �cmax, the largest allowedvalue of a, then it uses �cmax.) . If the train doesn't achieve the requested accelerationthen the velocity in �s time will be less than _cmaxf. Constraint 7 on the parameters



Table 5.2 The zig-zag automaton.Actions: Inputs: status(a; v; p) for a; v; p 2 ROutputs: accel(a) for a 2 [�cmin+ �cerr; �cmax]Vars: Internal: send 2 [�cmin+ �cerr; �cmax] [ fnoneg, initially noneDiscrete Transitions:status(a; v; p):E�:if v � _cmaxf thensend := min��cmax; _cmaxf�v�s �accel(a):Pre: send = aE�: send := noneTrajectories:w:send is a constant functionif w is not a trivial trajectory thenw(0):send = nonefor all t 2 I the following holds:w(t):now = w(0):now+ tfrom Section 5.4 is su�cient to ensure that the interval [ _cmaxf; _cminf] is wide enoughthat this strategy doesn't cause the velocity to dip below _cminf. In the de�nition ofthe trajectory set, the �rst \if" statement ensures that time progresses only if thecontroller has nothing to send.The controller is called zig-zag because of the shape of the curve in _x�now spaceof the worst-case behavior of zig-zag-sys (recall that zig-zag-sys is the compositionof sensor-train and zig-zag). Figure 5-2 depicts a possible behavior for the system;it assumes constant acceleration. The train begins at time zero with velocity _cs andacceleration �cs. If it achieved �cs acceleration it would reach the goal velocity of _cmaxfat exactly cf (the upper dotted line). However, for the �rst three �s periods it onlyachieves �cs � �cerr acceleration (the solid line). At that point the controller sees that_x � _cmaxf and changes the acceleration (�rst bend in solid line). Every �s time unitsthe controller continues to adjust acceleration so that the highest it will reach is _cmaxf.



Figure 5-2 Possible behavior of zig-zag-sys.
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5�s_cmaxf_cminf_cs now5.6 Correctness of zig-zagThe structure of the proof is very similar to that of the simple case examined inChapter 3: �rst, we show the timeliness property via a global lower bound on velocity;second, we show the safety property via a more complex invariant that has as a sub-case the invariant used in Chapter 3.5.6.1 TimelinessIn this section we prove the timeliness property. The �rst lemma is a technical lemmathat says that whenever the controller is going to send a new acceleration, there is�s time until the next status message. This is obvious because the status messagesare sent at �s intervals and the controller responds to them immediately.Lemma 5.6.1 In all reachable states of zig-zag-sys the following holds:send 6= none =) next = now + �sProof: Trivial induction.The next lemma, Lemma 5.6.2, is the major new result needed to prove thetimeliness property. As in Chapter 3, we would like to prove the timeliness propertywith the invariant _x � _cminf. However, this invariant cannot be proved directly withan inductive argument. Once again, we strengthen the invariant to yield an invariantassertion that can be proved inductively; the weaker invariant follows as a corollary.The stronger invariant appears in Lemma 5.6.2. It is an invariant that describesa lower bound on velocity at the current time and for the near future | the current



sensory interval. This property uses a set of implications with mutually exclusive andexhaustive antecedents. Each implication corresponds to one of the periodic logicalphases of the system: send = none, when the zig-zag is waiting for the next statusmessage; and send 6= none, when zig-zag has just received a status message andis about to send a new accel command. The invariant makes a di�erent claim foreach of these phases. On the one hand, the invariant says that if send = none thenthe current velocity is above _cminf and the velocity at the time of the next statusmessage will be also. The worst-case velocity at the time of the next status messageis calculated using the current lower bound on acceleration, acc � �cerr, and the timeleft until the next status message, next�now. This type of calculation appears againin more complex forms in subsequent sections and chapters. On the other hand, theinvariant says that if send 6= none then the current velocity is above _cminf and thevelocity at the time of the next status message will be also. In this case, the worst-castvelocity at the time of the next status message is calculated using the accelerationthat the controller is about to send the train, namely the variable send itself. Thistype of invariant appears again later in more complex forms.Lemma 5.6.2 In all reachable states of zig-zag-sys, the following hold:1. send = none =) _x � _cminf ^ _x+ (acc� �cerr)(next � now) � _cminf2. send 6= none =) _x � _cminf ^ _x+ (send� �cerr)�s � _cminfProof: By induction. Notice that the antecedents of the two implications are mu-tually exclusive and exhaustive; we will refer to them as Rule 1 and 2. We say thata rule applies when it's antecedent is true and that it holds when it applies and itsconsequent is true (or when it doesn't apply).Basis: In the initial state _x > _cmaxf so Rule 1 applies. It holds because of ourassumptions on the parameters, the de�nition of �cs, and the de�nition of the initialstates of the automata.Induction: Suppose the property is true in state s; we must show that it is truein s0 which follows from s in one discrete transition labeled by action � or in onetrajectory. For the sake of brevity, we denote variables in the post-state by addingprimes, e.g. we write now0 instead of s0:now. We brake by cases on the type of stepand its label: accel, status, or trajectory.1. � = accel: notice that send 6= none by the action's precondition, so Rule2 applies in s and by the inductive hypothesis it holds. The only variableswhich change are send and acc; the action sets acc0 = send and send0 = none.Therefore Rule 1 must apply in s0. We must show that it holds. Clearly,_x0 = _x � _cminf by the inductive hypothesis. By Lemma 5.6.1 next � now = �sand because none of these variables change next0 � now0 = �s. By substitutingnext0 � now0 = �s, acc0 = send and send0 = none into the inequality in Rule 2we get :



_x+ (acc0 � �cerr)(next0 � now0) = _x+ (send � �cerr)�s � _cminfThis shows that Rule 1 holds in s0.2. � = status: notice that next = now by the action's precondition, so next 6=now + �s and by the contra-positive of Lemma 5.6.1 send = none; therefore,Rule 1 applies in s and by the inductive hypothesis it holds. The only variableswhich change are send and next. We break by cases of send0:(a) send0 = none: Rule 1 applies in s0; must show that it holds. Accordingto the automata de�nitions _x0 = _x = v � _cmaxf, next0 � now0 = �s, andacc0��cerr � �cmin. By assumption on the parameters: _cmaxf� _cminf > ��cmin�s.From these, we reach the desired conclusion with some algebra:_cmaxf � _cminf � ��cmin�s parameter assumption_cmaxf+ �cmin�s � _cminf subtract_x0 � _cmaxf automaton de�nition_x0 + �cmin�s � _cminf substitute�s > 0 parameter assumptionacc0 � �cerr � �cmin: automaton de�nition_x0 + (acc0 � �cerr)�s � _cminf substitution�s = next0 � now0 automaton de�nition_x0 + (acc0 � �cerr)(next0 � now0) � _cminf substitutionThus Rule 1 holds in s0.(b) send0 6= none: Rule 2 applies in s0; must show that it holds. Above weshowed that next = now and Rule 1 holds in state s from which we knowthat _x � _cminf. This is half of Rule 2; it remains to show the other half.According to the automata de�nitions: send0 = min(�cmax; _cmaxf� _x�s ). Byassumption on the parameters �cmax � �cerr � 0, therefore if send0 = �cmaxRule 2 applies trivially. Assume that send0 = _cmaxf� _x�s < �cmax. Some algebrayields the desired result:�cmin + �cerr < 0 parameter assumption�s > 0 parameter assumption��cmin�s > �cerr�s subtract & multiply_cmaxf� _cminf � ��cmin�s parameter assumption_cmaxf� _cminf � �cerr�s transitivity_cmaxf � �cerr�s � _cminf subtract_x0 + _cmaxf� _x0 � �cerr�s � _cminf anti-cancel_x0 + � _cmaxf� _x�s � �cerr� �s � _cminf anti-distributesend0 = _cmaxf� _x�s assumption_x0 + (send0 � �cerr)�s � _cminf substituteThus Rule 2 holds in s0.3. The step is a trajectory: then send = send0 = none according to the trajecto-ries of the controller. Thus, Rule 1 holds in s, applies in s0 and must be shown



to hold in s0. This case uses Lemma 5.2.1, the inductive hypothesis and somesimple algebra.Notice that acc = acc0, so let X = (acc� �cerr) = (acc0 � �cerr):_x +X(next� now) � _cminf inductive hypothesis_x0 � _x � X(now0 � now) by Lemma 5.2.1_x0 � _x �X(now0 � now) � 0 subtract_x+ _x0 � _x+X(next� now)�X(now0 � now) � _cminf add_x0 +X(next� now0) � _cminf cancelFor the _x � _cminf requirement: by Lemma 5.2.3 next � now � 0, thus ifX � 0 then _x0 � _x � _cminf; otherwise, _x0 � _x0 + X(next � now0) � _cminf(by Lemma 5.2.3). Thus Rule 1 holds in s0.Corollary 5.6.3 In all reachable states of zig-zag-sys the following holds:_x � _cminfProof: Directly from 5.6.2. The antecedents form an exhaustive set of cases, and inall cases the property is true.This leads to the timeliness property as Lemma 3.6.6 did in Chapter 3. Thecorollaries which yield the timeliness property are exactly analogous and are notrestated here. The �nal result is stated in Theorem 5.6.8.5.6.2 SafetyThe following technical lemma is says that under certain conditions a certain inequal-ity is maintained during trajectories. Informally, the inequality tests whether thereremains enough distance to brake the train to below _cmaxf. This inequality appearedextensively in the proof of the safety property in Section 3.6.2.Lemma 5.6.4 Let w be a closed trajectory of zig-zag-sys where s is the initial stateand s0 is the �nal state of w. If acc = �cs, x � cf, and x0 � c0f thencf � x � _c2maxf� _x22�cs =) cf � x0 � _c2maxf � ( _x0)22�csProof: The proof is similar to those in Section 3.6.2.



acc = �cs � 0 assumptioncf � x � _c2maxf� _x22�cs assumptionx0 � x � ( _x0)2� _x22acc by Lemma 5.2.2x� x0 � _x2�( _x0)22acc multiplycf � x+ x� x0 � _c2maxf� _x2+ _x2�( _x0)22acc addcf � x0 � _c2maxf�( _x0)22�cs cancelThe following lemma is the major result needed to prove the safety property. Itis similar to two other results: (1) Corollary 3.6.12 and its supporting lemmas, whichused a similar equation to bound \distance remaining"; and, (2) Lemma 5.6.2 of thissection, which provides a set of implication with an exhaustive set of antecedents.Each of the clauses can be associated with a portion of the solid line in the graphin Figure 5-2. The �rst clause applies to the initial downward segment; it says thatbefore passing the _cmaxf threshold the following hold: the acceleration �cs is in e�ect;the controller is not sending any commands; and there is enough distance left tobrake at the current acceleration. The second and third clauses guarantee that oncethe velocity has dipped below _cmaxf, it will never rise above _cmaxf. These clausesguarantee an upper bound in a manner analogous to the clauses of Lemma 5.6.2which guaranteed a lower bound.Lemma 5.6.5 In all reachable states of zig-zag-sys the following hold:1. _x > _cmaxf =) acc = �cs ^ send = none ^ �(x � cf) =) cf � x � _c2maxf� _x22�cs �2. _x � _cmaxf ^ send = none =) ( _x+ acc(next � now)) � _cmaxf3. _x � _cmaxf ^ send 6= none =) ( _x+ send(�s)) � _cmaxfProof: This is an inductive proof very similar to the proof of Lemma 5.6.2 above.As in that lemma, the property is the conjunction of a set of implications whoseantecedents are mutually exclusive and exhaustive. We use similar terminology here,calling them Rules 1, 2, and 3. Notice that Rules 2 and 3 are analogous to Rules 1and 2 of the previous lemma except that they guarantee an upper bound instead ofa lower bound. We omit portions of this proof which are directly analogous.Basis: In the initial state Rule 1 applies and is satis�ed trivially. Induction:Suppose the property is true in state s; we must show that it is true in s0 whichfollows from s in one step | either a discrete step labeled by action � or a trajectory.For the sake of brevity, we denote variables in the post-state by adding primes, e.g.we write now0 instead of s0:now. We brake by cases on the type of step and the label�: accel, status, or trajectory.1. � = accel: Either _x � _cmaxf or not.



(a) _x � _cmaxf: This case is exactly analogous to the � = accel case of theproof of Lemma 5.6.2. Here, Rule 3 holds in state s and Rule 2 is shownto hold in state s0. We abbreviate the proof by noting that acc0 = sendand next0 � now0 = �s.(b) _x > _cmaxf: by the inductive hypothesis Rule 1 holds in s and thereforesend = none; however in that case, this action was not enabled in s.Therefore _x > _cmaxf is impossible for the accel action case.2. � = status: Either _x � _cmaxf or not.(a) _x � _cmaxf: This case is exactly analogous to the � = status case of theproof of Lemma 5.6.2. Here, Rule 2 holds in state s and Rule 3 can beshown to hold in state s0. We omit the proof.(b) _x > _cmaxf: Thus, Rule 1 holds in states s. By the automata de�nitionsonly variable next changes as a result of this action (because _x > _cmaxf).Since next does not appear in Rule 1, it must continue to hold in state s0.3. The step is a trajectory: Either _x � _cmaxf(a) _x � _cmaxf: This case is exactly analogous to the trajectory in the proof ofLemma 5.6.2. Here, Rule 2 holds in state s and can be shown to also holdin state s0. We omit the proof.(b) _x > _cmaxf: Thus, Rule 1 holds in states s. By the de�nition of automata,we know that only the variables now, �x, _x, and x are modi�ed by thisaction. Therefore, we know that acc0 = acc = �cs and send0 = send = none.There are two cases, either Rule 1 holds in s0 or Rule 2 does.i. _x0 > _cmaxf: Rule 1 applies in s0 and we must show that it holds. Thisis guaranteed by Lemma 5.6.4.ii. _x0 � _cmaxf: Rule 2 applies in s0. Note that acc0 = �cs is negative, while(next � now0) is always positive by Lemma 5.2.3. Since _x0 � _cmaxf, weknow _x0 + acc0(next � now0) � _cmaxf. Therefore Rule 2 holds in s0.The following corollaries correspond directly to Corollaries 3.6.12 and 3.6.13.Corollary 5.6.6 In all reachable states of zig-zag-sys the following holds:(x � cf) =) cf � x � _c2maxf� _x22�csProof: Directly from 5.6.5. If the �rst implication applies, then it appears in theconsequent. If the second implication or third applies, then _c2maxf � _x2 is positive,hence, the fraction is negative and the inequality holds. These cases are exhaustive.The following corollary establishes the safety property.



Corollary 5.6.7 In all reachable states of zig-zag-sys the following holds:cf = x =) _cmaxf � _x � _cminfProof: Directly from 5.6.6 and 5.6.3.



We summarize the correctness results in the following theorem.Theorem 5.6.8 Automaton zig-zag is a correct controller-under-feedback.Proof: We must show that the hybrid traces of zig-zag-sys satisfy the timelinessand safety properties (see Section 5.3). As mentioned at the end of Section 5.6.1, thetimeliness property follows from Corollary 5.6.3 just as it did from Lemma 3.6.6 inChapter 3. We have omitted the intermediate results. Corollary 5.6.7 is exactly thesafety property.





Chapter 6Deceleration Case 4:Delay and FeedbackIn this chapter we combine periodic sensor feedback and command delay. As in Chap-ter 4, we introduce delay via a bu�er called acc-buffer. We make no modi�cationto the sensor-train automaton. We de�ne a notion of a correct controller for thisbu�ered system. We give an example of a correct controller called del-zig-zag thatinvolves only minor modi�cations to the zig-zag controller of Chapter 5. Figure 6-1illustrates the components and their communication.In Chapter 4, we use a simulation based argument to prove that the compositionof del-one-shot and buffer implements one-shot, the highly nondeterministiccontroller of Chapter 3. One might expect a similar development in this chapter |namely that we use a simulation proof to show that the composition of del-zig-zagand acc-buffer implements zig-zag, the controller of Chapter 5. This is notthe case; we prove the correctness of del-zig-zag directly. In fact, no simulationproof is possible because the composition of any controller and acc-buffer can notimplement zig-zag. Informally this is clear because acc-buffer will introduce adelay between the time when the train gives the controller sensor input and when thetrain receives the related command. No such delay occurs for zig-zag| it respondsto each sensor input without delay. There remains the question of whether some otherchoice of example controllers could have enabled the use of a simulation proof in thischapter in a manner analogous to Chapter 4. We address that issue in Chapter 7.Figure 6-1 Overview of Feedback with Delay Deceleration Model A Controllerstatus(a; v; p)accel(a) bufAccel(a)acc-buffersensor-train 71



6.1 The acc-buffer AutomatonThe bu�er, called acc-buffer, has much the same structure as that of Chapter 4.It appears in Table 6.1 as an MMT-speci�cation.Table 6.1 The acc-buffer automaton.Actions: Inputs: bufAccel(a) for a 2 [�cmin+ �cerr; �cmax]Outputs: accel(a) for a 2 [�cmin+ �cerr; �cmax]Vars: Internal: request 2 [�cmin+ �cerr; �cmax] [ fnoneg, initially noneviolation, boolean, initially falseDiscrete Transitions:bufAccel(a):E�: if request = none thenrequest := aelseviolation := trueaccel(a):Pre: request = aE�: request := noneTasks: BUFF = faccel(a)g : [��; �+]The variable request stores a command while it is being bu�ered. The majordi�erence between acc-buffer and buffer of Chapter 4 is the type of the commandbeing bu�ered. The variable violation is true when a new command from the controllerarrives before the previous one has exited the bu�er, that is when the bu�er over
ows.We use the history variable violation to 
ag this error condition.6.2 De�nition of Controller Correctness, RevisitedA valid controller-under-feedback-and-delay is an HIOA with no external variablesand with output actions bufAccel(a) for a 2 [�cmin + �cerr; �cmax] that when composedwith acc-buffer yeilds a correct controller-under-feedback as de�ned in Section 5.3.In Section 4.2 we use a hiding operator � in the de�nition of correctness for abu�ered-brake-controller. We do not need such a hiding operator here because we arenot comparing hybrid traces as one does in a simulation proof.



6.3 Parameters, RevisitedIn order to guarantee that a valid controller, exists we impose the following constraintson the parameters:1. cs < cf2. _cs > _cmaxf � _cminf > 03. �cerr > 04. �s > �+ � �� � 05. �cmin < �cmin + �cerr < 0 � �cmax � �cerr < �cmax6. cf � cs � _c2maxf� _c2s2(�cmin+�cerr)7. _cmaxf � _cminf � ��cmin(�s + �+)8. _cmaxf � _cminf � �cerr(�� + �s) + (�cmax � �cmin)(�+ � ��)Constraints 1, 2, 3, 5, and 6 are identical to the same numbered constraints fromSection 5.4; they are restated here for convenience. Constraint 4 requires that thedelay interval be well-de�ned and not zero and that it be shorter than the frequencyof sensor feedback. Constraints 7 and 8 both ensure that the target velocity intervalis wide enough. As in Chapter 5, other choices for constraints 7 and 8 are reasonable,but as stated the constraints are necessary for the correctness of the example controllerof this chapter.For convenience, we continue to assume as in Chapter 5 that the initial values ofacc and �x are set to �cs, where:�cs = _c2maxf� _c2s2(cf � cs)Notice that �cs is negative.6.4 Example Controller: del-zig-zagWe do not de�ne a completely new controller for this chapter. Rather, we modify thezig-zag controller of Chapter 5. We de�ne del-zig-zag to be identical to zig-zagexcept that we rename its output actions accel(a) to bufAccel(a) and rede�ne thetranisitions labeled with the status(a; v; p) input actions, as follows:status(a; v; p):E�: if v � _cmaxf thenif _cmaxf < v + a(�s + �+) thensend := _cmaxf�v�a�+�s



elsesend := _cmaxf�v�a���s+�+���The composition of sensor-train, acc-buffer, and del-zig-zag is calleddel-zig-zag-sys.For each status message, del-zig-zag only takes action if v � _cmaxf; this issimilar to zig-zag and allows for an initial braking period at the initial (negative)acceleration �cs. Once the velocity drops below _cmaxf, the action the controller takesdepends on whether an adjustment upward or downward is needed in the accelerationto keep the velocity below _cmaxf. The two cases are depicted in Figure 6-2 andFigure 6-3. The �gures show velocity versus time graphs of possible behaviors ofdel-zig-zag-sys. Time zero in both �gures is the time of some status(a; v; p)message in which v � _cmaxf. The horizontal dashed lines are the velocity bounds.The solid lines form a \bent wedge"; this wedge represents upper and lower boundson the possible behavior of del-zig-zag-sys. The origin of the wedge is at time zerowhen _x = v. The portion of the wedge before the bend bounds the evolution of _x whilethe current acceleration is in e�ect. The bend in the wedge represents the changein acceleration when the bu�er outputs the controller's command. The portion ofthe wedge after the bend bounds the evolution of _x after the controllers requestedacceleration takes e�ect. The angles of the �rst part of the wedge are determined bya and a� �cerr; the angles of the second part of the wedge are determined by send andsend� �cerr. The dotted lines represent the bounds on behavior if a remained in e�ect.Figure 6-2 Adjustment downward by del-zig-zag.
0

_x_cminf_cmaxf
�� �+ time�sv (�s+��) (�s+�+)Let us focus on Figure 6-2 �rst. Notice the di�erence between the time of theupper and lower bends in Figure 6-2: the lower side of the wedge bends at time ��and the upper side at time �+. This is because it is an adjustment downward, thatis send < a. The upper bound on _x happens when the bu�er delays send as long



as possible; similarly, the lower bound occurs when the bu�er delays send as littleas possible. The test in the above pseudo-code \if _cmaxf < v + : : : " is true when ifthe current acceleration (dotted line) is allowed to remain in e�ect then _x will exceed_cmaxf before the next guaranteed change of acceleration at time �s + �+. The �rstbranch of the \if" statement results in an adjustment downward in the accelerationas depicted in Figure 6-2. It is adjusted so that the top of the wedge is exactly _cmaxfat time �s + �+. Constraints 7 and 8 on the parameters (see Section 6.3) ensure thatthis choice for send does not result in the bottom of the wedge passing below _cminf.Figure 6-3 Adjustment upward by del-zig-zag.
0

_x_cminf_cmaxf
�� �+ time�sv (�s+�+)(�s+��)The upward adjustment depicted in Figure 6-3 is analogous to the downward ad-justment but reversed. The upper side of the wedge results from the bu�er deliveringthe upward adjustment as soon as possible; the lower side of the wedge results fromthe bu�er delivering the upward adjustment as late as possible. As before, the \else"branch of the \if" statement results in the top of the wedge being at exactly _cmaxf attime �s + �+; however, the calculation is a bit more complex because the bend in theupper side of the wedge occurs earlier, at time ��. Once again Constraints 7 and 8on the parameters ensure that this choice for send does not result in the bottom ofthe wedge passing below _cminf.6.5 Correctness of del-zig-zagThe proof of correctness of the controller requires proofs of the timeliness and safetyproperties. The structure of the proofs is similar to that of Chapter 5. We �rst provea \non-violation" property and then we prove each correctness property in a separatesubsection.



We have presented the bu�er using an MMT-speci�cation. Since there is only oneMMT task in the bu�er and no other MMT-speci�cations to consider, we abbreviate�rst(BUFF) and last(BUFF) as �rst and last.6.5.1 Non-ViolationIn this section we prove that the history variable violation remains false in all exe-cutions of del-zig-zag-sys. It follows as a corollary of the following lemma.As in the proof of non-violation in Section refsec:DelayVio, it is su�cient to provethe invariant that either send or request is always none. As before we must strengthenthis invariant so that it may be proved by induction. The lemma proves this strongerform that is the conjunction of two implications. Informally, it uses deadline variablesto say that (1) del-zig-zag only sends commands immediately after statusmessagesand (2) acc-buffer will relay requested commands before the next statusmessage.It depends primarily on constraint 4 on the parameters: �s > �+.Lemma 6.5.1 In all reachable states of del-zig-zag-sys the following hold:1. send 6= none =) (next = now + �s) ^ request = none2. request 6= none =) (last + �s = next + �+) ^ send = noneProof: Proof by induction. The property to be proved consists of the conjunctionof two implications; we call them Rule 1 and Rule 2 in the style of the proof ofLemma 5.6.2. Note that only one of the Rules can apply and hold in a given state.Basis: in the initial state neither rule applies. Induction: Let state s lead to states0 via a single step | either a discrete step labeled by action � or a trajectory. Weproceed by cases on the type of step and �: accel, bufAccel, status, or trajectory.1. � = accel: Rule 2 applies and holds in s. The transition sets request0 = noneand does not a�ect send. Therefore, neither rule applies in the s0.2. � = bufAccel: Rule 1 applies and holds in s0. The transition sets request0 6=none and send0 = none. It does not a�ect now or next and it sets last0 =now + �+. By the inductive hypothesis, next = next0 = now + �s, so Rule 2applies and holds in s0.3. � = status: We claim that neither rule applies in s. The precondition for thisaction is now = next; so clearly Rule 1 cannot apply in s. For the purpose ofcontradiction suppose Rule 2 applied in s, then last+ �s = next+ �+. However,by assumption on the parameters �s > �+, so last < next and therefore last <next = now. But this contradicts Theorem 2.8.1. Thus neither rule applies in s,i.e. send = none and request = none. The transition does not a�ect request sorequest0 = none and it sets next0 = now0 + �s. Thus Rule 1 holds in s0 (whetheror not it applies).



4. The step is a trajectory: does not a�ect any of the mentioned variables exceptnow. The now variable only appears in Rule 1 and that rule only applies whentime passage is forbidden.These cases are exhaustive and thus the property holds.The non-violation property for del-zig-zag-sys is established in the followingcorollary.Corollary 6.5.2 In all reachable states of del-zig-zag-sys violation = false.Proof:Violation occurs when request 6= none and a bufAccel action takes place. Thisaction is only enabled when send 6= none; however, by Lemma 6.5.1 request = nonein that case. Therefore the property holds.6.5.2 TimelinessThe structure of the proof is similar to that in Chapter 5. As in that chapter, themajor result we require is an invariant that implies the lower bound invariant onvelocity. The following lemma establishes such a result by strengthening the lowerbound on velocity. It is analogous to Lemma 5.6.2; it is more complex because of extracases and the uncertainty introduced by the bu�er. We have changed the notationslightly to accommodate the more complex formulas. The invariant consists of fourclauses: 1, 2a, 2bi, and 2bii. We explain their informal meaning in terms of the wedgesof Figures 6-2 and 6-3. Each clause tests that at a certain point in the execution, thelower arm of the wedge remains above _cminf. Clause 1 applies when the controller haschosen a command (stored in send) but has not yet passed it to the bu�er. Clause 2aapplies when neither the controller nor the bu�er are holding an unsent command.Clause 2bi applies when the bu�er holds a command which has not been held longenough to relay. Clause 2bii applies when the bu�er holds a command which hasbeen held long enough to relay.Lemma 6.5.3 Let z denote z � �cerr. In all reachable states of del-zig-zag-sys thefollowing hold:1. send 6= none =) request = none^ _x � _cminf ^_x+ acc(��) + min(acc; send)(�+ � ��) + send(�s) � _cminf2. send = none =)(a) request = none =) _x � _cminf ^ _x+ acc(next � now + �+) � _cminf(b) request 6= none =)



i. now < �rst =) _x � _cminf ^ _x+ acc(�rst� now)+min(acc; request)(�+ � ��) + request(�s) � _cminfii. now � �rst =) _x � _cminf ^_x+min(acc; request)(last� now) + request(�s) � _cminfProof: Proof by induction. As in the proofs of similar lemmas from the previouschapter we refer to the parts of the above invariant as \rules". Basis case: In theinitial state Rule 2a applies. We show that it holds as follows: Note that acc = �csand next � now = 0 and _x = _cs > _cmaxf � _cminf. Thus, it is su�cient to show that_cmaxf+�cs�+ � _cminf. This follows from the fact that �cs � �cmin and parameter constraint7. Inductive case: Suppose the property is true in state s; we must show that it istrue in s0 which follows from s in one step | either a discrete transition labeled by� or a trajectory. For the sake of brevity, we denote variables in the post-state byadding primes, e.g. we write now0 instead of s0:now. We brake by cases on the typeof step and on �: accel, bufAccel, status, or trajectory.1. � = accel: We know request 6= none, so by Lemma 6.5.1 send = none. Fur-thermore, now � �rst, by this actions precondition, so Rule 2bii applies is s andholds by the inductive hypothesis. As for the post-state | request0 = none andsend0 = none, so Rule 2a applies in s0. We show that it holds by noting thatacc0 = request and no other relevant variables have changed. Substitution andLemma 6.5.1 yield the desired result, as follows:last� now � 0 by Theorem 2.8.1req � min(acc; req) de�nition of min_x+min(acc; req)(last� now) + req�s � _cminf inductive hypothesis_x+ req(last� now) + req�s � _cminf substitute_x+ req(last� now+ �s) � _cminf grouplast+ �s = next+ �+ by 6.5.1_x+ req(next� now+ �+) � _cminf substituteacc0 = req automaton de�nition_x0 + acc0(next0 � now0 + �+) � _cminf substitute2. � = bufAccel: We know send 6= none so Rule 1 applies in s. It holds by theinductive hypothesis. Also, request0 6= none, send0 = none, and now0 < �rst0,so Rule 2bi applies in s0. We must show that it holds. This is trivial becauserequest0 = send and �rst = now+ ��.3. � = status: As in the same case in the proof of Lemma 6.5.1, we know thatsend = none and request = none; thus, Rule 2a applies in s and it holds by theinductive hypothesis. We break by cases:(a) send0 = none, so Rule 2a applies in s0. It holds because none of thevariables in its consequent are a�ected by the transition.



(b) send0 6= none, so Rule 1 applies in s0. Note that a = acc, so we writeacc instead; similarly for v and _x. Also note that now = next by theactions precondition, and _x � _cmaxf by the actions e�ect. Finally, notethat send and next are the only variables modi�ed on this transition. Webreak by cases on the branch of the conditional taken in the e�ect clausein del-zig-zag.i. _cmaxf < _x + acc(�s + �+) | In this case, we �rst resolve the \min"operator by showing that send0 < acc. As follows:send0 = _cmaxf� _x�(acc)�+�s automaton de�nition_x+ (acc)�+ + send0�s = _cmaxf simplify_cmaxf < _x+ acc(�s + �+) case_x+ (acc)�+ + send0�s < _x+ acc(�s + �+) substitutesend0�s < acc�s cancel�s � 0 parameter assumptionsend0 < acc divideNow we must show that _x+acc��+ send0(�+� ��+ �s) � _cminf. First,notice that send0 < acc implies that 0 � acc � send0. Also, acc isbounded above by �cmax and send0 below by �cmin. This justi�es the �rstinequality that appears below:�cmax� �cmin � acc� send0 � 0 above_cmaxf� �cerr(�� + �s)�(�cmax � �cmin)(�+ � ��) � _cminf parameter assumption�+ � �� � 0 parameter assumption_cmaxf� �cerr(�� + �s)�(acc� send0)(�+ � ��) � _cminf substitute_x + (acc)�+ + send0�s = _cmaxf as above_x+ (acc)�+ + send0�s � �cerr(�� + �s)�(acc� send0)(�+ � ��) � _cminf substitute_x + acc�� + send0(�+ � �� + �s) � _cminf simplifyii. _cmaxf � _x + acc(�s + �+) | As in the previous case, we �rst resolvethe \min" operator by showing that send0 � acc. As follows:



send0 = _cmaxf� _x�(acc)���s+�+��� automaton de�nition_x+ (acc)��+send0(�s + �+ � ��) = _cmaxf simplify_cmaxf � _x+ acc(�s + �+) case_x+ (acc)��+send0(�s + �+ � ��) < _x+ acc(�s + �+) substitutesend0(�s + �+ � ��) < acc(�s + �+ � ��) cancel(�s + �+ � ��) � 0 parameter assumptionsend0 < acc divideNow we must show that _x + acc�+ + send0�s � _cminf. By similarreasoning to that used in the analogous case above we get the �rstinequality:�cmax � �cmin � send0 � acc � 0 above_cmaxf � �cerr(�� + �s)�(�cmax � �cmin)(�+ � ��) � _cminf parameter assumption�+ � �� � 0 parameter assumption_cmaxf � �cerr(�� + �s)�(send0 � acc)(�+ � ��) � _cminf substitute_x + (acc)�� + send0(�s + �+ � ��) = _cmaxf as above_x+ (acc)�� + send0(�s + �+ � ��)��cerr(�� + �s)� (send0 � acc)(�+ � ��) � _cminf substitute_x+ acc�+ + send0�s � _cminf simplify4. The step is a trajectory: We know that send = send0 = none so Rule 2 appliesin s and s0. This case is straightforward. It uses a similar argument to that ofthe trajectory case in the proof of Lemma 5.6.2. We outline the subcases thatmust be considered but give no details of their proofs:(a) request = request0 = none, so Rule 2a applies in s and s0.(b) request = request0 6= none, so Rule 2b applies in s and s0.i. now < �rst, so Rule 2bi applies in s. We proceed by cases:A. now0 < �rst0, so Rule 2bi applies in s0.B. now0 � �rst0, so Rule 2bii applies in s0.ii. now � �rst, so Rule 2bii applies in s and s0.The following corollary establishes the lower bound on velocity as an invariant ofdel-zig-zag-sys.Corollary 6.5.4 In all reachable state of del-zig-zag-sys the following holds:_x � _cminf



Proof: Directly from 6.5.3. The antecedents form an exhaustive set of cases, and inall cases the property is true.Corollary 6.5.4 leads to the timeliness property just as Lemma 3.6.6 did in Chap-ter 3. The corollaries that yield the timeliness property are exactly analogous andare not restated here. The �nal result is summarized in Theorem 6.5.6 at the end ofthis chapter.6.5.3 SafetyIn this section, we give only the major result, Lemma 6.5.5; it leads to the safetyproperty for del-zig-zag just as Lemma 5.6.5 for zig-zag. We do not give theintermediate corollaries and lemmas that yield the safety property because they areprecisely analogous to those of Section 5.6.2.Lemma 6.5.5 is similar to both Lemma 5.6.5 and Lemma 6.5.3. It is a strength-ening of the desired invariant and its form is the conjunction of a set of implications.The form of the �rst clause borrows from the �rst clause of Lemma 5.6.5. The formof the remaining clauses is analogous to Lemma 6.5.3; however, these clauses checkthat the upper arm of the wedge is lower than _cmaxf whereas the analogous clauses inLemma 6.5.3 check the lower arm of the wedge against _cminf.Lemma 6.5.5 In all reachable states of del-zig-zag-sys the following hold:1. _x > _cmaxf =) acc = �cs ^ send = none ^ �(x � cf) =) cf � x � _c2maxf� _x22�cs �2. _x � _cmaxf =)(a) send 6= none =) request = none^_x+ acc(��) + max(acc; send)(�+ � ��) + send(�s) � _cmaxf(b) send = none =)i. request = none =) _x+ acc(next � now + �+) � _cmaxfii. request 6= none =)A. now < �rst =)_x+acc(�rst�now)+max(acc; request)(�+���)+request(�s) � _cmaxfB. now � �rst =)_x+max(acc; request)(last � now) + request(�s) � _cmaxfProof: The invariant in this lemma is very similar to that of Lemma 6.5.3 and so isits proof.We summarize the correctness results in the following theorem.



Theorem 6.5.6 Automaton del-zig-zag is a correct controller-under-feedback-and-delay.Proof: We must show that the composition of del-zig-zag and acc-buffer is acorrect controller-under-feedback as de�ned in Section 5.3. This in turn requires thatthe hybrid traces of del-zig-zag-sys satisfy the timeliness and safety properties ofSection 3.4. As mentioned at the end of Section 6.5.2, the timeliness property followsfrom Corollary 6.5.4 just as it did from Lemma 3.6.6 in Chapter 3. We have omittedthe intermediate results. Similarly, the safety property follows from Lemma 6.5.5 asit did from Lemma 5.6.5 in Chapter 5. We have omitted the intermediate results.



Chapter 7ConclusionSummaryWe have presented a case study in the application of hybrid I/O automaton techniquesto automated transit systems. The purpose of the case study is to test the applicabilityof HIOA techniques to the area of automated transit; in particular, we are concernedthat HIOA techniques express hybrid systems faithfully and that they allow clear andscalable proofs of signi�cant properties of these systems.We focused on the deceleration maneuver in which a train's controller slows thetrain to a target velocity range within a given distance. We examined four versions ofthe deceleration maneuver, each with a di�erent model of the communication betweencontroller and train: plain, delay, feedback, and feedback with delay. In the plain caseof Chapter 3, the controller receives no sensor information from the train and controlsthe brake through on and o� commands which take e�ect immediately. The delaycase of Chapter 4 is like the plain case except that the brake commands are delayed.In the feedback case of Chapter 5, the controller receives periodic sensor informationfrom the train; the controller can instantly command the train to achieve speci�cpositive and negative accelerations subject to some performance error. The feedbackwith delay case of Chapter 6 is like the feedback case except that the accelerationcommands are delayed. For each case we give a model of the non-controller portion ofthe system, de�ne correctness of a controller, give an example of a correct controller,and prove that it is correct.We model the train and the controller as HIOAs communicating through discreteactions. For the cases with delay, we interpose a third automaton which serves as abu�er, delaying messages from the controller to the train. The bu�ers and some ofthe example controllers are de�ned using the MMT-speci�cations of Section 2.8. Theother automata are de�ned using the standard notation of Section 2.7.The main correctness conditions for controllers are the timeliness and safety prop-erties, de�ned in Section 3.4. The timeliness property says that the train alwaysprogresses to the destination location within a �xed time. The safety property says83



that when the train arrives at the destination it has achieved a velocity in the tar-get range. These properties mention only the variables of the train. Since the trainoutputs these variables, we cast these properties as hybrid trace properties of thecomposition of the train and the controller (and a bu�er if applicable).We use two major proof methods: invariant assertions and simulations. The useof invariant assertions is ubiquitous in this case study. The use of invariant assertionsusually involves strengthening a proposed invariant assertion until it can be provedby induction on the steps of a hybrid execution. These inductive proofs have a styl-ized form that separates reasoning about discrete behavior (actions) from continuousbehavior (trajectories). Timing information such as the current time and deadlinesfor events are explicitly modeled in the state as variables (e.g. now, last(OFF)).These variables facilitate proofs of timing behavior using invariant assertions. MMT-speci�cations implicitly add many such timing variables in a standard manner whichmakes the automata de�nitions and related proofs more readable.We use one simulation in this case study: in Chapter 4 a simulation shows thatthe composition of the bu�er and controller of that chapter is an implementationof the controller of Chapter 3. Using the subtitutivity result of Theorem 2.6.2, thetimeliness and safety properties follow because they are preserved by hybrid traceinclusion.This case study contains full proofs of the correctness of the various controllers.However, some of the proofs are only sketched, when similar formal proofs appear inother chapters.EvaluationThe hybrid I/O automaton model and its related tools provide a framework in whicha modest hybrid system can be described naturally and veri�ed formally. Trajectoriesappear essential to a faithful treatment of physical systems. They permit di�eren-tial relationships between physical variables to be expressed directly. We also foundshared variables useful. If the variables of a system are exposed then some prop-erties can be expressed as hybrid trace properties. This allows certain propertieslike the timeliness and safety properties to be cast as hybrid trace properties whichin the timed I/O automaton model would necessarily have been properties of timedexecutions.The proofs in this case study are clear and scalable from the plain case to thefeedback with delay case. We believe clarity and scalability are the result of ourreliance on invariant assertions throughout. This technique enhances clarity becauseinvariant assertions have a close relationship to intuitive, informal claims. The proofsof invariant assertions are usually by induction in a stylized manner which allows foreasy navigation and checking. The assertional technique is scalable to more complexsystems because often the invariant itself holds on the more complex system. Even ifit does not, often the invariant of the simple system appears embedded in an invariant



of the more complex system. For example, the invariant in Lemma 3.6.10 appears inclause 1 of the invariant in Lemma 5.6.5. When substitution like this occurs the proofof the original invariant can often be reused with minor modi�cation. For example,compare the proofs of Lemmas 3.6.10 and 5.6.4. We believe this kind of reuse ischaracteristic of invariant assertion based methods. There remains the challenge of�nding invariants that maximize reuse.We have a more guarded evaluation of simulations because of their more limiteduse in this case study. The simulation proof in Chapter 4 is clear and concise. How-ever, we acknowledge that its use is limited in two respects. First, it involves only thecomputer portion of the system. As a result, the components and the simulation itselfcould have been expressed using timed I/O automaton methods. Our contribution isin showing how this well understood method of proof for computer systems can bewoven into the treatment of a hybrid system.Second, we acknowledge that the case study does not demonstrate that simulationsscale from the delay case to the feedback with delay case. As mentioned in Chapter 6,no simulation is possible from a controller for the feedback with delay case to zig-zag,the example controller of Chapter 5. Because zig-zag always responds instantly toits sensor input, no controller with delayed responses can implement it. This begsthe question of whether a simulation based proof in the feedback with delay case ispossible given some other choice of controller for the feedback case. The answer isyes. However, we chose not to present such a controller because it would be overlycomplex without illustrating any new techniques or insights. The complexity of sucha controller arises from its need to be highly non-deterministic both in when it sendsmultiple acceleration commands and which acceleration command it sends. Thisdi�ers from the simple non-determinism of one-shot of Chapter 3 that merely variesthe timing of two brake commands and not their content.Further WorkThis case study took shape during the early stages of the development of the HIOAmodel and does not exercise all the model's features. In particular, further case studiesinvolving HIOA's could investigate more fully the use of shared variables. In this workwe modeled the physical part of the system, the train, as a single automaton. Webelieve that the shared variables of HIOAs are the key to a more modular treatmentof physical systems. Some modest progress in this direction appears in [15] wheresensors and actuators are modeled as separate automata which share variables withthe physical system. Nevertheless, we anticipate further progress in using this facetof the HIOA model.We look forward to further examination of the utility of simulation proofs forhybrid systems. An e�ort toward this begins in [14] but much remains to be done.We chose to avoid a highly abstract example controller in Chapter 5 because forthis example the increased non-determinism would lead to complexity that would



obscure the description. The utility of simulation proofs depends on the lucidity ofmore abstract speci�cations; we hope that our experience in this case study is theexception rather than the rule for hybrid systems.Much work remains for the M.I.T. Theory of Distributed Systems research groupin our long-term project applying these techniques to automated transit systems. Cur-rent research involves further case studies in ground based transportation systems.We are modeling multi-vehicle maneuvers arising in the California PATH project[8, 9, 10]. The high-level and preliminary treatment of safety systems in [15] willbe extended to examine the implementations of those systems in the Raytheon Per-sonal Rapid Transit project. We hope to develop a machine parsable language forhybrid system speci�cations and to develop tools for computer aided proof checkingand veri�cation. We are examining methods for integrating into our methods thetechniques of relevant disciplines such as mechanical engineering and control theory.Our long term goal is to help design the industrial strength formal tools that willhave an impact on the design and development of real transportation systems.
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