Correctnessof Vehicle Control Systems— A Case Study

H. B. Weinberg and Nancy Lynch

Laboratory for Computer Science
Cambridge, MA 02139, USA

Abstract

Several example vehicle deceleration maneuvers arising
in automated transportation systems are specified, and their
correctness verified, using the hybrid I/O automaton model
of Lynch, Segala, Vaandrager and Weinberg [16]. All sys-
tem components are formalized using hybrid 1/O automata,
and their combination described using automaton composi -
tion. The proofs use invariant assertions, simulation map-
pings, and differential calculus.

1 Introduction

A hybrid systemisonein which digital and analog com-
ponents interact. Typica examples of hybrid systems are
real-time process-control systems such as automated facto-
ries or automated transportation systems, in which the dig-
ital components monitor and control continuous physical
processes in the analog components. The computer science
community has developed forma models and methods for
reasoning about digital systems, while the control theory
community has done the same for analog systems. How-
ever, systems that combine both types of activity appear to
require new methods. The development and application of
such methodsis an active area of current research.

One formal tool that has recently been developed is the
hybrid 1/0 automaton (HIOA) modd [16]. In this case
study, we show how the HIOA model can be used to spec-
ify and verify part of an automated transportation system —
a vehicle deceleration maneuver. The methods we use in-
clude computer-science-based techniques such as automa-
ton composition, invariant assertions, and simulation map-
pings, aswell as simple continuousanalysis. The purpose of
the case study istoinvestigate the applicability of the HIOA
model and various computer-science-based techniques to
automated transportation systems in particular, and to hy-
brid systems in general. We are especialy concerned that
the methods allow faithful representation of hybrid systems
(includingall components), and clear and scal able proofs of

significant properties of these systems.

The hybrid 1/0O automaton model is an extension of the
timed 1/0 automaton model of [17, 4], inspired by the phase
transition system model of [19] and the similar hybrid sys-
tem model of [1]. A HIOA isa (possibly) infinite state la-
belled transition system. The states of aHIOA arethevalu-
ations of aset of variables. Certain states are distinguished
as start states. The transitions(steps) of aHIOA are of two
types:. discrete and continuous. The discrete transitions are
labelled with actions. Both the variables and the actionsare
partitionedinto three categories: input, output, and internal .
A hybrid execution of a HIOA is a sequence of transitions
that describes a possible behavior of the system over time.
A hybrid trace isthe externally visible part of an execution
(i.e., the non-interna part).

We say that one HIOA implements a second HIOA if
the set of traces of the first is a subset of that of the sec-
ond. Thiscapturesthenotionthat theimplementation HIOA
has no external behavior that isnot alowed by the specifi-
cation HIOA. When two HIOASs are composed in paralldl,
they synchronize on shared input/output actions and shared
input/output variables. Under certain easily checked con-
ditions, the parallel composition of two HIOAs is itself a
HIOA. An important property of HIOAsis substitutivity: in
asystem composed of HIOAS, replacing componentsby im-
plementations of those components yields an implementa
tion of the entire system.

Ashasbeen the case in previouswork withtimed 1/0 au-
tomata, most of the proofsin this HIOA-based case study
use invariant assertions and simulation mappings. Anin-
variant assertion is a predicate on states that is true in ev-
ery reachable state. Invariant assertions are usually proved
by induction on the length of an execution. A ssimulationis
a mapping between states of two HIOAS that can be used
to show that one HIOA implements another. The proof that
agiven mapping isasimulation is also an induction on the
length of an execution of the implementation; the inductive
step matches individual transitions in the implementation
with corresponding transitionsor sequences of transitionsin
the specification. Even timing properties can be proved us-

ing these techniques: the key idea is to build timing infor-
mation into the state where it can be tested by assertions.

Our methods have severa benefits. First, the HIOA
model and itscomposition operation permit complete repre-
sentation of hybrid systems, including all components, con-
tinuousand discrete, and theinteractionsamong them. Sec-
ond, theinductivestructureand stylized nature of the proofs
make them easy towrite, check, and understand. In previous
work, such proofs have even been checked using automated
theorem proving techniques. Third, theimplementation re-
lation allowsthe description of asystem at different levels of
abstraction. Assertionsproved for high level models extend
tothelower level model s viathe simulation mappings. This
hierarchy hel psmanage the complexity of theoverall system
description, and it helps simplify the proofs because asser-
tionsare usually easier to prove on the more abstract mod-
els. Fourth and finally, the methods are not completely au-
tomatic. They requirethe user to supply invariantsand sim-
ulations, which express key insights about the system and
serve as useful documentation.

Typica examples of automated transportation systems
includethe Raytheon Personal Rapid Transit System and the
CdliforniaPATH project [6, 5, 13]. In these hybrid systems,
a number of computer-controlled vehicles share a network
of tracks or highways. The digital part of the system isthe
computer vehicle controller and the analog part of the sys-
tem consists of the vehicle, its engine, the guideway, and
so forth. In [6], the control of the transportation system is
described hierarchically — the higher levels coordinate and
determine strategy while the lowest level performs specific
maneuvers.

Our case study focuses on a single maneuver: the task
of decelerating a vehicle to a target speed within a given
distance. Such a maneuver isinvoked, for example, when
a vehicle is approaching a region whose maximum allow-
able velocity is lower than the vehicle's current velocity.
We model avehicle and its controller as two communicat-
ing HIOAs. We consider four different sets of assumptions
about the communication between vehicle and controller,
based on whether or not there is feedback from the vehi-
cleto the controller and whether or not there is communica
tion delay from the controller to the vehicle. For each case,
we give aformal specification of what it means for a con-
trollerto correctly implement the decel eration maneuver, we
givean exampleimplementation of such acontroller, and we
verify that the implementation is correct. All of our proofs
useinvariant assertions, including assertionsinvolving tim-
ing properties, and some al so use simulation mappings. Dis-
crete and continuous methods are combined smoothly, and
uncertainty isintegrated throughout the presentation.

Our contributions are (a) The complete modelling and
proof of the four maneuvers. (b) Many intermediate formal
concepts and lemmas that can be reused in formal reasoning

about other automated transit systems. (c) A demonstration
of the effectiveness of our computer-science-based methods
for reasoning about hybrid systems.

This case study is part of alarger project on modelling,
verifying, and analyzing problemsarising in automated tran-
Sit systems. A survey of the early results of that project
appears in [14]. A preliminary study of the Generalized
Railroad Crossing problem appearsin [7, 8]; this uses only
the timed /O automaton model, not the HIOA model. In
[15], levels of abstraction are used to relate continuous and
discrete control of a vehicle maneuver, as well as to re-
late derivative-based and function-based system descrip-
tions. Safety assurance systemsfor automated transit are ex-
amined in [27]. Current work involves modelling the “pla-
toon join” maneuver from the PATH project [3], aswell as
continuing the project on safety assurance systems.

The development of models and verification methods for
timing-based systemsis an active research area within com-
puter science. Thetimed 1/O automaton model issimilar, for
example, tomodelsof Alurand Dill [2], of Lamport [10] and
of Henzinger, Mannaand Pnueli [9]. In contrast to thosefor-
malisms, the devel opment and use of thetimed 1/0 automa:
tonmodel has focused on compositiona properties[24], im-
plementation relations [17, 23], and semi-automated proof
checking [12], with less emphasis on syntactic forms, tem-
poral logics, and fully automatic analysis. Just astimed 1/0
automata have been extended to hybrid /O automatato treat
hybrid systems, so have other real-time models. For exam-
ple, the timed transition system model of [9] isextended to
the phase transition system model in [19]. Phase transition
systems are analogous to hybrid I/O automata: their tran-
sitions correspond to our discrete steps and their activities
correspond to our trgectories. However, phase transition
systems lack good support for composition and abstraction.
The hybrid system model of [1] issimilar to the phase tran-
sition system model except that it includes synchronization
label sthat correspond to our actions. Thisallowsanotion of
paralel composition. The hybrid system model differsfrom
our HIOA model because it has no input/output distinction
on either labels (actions) or variables.

The methods of invariant assertions and simulation map-
pings are widely used in computer science. An overview of
these methods, for untimed and timed systems, appears in
[18, 17].

Another project involving forma modelling of train con-
trol systems, using computer science techniques, was car-
ried out by Schneider and co-workers [20]. Their empha
sis was on the use of an extension of Dijkstra’'s weakest-
precondition cal culusto derive correct solutions. Other case
studiesin modelling hybrid systems include two analyses of
steam boiler controllers— one using timed 1/0 automaton
methods[11] and another using the automated proof checker
PVS[25] — and a project using a variety of techniques to

model and verify controllers for aircraft landing gear [22].
Thislatter reference a so includesexamples from automated
transportation.

The full version of thiswork appearsin [26].

2 Hybrid 1/O Automaton Model

The hybrid I/O automaton model [16] is based on the
timed 1/0 automaton model of [17, 4], but it represents con-
tinuous behavior more explicitly. We give a brief summary
here, and refer the reader to [16] for the details.

A state of a HIOA is defined to be a valuation of a set
of variables. A trajectory w is afunction that maps a | eft-
closed interval 7 of the reals, with left endpoint equal to 0,
to states; atrajectory represents the continuous evol ution of
the state over an interval of time. A trgjectory with domain
[0, 0] iscalled apoint trgjectory. Various operations are de-
fined on trgjectories, including restriction to a subset of the
domain ([), projection on a subset of the state variables (1),
and concatenation.

A hybrid 1/O automaton (HIOA) A =
(U, X,Y, X xint yiout @ D W) consists of:

e Threedigointsets U/, X and Y of variables, called in-
put, internal and output variables, respectively. Vari-
ablesin E = U/ UY are called external, and variables
inL = X UY arecalled locally controlled. We write
VE2UUL.

e Three digoint sets X7, ¥t 3194t of input, internal
and output actions, respectively. We assume that ¥i"
contains a specia element ¢, the environment action,
which represents the occurrence of adiscretetransition
outsidethe system that is unobservabl e, except (possi-
bly) through its effect on the input variables. Actions
inLert = nin | nout gre called external, and actions
inxloe 2 yintyxevt gre called locally controlled. We
write X = ¥ U xlee,

e A nonempty set © of start states, a subset of the set of
states. This set must be closed under change of values
for input variables.

o A sat D of discretetranstions, i.e., (state, action, state)
triples. This set must satisfy three axioms, saying that
input actions are always enabled, that the environment
action e only affects inputs, and that any input variable
may change when any discrete action occurs. We use
s—%+ s’ asshorthand for (s, a, s’) € D.

o A set W of trgjectoriesover thevariablesof A. Thisset
must satisfy three axioms, asserting existence of point
tragjectories for all states, and closure of the set of tra-
jectories under subinterval and limit.

When discussing severa HIOAS, we often subscript the
names of the various components with the name of the
HIOA.

We now define executions for HIOAs. A hybrid execu-
tion fragment of A isafiniteor infinite alternating sequence
of trgjectories and actions, &« = wpajwiasws - - -, ending
with atrgjectory if « isafinite sequence, and with discrete
steps connecting consecutive pairs of trgjectories, labelled
by the intervening actions. An execution fragment records
all the discrete changes that occur in an evolution of a sys-
tem, plus the “continuous’ state changes that take place in
between. A hybrid execution is an execution fragment in
which the first state is a start state. A state of A is defined
tobereachableif itisthelast state of some finite hybrid ex-
ecution of A.

The visible behavior of a HIOA is described in terms of
its“hybridtraces’. The hybridtraceof ahybridexecutionis
obtained by projecting the trajectories on the external vari-
ables, replacing al theinterna actionsthat cause changesin
the externa state by a specid placeholder +, and removing
all the interna actionsthat cause no such changes. (Inthis
last case, the surrounding trajectories are concatenated.)

HIOAs A and B are comparableif they havethe same ex-
ternal actionsand external variables. If A and B are compa-
rablethen wesay that A < B providedthat the set of hybrid
traces of A isasubset of that of B. Inthiscase, we say that
A implements B.

We next define ssmulation mappings for HIOAS; these
are used to describe systems using different levels of ab-
straction. Let A and B be comparable HIOAS. A simulation
from A to B isarelation R from states of A to states of B
satisfying:

1. If s4 € ©4 then there exists sg € ©p such that
SA RSB.

2. If sy —%4 8,54 Rsp,andboths4 and sp arereach-
able, then B has a finite execution fragment starting
with sg, having the same trace as the given step, and
ending with astate s’; with s’y R 5.

3. Ifw, isatrgectory of A froms, tos’y, s4 Rsp, and
both s 4 and sp arereachable, then B has afinite exe-
cutionfragment startingwith s g, havingthe same trace
asw, and ending with a state s’; with s, R 5.

The importance of simulationsis given by the following
theorem.

Theorem 2.1 If A and B are comparable HIOAs and there
isasimulationfrom A to B, then A < B.

Finally, we define composition and hiding operationsfor
HIOAs. We say that HIOAs A and B are compatibleif they
have no output actions or output variables in common, and

if nointernal variable of either isavariable of the other. If
A and B are compatiblethen their composition isdefined to
bethetuple (U, X, Y, X7 xint seut @ D W) given by

° U:(UAUUB)—(YAUYB),X:XAUXB,and
Y=Y, UY3.

o X" = (U UNiR) — (X3 UDH), Bint = wint U
Tt and XUt = g U DR

e Oistheset of statess suchthat s[Vy4 € ©4 As[Vp €
Op.

e D is the set of triples (s,a,s’) such that
sIVa™9 s vy A s[Ve™EYY s'[Vs. (Here,
7a(a) is defined to be « if a isan action of A and e
otherwise; analogously for B. | denotes restriction to
a subset of the variables.)

o Wistheset of trgjectoriesw suchthatw | V4 € Wi A
w | Vg € Wg. (Here, | denotes projectionon asubset
of thevariables.)

The parallel composition of A and B isitsef aHIOA. The
followingtheorem says that acomponent can be replaced by
an implementation in a composition.

Theorem 2.2 Suppose Ay, A, and B areHIOAswith A; <
A,, and each of 4; and A, is compatible with B. Then
Aq||B < As||B.

Two hiding operations can be defined on any HIOA, one
that hides a designated subset of the output actions and one
for a designated subset of the output variables. The hiding
operators also interact properly with theimplementation re-
lation.

3 Casel: No Delay or Feedback

In the deceleration problem we consider a computer-
controlled train moving along atrack. Thetask of thetrain's
controlleristo slow thetrainwithinagiven distance. Inthis
section we consider avery simplemodel of thetrain and the
controller. The train has two modes, braking and not brak-
ing. The controller can effect an instant change in the mode
of thetrain (relaxed in Sections 4 and 6). The controller re-
ceives no information from the train (relaxed in Sections 5
and 6). Thebraking strength of thetrain varies nondetermin-
istically withinknown bounds. We model both thetrain and
the controller as hybrid I/O automata.

In the foll owing subsections we describe the parameters
of the specification, give a hybrid I/O automaton model for
thetrain, define correctness of acontroller for thistrain, give
an example correct controller, and provethat it is correct.

Parameters All the parameters are constants denoted by
¢ with some dots above it and a subscript. Dots above the
constant identify thetype of the constant: position (no dots),
velocity (onedot), or accel eration (two dots). These dotsare
just asyntacticdevice—they do not represent differentiation.
The subscript identifies the particular constant. Initia val-
ues of the train’s position, velocity and acceleration are cs,
¢s, and ¢és. The goal of the decel eration maneuver isto slow
thetrainto avelocity inthe interval [émint, émaxi] @ position
cf. Whenthetrainisnot brakingitsacceleration isexactly 0.
When the train is braking, its acceleration varies nondeter-
ministically between [¢min, ¢max|, both negative. The range
is intended to model inherent uncertainty in brake perfor-
mance. We impose the following constraints on the param-
eters:

1 es< e
2. és> Cmaxt > Cminf > 0
3. ¢=0

4. 5min S émax < 0

22 22
c —cC
5. Cf — Cs Z Zmaxf ™ ¥s

2 Emax

6. Cmai—fs < Cfmm—Cs

Thefirst three constraintsjust say that the initia positionis
before the final position, that the initial velocity is higher
than thetarget vel ocitieswhich are positive, and that theini-
tial acceleration is0. Since braking is stronger when accel-
eration is more negative, noticein the fourth constraint that
émin 1Sthe strongest braking strength, and ¢max the weakest.
The fifth constraint ensures that with the weakest possible
braking thereis till enough distance to reach the highest al-
lowable speed by position ¢;. The right hand side of this
equation uses afamiliar equation for “change in distancefor
change in velocity” from constant accel eration Newtonian
physics. To understand the sixth constraint consider that
since the controller receives no sensory information from
the train, it must decide a priori how long to brake. The
sixth constraint ensures that the least amount of time the
controller must brakeislessthan the greatest amount of time
that it can brake.

The TRAIN Automaton We modd thetrain as the HIOA
TRAIN represented in Table 1. The train’s physical state is
modelled using three variables: x, 2, and . As before, the
dots are a syntactic device; the fact there there is a differ-
ential relationship between the evolution of these variables
is a consequence of the definition of the trgjectory set for
TRAIN. The train accepts commands to turn the brake on
or off through discrete actions br akeOn and br akeOf f .

It stores the state of the brake in variable 5. While brak-
ing, thetrain applies an accel eration that is nondeterministi-
cally chosen at every point but is constrained to be an inte-
grable functionwith range intheinterval [¢min, ¢max]. While
not braking, the train has acceleration exactly 0. The vari-
able now represents the current time; when using assertions
to reason about the timing behavior of systems, it isconve-
nient to have an explicit state variable that records the cur-
rent time. At thispointin[26], we provevariousfundamen-

Actions:

Input: br akeOn and br akeCf f
Vars:

Output: = € R,initidly z = cs

z € R,initidly & = &

Z € R,initidly & = &

b, aboolean, initidly f al se

now € R2%, initially O
Discrete Transitions:

br akeOn:
Eff: b:=true
& :€ [émin, &max]
br akeOr f:
Eff: b:=fal se
r:=0
Trajectories:

if w(0).b = true then
w.Z isan integrable function
with range [Zmin, &max]
esew.z =0
forall ¢ € I thefollowing hold:

Table 1. The TRAIN automaton.

tal facts about the mechanics of thetrain. Most of thesefacts
relate the initid state and final states of atrajectory. Here,
we give two examples of such lemmas. The first bounds
changein velocity and position by change intime. The sec-
ond boundschangein position by changeinvelocity. (Nota-
tion: If s and s’ are statesand = isavariable, we often write
z for s.z and z’ for s’.x when s and s’ are understood.)

Lemma3.1l Let w be a trajectory of TRAIN whose initial
and final states are s and s’, respectively, and let A =
now — now. If b = t r ue then:

Lemma3.2 Letw, s, s’,and A beasinthepreviouslemma.
If 6 =true then:

@y it _
2Cmin 2Cmax

The train considered here is simple; in atreatment of a
system with more complex dynamics, the lemmas of this
section would be replaced by more complex lemmas of the
same general form. Such lemmas would be derived using
methods of continuous mathematics appropriate for the ap-
plication.

Definition of Controller Correctness Wedefine abrake-
controller to be a HIOA with no external variables, no in-
put actions, and output actions br akeOn and br akeOf f .
A correct brake-controller is one that when composed with
TRAIN, yieldsaHIOA whose hybrid traces satisfy:

Safety Inall reachable states: If @ = ¢ then éminr < @ <
émaxt- (That is, if thetrain ever reaches position ¢ then
the speed isin the desired range.)

Timeliness Thereexistst € R2" such that: Any execution
containing a state with now = ¢ also containsastatein
which 2 = ¢. (That is, thetrain must reach ¢; within
timet.)

The following lemma says that the safety and timeliness
properties are preserved by the implementation relation; in
other words, an implementation of acorrect brake-controller
isitself acorrect brake-controller.

Lemma33 If 4, < A, and A, is a correct brake-
controller, then A, isa correct brake-controller.

Proof: Followsfrom Theorem 2.2 and the definition of cor-
rectness. [|

Example Controller: oNE-SHOT There isabroad spec-
trum of correct controllers one could consider, from fully
deterministic to highly nondeterministic, and involving
any number of applications of the brake. In this section
we consider a correct brake-controller called ONE-SHOT.
ONE-SHOT applies the brake exactly once, i.e, it per-
formsexactly onebr akeOn action followed by exactly one
br akeOr f action. Except for thisrestriction, ONE-SHOT is
highly nondeterministic: it exhibitsal the correct braking
strategies that involve exactly one application of the brake.

We chose ONE-SHOT as an example because (a) itissim-
ple, (b) itsbehavior isinteresting enough to requiresomein-
teresting proof techniques, and (c) it can be used to help ver-
ify correctness of the more complicated controller givenin
Section 4, using asimulation proof and Lemma 3.3.

We define some more constants:

52 52
4 -1 (cf —ee— M)

Cs QCmax

c'maxf - c's
B =—
Cmax

c'minf - c's
C’ - =

Cmin

A representsthe longest amount of time a correct controller
can wait before applying the brake. B and C' are lower and
upper bounds, respectively, on the amount of time a cor-
rect controller should apply the brake if it only brakes once.
These constants are derived using methods of continuous
analysis. The formal description of ONE-SHOT appears in
Table2. (Notation: Each “task” isaset of actionsthat comes
equipped with lower and upper bound values onthetimere-
quired for some action of the task to occur, if any actions of
the task are enabled.)

Actions:
Output:
Vars:
Internal: phase € {i dl e, br aki ng,done},
initialy i dl e
Discrete Transitions:
br akeOn:
Pre: phase=idl e
Eff: phase:= br aki ng
brakeOr f:
Pre: phase = br aki ng
Eff: phase:= done
Tasks. ON = {brakeOn} : [0, 4]
OFF = {brakeCO f } : [B,C]

br akeOn andbr akeOf f

Table 2. The ONE-SHOT automaton

An execution of ONE-SHOT consists of three phases:
i dl e, br aki ng, and done. ONE-SHOT waits between 0
and A time units (i dl e phase), then applies the brake for
at least B and at most C' time units (br aki ng phase), and
then disengages the brake (done phase). The ON task gov-
erns the transitionsfrom i dl e to br aki ng and the OFF
task governsthetransitionsfrom br aki ng to done.

The notation used above is based on [21]. In order to
convert this description to a HIOA, the time constraints for
the tasks must be built into the automaton’s states, transi-
tions and trgjectories. We do this by incorporating dead-
linevariables last(ON), first(OF F') and last(OF F') into
the state, and mani pulating them so that the br akeOn and
br akeOr f actionsoccur at allowed times. That is, initialy
last(ON) = A. When br akeOn occurs, first(OF F)
and last(OF F) are set to times B and C' in the future, re-
spectively. ONE-SHOT does not allow timeto pass beyond
any last deadline currently in force, and does not alow a
brakeOF f action to occur if its first deadline has not yet
been reached. The trgjectories are ssimple — thereisno in-
teresting continuous behavior in the controller, so time just
passes without changing anything el se.

The entire system is modelled formally as the composi-
tion of the two HIOAS, TRAIN and ONE-SHOT, which we
call ONE-SHOT-SYS.

Correctness of ONE-SHOT At thispointin[26], we prove
the correctness of the oNE-SHOT controller. In the pro-

cess of doing this, we prove a variety of properties about
ONE-SHOT-SY S, amost all of which take theform of invari-
ant assertions. Some of these assertions involve the dead-
line variables last(ON), first(OF F') and last(OF F), i.e,
they encode claims about timing behavior. These proofs
demonstrate the clarity, simplicity and power of the asser-
tional proof style.

Here, we restrict ourselves to two key lemmeas that illus-
trate our use of invariant assertions and deadline variables.
The first lemmais used in the proof of the safety property,
which says that the followingis an invariant of the system:

T = ¢t = ¢minf < T < Cmaxt-

In particular, we focus on the right hand side of theinequal -
ity, # < émaxi- IN Order to prove thisinvariant, we prove a
stronger invariant:
22 *2
$§Cf:>6f—l‘ZM.
2Cmax

This invariant says that before reaching the fina position
there must be enough distance left to brake, even at the
weakest braking. It has as a specia case the upper bound
needed in the safety property (note that ¢pmax IS Nnegative).
In [26], we demongtrate this invariant for each phase sep-
arately and combinetheresultsinto aglobal invariant. Here
we present only the result for the braking phase:

Lemma3.4 In all reachable states of ONE-SHOT-SYS, if
12 -2
phase = br aki ng then¢f — z > “me ="

28max

Proof: By induction on the length (number of discrete steps
and tragjectories) in an execution. The inductive steps break
down into separate cases for discrete steps and trajectories.
The interesting cases are the ON steps and those trajectories
in which phase = br aki ng. The ON case follows from
the invariant for the idle phase. In the trgectory case, we
substitutefrom Lemma 3.2 into theinductivehypothesisand
simplify:

~2 =2
e — %

c—z > o — inductive hypothesis
N d:l 2_352
- < 5= Lemma3.2
Cmax
~2 2 IN2
cr—a' > Cmea=(E)7 subtract

2 Emax

The second lemmais used in the proof of the timeliness
property. It says that the brake must be disengaged before
thevel ocity has achanceto drop bel ow ¢pmins, even assuming
the strongest deceleration. Symmetrically, the brake cannot
be disengaged until after the velocity is guaranteed to reach
émaxf; EVEN assuming the weakest deceleration. Note the
useof thedeadlinevariables first(OF F') and last(OF F) in
these assertions. For example, theexpression last(OF F') —
now indicates the greatest amount of time the controller can
continue braking.

Lemma3.5 In all reachable states of ONE-SHOT-SYS, if
phase = br aki ng thefollowing hold:
1. last(OFF) — now < ‘mn—&

Cmin

2. first(OFF) — now > fmai=¢

Cmax

Proof: By induction. [|

Theorem 3.6 ONE-SHOT isa correct brake-controller.

This ssimple example aready illustrates several aspects
of our model and methods: It shows how vehicles and con-
trollerscan be modelled using HIOAs and composition, and
in particular, how deadline variables can be used to express
timing restrictions. It shows some typica correctness con-
ditions, expressed in terms of the real-world component of
the system. It shows how invariants can provide the keys
to proofs. Invariants can involve real-valued quantitiesrep-
resenting real-world behavior, thus allowing facts about ve-
locities, etc., to be proved using induction; invariants can
also involve deadline variables, thus allowing time bounds
to be proved by induction.

This proof combines discrete and continuous reasoning
within a rigorous framework that helps to ensure that the
combination is well-defined and the reasoning sound. The
proofs of invariants break down into separate cases involv-
ing discrete and continuousreasoning. The exampleasoiil-
lustrates careful handling of uncertainty. Finaly, the argu-
ments are genera —they handle al cases, and are not based
on identifying the apparent worst cases.

4 Case2: Delay and No Feedback

Inthis section we extend themodel of thetrain by nonde-
terministically delaying the braking commands. Rather than
modify the train automaton itself, we introduce a new au-
tomaton called BUFFER that serves as a buffer between the
train and a controller. Figure 1 illustrates the components
and their communi cation.

In thefollowing sectionswe present BUFFER, modify the
controller correctness criteria to account for the BUFFER,
give an example controller caled DEL-ONE-SHOT, and
prove that it is correct. The proof uses a simulation map-
ping to show that the composition of DEL-ONE-SHOT
and BUFFER implements ONE-SHOT; the correctness
of DEL-ONE-SHOT then follows from Theorem 3.6 and
Lemma 3.3.

The BUFFER Automaton The buffer stores a single com-
mand from the controller. It forwards it to the train after
some delay. For each command, the delay is nondetermin-
istically chosen fromtheinterval [6—, 1] (where(< 6~ <
&1).

Actions:
Inputs: buf Br akeOn and buf Br akeCf f
Outputs: br akeOn and br akeOr f
Vars:
Internal: request € {on, of f ,none},
initially none
violation, boolean, initidly f al se
Discrete Transitions:
buf Br akeOn:
Eff: Cases of request,
on : no effect
of f : violation:=true
none : request := on
buf BrakeOf f :
Eff: Cases of request,
on : violation:=t rue
of f : no effect
none: request := of f
br akeOn:
Pre: request = on
Eff: request := none
brakeOr f:
Pre: request = of f
Eff: request := none
Tasks:
BUFF = {br akeOn,brakeOf f } : [§~,6F]

Table 3. The BUFFER automaton.

The BUFFER automaton appearsin Table 3. The variable
request stores a command while it is being buffered. The
history variabl e violation records when anew command ar-
rives from the controller before the previous one has exited
the buffer; thisis considered to be an error condition.

Definition of Controller Correctness, Revisited We
modify the definition of a correct controller to account for
the buffer. We define a buffered-brake-controller to be a
HIOA with no externa variables, no input actions, and
output actions buf Br akeOn and buf Br akeCf f. A cor-
rect buffered-brake-controller is one that, when composed
with BUFFER, withthebuf Br akeOn and buf Br akeOf f

actions hidden, yields a correct brake-controller, as defined
in Section 3.

Parameters, Revisited Not only do we need to place re-
strictions on the value of the new parameters (6=, §1), but
we aso need to revise the constraints among the origina
parameters. Now the controller is subject to more uncer-
tainty and therefore cannot achieve conformance to as tight
atarget velocity range. The further constraints on the pa-
rameters can be viewed as forcing the target velocity range,
[¢mint, ¢maxt] 10 be wider and hence the controller’stask eas-
ier. These are the additional constraints:

1L 0<é <ot

2. c's Z c.maxf + 5max6+

br akeOn

buf Br akeOn

br akeO f
TRAIN

BUFFER

buf Br akeOr f
A Controller

Figure 1. Overview of Delay Deceleration Model

3. c'maxf > c'minf + émin6+

4. fmx=is gt 6 < fmimi gt 4 6o
The first constraint ensures that the delay interva is well-
defined. The next two are necessary to ensure that the buffer
does not overflow. The last constraint replaces constraint 6
in Section 3; the new version accounts not only for the non-
determinism of the braking strength but also for that of the
buffer. The other five origina constraintsremain aswell but
are not shown here. Note that these constraintsin this sec-
tion are more restrictivethan the constraintsfrom Section 3.

Example Controller: DEL-ONE-SHOT Here we give
an example of a vaid buffered-brake-controller called
DEL-ONE-SHOT. Thisautomaton isidentical to ONE-SHOT
of Section 3 except in the names of its actions and the
duration of its phases. The output actions br akeOn
and brakeO f are replaced by buf BrakeOn and
buf Br akeOF f. Thetimebounds A, B, C' arereplaced by
A’, B', C’. These new bounds are;

A" =max(0, A — 6T)
B =B+6t -6~
C'=C -6t 46~

We define DEL-ONE-SHOT-AND-BUF to be the com-
position of DEL-ONE-SHOT and BUFFER, with the
buf BrakeOn and buf BrakeOFf actions hidden,
and define DEL-ONE-SHOT-SY S to be the composition of
TRAIN and DEL-ONE-SHOT-AND-BUF.

Correctness of DEL-ONE-SHOT In [26] we give a com-
plete proof of correctness of the DEL-ONE-SHOT controller.
The proof is based on a simulation mapping from this case
to the unbuffered case of Section 3 — specifically, from
DEL-ONE-SHOT-AND-BUF t0 ONE-SHOT. The safety and
timeliness propertiesof the unbuffered case carry over tothe
buffered case viathe simulation.

Since the safety and timeliness properties mention
only variables in TRAIN, it may seem surprising that
the simulation mapping excludes TRAIN. The simu-
lation mapping implies that the external behavior of

DEL-ONE-SHOT-AND-BUF is a subset of the external
behavior of ONE-SHOT. Since this externa behavior is
all the input that TRAIN receives, TRAIN’S behavior in the
buffered case is a subset of its behavior in the unbuffered
case. Therefore, the safety and timeliness properties, which
involve only variables of TRAIN, carry over from the
unbuffered case to the buffered case.

We present the sSimulation relaion R from
DEL-ONE-SHOT-AND-BUF to ONE-SHOT. The key in-
sight isthat since external behavior must be preserved, the
timing of the externa actions, br akeOn and br akeCf f,
must coincide in the two systems. Let s denote a state in
the implementation (DEL-ONE-SHOT-AND-BUF), and wu
denote a state in the specification (ONE-SHOT); the states
arerelated via R when the following two conditions hold:

1. w.now = s.now

2. By casesof s.phase:

(@ idl e, thenu.phase =idle
(b) braki ng, by casesof s.request:
i. on,thenu.phase =idl e
ii. none,thenw.phase = br aki ng and
w.first(OFF) < s.first(OFF) + 6~ and
u.last(OFF) > s.last(OFF) + 6+

(c) done, by casesof s.request:
i. of f,thenu.phase = br aki ng and

w.first(OFF) < s.first(BUFF) and
u.last(OFF) > s.last(BUFF)

ii. none,thenu.phase = done

Roughly speaking, the simulation maps the phases
of the implementation DEL-ONE-SHOT-AND-BUF
to the phases of ONE-sHOT. The idl e phase of
DEL-ONE-SHOT-AND-BUF, plus the portion of the
br aki ng phase in which the on request is in the buffer,
together map to thei dl e phase of ONE-SHOT. Therest of
the br aki ng phase of DEL-ONE-SHOT-AND-BUF, after
the br akeOn action, plus the portion of the done phase
in which the of f request is in the buffer, together map to
the br aki ng phase of ONE-SHOT. The rest of the done
phase of DEL-ONE-SHOT-AND-BUF, after the br akeOf f
action, maps to the done phase of ONE-SHOT. Notethat a
key part of the simulation mapping is a set of inequalities
involving the deadlinesin the two automata.

Lemma4.l Relation R is a sSmulation from
DEL-ONE-SHOT-AND-BUF t0 ONE-SHOT.

Proof: We show the three conditionsin the definition of a
simulation. Asfor the proofsof invariants, thisbreaks down
into separate cases for discrete steps and trgjectories. (Note
that thisproof depends on the stronger parameter constraints
of thissection.) [|

Theorem 4.2 DEL-ONE-SHOT is a correct buffered-brake-
controller.

Proof: By Lemma 41 and Theorem 2.1,
DEL-ONE-SHOT-AND-BUF < ONE-SHOT. By Lemma 3.3
and Theorem 3.6 DEL-ONE-SHOT-AND-BUF is a correct
brake-controller. This implies that DEL-ONE-SHOT is
a correct buffered-brake-controller. (Again, this proof
depends on the stronger parameter constraints.) [|

This example demonstrates the use of simulation map-
pings to prove implementation relationships, including
implementation relationships involving timing properties.
Again, discrete and continuous reasoning are combined.

5 Case3: Feedback and No Delay

In this section we (briefly) describe a more complex
model of the deceleration problem in which the train pro-
vides the controller with sensor feedback at regular inter-
vals, alowing the controller to adjust its proposed accelera-
tion. Figure 2 illustrates the components and their commu-
nication.

Our new version of thetrain automaton, SENSOR-TRAIN,
reportsits acceleration, velocity and positionin ast at us
message every 6 time units. (In order to express thisin
terms of an HIOA, we add a last(STATUS) deadline com-
ponent and manageit appropriately.) SENSOR-TRAIN hasan
accel (a) inputactionfor each real number a, which causes
the actual acceleration to be set to anything in the interval
[a — Cer, a]. The proposed acceleration a is remembered in
avariable acc.

We model a controller zIG-zAG that performs an
accel output immediately after receiving each st at us
input. It initially requests an acceleration a such that, if
SENSOR-TRAIN followed a exactly, it would reach velocity
exactly émaxs When & = ¢;. Since the train might actually
decelerate faster than @, z1G-zAG might observe at any
sample point that the train is going slower than expected.
In this case, zIG-zAG does not change a until the velocity
actually becomes < énmas- Thereafter, at each sample point,
ZIG-ZAG requests an acceleration that aims to reach énmaxs
at exactly the following sample point.

We prove the same two propertiesfor this case aswe did
for the no-feedback case, but for tighter bounds on the fi-
nal velocity. The argument again usesinvariants. For exam-
ple, part of our argument involves showing that in al reach-
able states, # > émins. Now to prove this by induction, we

need auxiliary statements about what istrue between sample
points, for example:

Lemmab5.1 Inall reachable states between sample points,
&+ (acc — éar)(last(STATUS) — now) > Cmint.

That is, if the current velocity is modified by allowing the
minimum accel eration consistent with the current ace, until
the next sample point, then the result will still be > éminr.
Note the use of the last(STATUS) deadline to express the
time until the next sample point. Thislemmais proved by
induction.

This example illustrates how our methods can be used
to handle more complicated examples, including periodic
sampling and control. It shows how to reason about peri-
odic sampling using intermediate invariants involving the
last(STATUS) deadline: The controller issues control re-
guests to the system at sample times, but can “lose control”
of the system’s behavior between sample points; the invari-
ants are used to bound how badly the system’s performance
can degrade between sample points.

6 Case4: Delay and Feedback

This caseis more complicated in its details, but does not
requireany new ideas not present inthe previousthree cases.
We omit the details here.

7 Conclusion

We have demonstrated how hybrid 1/0 automata and
their associated proof techniques can be applied to a non-
trivial hybrid system case study. These techniques include
HIOA composition, invariants, and simulations, combined
with the usua techniques of continuousanaysis. The case
study proves safety and timeliness propertiesfor four decel -
eration controllersunder different communication models.

We moddl al system components, both continuous and
discrete, and the interactions among them. Deadline vari-
ables are used to express timing restrictions. Correctness
conditionsare formulated in terms of the rea -world compo-
nents of the systems.

The correctness proofs are based predominantly on
invariant assertions, including assertions involving real-
valued quantities representing rea -world behavior, and as-
sertionsinvolving deadlinevariabl esrepresenting timing re-
grictions. The systems are described at different levels of
abstraction, with simulation mappings used to connect the
levels. Deadlinevariables are used to reason about periodic
sampling. The proofscombine discrete and continuousrea-
soning within a single framework. Uncertainty is handled
carefully throughout. The proofscover all cases, not just the
apparent worst cases. The proofs are clear and scale well
from the simplest case to the feedback with delay case.

accel (a)

SENSOR-TRAIN

A Controller

stat us(a,v,p)

Figure 2. Overview of Feedback Deceleration Model

Our work does not supplant the usual methods of contin-
uous mathematics, but rather incorporatesthem. We do not
provideany new methodsfor deriving controllers, but rather
a framework for understanding their requirements and for
verifying that proposed controllerswork correctly.

It remains to apply these techniques to additional case
studies in automated transportation, especialy those with
complex discreteactivity. Weare currently modelling multi-
vehicle maneuvers arising in the California PATH project
[6, 5, 13]. We are also extending the preliminary treatment
of safety systemsin [27] to handle additional safety checks.
The related discipline of air traffic control should aso pro-
vide some interesting case studies.

It also remains to integrate into our framework the tech-
niquesof relevant disciplinessuch as control theory. For ex-
ample, it would be useful to have a catalog of results from
control theory that are especialy useful for reasoning about
transportationsystemsusing HIOAs. Another directionisto
develop computer tools to support the representation, spec-
ification and verification of such systemsusing HIOAs. All
of thiswork should lead toward a long-term goal of devel-
oping industria strength formal toolsto help in the design
of real transportation systems.

References

[1] R. Alur, C. Courcoubetis, T. Henzinger, P. Ho, X. Nicallin,
A. Olivero, J. Sifakis, and S. Yovine. Thealgorithmic analysis
of hybrid systems. Theoretical Computer Science, 138:3-34,

1995.
R. Alur and D. Dill. Automata for modelling real-time sys-

tems. In Proc. 17th ICALP Lecture Notes in Computer Sci-

ence 443, pages 322-335. Springer-Verlag, 1990.
J. Frankel, L. Alvarez, R. Horowitz, and P. Li. Robust platoon

maneuversfor AVHS. Manuscript, Berkeley, November 10,

1994.
R. Gawlick, R. Segala, J. Sggaard-Andersen, and N. Lynch.

Livenessin timed and untimed systems. Technical Report
MIT/LCS/ITR-587, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA, 02139,
December 1993. Condensed version in Serge Abiteloul and
Eli Shamir, editors, Proceedings of the 21st International
Colloguim, ICALP94, volume 820 of Lecture Notesin Com-
puter Science, pages 166-177, Jerusalem, Israel, July 1994.
Springer-Verlag.

D. Godbole and J. Lygeros. Longitudinal control of the lead
car of a platoon. California PATH Technical Memorandum

(2]

(3]

[4]

(5]

10

93-7, Ingtitute of Transportation Studies, University of Cali-
fornia, November 1993.

D. N. Godbole, J. Lygeros, and S. Sastry. Hierarchical hybrid
control: A case study. Preliminary report for the California
PATH program, Institute of Transportation Studies, Univer-

sity of California, August 1994.

C. Heitmeyer and N. Lynch. The generalized railroad cross-
ing: A casestudy in formal verification of real-time systems.
In Proceedings of the Real-Time Systems Symposium, pages
120-131, San Juan, Puerto Rico, December 1994. |EEE. Full
version in Technical Memo MIT/LCS/TM-511, Laboratory
for Computer Science, Massachusetts Institute of Technol-
ogy, Cambridge, MA, November 1994.

C. Heitmeyer and N. Lynch. Formal verification of real-time
systemsusing timed automata. In C. Heitmeyer and D. Man-
drioli, editors, Formal Methods for Real-Time Computing,
Trends in Software, chapter 4, pages 83-106. John Wiley &
Sons Ltd, April 1996.

T. Henzinger, Z. Manna, and A. Pnueli. Timed transition sys-
tems. In J. W. de Bakker, C. Huizing, and G. Rozenberg, ed-
itors, Proceedings of REX Workshop “ Real-Time: Theory in
Practice” , volume600 of LectureNotesin Comupter Science,
pages 226-251. Springer-Verlag, June 1991.

L. Lamport. The temporal logic of actions. Technical Re-
port 79, Digital SystemsResearch Center, December 25 1991.
G. Leeband N. Lynch. Proving safety properties of the steam
boiler controller: Formal methodsfor industrial applications,
a case study, 1996. To appear in Lecture Notesin Computer
Science, Springer-Verlag series.

V. Luchangco. Using simulation techniques to prove tim-
ing properties. Master’s thesis, Department of Electrical En-
gineering and Computer Science, Massachusetts Institute of

Technology, Cambridge, MA 02139, June 1995.
[13] J. Lygeros and D. N. Godbole. An interface between con-

tinuous and discrete-event controllers for vehicle automation.
California PATH Research Report UCB-ITS-PRR-94-12, In-
stitute of Transportation Studies, University of California,

April 1994.
[14] N. Lynch. Modelling and verification of automated transit

systems, using timed automata, invariantsand simulations. In
R. Alur, T. Henzinger, and E. Sontag, editors, Hybrid Sys-
tems 111 \erification and Control (DIMACS/SY CON Work-
shop on Verification and Control of Hybrid Systems, New
Brunswick, New Jersey, October 1995), volume 1066 of Lec-
ture Notes in Computer Science, pages 449-463. Springer-
Verlag, 1996.

[15] N. Lynch. A three-level analysis of a simple acceleration
maneuver, with uncertainties. In Proceedings of the Third
AMAST Workshop on Real-Time Systems, pages 1-22, Salt
Lake City, Utah, March 1996.

6]

(8]

(9]

[10]

[11]

[12]

[16] N.Lynch,R. Segala, F. Vaandrager, and H. B. Weinberg. Hy-
brid 1/0 automata. In R. Alur, T. Henzinger, and E. Son-
tag, editors, Hybrid Systemsll11: Verification and Control (DI-
MACS/SY CON Workshop on Verification and Control of Hy-
brid Systems, New Brunswick, New Jersey, October 1995),
volume 1066 of Lecture Notes in Computer Science, pages
496-510. Springer-Verlag, 1996.

[17] N. Lynch and F. Vaandrager. Forward and backward sim-
ulations — Part Il: Timing-based systems. Information
and Computation. To appear. Available now as Technical
Memo MIT/LCS/TM-487.c, Laboratory for Computer Sci-
ence, Massachusetts|nstitute of Technology, Cambridge, MA

02139, April 1995.
[18] N.Lynchand F. Vaandrager. Forward and backward simula-

tions— Part |: Untimed systems. Information and Computa-

tion, 121(2):214-233, September 1995.
[19] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid

systems. In J. de Bakker, C. Huizing, W. de Roever, and
G. Rozenberg, editors, REX Workshop on Real-Time: The-
ory in Practice, volume 600 of Lecture Notes in Computer
Science, pages 447-484, Mook, The Netherlands, June 1991.
Springer-Verlag.

[20] K. Marzullo, F. B. Schneider, and N. Budhirgja. Derivation
of sequential real-time, process control programs. In A. M.
van Tilborg and G. M. Koob, editors, Foundations of Real-
Time Computing, pages39-54. Kluwer Academic Publishers,
1991.

[21] M. Merritt, F. Modugno, and M. Tuttle. Time constrained
automata In J. C. M. Baeten and J. F. Goote, editors,
CONCUR'91: 2nd Inter national Conferenceon Concurrency
Theory, volume 527 of Lecture Notes in Comupter Science,
pages 408423, Amsterdam, The Netherlands, Aug. 1991.
Springer-Verlag.

[22] S. Nadjm-Tehrani. Modelling and formal analysis of an air-
craft landing gear system. In Second European Workshop
on Real-Time and Hybrid Systems, pages 239-246, Grenaoble,
France, May 1995.

[23] J. Segaard-Andersen. Correctness of Protocols in Dis-
tributed Systems. PhD thesis, Technical University of Den-

mark, Lyngby, Denmark, December 1993. ID-TR: 1993-131.
[24] F. Vaandrager and N. Lynch. Action transducers and timed

automata. In W. R. Cleaveland, editor, CONCUR'92: 3rdIn-
ternational Conference on Concurrency Theory, volume 630
of LectureNotesin Computer Science, pages 436455, Stony
Brook, NY, USA, August 1992. Springer Verlag.

[25] J. Vitt and J. Hooman. Specification and verification of a
real-time steam boiler system. In Second EuropeanWorkshop
on Real-Time and Hybrid Systems, pages 205-208, Grenaoble,

France, May 1995.
[26] H. Weinberg. Correctness of vehicle control sys-

tems: A case study. Master’s thesis, Department of
Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA
02139, February 1996. Also, MIT/LCSTR-685 and URL

http://theory.lcs.mit.edu/tdsyHBW-thesis.html.
[27] H. B. Weinberg, N. Lynch, and N. Delisle. Verification of

automated vehicle protection systems. In R. Alur, T. Hen-
zinger, and E. Sontag, editors, Hybrid Systems I11: \erifica-
tion and Control (DIMACS/SY CON Workshop on Verifica-
tion and Control of Hybrid Systems, New Brunswick, New

11

Jersey, October 1995), volume 1066 of LectureNotesin Com+
puter Science, pages 101-113. Springer-Verlag, 1996.

