
Correctness of Vehicle Control Systems – A Case Study

H. B. Weinberg and Nancy Lynch
MIT

Laboratory for Computer Science

Cambridge, MA 02139, USA

Abstract

Several example vehicle deceleration maneuvers arising
in automated transportation systems are specified, and their
correctness verified, using the hybrid I/O automaton model
of Lynch, Segala, Vaandrager and Weinberg [16]. All sys-
tem components are formalized using hybrid I/O automata,
and their combination described using automaton composi-
tion. The proofs use invariant assertions, simulation map-
pings, and differential calculus.

1 Introduction

A hybrid system is one in which digital and analog com-
ponents interact. Typical examples of hybrid systems are
real-time process-control systems such as automated facto-
ries or automated transportation systems, in which the dig-
ital components monitor and control continuous physical
processes in the analog components. The computer science
community has developed formal models and methods for
reasoning about digital systems, while the control theory
community has done the same for analog systems. How-
ever, systems that combine both types of activity appear to
require new methods. The development and application of
such methods is an active area of current research.

One formal tool that has recently been developed is the
hybrid I/O automaton (HIOA) model [16]. In this case
study, we show how the HIOA model can be used to spec-
ify and verify part of an automated transportation system —
a vehicle deceleration maneuver. The methods we use in-
clude computer-science-based techniques such as automa-
ton composition, invariant assertions, and simulation map-
pings, as well as simple continuous analysis. The purpose of
the case study is to investigate the applicability of the HIOA
model and various computer-science-based techniques to
automated transportation systems in particular, and to hy-
brid systems in general. We are especially concerned that
the methods allow faithful representation of hybrid systems
(including all components), and clear and scalable proofs of

significant properties of these systems.

The hybrid I/O automaton model is an extension of the
timed I/O automaton model of [17, 4], inspired by the phase
transition system model of [19] and the similar hybrid sys-
tem model of [1]. A HIOA is a (possibly) infinite state la-
belled transition system. The states of a HIOA are the valu-
ations of a set of variables. Certain states are distinguished
as start states. The transitions (steps) of a HIOA are of two
types: discrete and continuous. The discrete transitions are
labelled with actions. Both the variables and the actions are
partitioned into three categories: input, output, and internal.
A hybrid execution of a HIOA is a sequence of transitions
that describes a possible behavior of the system over time.
A hybrid trace is the externally visible part of an execution
(i.e., the non-internal part).

We say that one HIOA implements a second HIOA if
the set of traces of the first is a subset of that of the sec-
ond. This captures the notion that the implementation HIOA
has no external behavior that is not allowed by the specifi-
cation HIOA. When two HIOAs are composed in parallel,
they synchronize on shared input/output actions and shared
input/output variables. Under certain easily checked con-
ditions, the parallel composition of two HIOAs is itself a
HIOA. An important property of HIOAs is substitutivity: in
a system composed of HIOAs, replacing components by im-
plementations of those components yields an implementa-
tion of the entire system.

As has been the case in previous work with timed I/O au-
tomata, most of the proofs in this HIOA-based case study
use invariant assertions and simulation mappings. An in-
variant assertion is a predicate on states that is true in ev-
ery reachable state. Invariant assertions are usually proved
by induction on the length of an execution. A simulation is
a mapping between states of two HIOAs that can be used
to show that one HIOA implements another. The proof that
a given mapping is a simulation is also an induction on the
length of an execution of the implementation; the inductive
step matches individual transitions in the implementation
with corresponding transitions or sequences of transitions in
the specification. Even timing properties can be proved us-

1

ing these techniques: the key idea is to build timing infor-
mation into the state where it can be tested by assertions.

Our methods have several benefits. First, the HIOA
model and its composition operation permit complete repre-
sentation of hybrid systems, including all components, con-
tinuous and discrete, and the interactions among them. Sec-
ond, the inductive structure and stylized nature of the proofs
make them easy to write, check, and understand. In previous
work, such proofs have even been checked using automated
theorem proving techniques. Third, the implementation re-
lation allows the description of a system at different levels of
abstraction. Assertions proved for high level models extend
to the lower level models via the simulation mappings. This
hierarchy helps manage the complexity of the overall system
description, and it helps simplify the proofs because asser-
tions are usually easier to prove on the more abstract mod-
els. Fourth and finally, the methods are not completely au-
tomatic. They require the user to supply invariants and sim-
ulations, which express key insights about the system and
serve as useful documentation.

Typical examples of automated transportation systems
include the Raytheon Personal Rapid Transit System and the
California PATH project [6, 5, 13]. In these hybrid systems,
a number of computer-controlled vehicles share a network
of tracks or highways. The digital part of the system is the
computer vehicle controller and the analog part of the sys-
tem consists of the vehicle, its engine, the guideway, and
so forth. In [6], the control of the transportation system is
described hierarchically – the higher levels coordinate and
determine strategy while the lowest level performs specific
maneuvers.

Our case study focuses on a single maneuver: the task
of decelerating a vehicle to a target speed within a given
distance. Such a maneuver is invoked, for example, when
a vehicle is approaching a region whose maximum allow-
able velocity is lower than the vehicle’s current velocity.
We model a vehicle and its controller as two communicat-
ing HIOAs. We consider four different sets of assumptions
about the communication between vehicle and controller,
based on whether or not there is feedback from the vehi-
cle to the controller and whether or not there is communica-
tion delay from the controller to the vehicle. For each case,
we give a formal specification of what it means for a con-
troller to correctly implement the deceleration maneuver, we
give an example implementationof such a controller, and we
verify that the implementation is correct. All of our proofs
use invariant assertions, including assertions involving tim-
ing properties, and some also use simulation mappings. Dis-
crete and continuous methods are combined smoothly, and
uncertainty is integrated throughout the presentation.

Our contributions are (a) The complete modelling and
proof of the four maneuvers. (b) Many intermediate formal
concepts and lemmas that can be reused in formal reasoning

about other automated transit systems. (c) A demonstration
of the effectiveness of our computer-science-based methods
for reasoning about hybrid systems.

This case study is part of a larger project on modelling,
verifying, and analyzing problems arising in automated tran-
sit systems. A survey of the early results of that project
appears in [14]. A preliminary study of the Generalized
Railroad Crossing problem appears in [7, 8]; this uses only
the timed I/O automaton model, not the HIOA model. In
[15], levels of abstraction are used to relate continuous and
discrete control of a vehicle maneuver, as well as to re-
late derivative-based and function-based system descrip-
tions. Safety assurance systems for automated transit are ex-
amined in [27]. Current work involves modelling the “pla-
toon join” maneuver from the PATH project [3], as well as
continuing the project on safety assurance systems.

The development of models and verification methods for
timing-based systems is an active research area within com-
puter science. The timed I/O automaton model is similar, for
example, to models of Alur and Dill [2], of Lamport [10] and
of Henzinger, Manna and Pnueli [9]. In contrast to those for-
malisms, the development and use of the timed I/O automa-
ton model has focused on compositional properties [24], im-
plementation relations [17, 23], and semi-automated proof
checking [12], with less emphasis on syntactic forms, tem-
poral logics, and fully automatic analysis. Just as timed I/O
automata have been extended to hybrid I/O automata to treat
hybrid systems, so have other real-time models. For exam-
ple, the timed transition system model of [9] is extended to
the phase transition system model in [19]. Phase transition
systems are analogous to hybrid I/O automata: their tran-
sitions correspond to our discrete steps and their activities
correspond to our trajectories. However, phase transition
systems lack good support for composition and abstraction.
The hybrid system model of [1] is similar to the phase tran-
sition system model except that it includes synchronization
labels that correspond to our actions. This allows a notion of
parallel composition. The hybrid system model differs from
our HIOA model because it has no input/output distinction
on either labels (actions) or variables.

The methods of invariant assertions and simulation map-
pings are widely used in computer science. An overview of
these methods, for untimed and timed systems, appears in
[18, 17].

Another project involving formal modelling of train con-
trol systems, using computer science techniques, was car-
ried out by Schneider and co-workers [20]. Their empha-
sis was on the use of an extension of Dijkstra’s weakest-
precondition calculus to derive correct solutions. Other case
studies in modelling hybrid systems include two analyses of
steam boiler controllers — one using timed I/O automaton
methods [11] and another using the automated proof checker
PVS [25] — and a project using a variety of techniques to

2

model and verify controllers for aircraft landing gear [22].
This latter reference also includes examples from automated
transportation.

The full version of this work appears in [26].

2 Hybrid I/O Automaton Model

The hybrid I/O automaton model [16] is based on the
timed I/O automaton model of [17, 4], but it represents con-
tinuous behavior more explicitly. We give a brief summary
here, and refer the reader to [16] for the details.

A state of a HIOA is defined to be a valuation of a set
of variables. A trajectory w is a function that maps a left-
closed interval I of the reals, with left endpoint equal to 0,
to states; a trajectory represents the continuous evolution of
the state over an interval of time. A trajectory with domain[0; 0] is called a point trajectory. Various operations are de-
fined on trajectories, including restriction to a subset of the
domain (d), projection on a subset of the state variables (#),
and concatenation.

A hybrid I/O automaton (HIOA) A =(U;X; Y;�in;�int;�out;�;D;W) consists of:� Three disjoint sets U , X and Y of variables, called in-
put, internal and output variables, respectively. Vari-
ables in E �= U [Y are called external, and variables
in L �= X [Y are called locally controlled. We writeV �= U [L.� Three disjoint sets �in, �int, �out of input, internal
and output actions, respectively. We assume that �in
contains a special element e, the environment action,
which represents the occurrence of a discrete transition
outside the system that is unobservable, except (possi-
bly) through its effect on the input variables. Actions
in �ext �= �in [�out are called external, and actions
in�loc �= �int[�out are called locally controlled. We
write � �= �in [�loc.� A nonempty set � of start states, a subset of the set of
states. This set must be closed under change of values
for input variables.� A setD of discrete transitions, i.e., (state, action, state)
triples. This set must satisfy three axioms, saying that
input actions are always enabled, that the environment
action e only affects inputs, and that any input variable
may change when any discrete action occurs. We uses a�! s0 as shorthand for (s; a; s0) 2 D.� A setW of trajectories over the variables ofA. This set
must satisfy three axioms, asserting existence of point
trajectories for all states, and closure of the set of tra-
jectories under subinterval and limit.

When discussing several HIOAs, we often subscript the
names of the various components with the name of the
HIOA.

We now define executions for HIOAs. A hybrid execu-
tion fragment of A is a finite or infinite alternating sequence
of trajectories and actions, � = w0a1w1a2w2 � � � , ending
with a trajectory if � is a finite sequence, and with discrete
steps connecting consecutive pairs of trajectories, labelled
by the intervening actions. An execution fragment records
all the discrete changes that occur in an evolution of a sys-
tem, plus the “continuous” state changes that take place in
between. A hybrid execution is an execution fragment in
which the first state is a start state. A state of A is defined
to be reachable if it is the last state of some finite hybrid ex-
ecution of A.

The visible behavior of a HIOA is described in terms of
its “hybrid traces”. The hybrid trace of a hybrid execution is
obtained by projecting the trajectories on the external vari-
ables, replacing all the internal actions that cause changes in
the external state by a special placeholder � , and removing
all the internal actions that cause no such changes. (In this
last case, the surrounding trajectories are concatenated.)

HIOAsA andB are comparable if they have the same ex-
ternal actions and external variables. IfA andB are compa-
rable then we say thatA � B provided that the set of hybrid
traces of A is a subset of that of B. In this case, we say thatA implements B.

We next define simulation mappings for HIOAs; these
are used to describe systems using different levels of ab-
straction. Let A andB be comparable HIOAs. A simulation
from A to B is a relation R from states of A to states of B
satisfying:

1. If sA 2 �A then there exists sB 2 �B such thatsA R sB .

2. If sA a�!A s0A, sARsB , and both sA and sB are reach-
able, then B has a finite execution fragment starting
with sB , having the same trace as the given step, and
ending with a state s0B with s0A R s0B .

3. If wA is a trajectory of A from sA to s0A, sA RsB , and
both sA and sB are reachable, then B has a finite exe-
cution fragment starting with sB , having the same trace
as w, and ending with a state s0B with s0A R s0B .

The importance of simulations is given by the following
theorem.

Theorem 2.1 IfA andB are comparable HIOAs and there
is a simulation from A to B, then A � B.

Finally, we define composition and hiding operations for
HIOAs. We say that HIOAsA and B are compatible if they
have no output actions or output variables in common, and

3

if no internal variable of either is a variable of the other. IfA and B are compatible then their composition is defined to
be the tuple (U;X; Y;�in;�int;�out;�;D;W) given by� U = (UA [UB) � (YA [YB), X = XA [XB , andY = YA [YB.� �in = (�inA [�inB) � (�outA [�outB), �int = �intA [�intB , and �out = �outA [�outB .� � is the set of states s such that sdVA 2 �A ^ sdVB 2�B .� D is the set of triples (s; a; s0) such thatsdVA�A(a)�!A s0dVA ^ sdVB �B(a)�!B s0dVB . (Here,�A(a) is defined to be a if a is an action of A and e

otherwise; analogously for B. d denotes restriction to
a subset of the variables.)� W is the set of trajectoriesw such thatw # VA 2 WA^w # VB 2WB . (Here, # denotes projection on a subset
of the variables.)

The parallel composition of A and B is itself a HIOA. The
following theorem says that a component can be replaced by
an implementation in a composition.

Theorem 2.2 SupposeA1; A2 andB are HIOAs withA1 �A2, and each of A1 and A2 is compatible with B. ThenA1kB � A2kB.

Two hiding operations can be defined on any HIOA, one
that hides a designated subset of the output actions and one
for a designated subset of the output variables. The hiding
operators also interact properly with the implementation re-
lation.

3 Case 1: No Delay or Feedback

In the deceleration problem we consider a computer-
controlled train moving along a track. The task of the train’s
controller is to slow the train within a given distance. In this
section we consider a very simple model of the train and the
controller. The train has two modes, braking and not brak-
ing. The controller can effect an instant change in the mode
of the train (relaxed in Sections 4 and 6). The controller re-
ceives no information from the train (relaxed in Sections 5
and 6). The braking strength of the train varies nondetermin-
istically within known bounds. We model both the train and
the controller as hybrid I/O automata.

In the following subsections we describe the parameters
of the specification, give a hybrid I/O automaton model for
the train, define correctness of a controller for this train, give
an example correct controller, and prove that it is correct.

Parameters All the parameters are constants denoted byc with some dots above it and a subscript. Dots above the
constant identify the type of the constant: position (no dots),
velocity (one dot), or acceleration (two dots). These dots are
just a syntactic device – they do not represent differentiation.
The subscript identifies the particular constant. Initial val-
ues of the train’s position, velocity and acceleration are cs,_cs, and �cs. The goal of the deceleration maneuver is to slow
the train to a velocity in the interval [_cminf; _cmaxf] at positioncf. When the train is not braking its acceleration is exactly 0.
When the train is braking, its acceleration varies nondeter-
ministically between [�cmin; �cmax], both negative. The range
is intended to model inherent uncertainty in brake perfor-
mance. We impose the following constraints on the param-
eters:

1. cs < cf

2. _cs > _cmaxf � _cminf > 0
3. �cs = 0
4. �cmin � �cmax < 0
5. cf � cs � _c2maxf� _c2s2�cmax

6. _cmaxf� _cs�cmax
� _cminf� _cs�cmin

The first three constraints just say that the initial position is
before the final position, that the initial velocity is higher
than the target velocities which are positive, and that the ini-
tial acceleration is 0. Since braking is stronger when accel-
eration is more negative, notice in the fourth constraint that�cmin is the strongest braking strength, and �cmax the weakest.
The fifth constraint ensures that with the weakest possible
braking there is still enough distance to reach the highest al-
lowable speed by position cf. The right hand side of this
equation uses a familiar equation for “change in distance for
change in velocity” from constant acceleration Newtonian
physics. To understand the sixth constraint consider that
since the controller receives no sensory information from
the train, it must decide a priori how long to brake. The
sixth constraint ensures that the least amount of time the
controller must brake is less than the greatest amount of time
that it can brake.

The TRAIN Automaton We model the train as the HIOA
TRAIN represented in Table 1. The train’s physical state is
modelled using three variables: x, _x, and �x. As before, the
dots are a syntactic device; the fact there there is a differ-
ential relationship between the evolution of these variables
is a consequence of the definition of the trajectory set for
TRAIN. The train accepts commands to turn the brake on
or off through discrete actions brakeOn and brakeOff.

4

It stores the state of the brake in variable b. While brak-
ing, the train applies an acceleration that is nondeterministi-
cally chosen at every point but is constrained to be an inte-
grable function with range in the interval [�cmin; �cmax]. While
not braking, the train has acceleration exactly 0. The vari-
able now represents the current time; when using assertions
to reason about the timing behavior of systems, it is conve-
nient to have an explicit state variable that records the cur-
rent time. At this point in [26], we prove various fundamen-

Actions:
Input: brakeOn and brakeOff

Vars:
Output: x 2 R, initially x = cs_x 2 R, initially _x = _cs�x 2 R, initially �x = �csb, a boolean, initially false

now 2R�0, initially 0
Discrete Transitions:

brakeOn:
Eff: b := true�x :2 [�cmin; �cmax]

brakeOff:
Eff: b := false�x := 0

Trajectories:
if w(0):b = true thenw:�x is an integrable function

with range [�cmin; �cmax]
else w:�x = 0
for all t 2 I the following hold:w(t):b = w(0):bw(t):now = w(0):now + tw(t): _x = w(0): _x+ R t0 w(s):�x dsw(t):x = w(0):x+ R t0 w(s): _x ds

Table 1. The TRAIN automaton.

tal facts about the mechanics of the train. Most of these facts
relate the initial state and final states of a trajectory. Here,
we give two examples of such lemmas. The first bounds
change in velocity and position by change in time. The sec-
ond bounds change in position by change in velocity. (Nota-
tion: If s and s0 are states and x is a variable, we often writex for s:x and x0 for s0:x when s and s0 are understood.)

Lemma 3.1 Let w be a trajectory of TRAIN whose initial
and final states are s and s0, respectively, and let � =
now0 � now. If b = true then:

1. _x+ �cmin� � _x0 � _x+ �cmax�
2. x+ _x�+ 12�cmin�2 � x0 � x+ _x�+ 12�cmax�2

Lemma 3.2 Letw, s, s0, and� be as in the previous lemma.
If b = true then:(_x0)2 � _x22�cmin

� x0 � x � (_x0)2 � _x22�cmax
:

The train considered here is simple; in a treatment of a
system with more complex dynamics, the lemmas of this
section would be replaced by more complex lemmas of the
same general form. Such lemmas would be derived using
methods of continuous mathematics appropriate for the ap-
plication.

Definition of Controller Correctness We define a brake-
controller to be a HIOA with no external variables, no in-
put actions, and output actions brakeOn and brakeOff.
A correct brake-controller is one that when composed with
TRAIN, yields a HIOA whose hybrid traces satisfy:

Safety In all reachable states: If x = cf then _cminf � _x �_cmaxf. (That is, if the train ever reaches position cf then
the speed is in the desired range.)

Timeliness There exists t 2 R�0 such that: Any execution
containing a state with now = t also contains a state in
which x = cf. (That is, the train must reach cf within
time t.)

The following lemma says that the safety and timeliness
properties are preserved by the implementation relation; in
other words, an implementation of a correct brake-controller
is itself a correct brake-controller.

Lemma 3.3 If A1 � A2 and A2 is a correct brake-
controller, then A1 is a correct brake-controller.

Proof: Follows from Theorem 2.2 and the definition of cor-
rectness.

Example Controller: ONE-SHOT There is a broad spec-
trum of correct controllers one could consider, from fully
deterministic to highly nondeterministic, and involving
any number of applications of the brake. In this section
we consider a correct brake-controller called ONE-SHOT.
ONE-SHOT applies the brake exactly once, i.e., it per-
forms exactly onebrakeOn action followed by exactly one
brakeOff action. Except for this restriction, ONE-SHOT is
highly nondeterministic: it exhibits all the correct braking
strategies that involve exactly one application of the brake.

We chose ONE-SHOT as an example because (a) it is sim-
ple, (b) its behavior is interesting enough to require some in-
teresting proof techniques, and (c) it can be used to help ver-
ify correctness of the more complicated controller given in
Section 4, using a simulation proof and Lemma 3.3.

We define some more constants:A = 1_cs

�cf � cs � _c2maxf � _c2s2�cmax

�B = _cmaxf � _cs�cmaxC = _cminf � _cs�cmin

5

A represents the longest amount of time a correct controller
can wait before applying the brake. B and C are lower and
upper bounds, respectively, on the amount of time a cor-
rect controller should apply the brake if it only brakes once.
These constants are derived using methods of continuous
analysis. The formal description of ONE-SHOT appears in
Table 2. (Notation: Each “task” is a set of actions that comes
equipped with lower and upper bound values on the time re-
quired for some action of the task to occur, if any actions of
the task are enabled.)

Actions:
Output: brakeOn and brakeOff

Vars:
Internal: phase 2 fidle;braking; doneg,

initially idle
Discrete Transitions:

brakeOn:
Pre: phase = idle
Eff: phase := braking

brakeOff:
Pre: phase = braking
Eff: phase := done

Tasks: ON = fbrakeOng : [0;A]
OFF = fbrakeOffg : [B;C]
Table 2. The ONE-SHOT automaton

An execution of ONE-SHOT consists of three phases:
idle, braking, and done. ONE-SHOT waits between 0
and A time units (idle phase), then applies the brake for
at least B and at most C time units (braking phase), and
then disengages the brake (done phase). The ON task gov-
erns the transitions from idle to braking and the OFF
task governs the transitions from braking to done.

The notation used above is based on [21]. In order to
convert this description to a HIOA, the time constraints for
the tasks must be built into the automaton’s states, transi-
tions and trajectories. We do this by incorporating dead-
line variables last(ON), �rst(OFF) and last(OFF) into
the state, and manipulating them so that the brakeOn and
brakeOff actions occur at allowed times. That is, initiallylast(ON) = A. When brakeOn occurs, �rst(OFF)
and last(OFF) are set to times B and C in the future, re-
spectively. ONE-SHOT does not allow time to pass beyond
any last deadline currently in force, and does not allow a
brakeOff action to occur if its �rst deadline has not yet
been reached. The trajectories are simple – there is no in-
teresting continuous behavior in the controller, so time just
passes without changing anything else.

The entire system is modelled formally as the composi-
tion of the two HIOAs, TRAIN and ONE-SHOT, which we
call ONE-SHOT-SYS.

Correctness of ONE-SHOT At this point in [26], we prove
the correctness of the ONE-SHOT controller. In the pro-

cess of doing this, we prove a variety of properties about
ONE-SHOT-SYS, almost all of which take the form of invari-
ant assertions. Some of these assertions involve the dead-
line variables last(ON), �rst(OFF) and last(OFF), i.e.,
they encode claims about timing behavior. These proofs
demonstrate the clarity, simplicity and power of the asser-
tional proof style.

Here, we restrict ourselves to two key lemmas that illus-
trate our use of invariant assertions and deadline variables.
The first lemma is used in the proof of the safety property,
which says that the following is an invariant of the system:x = cf =) _cminf � _x � _cmaxf:
In particular, we focus on the right hand side of the inequal-
ity, _x � _cmaxf. In order to prove this invariant, we prove a
stronger invariant:x � cf =) cf � x � _c2maxf � _x22�cmax

:
This invariant says that before reaching the final position
there must be enough distance left to brake, even at the
weakest braking. It has as a special case the upper bound
needed in the safety property (note that �cmax is negative).
In [26], we demonstrate this invariant for each phase sep-
arately and combine the results into a global invariant. Here
we present only the result for the braking phase:

Lemma 3.4 In all reachable states of ONE-SHOT-SYS, if

phase = braking then cf � x � _c2maxf� _x22�cmax
.

Proof: By induction on the length (number of discrete steps
and trajectories) in an execution. The inductive steps break
down into separate cases for discrete steps and trajectories.
The interesting cases are the ON steps and those trajectories
in which phase = braking. The ON case follows from
the invariant for the idle phase. In the trajectory case, we
substitutefrom Lemma 3.2 into the inductivehypothesis and
simplify:cf � x � _c2maxf� _x22�cmax

inductive hypothesisx0 � x � (_x0)2� _x22�cmax
Lemma 3.2cf � x0 � _c2maxf�(_x0)22�cmax
subtract

The second lemma is used in the proof of the timeliness
property. It says that the brake must be disengaged before
the velocity has a chance to drop below _cminf, even assuming
the strongest deceleration. Symmetrically, the brake cannot
be disengaged until after the velocity is guaranteed to reach_cmaxf, even assuming the weakest deceleration. Note the
use of the deadline variables�rst(OFF) and last(OFF) in
these assertions. For example, the expression last(OFF)�
now indicates the greatest amount of time the controller can
continue braking.

6

Lemma 3.5 In all reachable states of ONE-SHOT-SYS, if
phase = braking the following hold:

1. last(OFF)� now � _cminf� _x�cmin

2. first(OFF) � now � _cmaxf� _x�cmax

Proof: By induction.

Theorem 3.6 ONE-SHOT is a correct brake-controller.

This simple example already illustrates several aspects
of our model and methods: It shows how vehicles and con-
trollers can be modelled using HIOAs and composition, and
in particular, how deadline variables can be used to express
timing restrictions. It shows some typical correctness con-
ditions, expressed in terms of the real-world component of
the system. It shows how invariants can provide the keys
to proofs. Invariants can involve real-valued quantities rep-
resenting real-world behavior, thus allowing facts about ve-
locities, etc., to be proved using induction; invariants can
also involve deadline variables, thus allowing time bounds
to be proved by induction.

This proof combines discrete and continuous reasoning
within a rigorous framework that helps to ensure that the
combination is well-defined and the reasoning sound. The
proofs of invariants break down into separate cases involv-
ing discrete and continuous reasoning. The example also il-
lustrates careful handling of uncertainty. Finally, the argu-
ments are general – they handle all cases, and are not based
on identifying the apparent worst cases.

4 Case 2: Delay and No Feedback

In this section we extend the model of the train by nonde-
terministicallydelaying the braking commands. Rather than
modify the train automaton itself, we introduce a new au-
tomaton called BUFFER that serves as a buffer between the
train and a controller. Figure 1 illustrates the components
and their communication.

In the followingsections we present BUFFER, modify the
controller correctness criteria to account for the BUFFER,
give an example controller called DEL-ONE-SHOT, and
prove that it is correct. The proof uses a simulation map-
ping to show that the composition of DEL-ONE-SHOT

and BUFFER implements ONE-SHOT; the correctness
of DEL-ONE-SHOT then follows from Theorem 3.6 and
Lemma 3.3.

The BUFFER Automaton The buffer stores a single com-
mand from the controller. It forwards it to the train after
some delay. For each command, the delay is nondetermin-
istically chosen from the interval [��; �+] (where 0 � �� ��+).

Actions:
Inputs: bufBrakeOn and bufBrakeOff
Outputs: brakeOn and brakeOff

Vars:
Internal: request 2 fon;off;noneg,

initially none
violation, boolean, initially false

Discrete Transitions:
bufBrakeOn:

Eff: Cases of request,
on : no effect
off : violation := true
none : request := on

bufBrakeOff:
Eff: Cases of request,

on : violation := true
off : no effect
none: request := off

brakeOn:
Pre: request = on
Eff: request := none

brakeOff:
Pre: request = off
Eff: request := none

Tasks:
BUFF = fbrakeOn;brakeOffg : [��; �+]

Table 3. The BUFFER automaton.

The BUFFER automaton appears in Table 3. The variable
request stores a command while it is being buffered. The
history variable violation records when a new command ar-
rives from the controller before the previous one has exited
the buffer; this is considered to be an error condition.

Definition of Controller Correctness, Revisited We
modify the definition of a correct controller to account for
the buffer. We define a buffered-brake-controller to be a
HIOA with no external variables, no input actions, and
output actions bufBrakeOn and bufBrakeOff. A cor-
rect buffered-brake-controller is one that, when composed
with BUFFER, with the bufBrakeOn and bufBrakeOff
actions hidden, yields a correct brake-controller, as defined
in Section 3.

Parameters, Revisited Not only do we need to place re-
strictions on the value of the new parameters (��; �+), but
we also need to revise the constraints among the original
parameters. Now the controller is subject to more uncer-
tainty and therefore cannot achieve conformance to as tight
a target velocity range. The further constraints on the pa-
rameters can be viewed as forcing the target velocity range,[_cminf; _cmaxf] to be wider and hence the controller’s task eas-
ier. These are the additional constraints:

1. 0 � �� � �+
2. _cs � _cmaxf + �cmax�+

7

A ControllerTRAIN
brakeOff

BUFFER
bufBrakeOff

brakeOn bufBrakeOn

Figure 1. Overview of Delay Deceleration Model

3. _cmaxf � _cminf + �cmin�+
4. _cmaxf� _cs�cmax

+ �+ � �� � _cminf� _cs�cmin
� �+ + ��

The first constraint ensures that the delay interval is well-
defined. The next two are necessary to ensure that the buffer
does not overflow. The last constraint replaces constraint 6
in Section 3; the new version accounts not only for the non-
determinism of the braking strength but also for that of the
buffer. The other five original constraints remain as well but
are not shown here. Note that these constraints in this sec-
tion are more restrictive than the constraints from Section 3.

Example Controller: DEL-ONE-SHOT Here we give
an example of a valid buffered-brake-controller called
DEL-ONE-SHOT. This automaton is identical to ONE-SHOT

of Section 3 except in the names of its actions and the
duration of its phases. The output actions brakeOn
and brakeOff are replaced by bufBrakeOn and
bufBrakeOff. The time boundsA;B;C are replaced byA0; B0; C0. These new bounds are:A0 =max(0; A� �+)B0 =B + �+ � ��C0 =C � �+ + ��
We define DEL-ONE-SHOT-AND-BUF to be the com-
position of DEL-ONE-SHOT and BUFFER, with the
bufBrakeOn and bufBrakeOff actions hidden,
and define DEL-ONE-SHOT-SYS to be the composition of
TRAIN and DEL-ONE-SHOT-AND-BUF.

Correctness of DEL-ONE-SHOT In [26] we give a com-
plete proof of correctness of the DEL-ONE-SHOT controller.
The proof is based on a simulation mapping from this case
to the unbuffered case of Section 3 — specifically, from
DEL-ONE-SHOT-AND-BUF to ONE-SHOT. The safety and
timeliness properties of the unbuffered case carry over to the
buffered case via the simulation.

Since the safety and timeliness properties mention
only variables in TRAIN, it may seem surprising that
the simulation mapping excludes TRAIN. The simu-
lation mapping implies that the external behavior of

DEL-ONE-SHOT-AND-BUF is a subset of the external
behavior of ONE-SHOT. Since this external behavior is
all the input that TRAIN receives, TRAIN’s behavior in the
buffered case is a subset of its behavior in the unbuffered
case. Therefore, the safety and timeliness properties, which
involve only variables of TRAIN, carry over from the
unbuffered case to the buffered case.

We present the simulation relation R from
DEL-ONE-SHOT-AND-BUF to ONE-SHOT. The key in-
sight is that since external behavior must be preserved, the
timing of the external actions, brakeOn and brakeOff,
must coincide in the two systems. Let s denote a state in
the implementation (DEL-ONE-SHOT-AND-BUF), and u
denote a state in the specification (ONE-SHOT); the states
are related via R when the following two conditions hold:

1. u:now = s:now
2. By cases of s:phase:

(a) idle, then u:phase = idle

(b) braking, by cases of s:request:

i. on, then u:phase = idle

ii. none, then u:phase = braking andu:first(OFF) � s:first(OFF) + �� andu:last(OFF) � s:last(OFF) + �+
(c) done, by cases of s:request:

i. off, then u:phase = braking andu:first(OFF) � s:first(BUFF) andu:last(OFF) � s:last(BUFF)
ii. none, then u:phase = done

Roughly speaking, the simulation maps the phases
of the implementation DEL-ONE-SHOT-AND-BUF

to the phases of ONE-SHOT. The idle phase of
DEL-ONE-SHOT-AND-BUF, plus the portion of the
braking phase in which the on request is in the buffer,
together map to the idle phase of ONE-SHOT. The rest of
the braking phase of DEL-ONE-SHOT-AND-BUF, after
the brakeOn action, plus the portion of the done phase
in which the off request is in the buffer, together map to
the braking phase of ONE-SHOT. The rest of the done
phase of DEL-ONE-SHOT-AND-BUF, after the brakeOff
action, maps to the done phase of ONE-SHOT. Note that a
key part of the simulation mapping is a set of inequalities
involving the deadlines in the two automata.

Lemma 4.1 Relation R is a simulation from
DEL-ONE-SHOT-AND-BUF to ONE-SHOT.

8

Proof: We show the three conditions in the definition of a
simulation. As for the proofs of invariants, this breaks down
into separate cases for discrete steps and trajectories. (Note
that this proof depends on the stronger parameter constraints
of this section.)

Theorem 4.2 DEL-ONE-SHOT is a correct buffered-brake-
controller.

Proof: By Lemma 4.1 and Theorem 2.1,
DEL-ONE-SHOT-AND-BUF � ONE-SHOT. By Lemma 3.3
and Theorem 3.6 DEL-ONE-SHOT-AND-BUF is a correct
brake-controller. This implies that DEL-ONE-SHOT is
a correct buffered-brake-controller. (Again, this proof
depends on the stronger parameter constraints.)

This example demonstrates the use of simulation map-
pings to prove implementation relationships, including
implementation relationships involving timing properties.
Again, discrete and continuous reasoning are combined.

5 Case 3: Feedback and No Delay

In this section we (briefly) describe a more complex
model of the deceleration problem in which the train pro-
vides the controller with sensor feedback at regular inter-
vals, allowing the controller to adjust its proposed accelera-
tion. Figure 2 illustrates the components and their commu-
nication.

Our new version of the train automaton, SENSOR-TRAIN,
reports its acceleration, velocity and position in a status
message every �s time units. (In order to express this in
terms of an HIOA, we add a last(STATUS) deadline com-
ponent and manage it appropriately.) SENSOR-TRAIN has an
accel(a) input action for each real numbera, which causes
the actual acceleration to be set to anything in the interval[a� �cerr; a]. The proposed acceleration a is remembered in
a variable acc.

We model a controller ZIG-ZAG that performs an
accel output immediately after receiving each status
input. It initially requests an acceleration a such that, if
SENSOR-TRAIN followed a exactly, it would reach velocity
exactly _cmaxf when x = cf. Since the train might actually
decelerate faster than a, ZIG-ZAG might observe at any
sample point that the train is going slower than expected.
In this case, ZIG-ZAG does not change a until the velocity
actually becomes � _cmaxf. Thereafter, at each sample point,
ZIG-ZAG requests an acceleration that aims to reach _cmaxf

at exactly the following sample point.
We prove the same two properties for this case as we did

for the no-feedback case, but for tighter bounds on the fi-
nal velocity. The argument again uses invariants. For exam-
ple, part of our argument involves showing that in all reach-
able states, _x � _cminf. Now to prove this by induction, we

need auxiliary statements about what is true between sample
points, for example:

Lemma 5.1 In all reachable states between sample points,_x+ (acc � �cerr)(last(STATUS)� now) � _cminf.

That is, if the current velocity is modified by allowing the
minimum acceleration consistent with the current acc, until
the next sample point, then the result will still be � _cminf.
Note the use of the last(STATUS) deadline to express the
time until the next sample point. This lemma is proved by
induction.

This example illustrates how our methods can be used
to handle more complicated examples, including periodic
sampling and control. It shows how to reason about peri-
odic sampling using intermediate invariants involving thelast(STATUS) deadline: The controller issues control re-
quests to the system at sample times, but can “lose control”
of the system’s behavior between sample points; the invari-
ants are used to bound how badly the system’s performance
can degrade between sample points.

6 Case 4: Delay and Feedback

This case is more complicated in its details, but does not
require any new ideas not present in the previous three cases.
We omit the details here.

7 Conclusion

We have demonstrated how hybrid I/O automata and
their associated proof techniques can be applied to a non-
trivial hybrid system case study. These techniques include
HIOA composition, invariants, and simulations, combined
with the usual techniques of continuous analysis. The case
study proves safety and timeliness properties for four decel-
eration controllers under different communication models.

We model all system components, both continuous and
discrete, and the interactions among them. Deadline vari-
ables are used to express timing restrictions. Correctness
conditions are formulated in terms of the real-world compo-
nents of the systems.

The correctness proofs are based predominantly on
invariant assertions, including assertions involving real-
valued quantities representing real-world behavior, and as-
sertions involvingdeadline variables representing timing re-
strictions. The systems are described at different levels of
abstraction, with simulation mappings used to connect the
levels. Deadline variables are used to reason about periodic
sampling. The proofs combine discrete and continuous rea-
soning within a single framework. Uncertainty is handled
carefully throughout. The proofs cover all cases, not just the
apparent worst cases. The proofs are clear and scale well
from the simplest case to the feedback with delay case.

9

A Controller
accel(a)

status(a; v; p)SENSOR-TRAIN

Figure 2. Overview of Feedback Deceleration Model

Our work does not supplant the usual methods of contin-
uous mathematics, but rather incorporates them. We do not
provide any new methods for deriving controllers, but rather
a framework for understanding their requirements and for
verifying that proposed controllers work correctly.

It remains to apply these techniques to additional case
studies in automated transportation, especially those with
complex discrete activity. We are currently modelling multi-
vehicle maneuvers arising in the California PATH project
[6, 5, 13]. We are also extending the preliminary treatment
of safety systems in [27] to handle additional safety checks.
The related discipline of air traffic control should also pro-
vide some interesting case studies.

It also remains to integrate into our framework the tech-
niques of relevant disciplines such as control theory. For ex-
ample, it would be useful to have a catalog of results from
control theory that are especially useful for reasoning about
transportationsystems using HIOAs. Another direction is to
develop computer tools to support the representation, spec-
ification and verification of such systems using HIOAs. All
of this work should lead toward a long-term goal of devel-
oping industrial strength formal tools to help in the design
of real transportation systems.

References

[1] R. Alur, C. Courcoubetis, T. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. Theoretical Computer Science, 138:3–34,
1995.

[2] R. Alur and D. Dill. Automata for modelling real-time sys-
tems. In Proc. 17th ICALP Lecture Notes in Computer Sci-
ence 443, pages 322–335. Springer-Verlag, 1990.

[3] J. Frankel, L. Alvarez, R. Horowitz, and P. Li. Robust platoon
maneuvers for AVHS. Manuscript, Berkeley, November 10,
1994.

[4] R. Gawlick, R. Segala, J. Søgaard-Andersen, and N. Lynch.
Liveness in timed and untimed systems. Technical Report
MIT/LCS/TR-587, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA, 02139,
December 1993. Condensed version in Serge Abiteloul and
Eli Shamir, editors, Proceedings of the 21st International
Colloquim, ICALP94, volume 820 of Lecture Notes in Com-
puter Science, pages 166-177, Jerusalem, Israel, July 1994.
Springer-Verlag.

[5] D. Godbole and J. Lygeros. Longitudinal control of the lead
car of a platoon. California PATH Technical Memorandum

93-7, Institute of Transportation Studies, University of Cali-
fornia, November 1993.

[6] D. N. Godbole, J. Lygeros, and S. Sastry. Hierarchical hybrid
control: A case study. Preliminary report for the California
PATH program, Institute of Transportation Studies, Univer-
sity of California, August 1994.

[7] C. Heitmeyer and N. Lynch. The generalized railroad cross-
ing: A case study in formal verification of real-time systems.
In Proceedings of the Real-Time Systems Symposium, pages
120–131, San Juan, Puerto Rico, December 1994. IEEE. Full
version in Technical Memo MIT/LCS/TM-511, Laboratory
for Computer Science, Massachusetts Institute of Technol-
ogy, Cambridge, MA, November 1994.

[8] C. Heitmeyer and N. Lynch. Formal verification of real-time
systems using timed automata. In C. Heitmeyer and D. Man-
drioli, editors, Formal Methods for Real-Time Computing,
Trends in Software, chapter 4, pages 83–106. John Wiley &
Sons Ltd, April 1996.

[9] T. Henzinger, Z. Manna, and A. Pnueli. Timed transition sys-
tems. In J. W. de Bakker, C. Huizing, and G. Rozenberg, ed-
itors, Proceedings of REX Workshop “Real-Time: Theory in
Practice”, volume 600 of LectureNotes in Comupter Science,
pages 226–251. Springer-Verlag, June 1991.

[10] L. Lamport. The temporal logic of actions. Technical Re-
port 79, Digital Systems Research Center, December25 1991.

[11] G. Leeb and N. Lynch. Proving safety properties of the steam
boiler controller: Formal methods for industrial applications,
a case study, 1996. To appear in Lecture Notes in Computer
Science, Springer-Verlag series.

[12] V. Luchangco. Using simulation techniques to prove tim-
ing properties. Master’s thesis, Department of Electrical En-
gineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA 02139, June 1995.

[13] J. Lygeros and D. N. Godbole. An interface between con-
tinuous and discrete-event controllers for vehicle automation.
California PATH Research Report UCB-ITS-PRR-94-12, In-
stitute of Transportation Studies, University of California,
April 1994.

[14] N. Lynch. Modelling and verification of automated transit
systems, using timed automata, invariants and simulations. In
R. Alur, T. Henzinger, and E. Sontag, editors, Hybrid Sys-
tems III: Verification and Control (DIMACS/SYCON Work-
shop on Verification and Control of Hybrid Systems, New
Brunswick, New Jersey, October 1995), volume 1066 of Lec-
ture Notes in Computer Science, pages 449–463. Springer-
Verlag, 1996.

[15] N. Lynch. A three-level analysis of a simple acceleration
maneuver, with uncertainties. In Proceedings of the Third
AMAST Workshop on Real-Time Systems, pages 1–22, Salt
Lake City, Utah, March 1996.

10

[16] N. Lynch, R. Segala, F. Vaandrager, and H. B. Weinberg. Hy-
brid I/O automata. In R. Alur, T. Henzinger, and E. Son-
tag, editors, Hybrid Systems III: Verification and Control (DI-
MACS/SYCON Workshop on Verification and Control of Hy-
brid Systems, New Brunswick, New Jersey, October 1995),
volume 1066 of Lecture Notes in Computer Science, pages
496–510. Springer-Verlag, 1996.

[17] N. Lynch and F. Vaandrager. Forward and backward sim-
ulations – Part II: Timing-based systems. Information
and Computation. To appear. Available now as Technical
Memo MIT/LCS/TM-487.c, Laboratory for Computer Sci-
ence, Massachusetts Institute of Technology,Cambridge, MA
02139, April 1995.

[18] N. Lynch and F. Vaandrager. Forward and backward simula-
tions — Part I: Untimed systems. Information and Computa-
tion, 121(2):214–233, September 1995.

[19] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid
systems. In J. de Bakker, C. Huizing, W. de Roever, and
G. Rozenberg, editors, REX Workshop on Real-Time: The-
ory in Practice, volume 600 of Lecture Notes in Computer
Science, pages 447–484, Mook, The Netherlands, June 1991.
Springer-Verlag.

[20] K. Marzullo, F. B. Schneider, and N. Budhiraja. Derivation
of sequential real-time, process control programs. In A. M.
van Tilborg and G. M. Koob, editors, Foundations of Real-
Time Computing, pages 39–54. Kluwer Academic Publishers,
1991.

[21] M. Merritt, F. Modugno, and M. Tuttle. Time constrained
automata. In J. C. M. Baeten and J. F. Goote, editors,
CONCUR’91: 2nd International Conferenceon Concurrency
Theory, volume 527 of Lecture Notes in Comupter Science,
pages 408–423, Amsterdam, The Netherlands, Aug. 1991.
Springer-Verlag.

[22] S. Nadjm-Tehrani. Modelling and formal analysis of an air-
craft landing gear system. In Second European Workshop
on Real-Time and Hybrid Systems, pages 239–246, Grenoble,
France, May 1995.

[23] J. Søgaard-Andersen. Correctness of Protocols in Dis-
tributed Systems. PhD thesis, Technical University of Den-
mark, Lyngby, Denmark, December 1993. ID-TR: 1993-131.

[24] F. Vaandrager and N. Lynch. Action transducers and timed
automata. In W. R. Cleaveland, editor, CONCUR ’92: 3rd In-
ternational Conference on Concurrency Theory, volume 630
of Lecture Notes in Computer Science, pages 436–455, Stony
Brook, NY, USA, August 1992. Springer Verlag.

[25] J. Vitt and J. Hooman. Specification and verification of a
real-time steam boiler system. In Second EuropeanWorkshop
on Real-Time and Hybrid Systems, pages 205–208, Grenoble,
France, May 1995.

[26] H. Weinberg. Correctness of vehicle control sys-
tems: A case study. Master’s thesis, Department of
Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA
02139, February 1996. Also, MIT/LCS/TR-685 and URL
http://theory.lcs.mit.edu/tds/HBW-thesis.html.

[27] H. B. Weinberg, N. Lynch, and N. Delisle. Verification of
automated vehicle protection systems. In R. Alur, T. Hen-
zinger, and E. Sontag, editors, Hybrid Systems III: Verifica-
tion and Control (DIMACS/SYCON Workshop on Verifica-
tion and Control of Hybrid Systems, New Brunswick, New

Jersey, October 1995), volume 1066 of LectureNotes in Com-
puter Science, pages 101–113. Springer-Verlag, 1996.

11

