
Mathematical Analysis of Static and Plastic
Biological Neural Circuits

by

Mien Brabeeba Wang

B.A. in Mathematics, Harvard University (2018)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 15, 2020

Certified by. .
Nancy A. Lynch

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science

Mathematical Analysis of Static and Plastic Biological Neural

Circuits

by

Mien Brabeeba Wang

Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

In this thesis, I explain possible mathematical principles behind brain computations
during the processing of temporal information and fast sensory adaptation using static
and plastic neural circuits respectively. For the static part of the thesis, I investigate
the possible computational principles behind how the brain can process temporal in-
formation over a long time range using neurons with transient activities. Specifically,
I design static memoryless neural circuits that are capable of processing temporal
sequences in either rate coding or temporal coding and prove that the networks are
optimal in both the number of the neurons and the convergence time. For the plastic
part of the thesis, I show how a sensory system can potentially adapt quickly under
Barlow’s efficient coding principle despite having high dimensional sensory inputs.
Specifically, I use Oja’s rule as an example of sensory adaptation under the efficient
coding principle and give the first convergence rate analysis of Oja’s rule in solving
streaming principal component analysis (PCA). In particular, the convergence rate I
obtain matches the information-theoretic lower bound up to logarithmic factors and
outperforms the state-of-the-art analysis for other streaming PCA algorithms in the
literature. I further demonstrate the capacity of Oja’s rule for continual learning
in a living system. Specifically, I prove that Oja’s rule can continuously adapt to
changing environments without sacrificing too much efficiency and remain functional
throughout the process.

Thesis Supervisor: Nancy A. Lynch
Title: Professor of Electrical Engineering and Computer Science

3

Acknowledgments

I would like to thank my family and my friends for supporting me emotionally during

the research process. I would like to thank Nancy Lynch for supervision and discussion

on this thesis. I would like to thank Nancy Lynch and Cameron Musco for helpful

technical discussion in the static network part of this thesis. I would like to thank

my coauthor and my best friend Chi-Ning Chou for countless sleepless nights with

me working on the plastic network part of the thesis. I would like to thank Kai-Min

Chung for helpful discussions on Oja’s rule and algorithms in neuroscience. I want

to thank Nancy Lynch again for organizing a brain algorithm reading group at MIT

and all the participants for the inspiring conversation.

5

Contents

1 Introduction 11

1.1 Processing of temporal information 12

1.2 Oja’s rule and sensory adaptation . 13

1.3 Summary . 17

2 Static Neural Circuit: Processing of Temporal Information 19

2.1 Introduction . 19

2.1.1 Model . 21

2.1.2 Problem Statement . 21

2.1.3 Main Theorems . 22

2.2 First Consecutive Spikes Counting . 23

2.2.1 First Stage: Counter Network 23

2.2.2 Second Stage: Capture Network 27

2.2.3 Wrap up . 30

2.3 Total Spikes Counting . 31

2.3.1 Mod 4 Counter Network . 31

2.3.2 TSC Network . 35

2.3.3 Wrap up . 41

2.4 Time Lower Bound for FCSC and TSC 41

2.5 Discussion and Future Directions . 43

3 Plastic Neural Circuit: Oja’s Rule and Sensory Adaptation 45

3.1 Introduction . 45

7

3.1.1 Biological Oja’s rule and streaming PCA 49

3.1.2 Our results . 53

3.1.3 Technical overview . 56

3.1.4 Related works . 63

3.2 Preliminaries . 66

3.2.1 Notations . 67

3.2.2 Probability toolbox . 67

3.2.3 ODE toolbox . 70

3.2.4 Approximation toolbox . 71

3.3 Analyzing the Continuous Version of Oja’s Rule 72

3.3.1 Continuous Oja’s rule is deterministic 72

3.3.2 One-sided versus two-sided linearization 74

3.4 Main Results . 75

3.5 Preprocessing . 77

3.5.1 A reduction to the diagonal case 78

3.5.2 Bounded conditions of Oja’s rule 78

3.6 Local Convergence: Starting With Correlated Weights 79

3.6.1 Linearization and ODE trick centered at 1 80

3.6.2 Concentration of noise and pulling out the stopping time . . . 83

3.6.3 Interval Analysis . 87

3.6.4 Continual Learning . 88

3.7 Global Convergence: Starting From Random Initialization 90

3.7.1 Initialization and the main stopping time 91

3.7.2 Bounding the stopping time 𝜉𝑝,𝛿 92

3.7.3 Linearization and ODE trick centered at 0 103

3.7.4 Concentration of noise . 105

3.7.5 Interval Analysis . 109

3.7.6 Combining Theorem 3.7.29 with the local analysis 111

3.8 Discussion and Future Directions . 111

3.8.1 Biological aspects . 112

8

3.8.2 Algorithmic aspects . 113

3.9 Contribution Statement . 114

A Appendix 115

A.1 Oja’s Derivation for the Biological Oja’s Rule 115

A.2 Details of the Linearizations in Continuous Oja’s Rule 116

A.3 Why the Analysis of ML Oja’s Rule Cannot be Applied to Biological

Oja’s Rule . 118

A.4 Proof of Lemma 3.7.11 . 119

9

Chapter 1

Introduction

The purpose of this thesis is to mathematically understand some principles of brain

computation. Brains comprise networks of neurons that individually have relatively

simple dynamics. However, the brain can execute complicated tasks, such as playing

violin, or learning concepts from the environment, such as language acquisition. Al-

though scientists have obtained many experimental findings and theoretical insights

about the brain, most underlying principles behind brain computation have remained

elusive. There are two aspects of brain computation: the static network dynamic,

which describes how the electrical activities of neurons evolve under fixed connec-

tions and the activity-dependent synaptic plasticity, which describes how the strength

of the synapses varies based on the activities of the neurons. For static networks,

understanding the underlying computational principles is already difficult because of

the possibility of chaotic behaviors in recurrent connections and the highly nonlinear

nature of spiking dynamics. Synaptic plasticity further adds an layer of complication.

Therefore, a theoretical understanding of brain computation is a challenging task.

There have been many attempts to model brain computationally. At a single-

neuron level, theoretical neuroscientists were able to model the dynamics of a single

neuron to high accuracy with the Hodgkin-Huxley model [35]. At a static circuit

level, to make the analysis tractable, neuroscientists approximated detailed dynamics

of neurons with simplified models such as the nonlinear integrate-and-fire model [24]

and the spiking response model [42]. On the other hand, since the experimental

11

finding of synaptic plasticity [15, 41, 22], theoretical neuroscientists have considered

numerous learning rules that govern the dynamics of the synapses to model synaptic

plasticity such as Oja’s rule [59], BCM rule [14], covariance rule [71], spike-timing-

dependent plasticity [12], etc. It remains a big mystery how these relatively simple

neuronal dynamics and plasticity rules can generate complicated behavioral outcomes

such as language acquisition.

In this thesis, we take a mathematical approach to model two particular biological

phenomena: processing of temporal information and sensory adaptation, using static

and plastic neural circuits respectively.

1.1 Processing of temporal information

One of the most important questions in neuroscience is how humans integrate infor-

mation over time. Sensory inputs such as visual and auditory stimuli are inherently

temporal; yet brains can integrate the temporal information into a single concept,

such as recognizing a moving object in a visual scene or forming an entity in a sen-

tence. In the above examples, the temporal information spans over a time scale of

1-10 seconds. However, individual neurons only have transient activities with the

time scale of 10-100𝑚𝑠. It is not clear how neurons with transient components can

process temporal information over a long time range. In the static network part of

this thesis, we are going to present a static network to process temporal information

and translate it into spatial information with transient components.

There are two kinds of neuronal codings: rate coding and temporal coding. Rate

coding is a neural coding scheme assuming most of the information is coded in the

firing rate of the neurons. It is most commonly seen in muscle when the higher firing

rates of motor neurons correspond to higher intensity in muscle contraction [2]. On

the other hand, rate coding cannot be the only neural coding brains employ. A fly

is known to react to new stimuli and change its direction of flight within 30-40 ms.

For a neuron that spikes at around 50𝐻𝑧, which is much higher than the average

spiking rate, there is only time to produce 1-2 spikes within this window. There is

simply not enough time for neurons to decode rate coding accurately [13]. Therefore,

12

neuroscientists proposed the idea of temporal coding, assuming the information is

coded in the temporal firing patterns. One of the popular temporal codings is the

first-to-spike coding, in which the information is encoded in the duration between the

stimulus onset and the first spike. By plotting the timing of the first spike in retina

ganglion cells, one can recover an approximately accurate image on a retina [27].

We propose two toy problems to model how brains extract temporal information

from different coding with transient components. “First consecutive spikes counting"

(FCSC) counts the first consecutive interval of spikes, which is equivalent to counting

the distance between the first two spikes, a prevalent temporal coding scheme in the

sensory cortex. “Total spikes counting" (TSC) counts the number of the spikes over

an arbitrary interval, which is an example of rate coding. To model the transient

components of neurons, we consider a memoryless synchronous spiking neuron model

where the firing of a neuron only depends on the spike events one time step ago.

In this thesis, we design two networks that solve the above two problems by

translating temporal information into spatial information in time 1 with 𝑂(log 𝑇)

neurons. We further show that any network with less than 𝑇 neurons cannot solve

the problems in time 0. It should be noted that Hitron and Parter also considered

the TSC problem [34] with the time bound 𝑂(log 𝑇). In this context, we improve

the time bound on the TSC problem from 𝑂(log 𝑇) to 1 by carefully updating all

digits in binary representation at once instead of sequentially. We would like to

remark that although our problems are biologically inspired, the optimal solutions we

propose are not biologically plausible. The networks are not noise-tolerant, whereas

the neuronal dynamics are highly noisy and it is hard to conceive that the brain uses

binary representation as a neuronal representation. However, the analysis serves as

a proof of concept that the brain can process temporal information over a long time

range using transient components.

1.2 Oja’s rule and sensory adaptation

One of the most influential theoretical ideas in neuroscience is Barlow’s efficient cod-

ing principle for sensory systems [11]. Barlow hypothesized that the main goal of a

13

sensory system is to reduce the redundancy in the sensory input and maximize the in-

formation transmitted to downstream brain areas. One of its key predictions is that

the sensory neurons in the brain adapt to natural stimuli. Indeed, neuroscientists

have shown in numerous sensory systems that by maximizing the mutual information

transmitted on natural stimuli, one can recover the response filters in the respective

sensory system. In the visual system, the structures of both the center-surround re-

ceptive field of the retina ganglion cells [6, 7, 29] and Gabor filters of V1 simple cells

can be mathematically derived from the efficient coding principle [62]. In the auditory

system, the temporal cochlear filters of inner ears can also be derived from optimizing

mutual information on natural sounds [48]. However, most works on efficient coding of

a sensory system have focused on optimizing the statistics of one natural environment.

In reality, the environmental statistics can change drastically and the sensory system

needs to continuously adapt to the changing environment in a matter of seconds while

having high dimensional sensory inputs. For example, although the retina processes

visual inputs from 100 million photoreceptors to 1 million retina ganglion cells, it can

change its receptive field to adapt to environments with different illumination [74],

contrast [74, 9, 75], spatial frequency [75, 37], orientation and temporal correlation

[37] in the time scale of seconds. Therefore, it is important to have a theoretical un-

derstanding of how the efficient coding principle can adapt to changing environments

in a biologically realistic timescale with a biologically plausible synaptic learning rule.

In this thesis, we give the first theoretical demonstration of sensory adaptation under

the efficient coding principle in biologically realistic timescale through studying the

convergence rate and behaviors of Oja’s rule [59].

It is known that Oja’s rule maximizes the mutual information under Gaussian

inputs and linear networks by adapting to the direction that maximizes the variance

of the presynaptic inputs through solving Principal Component Analysis (PCA) [50].

Therefore, studying its convergence rate and behaviors can shed light on fast sensory

adaptation under the efficient coding principle. Since the dimensionality of the sen-

sory inputs is usually large, for Oja’s rule to behave in a biologically realistic time

scale, the convergence rate needs to have no dependency or only log dependency on

14

the input dimension. In addition to its relation to the efficient coding principle, as

a biologically plausible synaptic modification rule, Oja’s rule serves as a plasticity

candidate to investigate sensory adaptation. Oja’s rule is one of the earliest local

learning rules that incorporate both Hebbian and homeostatic plasticity [59], two ma-

jor activity-dependent synaptic modification mechanisms [1]. Both mechanisms work

together to form memory and drive learning behaviors in the brain. Hebbian plastic-

ity is a synapse-specific correlation-based plasticity mechanism that strengthens the

connection when the input has a high correlation with the weights while weakening

the connection when the input has a poor correlation [41, 22, 14]. However, this type

of mechanism alone can often make networks unstable since the highly correlated

input will keep strengthening synapses unboundedly [1]. Homeostatic plasticity, in

contrast, stabilizes the network by keeping the activities of the neurons relatively

constant through calcium sensors [80]. Synaptic scaling is a specific kind of home-

ostatic plasticity where the strength of the incoming synapses is normalized while

still encoding the information from Hebbian learning in their relative strength after

normalization [79]. It is thus an important problem in computational neuroscience

to understand the interplay between Hebbian and homeostatic plasticity [78]. Oja’s

rule is one example of this. Concretely, Oja’s rule can be expressed as the following

𝑤𝑡 = 𝑤𝑡−1 + 𝜂𝑡(𝑥𝑡𝑦𝑡 − 𝑦2𝑡𝑤𝑡−1)

where 𝑤𝑡 is the strength of the synapse at time 𝑡, 𝑥𝑡, 𝑦𝑡 are the firing rates of presy-

naptic, and postsynaptic neurons respectively, and 𝜂𝑡 is the learning rate. One can see

that 𝑥𝑡𝑦𝑡 term corresponds to the Hebbian plasticity while 𝑦2𝑡𝑤𝑡−1 term corresponds

to the homeostatic plasticity. One can then show the synaptic scaling property where

‖𝑤𝑡‖ ≈ 1 for all 𝑡.

Despite being a subject of extensive theoretical [59, 61, 70, 33, 60, 68, 21, 88,

87, 23, 5] and experimental [16, 43, 31, 40, 18, 73, 77, 51, 5] studies aimed at un-

derstanding its performance, the theoretical understanding of the Oja’s rule remains

incomplete. The state-of-the-art theoretical analysis only provides a guarantee on

convergence in the limit [23] through Kushner-Clark methods [44]. However, to the

15

best of our knowledge, there is no prior work showing the convergence time of Oja’s

rule. Specifically, if the convergence time of Oja’s rule does not depend on the input

dimension or depend on only logarithmic factors of the input dimension, Oja’s rule

can serve as an example of sensory adaptation under the efficient coding principle in

a biologically realistic time scale.

In this work, we provide the first convergence rate analysis for biological Oja’s

rule in solving streaming PCA.

Theorem 1.2.1 (informal). Biological Oja’s rule efficiently solves streaming PCA

with (nearly) optimal convergence rate. Specifically, the convergence rate we obtain

matches the information-theoretic lower bound up to logarithmic factors.

Furthermore, the convergence rate has no dependency on the dimension when the

initial weight vector is close to the top eigenvector or has a dependency on logarithmic

factors of the dimension when the initial vector is random. Therefore, biological Oja’s

rule solves streaming PCA on a biologically realistic time scale.

Also, we show for-all-time convergence with a slowly diminishing learning rate.

Most convergence results in the literature show that

Pr(error at time T > 𝜖) < 𝛿.

However, this is not enough in a biological system. The sensory system cannot afford

to only be functional at time 𝑇 . It needs to be functional constantly. In contrast, the

convergence result we can show is

Pr(∃𝑡 ≥ 𝑇, error at time t > 𝜖) < 𝛿,

which guarantees the convergence at all time. Furthermore, in order to achieve this,

our learning rate 𝜂𝑡 only needs to be scaled as 𝜂𝑡 = 𝑂(1
log 𝑡

), in particular
∑︀

𝑡 𝜂
2
𝑡 = ∞.

In contrast, Kushner-Clark theorem requires
∑︀

𝑡 𝜂
2
𝑡 < ∞ where the learning rate is

commonly set as 𝜂𝑡 = 𝑂(1
𝑡
). Because our learning rate is slowly diminishing, when

the environment changes, the learning rate is still large enough to do efficient learn-

ing. This allows the sensory system to continuously adapt to changing environments

without taking a long time to adapt or reset the learning rate.

16

To show the (nearly) optimal convergence rate of biological Oja’s rule in solving

streaming PCA, we develop an ODE-inspired framework to analyze stochastic dy-

namics. Concretely, instead of the traditional step-by-step analysis, our framework

analyzes a dynamical system in one-shot by giving a closed-form solution for the

entire dynamic. The framework borrows ideas from ordinary differential equations

(ODE) and stochastic differential equations (SDE) to obtain a closed-form character-

ization of the dynamic and uses stopping time and martingale techniques to precisely

control the dynamic. This framework provides a more elegant and more general

analysis compared with the previous step-by-step approaches. We believe that this

novel framework can provide a simple and effective analysis of other problems with

stochastic dynamics.

1.3 Summary

In this thesis, we present mathematical analysis on static and plastic biological neural

networks that show principles of temporal processing and sensory adaptation respec-

tively. In addition to biological relevance, these two problems also show interesting

mathematical elements. For example, as a result of analyzing Oja’s rule, we come

up with a powerful framework to analyze general stochastic dynamics. However, we

would like to comment that both networks in this thesis do not capture certain as-

pects of biology. The static network we present is not noise-tolerant, while Oja’s rule

does not demonstrate BCM-rule-like behaviors, which are experimentally observed.

Nonetheless, they both capture some important principles of brain computation. To

move forward in theoretical neuroscience, the theory needs to combine with the biol-

ogy. With too many biological details, the underlying principle becomes intractable

to understand while with too few biological details, the theory might not capture the

essence of the computation. It is important to have biological intuition to identify

the important details that are relevant to the computation and it is also important

to have the mathematical theory to facilitate the design of biological experiments.

In the future, we would like to create theories that are more closely integrated with

biology to understand the principles of brain computation further.

17

Chapter 2

Static Neural Circuit: Processing of

Temporal Information

2.1 Introduction

One of the most important questions in neuroscience is how humans integrate infor-

mation over time. Sensory inputs such as visual and auditory stimuli are inherently

temporal; yet brains can integrate the temporal information into a single concept,

such as recognizing a moving object in a visual scene or forming an entity in a sen-

tence. In the above examples, the temporal information spans over a time scale of

1-10 seconds. However, individual neurons only have transient activities with the

time scale of 10-100𝑚𝑠. It is not clear how neurons with transient components can

process temporal information over a long time range. In this chapter, we are going to

present a static network to process temporal information and translate it into spatial

information with transient components.

There are two kinds of neuronal codings: rate coding and temporal coding. Rate

coding is a neural coding scheme assuming most of the information is coded in the

firing rate of the neurons. It is most commonly seen in muscle when the higher firing

rates of motor neurons correspond to higher intensity in muscle contraction [2]. On

the other hand, rate coding cannot be the only neural coding brains employ. A fly

is known to react to new stimuli and change its direction of flight within 30-40 ms.

19

For a neuron that spikes at around 50𝐻𝑧, which is much higher than the average

spiking rate, there is only time to produce 1-2 spikes within this window. There is

simply not enough time for neurons to decode rate coding accurately [13]. Therefore,

neuroscientists proposed the idea of temporal coding, assuming the information is

coded in the temporal firing patterns. One of the popular temporal codings is the

first-to-spike coding, in which the information is encoded in the duration between the

stimulus onset and the first spike. By plotting the timing of the first spike in retina

ganglion cells, one can recover an approximately accurate image on a retina [27].

We propose two toy problems to model how brains extract temporal information

from different coding with transient components. “First consecutive spikes counting"

(FCSC) counts the first consecutive interval of spikes, which is equivalent to counting

the distance between the first two spikes, a prevalent temporal coding scheme in the

sensory cortex. “Total spikes counting" (TSC) counts the number of the spikes over

an arbitrary interval, which is an example of rate coding. To model the transient

components of neurons, we consider a memoryless synchronous spiking neuron model

where the firing of a neuron only depends on the spike events one time step ago.

In this chapter, we design two networks that solve the above two problems by

translating temporal information into spatial information in time 1 with 𝑂(log 𝑇)

neurons. We further show that any network with less than 𝑇 neurons cannot solve

the problems in time 0. It should be noted that Hitron and Parter also considered

the TSC problem [34] with the time bound 𝑂(log 𝑇). In this context, we improve

the time bound on the TSC problem from 𝑂(log 𝑇) to 1 by carefully updating all

digits in binary representation at once instead of sequentially. We would like to

remark that although our problems are biologically inspired, the optimal solutions we

propose are not biologically plausible. The networks are not noise-tolerant, whereas

the neuronal dynamics are highly noisy and it is hard to conceive that the brain uses

binary representation as a neuronal representation. However, the analysis serves as

a proof of concept that the brain can process temporal information over a long time

range using transient components.

The organization of the rest of the section is as follows. In Section 2.1.1, we

20

formally define the spiking neuron model we are working in. In Section 2.1.2, we

define the two biologically-inspired problems “First Consecutive Spikes Counting"

and “Total Spikes Counting" which correspond to temporal coding and rate coding

respectively. In Section 2.1.3, we provide our main results, solving the two problems

optimally in both time and the number of the neurons and showing that we cannot

do better.

2.1.1 Model

In this work, to model the transient aspect of the neurons, we consider a network of

memoryless spiking neurons with deterministic synchronous firing at discrete times.

Formally, a neuron 𝑧 consists of the following data with 𝑡 ≥ 1

𝑧(𝑡) = Θ(
∑︁
𝑦∈𝑃𝑧

𝑤𝑦𝑧𝑦
(𝑡−1) − 𝑏𝑧)

where 𝑧(𝑡) is the indicator function of neuron 𝑧 firing at time 𝑡. 𝑏𝑧 is the threshold

(bias) of neuron 𝑧. 𝑃𝑧 is the set of presynaptic neurons of 𝑧, 𝑤𝑦𝑧 is the strength of

connection from neuron 𝑦 to neuron 𝑧 and Θ is a nonlinear function. Here we take Θ

as the Heaviside function given by Θ(𝑥) = 1 if 𝑥 > 0 and 0 otherwise. At 𝑡 = 0, we

let 𝑧(0) = 0 if 𝑧 is not one of the input neurons.

For the rest of the chapter, we fix an input neuron 𝑥 and 𝑚 output neurons

{𝑦𝑖}0≤𝑖<𝑚 in a network.

2.1.2 Problem Statement

First Consecutive Spikes Counting(T) (FCSC(T))

Given an input neuron 𝑥 and the max input length 𝑇 , we consider any input firing

sequence such that for all 𝑡 ≥ 𝑇, 𝑥(𝑡) = 0. Define 𝐿𝑥 in terms of this firing sequence

as follows: if 𝑥(𝑡) = 1 for some 𝑡, then there must exist integers 𝑡, 𝐿 such that for all

𝑡, 𝑡 < 𝑡 we have 𝑥(𝑡) = 0, for all 𝑖, 0 ≤ 𝑖 < 𝐿 we have 𝑥(𝑡+𝑖) = 1, and 𝑥(𝑡+𝐿) = 0. Define

𝐿𝑥 = 𝐿. (i.e., 𝐿 is the length of the first consecutive spikes interval in the sequence.)

Otherwise, that is if for all 𝑡 ≥ 0, 𝑥(𝑡) = 0, then define 𝐿𝑥 = 0.

Then we say a network of neurons solves FCSC(T) in time 𝑡′ with 𝑚′ neurons if

21

there exists an injective function 𝐹 : {0, · · · , 𝑇} → {0, 1}𝑚 such that for all 𝑥 and for

all 𝑡, 𝑡 ≥ 𝑇 + 𝑡′ we have 𝑦(𝑡) = 𝐹 (𝐿𝑥) and the network has 𝑚′ total neurons.

Intuitively, FCSC serves as a toy model for encoding distance between spikes, a

prevalent spike coding in the sensory cortex. For mathematical convenience, we model

the problem as counting the distance between non-spikes which is mathematically

equivalent as counting the distance between spikes in our model.

Total Spikes Counting(T) (TSC(T))

Given an input neuron 𝑥 and the max input length 𝑇 , we consider any input firing

sequence such that for all 𝑡 ≥ 𝑇 , 𝑥(𝑡) = 0. Define 𝐿𝑥 = |{𝑡 : 𝑥(𝑡) = 1, 0 ≤ 𝑡 < 𝑇}|

as the total number of spikes in the sequence. Then we say a network of neurons

solves TSC(T) in time 𝑡′ with 𝑚′ neurons if there exists an injective function 𝐹 :

{0, · · · , 𝑛} → {0, 1}𝑚 such that for all 𝑥 and for all 𝑡, 𝑡 ≥ 𝑇 + 𝑡′ we have 𝑦(𝑡) = 𝐹 (𝐿𝑥)

and the network has 𝑚′ total neurons.

Intuitively, TSC serves as a toy model for rate coding implemented by spiking

neural networks because the network can extract the rate information by counting

the number of spikes over arbitrary intervals.

Notice that in both problems above, a network solves a task in time 𝑡′ if, for all

𝑡 ≥ 𝑇 + 𝑡′ and for all inputs with max length 𝑇 , the network outputs the solution of

the task at time 𝑡. The definition is equivalent to Maass’s time complexity for spiking

neurons [58]. This definition of the time bound makes natural sense since given a max

input length of 𝑇 , it is unreasonable to count the time before the end of the input.

2.1.3 Main Theorems

Our contributions in this work are to design networks that solve these two problems

respectively with matching lower bounds in numbers of neurons.

Theorem 2.1.1. There exists a network that solves FCSC(T) problem with 𝑂(log 𝑇)

neurons in time 1.

Theorem 2.1.2. There exists a network that solves TSC(T) problem with 𝑂(log 𝑇)

neurons in time 1.

22

Figure 2-1: mod 2 Base Network

It is easy to see that we also have the corresponding information-theoretical lower

bound on the number of neurons all being Ω(log 𝑇) by the requirements of the tasks.

In terms of time bound, we also show that our networks are optimal for FCSC

and TSC problem in the following sense:

Theorem 2.1.3. There does not exists a network with less than 𝑇 neurons that solves

FCSC(t) problem in time 0 for all 0 ≤ 𝑡 ≤ 𝑇 .

Theorem 2.1.4. There does not exists a network with less than 𝑇 neurons that solves

TSC(t) problem in time 0 for all 0 ≤ 𝑡 ≤ 𝑇 .

2.2 First Consecutive Spikes Counting

We present the constructions in two stages. At the first stage, we count consecutive

spikes in binary transiently. At the second stage, we transform the transient firing

into persistent firing. By composing the two stages, we get our desired network.

2.2.1 First Stage: Counter Network

The network contains neurons 𝑧0, · · · , 𝑧𝑛, 𝑖𝑛1, · · · , 𝑖𝑛𝑛 and we build the network in-

ductively. To construct mod 2 Base Network which counts mod 2, we have

𝑤𝑥𝑧0 = 1, 𝑤𝑧0𝑧0 = −1, 𝑏𝑧0 = 0.5.

By noticing that for 𝑡 ≥ 1, 𝑧(𝑡)0 = 1 if and only if 𝑥(𝑡−1) = 1 and 𝑧
(𝑡−1)
0 = 0, we have

the following lemma

Lemma 2.2.1. For the mod 2 base network, given 𝑡 ≥ 0 if for all 𝑡′𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡0 ≤ 𝑡′ ≤ 𝑡

we have 𝑥(𝑡′) = 1, then at time 𝑡, 𝑧(𝑡)0 = 𝑡 mod 2.

23

Figure 2-2: First Stage

Now we iteratively build the network where 1 ≤ 𝑖 ≤ 𝑛 on top of the mod 2 base

network with the following rule:

𝑤𝑥𝑧𝑖 = 𝑖+1, 𝑤𝑧𝑗𝑧𝑖 = 1, ∀𝑗, 0 ≤ 𝑗 < 𝑖, 𝑤𝑧𝑘𝑖𝑛𝑖
= 1,∀𝑘, 0 < 𝑘 ≤ 𝑖, 𝑤𝑖𝑛𝑖𝑧𝑖 = −𝑖−1, 𝑤𝑧𝑖𝑧𝑖 = 𝑖

𝑏𝑧𝑖 = 2𝑖+ 0.5, 𝑏𝑖𝑛𝑖
= 𝑖− 0.5.

This completes the construction. From the construction, we can deduce the following

lemma.

Lemma 2.2.2. For 𝑖 > 0, neurons 𝑧𝑖, 𝑖𝑛𝑖 fire according to the following rules:

1. 𝑧(𝑡)𝑖 = 1 if and only if 𝑥(𝑡−1) = 1, 𝑖𝑛(𝑡−1)
𝑖 = 0, and (either for all 𝑗, 0 ≤ 𝑗 < 𝑖 we

have 𝑧(𝑡−1)
𝑗 = 1 or 𝑧(𝑡−1)

𝑖 = 1).

2. 𝑖𝑛(𝑡)
𝑖 = 1 if and only if for all 𝑗, 1 ≤ 𝑗 ≤ 𝑖 we have 𝑧(𝑡−1)

𝑗 = 1.

Proof. Case (1): The potential of 𝑧(𝑡)𝑖 is

𝑤𝑥𝑧𝑖𝑥
(𝑡−1) +

𝑖−1∑︁
𝑗=0

𝑤𝑧𝑗𝑧𝑖𝑧
(𝑡−1)
𝑗 + 𝑤𝑖𝑛𝑖𝑧𝑖𝑖𝑛

(𝑡−1)
𝑖 + 𝑤𝑧𝑖𝑧𝑖𝑧

(𝑡−1)
𝑖

= (𝑖+ 1)𝑥(𝑡−1) +
𝑖−1∑︁
𝑗=0

𝑧
(𝑡−1)
𝑗 − (𝑖+ 1)𝑖𝑛

(𝑡−1)
𝑖 + 𝑖𝑧

(𝑡−1)
𝑖 .

Only if: Let’s show the only if direction for the firing rule of 𝑧(𝑡)𝑖 by proving the

contrapositive.

24

If 𝑥(𝑡−1) = 0, then the potential of 𝑧(𝑡)𝑖 is
𝑖−1∑︁
𝑗=0

𝑥
(𝑡−1)
𝑗 − (𝑖+ 1)𝑖𝑛

(𝑡−1)
𝑖 + 𝑖𝑧

(𝑡−1)
𝑖 ≤ 2𝑖 < 2𝑖+ 0.5 = 𝑏𝑧𝑖 .

If 𝑖𝑛(𝑡−1)
𝑖 = 1, then the potential of 𝑧(𝑡)𝑖 is

(𝑖+ 1)𝑥(𝑡−1) +
𝑖−1∑︁
𝑗=0

𝑧
(𝑡−1)
𝑗 − (𝑖+ 1) + 𝑖𝑧

(𝑡−1)
𝑖 ≤ 2𝑖 < 2𝑖+ 0.5 = 𝑏𝑧𝑖 .

If there exists �̂�, 0 ≤ �̂� < 𝑖 such that 𝑧(𝑡−1)

�̂�
= 0 and 𝑧

(𝑡−1)
𝑖 = 0, then the potential of

𝑧
(𝑡)
𝑖 is ∑︁

𝑗 ̸=�̂�,0≤𝑗≤𝑖−1

𝑧
(𝑡−1)
𝑗 + (𝑖+ 1)𝑥(𝑡−1) − (𝑖+ 1)𝑖𝑛

(𝑡−1)
𝑖 ≤ 2𝑖 < 2𝑖+ 0.5 = 𝑏𝑧𝑖 .

In all three cases, we have 𝑧(𝑡)𝑖 = 0.

If: For the if direction, if 𝑥(𝑡−1) = 1, 𝑖𝑛(𝑡−1)
𝑖 = 0 and for all 𝑗, 0 ≤ 𝑗 < 𝑖 we have

𝑧
(𝑡−1)
𝑗 = 1, then the potential of 𝑧(𝑡)𝑖 is

(𝑖+ 1) +
𝑖−1∑︁
𝑗=0

1 + 𝑖𝑧
(𝑡−1)
𝑖 ≥ 2𝑖+ 1 > 2𝑖+ 0.5 = 𝑏𝑧𝑖 .

If 𝑥(𝑡−1) = 1, 𝑖𝑛(𝑡−1)
𝑖 = 0 and 𝑧(𝑡−1)

𝑖 = 1, then the potential of 𝑧(𝑡)𝑖 is

(𝑖+ 1) +
𝑖−1∑︁
𝑗=0

𝑧
(𝑡−1)
𝑗 + 𝑖 ≥ 2𝑖+ 1 > 2𝑖+ 0.5 = 𝑏𝑧𝑖 .

In both cases, we have 𝑧(𝑡)𝑖 = 1.

Case (2): The firing rule of 𝑖𝑛(𝑡)
𝑖 can be analyzed similarly.

The potential of 𝑖𝑛(𝑡)
𝑖 is

𝑖∑︁
𝑗=1

𝑤𝑧𝑗𝑖𝑛𝑖
𝑧
(𝑡−1)
𝑗 =

𝑖∑︁
𝑗=1

𝑧
(𝑡−1)
𝑗 .

Only If: For the only if direction, if there exists �̂�, 1 ≤ �̂� ≤ 𝑖 such that 𝑥(𝑡−1)

�̂�
= 0,

then the potential of 𝑖𝑛(𝑡)
𝑖 is∑︁
𝑗 ̸=�̂�,1≤𝑗≤𝑖

𝑧
(𝑡−1)
𝑗 ≤ 𝑖− 1 < 𝑖− 0.5 = 𝑏𝑖𝑛𝑖

.

We have 𝑖𝑛(𝑡)
𝑖 = 0.

25

If: For the if direction, if for all 𝑗, 1 ≤ 𝑗 ≤ 𝑖 we have 𝑧(𝑡−1)
𝑗 = 1, then the potential of

𝑖𝑛
(𝑡)
𝑖 is

𝑖∑︁
𝑗=1

1 = 𝑖 > 𝑖− 0.5 = 𝑏𝑖𝑛𝑖
.

We have 𝑖𝑛(𝑡)
𝑖 = 1 as desired.

Using the above lemma, we can verify that indeed the network at the first stage

fires in binary, with 𝑧𝑖 encoding the 𝑖th digit in the binary representation.

Theorem 2.2.3. Given 𝑖 ≥ 1 and 𝑡 ≥ 0, if for all 𝑡′ such that 0 ≤ 𝑡′ ≤ 𝑡 we have

𝑥(𝑡
′) = 1, then

1. 𝑧(𝑡)𝑖 = 𝑎𝑖 for 𝑡 =
∑︀∞

𝑗=0 𝑎𝑗2
𝑗 where 𝑎𝑗 ∈ {0, 1}.

2. 𝑖𝑛(𝑡)
𝑖 = 1 if and only if 𝑡 mod 2𝑖+1 = 2𝑖+1 − 1 or 0.

Proof. First, let’s verify that the claim is true for 𝑧0. Since for all 𝑡′, 0 ≤ 𝑡′ ≤ 𝑡 we

have 𝑥(𝑡′) = 1, 𝑧(𝑡
′)

0 = 1 if and only if 𝑧(𝑡
′−1)

0 = 0. This implies exactly 𝑧(𝑡)0 = 𝑡 mod 2

as desired (for all the modular arithematic at this work, we choose the smallest

nonnegative number from the equivalence class). Now let’s do the induction on 𝑡

and we will verify the induction by checking 𝑧𝑖, 𝑖𝑛𝑖 fires in according to the induction

hypothesis for all 𝑖 ≥ 1. When 𝑡 = 1, the induction statement is trivially satisfied for

all 𝑖 ≥ 1. Fix 𝑖, we have the following cases:

1. 0 < 𝑡 mod 2𝑖+1 < 2𝑖, 𝑧
(𝑡−1)
𝑖 = 0:

This implies that 0 ≤ 𝑡 − 1 mod 2𝑖 < 2𝑖 − 1. By induction hypothesis, not all

𝑧
(𝑡−1)
𝑗 = 1 for 0 ≤ 𝑗 < 𝑖. Now by Lemma 2.2.2, we have 𝑧(𝑡)𝑖 = 0 = 𝑎𝑖, 𝑖𝑛

(𝑡)
𝑖 = 0

as desired.

2. 𝑡 mod 2𝑖+1 = 2𝑖, 𝑧
(𝑡−1)
𝑖 = 0, 𝑖𝑛

(𝑡−1)
𝑖 = 0:

This implies that 𝑡− 1 mod 2𝑖 = 2𝑖 − 1. By induction hypothesis, for all 𝑗, 0 ≤

𝑗 < 𝑖 we have 𝑧(𝑡−1)
𝑗 = 1. Now by Lemma 2.2.2, we have 𝑧(𝑡)𝑖 = 1 = 𝑎𝑖, 𝑖𝑛

(𝑡)
𝑖 = 0

as desired.

26

3. 2𝑖 < 𝑡 mod 2𝑖+1 < 2𝑖+1 − 1, 𝑧
(𝑡−1)
𝑖 = 1, 𝑖𝑛

(𝑡−1)
𝑖 = 0:

This implies that 0 ≤ 𝑡 − 1 mod 2𝑖 < 2𝑖 − 2. By induction hypothesis, not all

𝑗, 1 ≤ 𝑗 < 𝑖 we have 𝑧(𝑡−1)
𝑗 = 1. Now by Lemma 2.2.2, we have 𝑧(𝑡)𝑖 = 1 =

𝑎𝑖, 𝑖𝑛
(𝑡)
𝑖 = 0 as desired.

4. 𝑡 mod 2𝑖+1 = 2𝑖+1 − 1, 𝑧
(𝑡−1)
𝑖 = 1, 𝑖𝑛

(𝑡−1)
𝑖 = 0:

This implies that 𝑡− 1 mod 2𝑖 = 2𝑖 − 2. By induction hypothesis, for all 𝑗, 1 ≤

𝑗 < 𝑖 we have 𝑧(𝑡−1)
𝑗 = 1. Now by Lemma 2.2.2, we have 𝑧(𝑡)𝑖 = 1 = 𝑎𝑖, 𝑖𝑛

(𝑡)
𝑖 = 1

as desired.

5. 𝑡 mod 2𝑖+1 = 0, 𝑧
(𝑡−1)
𝑖 = 1, 𝑖𝑛

(𝑡−1)
𝑖 = 1:

This implies that 𝑡− 1 mod 2𝑖 = 2𝑖 − 1. By induction hypothesis, for all 𝑗, 1 ≤

𝑗 < 𝑖 we have 𝑧(𝑡−1)
𝑗 = 1,. Now by Lemma 2.2.2, we have 𝑧(𝑡)𝑖 = 0 = 𝑎𝑖, 𝑖𝑛

(𝑡)
𝑖 = 1

as desired.

This completes the induction.

2.2.2 Second Stage: Capture Network

Now the second stage is a simple “capture network" with input neurons 𝑥, 𝑧𝑖 for all

𝑖, 0 ≤ 𝑖 ≤ 𝑛, output neurons 𝑦𝑖 for 0 ≤ 𝑖 ≤ 𝑛 and an auxilary neuron 𝑠. Intuitively,

the network persistently captures the state of 𝑧𝑖 for all 𝑖, 0 ≤ 𝑖 ≤ 𝑛 into 𝑦𝑖 for all

𝑖, 0 ≤ 𝑖 ≤ 𝑛. We will specify the timing of the states of 𝑧𝑖 being captured later. The

network is defined as the following:

∀ 0 ≤ 𝑖 ≤ 𝑛,𝑤𝑥𝑦𝑖 = −2, 𝑤𝑦𝑖𝑦𝑖 = 4, 𝑤𝑧𝑖𝑦𝑖 = 1, 𝑤𝑧𝑖𝑠 = 𝑤𝑦𝑖𝑠 = 1, 𝑤𝑠𝑦𝑖 = −1.5,

and

𝑤𝑥𝑠 = −𝑛− 1, 𝑤𝑠𝑠 = 𝑛+ 2, 𝑏𝑠 = 0.5, ∀ 0 ≤ 𝑖 ≤ 𝑛, 𝑏𝑦𝑖 = 0.5.

Notice that the above weight ensures the following one step firing rule:

Lemma 2.2.4. For 0 ≤ 𝑖 ≤ 𝑛, neurons 𝑦(𝑡)𝑖 , 𝑠(𝑡) fire according to the following rules:

1. 𝑦(𝑡)𝑖 = 1 if and only if 𝑦(𝑡−1)
𝑖 = 1, or (𝑦(𝑡−1)

𝑖 = 0, 𝑥(𝑡−1) = 0, 𝑠(𝑡−1) = 0 and

𝑧
(𝑡−1)
𝑖 = 1).

27

Figure 2-3: Second Stage

2. 𝑠(𝑡) = 1 if and only if 𝑠(𝑡−1) = 1, or (there exists 𝑖, 𝑖′ such that 𝑧(𝑡−1)
𝑖 = 1 or

𝑦
(𝑡−1)
𝑖′ = 1, and 𝑥(𝑡−1) = 0).

Proof. Case (1): The potential of 𝑦(𝑡)𝑖 is

𝑤𝑥𝑦𝑖𝑥
(𝑡−1) + 𝑤𝑦𝑖𝑦𝑖𝑦

(𝑡−1)
𝑖 + 𝑤𝑧𝑖𝑦𝑖𝑧

(𝑡−1)
𝑖 + 𝑤𝑧𝑖𝑧𝑖𝑧

(𝑡−1)
𝑖 + 𝑤𝑠𝑦𝑖𝑠

(𝑡−1)

= −2𝑥(𝑡−1) + 4𝑦
(𝑡−1)
𝑖 + 𝑧

(𝑡−1)
𝑖 − 1.5𝑠(𝑡−1).

Only If: Let’s show the only if direction for the firing rule of 𝑦(𝑡)𝑖 first. If 𝑦(𝑡−1)
𝑖 =

0, 𝑥(𝑡−1) = 1, the potential of 𝑦(𝑡)𝑖 is

−2 + 𝑧
(𝑡−1)
𝑖 − 1.5𝑠(𝑡−1) ≤ −1 < 0.1 = 𝑏𝑦𝑖 .

If 𝑦(𝑡−1)
𝑖 = 0, 𝑠(𝑡−1) = 1, the potential of 𝑦(𝑡)𝑖 is

−2𝑥(𝑡−1) + 𝑧
(𝑡−1)
𝑖 − 1.5 ≤ −0.5 < 0.1 = 𝑏𝑦𝑖 .

If 𝑦(𝑡−1)
𝑖 = 0, 𝑧

(𝑡−1)
𝑖 = 0, the potential of 𝑦(𝑡)𝑖 is

−2𝑥(𝑡−1) − 1.5𝑠(𝑡−1) ≤ 0 < 0.1 = 𝑏𝑦𝑖 .

In all three cases, we have 𝑦(𝑡)𝑖 = 0.

If: For the if direction, if 𝑦(𝑡−1)
𝑖 = 1, then the potential of 𝑦(𝑡)𝑖 is

−2𝑥(𝑡−1) + 4 + 𝑧
(𝑡−1)
𝑖 − 1.5𝑠(𝑡−1) ≥ 0.5 > 0.1 = 𝑏𝑦𝑖 .

If 𝑦(𝑡−1)
𝑖 = 0, 𝑥(𝑡−1) = 0, 𝑠(𝑡−1) = 0, 𝑧

(𝑡−1)
𝑖 = 1, the potential of 𝑦(𝑡)𝑖 is

4𝑦
(𝑡−1)
𝑖 + 1 ≥ 1 > 0.1 = 𝑏𝑦𝑖 .

28

In both cases, we have 𝑦(𝑡)𝑖 = 1.

Case (2): The potential of 𝑠(𝑡) is

𝑛∑︁
𝑗=0

𝑤𝑧𝑗𝑠𝑧
(𝑡−1)
𝑗 +

𝑛∑︁
𝑗=0

𝑤𝑦𝑗𝑠𝑦
(𝑡−1)
𝑗 + 𝑤𝑥𝑠𝑥

(𝑡−1) + 𝑤𝑠𝑠𝑠
(𝑡−1)

=
𝑛∑︁
𝑗=0

𝑧
(𝑡−1)
𝑗 +

𝑛∑︁
𝑗=0

𝑦
(𝑡−1)
𝑗 − (𝑛+ 1)𝑥(𝑡−1) + (𝑛+ 2)𝑠(𝑡−1).

Only If: For the only if direction, if 𝑠(𝑡−1) = 0 and for all 𝑗, 0 ≤ 𝑗 ≤ 𝑛 we have

𝑦
(𝑡−1)
𝑗 = 𝑧

(𝑡−1)
𝑗 = 0, then the potetntial of 𝑠(𝑡) is

−(𝑛+ 1)𝑥(𝑡−1) ≤ 0 < 0.5 = 𝑏𝑠.

If 𝑠(𝑡−1) = 0, 𝑥(𝑡−1) = 1, the potetntial of 𝑠(𝑡) is
𝑛∑︁
𝑗=0

𝑧
(𝑡−1)
𝑗 +

𝑛∑︁
𝑗=0

𝑧
(𝑡−1)
𝑗 − (𝑛+ 1) ≤ 0 < 0.5 = 𝑏𝑠.

In both cases, we have 𝑠(𝑡) = 0.

If: For the if direction, if there exists 𝑖, 0 ≤ 𝑖 ≤ 𝑛 such that 𝑦(𝑡−1)
𝑖 = 1 and 𝑥(𝑡−1) = 0,

then the potential of 𝑠(𝑡) is
𝑛∑︁
𝑗=0

𝑧
(𝑡−1)
𝑗 +

𝑛∑︁
𝑗 ̸=𝑖,0≤𝑗≤𝑛

𝑦
(𝑡−1)
𝑗 + 1 + (𝑛+ 2)𝑠(𝑡−1) ≥ 1 > 0.5 = 𝑏𝑠.

If there exists 𝑖, 0 ≤ 𝑖 ≤ 𝑛 such that 𝑧(𝑡−1)
𝑖 = 1 and 𝑥(𝑡−1) = 0, the potential of 𝑠(𝑡) is

𝑛∑︁
𝑗=0

𝑦
(𝑡−1)
𝑗 +

𝑛∑︁
𝑗 ̸=𝑖,0≤𝑗≤𝑛

𝑧
(𝑡−1)
𝑗 + 1 + (𝑛+ 2)𝑠(𝑡−1) ≥ 1 > 0.5 = 𝑏𝑠.

If 𝑠(𝑡−1) = 1, the potential of 𝑠(𝑡) is
𝑛∑︁
𝑗=0

𝑧
(𝑡−1)
𝑗 +

𝑛∑︁
𝑗=0

𝑦
(𝑡−1)
𝑗 − (𝑛+ 1)𝑥(𝑡−1) + (𝑛+ 2) ≥ 1 > 0.5 = 𝑏𝑠.

In all three cases, we have 𝑠(𝑡) = 1 as desired.

Now we can describe the behaviors of the capture network in the following theo-

rem. The network persistantly captures the state of 𝑧𝑖 for all 𝑖, 0 ≤ 𝑖 ≤ 𝑛 at the first

time point such that 𝑥 = 0 and there exists some �̂� such that 𝑧�̂� = 1 into 𝑦𝑖 for all

𝑖, 0 ≤ 𝑖 ≤ 𝑛.

29

Theorem 2.2.5. For the network at the second stage, let 𝑡′ ≥ 0 be such that 𝑥(𝑡′) = 0

and there exists �̂� such that 𝑧(𝑡
′)

�̂�
= 1, and for all 𝑡, 0 ≤ 𝑡 < 𝑡′, either 𝑥(𝑡) = 1 or for

all 𝑖, 0 ≤ 𝑖 ≤ 𝑛 we have 𝑧(𝑡)𝑖 = 0. Then for all 𝑖, 𝑡 such that 0 ≤ 𝑖 ≤ 𝑛, 𝑡 > 𝑡′ we have

𝑦
(𝑡)
𝑖 = 𝑧

(𝑡′)
𝑖 .

Proof. First by Lemma 2.2.4, for all 𝑡, 0 < 𝑡 ≤ 𝑡′ and for all 𝑖, 0 ≤ 𝑖 ≤ 𝑛 we have

𝑦
(𝑡)
𝑖 = 𝑠(𝑡) = 0. Now at time 𝑡′ + 1, by Lemma 2.2.4, we see that 𝑦(𝑡

′+1)
𝑖 = 𝑧

(𝑡′)
𝑖 ,∀𝑖, 0 ≤

𝑖 ≤ 𝑛 and 𝑠(𝑡
′+1) = 1. Now by Lemma 2.2.4, we know that for all 𝑡, 𝑡 > 𝑡′ we have

𝑠(𝑡) = 1. Now by Lemma 2.2.4 again, if 𝑦(𝑡
′+1)

𝑖 = 0, then since for all 𝑡, 𝑡 > 𝑡′ we have

𝑠(𝑡) = 1, for all 𝑡 > 𝑡′ we have 𝑦(𝑡)𝑖 = 0; and if 𝑦(𝑡
′+1)

𝑖 = 1, then we also have for all

𝑡, 𝑡 > 𝑡′, 𝑦(𝑡)𝑖 = 1 as desired.

2.2.3 Wrap up

Now we are ready to prove the main Theorem 2.1.1 by setting 𝑛 = 𝑚 = ⌈log 𝑇 ′⌉

Proof. We are going to prove the main theorem by composing the networks from

stage one and two together. If for all 𝑡, 0 ≤ 𝑡 ≤ 𝑇 we have 𝑥(𝑡) = 0, then the network

satisfies the criterion trivially since for all 0 ≤ 𝑡 ≤ 𝑇 , 𝑦(𝑡)𝑖 = 0. If not, then there

exists 𝑡 ≥ 0, 𝐿𝑥 > 0 such that for all 𝑡, 0 ≤ 𝑡 < 𝑡 we have 𝑥(𝑡) = 0, for all 𝑖, 0 ≤ 𝑖 < 𝐿𝑥

we have 𝑥(𝑡+𝑖) = 1, and 𝑥(𝑡+𝐿𝑥) = 0 where 𝐿𝑥 is the length of the first consecutive

spikes interval. Let 𝐿𝑥 =
∑︀∞

𝑗=0 𝑎𝑗2
𝑗; then by Theorem 2.2.3 and Lemma 2.2.1, for all

𝑖, 0 ≤ 𝑖 ≤ 𝑛, we have 𝑧(𝑡+𝐿𝑥−1)
𝑖 = 𝑎𝑖. Now because 𝐿𝑥 > 0, we know there exists �̂�

such that 𝑧(𝑡
′+𝐿𝑥)

�̂�
= 1 by Theorem 2.2.3. And by Lemma 2.2.2, we know for all 𝑖, 𝑡

such that 0 ≤ 𝑡 ≤ 𝑡, 0 ≤ 𝑖 ≤ 𝑛, we have 𝑧(𝑡)𝑖 = 0. Now the assumption of Theorem

2.2.5 is satisfied with 𝑡′ = 𝑡 + 𝐿𝑥. By Theorem 2.2.5, we get for all 𝑡, 𝑖 such that

0 ≤ 𝑖 ≤ 𝑛, 𝑡 ≥ 𝑡+𝐿𝑥 we have 𝑦(𝑡)𝑖 = 𝑎𝑖 and 𝑇 +1 ≥ 𝑡+𝐿𝑥 as desired. This shows that

the above network solves FCSC(T) problem in time 1 with 𝑂(log 𝑇) neurons.

Notice that in fact by the proof above, FCSC network enjoys an early convergence

property. The network actually converges at time 𝑡 + 𝐿𝑥. Therefore we have the

following stronger version of Theorem 2.1.1.

30

Corollary 2.2.6. For all 𝑡, 0 ≤ 𝑡 ≤ 𝑇 , FCSC network with 𝑂(log 𝑇) neurons solves

FCSC(t) problem in time 1.

2.3 Total Spikes Counting

To count the total number of spikes in an arbitrary interval requires the persistence of

neurons without external spikes. Notice that on FCSC network, each neuron toggles

itself according to binary representation without delay. However, the persistence of

neurons and toggles without delays are conflicting objectives; persistence of neurons

stabilizes the network while toggling without delays changes the firing patterns of

the network. For example, we use self-inhibition to count mod 2 but if we use self-

inhibition to count mod 2, the neuron cannot maintain the count during intervals

with no inputs. In this section, we circumvent this difficulty by allowing the network

to enter an unstable intermediate state that still stores the information of the count

when the spikes arrive; however, the network will converge to a clean state that

according to binary representation after one step of computation without external

signals, and this clean state is stable in an arbitrary interval with no input.

In this section, because the self-inhibition used in Section 3 to count mod 2 cannot

induce persistence, we build a network of four neurons to count mod 4 to replace the

function of 𝑧0, 𝑧1 in Section 3. We then iteratively build the rest of the network that

approximately fires in binary on top of the mod 4 counter network.

2.3.1 Mod 4 Counter Network

The construction of the mod 4 counter network is the following:

𝑤𝑥𝑓𝑖 = 1, 𝑤𝑓𝑖𝑓𝑖 = 2, 0 ≤ 𝑖 ≤ 3, 𝑤𝑓𝑗+1𝑓𝑗 = −3, 0 ≤ 𝑗 ≤ 2,

𝑤𝑓1𝑓2 = 𝑤𝑓2𝑓3 = 𝑤𝑓3𝑓0 = 1, 𝑤𝑓0𝑓3 = 𝑤𝑓3𝑓1 = −3

and

𝑏𝑓1 = 0.5, 𝑏𝑓𝑖 = 1.5, 𝑖 ̸= 1.

We have the following lemma to specify the firing rules of 𝑓𝑖:

31

Figure 2-4: mod 4 Counter Network

Lemma 2.3.1. For all 𝑡, 𝑖 such that 𝑡 ≥ 1, 0 ≤ 𝑖 < 4, neurons 𝑓 (𝑡)
𝑖 fire according to

the following rules:

1. 𝑓 (𝑡)
1 = 1 if and only if 𝑓 (𝑡−1)

2 = 0, and (𝑥(𝑡−1) = 1, 𝑓
(𝑡−1)
3 = 0 or 𝑓 (𝑡−1)

1 = 1 or

𝑥(𝑡−1) = 1, 𝑓
(𝑡−1)
0 = 1).

2. For 𝑖 ̸= 1 we have 𝑓
(𝑡)
𝑖 = 1 if and only if 𝑓 (𝑡−1)

(𝑖+1) mod 4 = 0, and (𝑥(𝑡−1) =

1, 𝑓
(𝑡−1)
(𝑖−1) mod 4 = 1 or 𝑓 (𝑡−1)

𝑖 = 1).

Proof. Case (1): The potential of 𝑓 (𝑡)
1 is

𝑤𝑥𝑓1𝑥
(𝑡−1) + 𝑤𝑓1𝑓1𝑓

(𝑡−1)
1 + 𝑤𝑓2𝑓1𝑓

(𝑡−1)
2 + 𝑤𝑓3𝑓1𝑓

(𝑡−1)
3 + 𝑤𝑓0𝑓1𝑓

(𝑡−1)
0

= 𝑥(𝑡−1) + 2𝑓
(𝑡−1)
1 − 3𝑓

(𝑡−1)
2 − 0.7𝑓

(𝑡−1)
3 + 0.3𝑓

(𝑡−1)
0 .

Only If: Let’s show the only if direction for the firing rule of 𝑓 (𝑡)
1 first. If 𝑓 (𝑡−1)

2 = 1,

then the potential of 𝑓 (𝑡)
1 is

𝑥(𝑡−1) + 2𝑓
(𝑡−1)
1 − 3− 0.7𝑓

(𝑡−1)
3 + 0.3𝑓

(𝑡−1)
0 ≤ 0.3 < 0.5 = 𝑏𝑓1 .

If 𝑓 (𝑡−1)
1 = 0, 𝑥(𝑡−1) = 0, then the potential of 𝑓 (𝑡)

1 is

−3𝑓
(𝑡−1)
2 − 0.7𝑓

(𝑡−1)
3 + 0.3𝑓

(𝑡−1)
0 ≤ 0.3 < 0.5 = 𝑏𝑓1 .

32

If 𝑓 (𝑡−1)
1 = 0, 𝑓

(𝑡−1)
3 = 1, 𝑓

(𝑡−1)
0 = 0, then the potential of 𝑓 (𝑡)

1 is

𝑥(𝑡−1) − 3𝑓
(𝑡−1)
2 − 0.7 ≤ 0.3 < 0.5 = 𝑏𝑓1 .

In all three cases, we have 𝑓 (𝑡)
1 = 0.

If: For the if direction, if 𝑓 (𝑡−1)
2 = 0, 𝑓

(𝑡−1)
1 = 1, then the potential of 𝑓 (𝑡)

1 is

𝑥(𝑡−1) + 2− 0.7𝑓
(𝑡−1)
3 + 0.3𝑓

(𝑡−1)
0 ≥ 1.3 > 0.5 = 𝑏𝑓1 .

If 𝑓 (𝑡−1)
2 = 0, 𝑥(𝑡−1) = 1, 𝑓

(𝑡−1)
3 = 0, then the potential of 𝑓 (𝑡)

1 is

1 + 2𝑓
(𝑡−1)
1 + 0.3𝑓

(𝑡−1)
0 ≥ 1 > 0.5 = 𝑏𝑓1 .

If 𝑓 (𝑡−1)
2 = 0, 𝑥(𝑡−1) = 1, 𝑓

(𝑡−1)
0 = 1, then the potential of 𝑓 (𝑡)

1 is

1 + 2𝑓
(𝑡−1)
1 − 0.7𝑓

(𝑡−1)
3 + 0.3 ≥ 0.6 > 0.5 = 𝑏𝑓1 .

In all three cases, we have 𝑓 (𝑡)
1 = 1.

Case (2): For 𝑖 ̸= 1, The potential of 𝑓 (𝑡)
𝑖 is

𝑤𝑥𝑓𝑖𝑥
(𝑡−1) + 𝑤𝑓𝑖𝑓𝑖𝑓

(𝑡−1)
𝑖 + 𝑤𝑓(𝑖−1) mod 4𝑓𝑖𝑓

(𝑡−1)
(𝑖−1) mod 4 + 𝑤𝑓(𝑖+1) mod 4𝑓𝑖𝑓

(𝑡−1)
(𝑖+1) mod 4

= 𝑥(𝑡−1) + 2𝑓
(𝑡−1)
𝑖 + 𝑓

(𝑡−1)
(𝑖−1) mod 4 − 3𝑓

(𝑡−1)
(𝑖+1) mod 4.

Only If: For the only if direction, if 𝑓 (𝑡−1)
(𝑖+1) mod 4 = 1, then the potential of 𝑓 (𝑡)

𝑖 is

𝑥(𝑡−1) + 2𝑓
(𝑡−1)
𝑖 + 𝑓

(𝑡−1)
(𝑖−1) mod 4 − 3 ≤ 1 < 1.5 = 𝑏𝑖.

If 𝑥(𝑡−1) = 0, 𝑓
(𝑡−1)
𝑖 = 0, then the potential of 𝑓 (𝑡)

𝑖 is

𝑓
(𝑡−1)
(𝑖−1) mod 4 − 3𝑓

(𝑡−1)
(𝑖+1) mod 4 ≤ 1 < 1.5 = 𝑏𝑖.

If 𝑓 (𝑡−1)
(𝑖−1) mod 4 = 0, 𝑓

(𝑡−1)
𝑖 = 0, then the potential of 𝑓 (𝑡)

𝑖 is

𝑥(𝑡−1) − 3𝑓
(𝑡−1)
(𝑖+1) mod 4 ≤ 1 < 1.5 = 𝑏𝑖.

In all three cases, we have 𝑓 (𝑡)
𝑖 = 0.

If: For the if direction, if 𝑓 (𝑡−1)
(𝑖+1) mod 4 = 0, 𝑥(𝑡−1) = 1, 𝑓

(𝑡−1)
(𝑖−1) mod 4 = 1, then the potential

of 𝑓 (𝑡)
𝑖 is

1 + 2𝑓
(𝑡−1)
𝑖 + 1 ≥ 2 > 1.5 = 𝑏𝑖.

33

If 𝑓 (𝑡−1)
(𝑖+1) mod 4 = 0, 𝑓

(𝑡−1)
𝑖 = 1, then the potential of 𝑓 (𝑡)

𝑖 is

𝑥(𝑡−1) + 2 + 𝑓
(𝑡−1)
(𝑖−1) mod 4 ≥ 2 > 1.5 = 𝑏𝑖.

In both cases, we have 𝑓 (𝑡)
𝑖 = 1 as desired.

For 0 ≤ 𝑖 < 4, define a clean state with value 𝑖 at time 𝑡′ of the mod 4 counter

network to be a state in which 𝑓
(𝑡′)
𝑖 = 1 and for all 𝑗, 𝑗 ̸= 𝑖 we have 𝑓 (𝑡′)

𝑗 = 0. By

Lemma 2.3.1, it is trivial to see that if for all 𝑡, 𝑡 ≥ 𝑡′ we have 𝑥(𝑡) = 0, then for all

𝑡, 𝑡 ≥ 𝑡′ and for all 𝑖, 0 ≤ 𝑖 < 4 we have 𝑓 (𝑡)
𝑖 = 𝑓

(𝑡′)
𝑖 . Using Lemma 2.3.1, we have

the following lemma describing the behaviors of mod 4 counter network. Intuitively,

when a new input arrives, the network enters an intermediate state in which both

neurons represent the old count and the new count fire; when there is no input, the

neuron that represents the new count will inhibit the neuron that represents the old

count to stabilize the network in a clean state.

Lemma 2.3.2. Let the mod 4 counter network be at a clean state with value �̂� at time

𝑡′. Fix a positive integer 𝐿. For all 𝑖, 0 ≤ 𝑖 < 𝐿, let 𝑥(𝑡′+𝑖) = 1 and 𝑥(𝑡′+𝐿) = 0. Then,

at time 𝑡, 𝑡′ < 𝑡 < 𝑡′ + 𝐿+ 1, we have the state of the network being

𝑓
(𝑡)

(̂𝑖+𝑡−𝑡′) mod 4
= 𝑓

(𝑡)

(̂𝑖+𝑡−𝑡′−1) mod 4
= 1, 𝑓

(𝑡)

(̂𝑖+𝑡−𝑡′−2) mod 4
= 𝑓

(𝑡)

(̂𝑖+𝑡−𝑡′−3) mod 4
= 0.

Furthermore, the network will be at a clean state again at time 𝑡′ + 𝐿 + 1 with

𝑓
(𝑡′+𝐿+1)

(̂𝑖+𝐿) mod 4
= 1.

Proof. First, let’s use induction on 𝑡 to prove at time 𝑡, 𝑡′ < 𝑡 < 𝑡′ + 𝐿 + 1, we have

the state of the network be

𝑓
(𝑡)

(̂𝑖+𝑡−𝑡′) mod 4
= 𝑓

(𝑡)

(̂𝑖+𝑡−𝑡′−1) mod 4
= 1, 𝑓

(𝑡)

(̂𝑖+𝑡−𝑡′−2) mod 4
= 𝑓

(𝑡)

(̂𝑖+𝑡−𝑡′−3) mod 4
= 0.

Base Case: By Lemma 2.3.1, we have

𝑓
(𝑡′+1)

(̂𝑖+1) mod 4
= 𝑓

(𝑡′+1)

(̂𝑖+𝑡−𝑡′) mod 4
= 1, 𝑓

(𝑡′+1)

(̂𝑖−1) mod 4
= 𝑓

(𝑡′+1)

(̂𝑖−2) mod 4
= 0

for the base case.

Inductive Step: Now assume the induction hypothesis is true for 𝑡 = 𝑘, since we

34

Figure 2-5: Total spikes counting (TSC) Network

have 𝑥(𝑘) = 1 by Lemma 2.3.1, we indeed have

𝑓
(𝑘+1)

(̂𝑖+𝑘+1−𝑡′) mod 4
= 𝑓

(𝑘+1)

(̂𝑖+𝑘+1−𝑡′−1) mod 4
= 1, 𝑓

(𝑘+1)

(̂𝑖+𝑘+1−𝑡′−2) mod 4
= 𝑓

(𝑘+1)

(̂𝑖+𝑘+1−𝑡′−3) mod 4
= 0.

This completes the induction.

Now since 𝑥(𝑡′+𝐿) = 0, by Lemma 2.3.1 we can derive the state of the network at

time 𝑡′ + 𝐿+ 1

𝑓
(𝑡′+𝐿+1)

(̂𝑖+𝐿) mod 4
= 1, 𝑓

(𝑡′+𝐿+1)
𝑗 = 0, ∀𝑗 ̸= (̂𝑖+ 𝐿) mod 4

as desired.

2.3.2 TSC Network

Now we iteratively build the network with the following rule on top of the mod 4

counter network,

𝑤𝑓3𝑧𝑖 = 𝑤𝑓3𝑖𝑛𝑖
= 3, 𝑤𝑓0𝑧𝑖 = 𝑤𝑓0𝑖𝑛𝑖

= −1, 𝑤𝑥𝑧𝑖 = 𝑤𝑥𝑖𝑛𝑖
= 1,

𝑤𝑧𝑗𝑧𝑖 = 𝑤𝑧𝑗𝑖𝑛𝑖
= 1, ∀𝑗, 2 ≤ 𝑗 < 𝑖, 𝑤𝑖𝑛𝑖𝑧𝑖 = −𝑖− 3, 𝑤𝑧𝑖𝑖𝑛𝑖

= 1, 𝑤𝑧𝑖𝑧𝑖 = 𝑖+ 3

and

𝑏𝑧𝑖 = 𝑖+ 1.5, 𝑏𝑖𝑛𝑖
= 𝑖+ 2.5.

In the full construction of the TSC network, intuitively, we replace the function of

35

𝑧0, 𝑧1 in Section 3 with a mod 4 counter network. We design the weights coming from

𝑓3, 𝑓0 such that they will induce proper carry in an approximate binary representation

at 𝑧𝑖, 𝑖 ≥ 2, and we use a similar idea as the mod 4 counter network to make TSC

network converge to an exact binary representation in one computation step without

input.

The following lemma specifies the firing rules of 𝑧𝑖, 𝑖𝑛𝑖 for 𝑖 ≥ 2:

Lemma 2.3.3. For 𝑖 ≥ 2, neurons 𝑧(𝑡)𝑖 , 𝑖𝑛
(𝑡)
𝑖 fire according to the following rules:

1. 𝑧(𝑡)𝑖 = 1 if and only if 𝑖𝑛(𝑡−1)
𝑖 = 0, and either (𝑓 (𝑡−1)

3 = 1, 𝑓
(𝑡−1)
0 = 0, 𝑥(𝑡−1) = 1

and for all 𝑗, 2 ≤ 𝑗 < 𝑖 we have 𝑧(𝑡−1)
𝑗 = 1) or 𝑧(𝑡−1)

𝑖 = 1.

2. 𝑖𝑛(𝑡)
𝑖 = 1 if and only if 𝑧(𝑡−1)

𝑖 = 1, 𝑓
(𝑡−1)
3 = 1, 𝑓

(𝑡−1)
0 = 0, 𝑥(𝑡−1) = 1 and for all

𝑗, 2 ≤ 𝑗 < 𝑖 we have 𝑧(𝑡−1)
𝑗 = 1.

Proof. Case (1): The potential of 𝑧(𝑡)𝑖 is

𝑤𝑓3𝑧𝑖𝑓
(𝑡−1)
3 + 𝑤𝑓0𝑧𝑖𝑓

(𝑡−1)
0 +

𝑖−1∑︁
𝑗=2

𝑤𝑧𝑗𝑧𝑖𝑧
(𝑡−1)
𝑗 + 𝑤𝑧𝑖𝑧𝑖𝑧

(𝑡−1)
𝑖 + 𝑤𝑖𝑛𝑖𝑧𝑖𝑖𝑛

(𝑡−1)
𝑖 + 𝑤𝑥𝑧𝑖𝑥

(𝑡−1)

= 3𝑓
(𝑡−1)
3 − 𝑓

(𝑡−1)
0 +

𝑖−1∑︁
𝑗=2

𝑧
(𝑡−1)
𝑗 + (𝑖+ 3)𝑧

(𝑡−1)
𝑖 − (𝑖+ 3)𝑖𝑛

(𝑡−1)
𝑖 + 𝑥(𝑡−1).

Only If: Let’s show the only if direction for the firing rule of 𝑧(𝑡)𝑖 first. If 𝑖𝑛(𝑡−1)
𝑖 = 1,

the potential of 𝑧(𝑡)𝑖 is

3𝑓
(𝑡−1)
3 − 𝑓

(𝑡−1)
0 +

𝑖−1∑︁
𝑗=2

𝑧
(𝑡−1)
𝑗 + (𝑖+ 3)𝑧

(𝑡−1)
𝑖 − (𝑖+ 3) + 𝑥(𝑡−1) ≤ 𝑖+ 1 < 𝑖+ 1.5 = 𝑏𝑧𝑖 .

If 𝑓 (𝑡−1)
3 = 0, 𝑧

(𝑡−1)
𝑖 = 0, the potential of 𝑧(𝑡)𝑖 is

−𝑓 (𝑡−1)
0 +

𝑖−1∑︁
𝑗=2

𝑧
(𝑡−1)
𝑗 − (𝑖+ 3)𝑖𝑛

(𝑡−1)
𝑖 + 𝑥(𝑡−1) ≤ 𝑖− 1 < 𝑖+ 1.5 = 𝑏𝑧𝑖 .

If 𝑓 (𝑡−1)
0 = 1, 𝑧

(𝑡−1)
𝑖 = 0, the potential of 𝑧(𝑡)𝑖 is

3𝑓
(𝑡−1)
3 − 1 +

𝑖−1∑︁
𝑗=2

𝑧
(𝑡−1)
𝑗 − (𝑖+ 3)𝑖𝑛

(𝑡−1)
𝑖 + 𝑥(𝑡−1) ≤ 𝑖+ 1 < 𝑖+ 1.5 = 𝑏𝑧𝑖 .

36

If 𝑥(𝑡−1) = 0, 𝑧
(𝑡−1)
𝑖 = 0, the potential of 𝑧(𝑡)𝑖 is

3𝑓
(𝑡−1)
3 − 𝑓

(𝑡−1)
0 +

𝑖−1∑︁
𝑗=2

𝑧
(𝑡−1)
𝑗 − (𝑖+ 3)𝑖𝑛

(𝑡−1)
𝑖 ≤ 𝑖+ 1 < 𝑖+ 1.5 = 𝑏𝑧𝑖 .

If 𝑧(𝑡−1)
𝑖 = 0 and there exists �̂�, 2 ≤ �̂� < 𝑖 such that 𝑧(𝑡−1)

�̂�
= 0, the potential of 𝑧(𝑡)𝑖 is

3𝑓
(𝑡−1)
3 − 𝑓

(𝑡−1)
0 +

∑︁
𝑗 ̸=�̂�,2≤𝑗<𝑖

𝑧
(𝑡−1)
𝑗 − (𝑖+ 3)𝑖𝑛

(𝑡−1)
𝑖 + 𝑥(𝑡−1) ≤ 𝑖+ 1 < 𝑖+ 1.5 = 𝑏𝑧𝑖 .

In all cases, we have 𝑧(𝑡)𝑖 = 0.

If: For the if direction, if 𝑖𝑛(𝑡−1)
𝑖 = 0, 𝑓

(𝑡−1)
3 = 1, 𝑓

(𝑡−1)
0 = 0, 𝑥(𝑡−1) = 1 and for all

𝑗, 2 ≤ 𝑗 < 𝑖 we have 𝑧(𝑡−1)
𝑗 = 1, then the potential of 𝑧(𝑡)𝑖 is

3 +
𝑖−1∑︁
𝑗=2

1 + (𝑖+ 3)𝑧
(𝑡−1)
𝑖 + 1 ≥ 𝑖+ 2 > 𝑖+ 1.5 = 𝑏𝑧𝑖 .

If 𝑖𝑛(𝑡−1)
𝑖 = 0, 𝑧

(𝑡−1)
𝑖 = 1, the potential of 𝑧(𝑡)𝑖 is

3𝑓
(𝑡−1)
3 − 𝑓

(𝑡−1)
0 +

𝑖−1∑︁
𝑗=2

𝑧
(𝑡−1)
𝑗 + (𝑖+ 3) + 𝑥(𝑡−1) ≥ 𝑖+ 2 > 𝑖+ 1.5 = 𝑏𝑧𝑖 .

In both cases, we have 𝑧(𝑡)𝑖 = 1.

Case (2): The potential of 𝑖𝑛(𝑡)
𝑖 is

𝑤𝑓3𝑖𝑛𝑖
𝑓
(𝑡−1)
3 + 𝑤𝑓0𝑖𝑛𝑖

𝑓
(𝑡−1)
0 +

𝑖−1∑︁
𝑗=2

𝑤𝑧𝑗𝑖𝑛𝑖
𝑧
(𝑡−1)
𝑗 + 𝑤𝑧𝑖𝑖𝑛𝑖

𝑧
(𝑡−1)
𝑖 + 𝑤𝑥𝑖𝑛𝑖

𝑥(𝑡−1)

= 3𝑓
(𝑡−1)
3 − 𝑓

(𝑡−1)
0 +

𝑖−1∑︁
𝑗=2

𝑧
(𝑡−1)
𝑗 + 𝑧

(𝑡−1)
𝑖 + 𝑥(𝑡−1).

Only If: For the only if direction, if 𝑧(𝑡−1)
𝑖 = 0, then the potential of 𝑖𝑛(𝑡)

𝑖 is

3𝑓
(𝑡−1)
3 − 𝑓

(𝑡−1)
0 +

𝑖−1∑︁
𝑗=2

𝑧
(𝑡−1)
𝑗 + 𝑥(𝑡−1) ≤ 𝑖+ 2 < 𝑖+ 2.5 = 𝑏𝑖𝑛𝑖

.

If 𝑓 (𝑡−1)
3 = 0, the potential of 𝑖𝑛(𝑡)

𝑖 is

−𝑓 (𝑡−1)
0 +

𝑖−1∑︁
𝑗=2

𝑧
(𝑡−1)
𝑗 + 𝑧

(𝑡−1)
𝑖 + 𝑥(𝑡−1) ≤ 𝑖 < 𝑖+ 2.5 = 𝑏𝑖𝑛𝑖

.

37

If 𝑓 (𝑡−1)
0 = 1, the potential of 𝑖𝑛(𝑡)

𝑖 is

3𝑓
(𝑡−1)
3 − 1 +

𝑖−1∑︁
𝑗=2

𝑧
(𝑡−1)
𝑗 + 𝑧

(𝑡−1)
𝑖 + 𝑥(𝑡−1) ≤ 𝑖+ 2 < 𝑖+ 2.5 = 𝑏𝑖𝑛𝑖

.

If 𝑥(𝑡−1) = 0, the potential of 𝑖𝑛(𝑡)
𝑖 is

3𝑓
(𝑡−1)
3 − 𝑓

(𝑡−1)
0 +

𝑖−1∑︁
𝑗=2

𝑧
(𝑡−1)
𝑗 + 𝑧

(𝑡−1)
𝑖 ≤ 𝑖+ 2 < 𝑖+ 2.5 = 𝑏𝑖𝑛𝑖

.

If there exists �̂�, 2 ≤ �̂� < 𝑖 such that 𝑧�̂� = 0, the potential of 𝑖𝑛(𝑡)
𝑖 is

3𝑓
(𝑡−1)
3 − 𝑓

(𝑡−1)
0 +

∑︁
𝑗 ̸=�̂�,2≤𝑗<𝑖

𝑧
(𝑡−1)
𝑗 + 𝑧

(𝑡−1)
𝑖 + 𝑥(𝑡−1) ≤ 𝑖+ 2 < 𝑖+ 2.5 = 𝑏𝑖𝑛𝑖

.

In all cases, 𝑖𝑛(𝑡)
𝑖 = 0.

If: For the if direction, if 𝑧(𝑡−1)
𝑖 = 1, 𝑓

(𝑡−1)
3 = 1, 𝑓

(𝑡−1)
0 = 0, 𝑥(𝑡−1) = 1 and for all

𝑗, 2 ≤ 𝑗 < 𝑖 we have 𝑧(𝑡−1)
𝑗 = 1, then the potential of 𝑖𝑛(𝑡)

𝑖 is

3 +
𝑖−1∑︁
𝑗=2

1 + 1 + 1 ≤ 𝑖+ 3 > 𝑖+ 2.5 = 𝑏𝑖𝑛𝑖
.

We have 𝑖𝑛(𝑡)
𝑖 = 1 as desired.

Define a clean state at time 𝑡′ of TSC network with value 𝑋 stored be one in

which

1. 𝑓 (𝑡′)
𝑋 mod 4 = 1, 𝑓

(𝑡′)
𝑗 = 0, ∀𝑗 ̸= 𝑋 mod 4 (i.e., the mod 4 counter subnetwork is

clean with value 𝑋 mod 4).

2. For 𝑋 =
∑︀∞

𝑖=0 𝑎𝑖2
𝑖, 𝑎𝑖 ∈ {0, 1}, 𝑧(𝑡

′)
𝑘 = 𝑎𝑘,∀𝑘 ≥ 2.

3. 𝑖𝑛(𝑡′)
𝑖 = 0 if 𝑋 mod 2𝑖+1 = 2𝑖+1 − 1.

So being at a clean state for TSC network with value 𝑋 stored implies being at a

clean state with value 𝑋 mod 4 for its mod 4 counter subnetwork with 𝑧𝑖 in binary

representation for 𝑖 ≥ 2. By Lemma 2.3.3, it is trivial to see that if for all 𝑡 ≥ 𝑡′ we

have 𝑥(𝑡) = 0, then for all 𝑖 ≥ 2 and for all 𝑡, 𝑡 ≥ 𝑡′ we have 𝑓 (𝑡)
𝑖 = 𝑓

(𝑡′)
𝑖 . Using Lemma

2.3.3, we have the following lemma describing the behaviors of the TSC network.

38

Lemma 2.3.4. Let TSC network be at a clean state at time 𝑡′ with value 𝑋 stored.

Fix a positive integer 𝐿. For all 𝑖 such that 0 ≤ 𝑖 < 𝐿, let 𝑥(𝑡′+𝑖) = 1 and 𝑥(𝑡′+𝐿) = 0.

Then, at 𝑡, 𝑡′ < 𝑡 < 𝑡′ + 𝐿+ 1, 𝑧𝑖, 𝑖𝑛𝑖 fire with the following rules for all 𝑖 ≥ 2:

1. for 1 = 𝑋 + 𝑡− 𝑡′ mod 2𝑖+1 < 2𝑖, 𝑧(𝑡)𝑖 = 0.

2. for 1 < 𝑋 + 𝑡− 𝑡′ mod 2𝑖+1 < 2𝑖, 𝑧(𝑡)𝑖 = 𝑖𝑛
(𝑡)
𝑖 = 0.

3. for 𝑋 + 𝑡− 𝑡′ mod 2𝑖+1 ≥ 2𝑖, we have 𝑧(𝑡)𝑖 = 1, 𝑖𝑛
(𝑡)
𝑖 = 0.

4. for 𝑋 + 𝑡− 𝑡′ mod 2𝑖+1 = 0, we have 𝑧(𝑡)𝑖 = 1, 𝑖𝑛
(𝑡)
𝑖 = 1.

Furthermore, the network will be at a clean state with value 𝑋 + 𝐿 stored at time

𝑡′ + 𝐿+ 1.

Proof. Just like the mod 4 counter network case, we want to deduce the behaviors of

network at 𝑡, 𝑡′ < 𝑡 < 𝑡′ + 𝐿+ 1 using induction first.

Base Case: Fix 𝑖, for 𝑡 = 𝑡′ + 1, we have the following cases

1. 0 < 𝑋 + 1 mod 2𝑖+1 < 2𝑖:

This implies that 0 ≤ 𝑋 mod 2𝑖+1 < 2𝑖 − 1. This shows that not all 𝑗, 𝑗 < 𝑖

we have 𝑧
(𝑡−1)
𝑗 = 1 or 𝑓 (𝑡−1)

3 = 0 or 𝑓 (𝑡−1)
0 = 1. By Lemma 2.3.3, we have

𝑧
(𝑡)
𝑖 = 𝑖𝑛

(𝑡)
𝑖 = 0.

2. 𝑋 + 1 mod 2𝑖+1 ≥ 2𝑖:

This implies that 2𝑖 − 1 ≤ 𝑋 mod 2𝑖+1 < 2𝑖+1 − 1. This shows that either for

all 𝑗, 𝑗 < 𝑖 we have 𝑓 (𝑡−1)
3 = 1, 𝑓

(𝑡−1)
0 = 0, 𝑧

(𝑡−1)
𝑗 = 1 or 𝑧(𝑡−1)

𝑖 = 1 but not both.

By Lemma 2.3.3, we have 𝑧(𝑡)𝑖 = 1, 𝑖𝑛
(𝑡)
𝑖 = 0.

3. 𝑋 + 1 mod 2𝑖+1 = 0:

This implies that 𝑋 mod 2𝑖+1 = 2𝑖+1− 1. This shows that 𝑓 (𝑡−1)
3 = 1, 𝑓

(𝑡−1)
0 = 0

and for all 𝑗 ≤ 𝑖 we have 𝑧(𝑡−1)
𝑗 = 1 and by the definition of a clean state, we

have 𝑖𝑛(𝑡−1)
𝑖 = 0. Now by Lemma 2.3.3, we have 𝑧(𝑡)𝑖 = 1, 𝑖𝑛

(𝑡)
𝑖 = 1.

Inductive Step: Assume the induction hypothesis is accurate for 𝑡 = 𝑘. We have

the following cases

39

1. 1 = 𝑋 + 𝑘 + 1− 𝑡′ mod 2𝑖+1 < 2𝑖:

This implies that 𝑋 + 𝑘 − 𝑡′ mod 2𝑖+1 = 0. Now by induction hypothesis and

Lemma 2.3.2, we know that 𝑓 (𝑘)
3 = 1, 𝑓

(𝑘)
0 = 0 and for all 𝑗, 𝑖 ≥ 𝑗 ≥ 2 we have

𝑧
(𝑘)
𝑗 = 1, 𝑖𝑛

(𝑘)
𝑗 = 1. By Lemma 2.3.3, we have 𝑧(𝑘+1)

𝑖 = 0, 𝑖𝑛
(𝑘+1)
𝑖 = 1.

2. 1 < 𝑋 + 𝑘 + 1− 𝑡′ mod 2𝑖+1 < 2𝑖:

This implies that 1 ≤ 𝑋 + 𝑘 − 𝑡′ mod 2𝑖+1 < 2𝑖 − 1. By induction hypothesis

and Lemma 2.3.2, this shows that not all 𝑗, 𝑗 < 𝑖 we have 𝑧(𝑘)𝑗 = 1 or 𝑓 (𝑘)
3 = 0

or 𝑓 (𝑘)
0 = 1. By Lemma 2.3.3, we have 𝑥(𝑘+1)

𝑖 = 𝑖𝑛
(𝑘+1)
𝑖 = 0.

3. 𝑋 + 𝑘 + 1− 𝑡′ mod 2𝑖+1 ≥ 2𝑖:

This implies that 2𝑖 − 1 ≤ 𝑋 + 𝑘 − 𝑡′ mod 2𝑖+1 < 2𝑖+1 − 1. By induction

hypothesis and Lemma 2.3.2, this shows that either for all 𝑗, 𝑗 < 𝑖 we have

𝑓
(𝑘)
3 = 1, 𝑓

(𝑘)
0 = 0, 𝑧

(𝑘)
𝑗 = 1 or 𝑧(𝑘)𝑖 = 1 but not both. By Lemma 2.3.3, we have

𝑧
(𝑘+1)
𝑖 = 1, 𝑖𝑛

(𝑘+1)
𝑖 = 0.

4. 𝑋 + 𝑘 + 1− 𝑡′ mod 2𝑖+1 = 0:

This implies that 𝑋 + 𝑘− 𝑡′ mod 2𝑖+1 = 2𝑖+1 − 1. By induction hypothesis and

Lemma 2.3.2, this shows that all 𝑓 (𝑘)
3 = 1, 𝑓

(𝑘)
0 = 0, 𝑖𝑛

(𝑘)
𝑖 = 0 and for all 𝑗, 𝑗 ≤ 𝑖

we have 𝑧(𝑘)𝑗 = 1. Now by Lemma 2.3.3, we have 𝑧(𝑡)𝑖 = 1, 𝑖𝑛
(𝑡)
𝑖 = 1.

This completes the induction.

Now we just need to show that at time 𝑡′ + 𝐿+ 1 the network is at a clean state

with value 𝑋 + 𝐿 stored. We have the following cases:

1. 1 = 𝑋 + 𝐿 mod 2𝑖+1 < 2𝑖:

By above induction, we have for 𝑗, 𝑗 ≤ 𝑖, 𝑧(𝑡
′+𝐿)

𝑗 = 0. No matter what the value

of 𝑖𝑛(𝑡′+𝐿)
𝑖 is, by Lemma 2.3.3 we have 𝑧(𝑡

′+𝐿+1)
𝑖 = 𝑖𝑛

(𝑡′+𝐿+1)
𝑖 = 0.

2. 1 < 𝑋 + 𝐿 mod 2𝑖+1 < 2𝑖, 𝑧(𝑡)𝑖 = 𝑖𝑛
(𝑡)
𝑖 = 0:

By above induction, we have 𝑧(𝑡
′+𝐿)

𝑖 = 𝑖𝑛
(𝑡′+𝐿)
𝑖 = 0. By Lemma 2.3.3, we have

𝑧
(𝑡′+𝐿+1)
𝑖 = 𝑖𝑛

(𝑡′+𝐿+1)
𝑖 = 0.

3. 𝑋 + 𝐿 mod 2𝑖+1 ≥ 2𝑖, we have 𝑧(𝑡
′+𝐿)

𝑖 = 1, 𝑖𝑛
(𝑡′+𝐿)
𝑖 = 0. By Lemma 2.3.3, we

have 𝑧(𝑡
′+𝐿+1)

𝑖 = 𝑖𝑛
(𝑡′+𝐿+1)
𝑖 = 0.

40

4. 𝑋 + 𝐿 mod 2𝑖+1 = 0, we have 𝑧(𝑡
′+𝐿)

𝑖 = 1, 𝑖𝑛
(𝑡′+𝐿)
𝑖 = 1. By Lemma 2.3.3, we

have 𝑧(𝑡
′+𝐿+1)

𝑖 = 0, 𝑖𝑛
(𝑡′+𝐿+1)
𝑖 = 1.

which is exactly a clean state with value 𝑋 +𝐿 stored combining with Lemma 2.3.2.

2.3.3 Wrap up

Now we are ready for the main proof of Theorem 2.1.2 by setting 𝑛 = ⌈log 𝑇 ′⌉ and

let 𝑓𝑖, 𝑧𝑗, 0 ≤ 𝑖 ≤ 3, 2 ≤ 𝑗 ≤ 𝑛 be our output neurons.

Proof. Let 𝑓𝑖, 𝑧𝑗, 0 ≤ 𝑖 < 4, 2 ≤ 𝑗 ≤ 𝑛 be our output neurons. Let there be 𝑋 spikes in

𝑇 time steps. Let [𝑡0, 𝑡0+𝑋0−1], · · · , [𝑡𝑘, 𝑡𝑘+𝑋𝑘−1] be the disjoint maximal intervals

of spikes ordered by time (i.e., 𝑥(𝑡) = 1 if 𝑡 ∈ [𝑡𝑖, 𝑡𝑖 +𝑋𝑖 − 1] for some 0 ≤ 𝑖 ≤ 𝑘 and

[𝑡𝑖, 𝑡𝑖+𝑋𝑖]∩ [𝑡𝑗, 𝑡𝑗 +𝑋𝑗] = ∅ for all 𝑖 ̸= 𝑗 and 𝑡0 < 𝑡1 < · · · < 𝑡𝑘,
∑︀𝑘

𝑖=0𝑋𝑘 = 𝑋). Now

I claim that at time 𝑡𝑖 +𝑋𝑖 + 1, the network is at a clean state with value
∑︀𝑖

𝑗=0𝑋𝑗

stored. We will prove the claim with induction on 𝑖. For 𝑖 = 0, apply Lemma 2.3.4,

we get that the network is at a clean state with value 𝑋0 stored. Assume the network

is at a clean state with value
∑︀𝑖

𝑗=0𝑋𝑗 stored at time 𝑡𝑖+𝑋𝑖+1. Then apply Lemma

2.3.4 again, we get at time 𝑡𝑖+1 +𝑋𝑖+1 + 1, the network is at a clean state with value∑︀𝑖+1
𝑗=0𝑋𝑗 stored at time 𝑡𝑖+1 +𝑋𝑖+1 +1. So at time 𝑡𝑘 +𝑋𝑘 +1 ≤ 𝑇 +1, the network

is at a clean state with value
∑︀𝑘

𝑗=0𝑋𝑗 = 𝑋 stored as desired. This shows that the

above network solves TSC(T) problem in time 1 with 𝑂(log 𝑇) neurons.

Notice that in fact by the proof above, TSC network enjoys an early convergence

property. The network actually converges at time 𝑡𝑘+𝑋𝑘+1. Therefore we have the

following stronger version of Theorem 2.1.2.

Corollary 2.3.5. For all 𝑡, 0 ≤ 𝑡 ≤ 𝑇 , TSC network with 𝑂(log 𝑇) neurons solves

FCSC(t) problem in time 1.

2.4 Time Lower Bound for FCSC and TSC

In Section 4, we mentioned that there is a conflicting objective between stabilizing

the output and toggling without delays. We therefore introduced the idea of carrying

41

information of the count at an unclean state and then converging to a clean state,

which introduces one time step of delay. In this Section, we are going to show that

this delay is unavoidable.

Intuitively, the proof of the time lower bound uses the fact that if the network

has to solve the problem without delay, the network must stabilize immediately at

each time step. Therefore, the neurons that fire at the last round will stay firing. By

injectivity of the representation, we can conclude that the network can at most count

up to the network size.

The proof of Theorem 2.1.3 is the follows. The proof of Theorem 2.1.4 is identical.

Proof. Consider the following input sequence such that for all 0 ≤ 𝑡 < 𝑇 we have

𝑥(𝑡) = 1 and for all 𝑡 ≥ 𝑇 we have 𝑥(𝑡) = 0. Let 𝑋 be the collections of all neurons

in the network. Assume for all 0 ≤ 𝑡 ≤ 𝑇 , the network solves FCSC(t) at time 0.

For all 0 ≤ 𝑗 ≤ 𝑇 , let 𝑆𝑗 = {𝑦𝑖 : 𝑦(𝑗)𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑚}. We want to show that

𝑆𝑇) 𝑆𝑇−1) · · ·) 𝑆0. To prove this by induction on 𝑡, we strengthen our induction

hypothesis to become 𝑆𝑡) 𝑆𝑡−1) · · ·) 𝑆0 and for all 𝑦𝑗 ∈ 𝑆𝑡−1 we have 𝑤𝑥𝑦𝑗 > 0.

Base Case: When 𝑡 = 1, notice that 𝑆0 = ∅ by construction. Now by injectivity of

the counter representation, we have 𝑆1) 𝑆0 and for 𝑦𝑗 ∈ 𝑆0, 𝑤𝑥𝑦𝑗 > 0 is vacuously

true.

Induction Step: Now assume 𝑆𝑡) 𝑆𝑡−1) · · ·) 𝑆1 and 𝑤𝑥𝑦𝑗 > 0 for 𝑦𝑗 ∈ 𝑆𝑡−1.

At time step 𝑡 + 1, since the network solves FCSC(t) at time 0, the neurons in 𝑦 is

stabilized even without the input from 𝑥. This means that∑︁
𝑧∈𝑋/{𝑥}

𝑤𝑧𝑦𝑗𝑧
(𝑡) − 𝑏𝑦𝑗 > 0 if 𝑦𝑗 ∈ 𝑆𝑡

Now since 𝑤𝑥𝑦𝑗 > 0, we know that neurons in 𝑆𝑡−1 will keep firing at time 𝑡+ 1. For

neurons in 𝑆𝑡/𝑆𝑡−1, since those neurons fire at time 𝑡, we have

𝑤𝑥𝑦𝑗 +
∑︁

𝑧∈𝑋/{𝑥}

𝑤𝑧𝑦𝑗𝑧
(𝑡−1) − 𝑏𝑦𝑗 > 0 if 𝑦𝑗 ∈ 𝑆𝑡/𝑆𝑡−1

And since the network solves FCSC(t-1) at time 𝑡− 1, we also have∑︁
𝑧∈𝑋/{𝑥}

𝑤𝑧𝑦𝑗𝑧
(𝑡−1) − 𝑏𝑦𝑗 ≤ 0 if 𝑦𝑗 ∈ 𝑆𝑡/𝑆𝑡−1

42

Substract two equations we get

𝑤𝑥𝑦𝑗 > 0 if 𝑦𝑗 ∈ 𝑆𝑡/𝑆𝑡−1

And hence 𝑆𝑡+1 ⊂ 𝑆𝑡. By injectivity of the count representation, we have 𝑆𝑡+1) 𝑆𝑡

as desired.

Now we have 𝑆𝑇) 𝑆𝑇 ′−1) · · ·) 𝑆2) 𝑆1, but we only have less than 𝑇 neurons.

Contradiction.

2.5 Discussion and Future Directions

In this work, we model how brains process temporal information over a long time range

using neurons with transient activities. We propose two tasks that correspond to two

common neural coding schemes, temporal coding and rate coding. “First consecutive

spikes counting" (FCSC) is equivalent to counting the distance between the first two

spikes, a prevalent temporal coding scheme in the sensory cortex while “Total spikes

counting"(TSC) counts the number of the spikes over an arbitrary interval, which is

an example of a rate coding. We design two networks with memoryless neurons that

solve the above two problems in time 1 with 𝑂(log 𝑇) neurons and show that the time

bound is tight.

A natural extension is to consider general temporal coding. Instead of coding the

distance between the first two spikes, we code an arbitrary spike pattern within a max

input interval length 𝑇 . This can be done as an application of the FCSC network.

Given an input pattern with 𝐾 spikes, we can count the spike interval between each

pair of spikes using an FCSC network and have a network that processes an arbitrary

spike pattern with 𝐾 spikes in time 1 with 𝑂(𝐾 log 𝑇) neurons. Since typically the

temporal coding in the brain is sparse, we have 𝐾 ≪ 𝑇 and therefore the network

only uses a small number of neurons.

Out of the spiking neural networks literature, Hitron and Parter [34] tackled a

similar problem. Their deterministic neural counter problem is our TSC problem.

This work differ in three ways. First, our network has time bound 1 while theirs is

𝑂(log 𝑇). Second, we provide a time lower bound result and show our time bound

43

is optimal. Third, they additionally consider an approximate version of the problem

while we consider other forms of neural coding.

Our work follows similar approaches to Lynch et al. [54, 55, 53] by treating neu-

rons as static circuits to explore the computational power of neural circuits. There

are three noteworthy points about our model. First, instead of a stochastic model, we

use a deterministic one. However, it should be noted that all the results in this work

would still hold under the randomized model of Lynch et al. [54, 55, 53] with high

probability. Second, we use a model that resets the potential at every round. There-

fore, to retain temporal information, many self-excitation connections are employed

in our networks. At the other extreme, we could have a model in which the potential

does not decay from past rounds. In that model, temporal information can be stored

in potentials, but it might require different mechanisms to translate the information

from potentials to spikes. The two models thus could lead to different possible com-

putational principles in brains. Third, we used a discrete time model instead of a

continuous time model, which would be more biologically plausible. However, this

might not be a concern since we could use Maass’s synchronization module [58] to

simulate our discrete time model from a continuous time model.

In addition, our networks are not noise tolerant, whereas the actual neuronal

dynamics are highly noisy. It will be interesting to consider a noise tolerant version

of the network. One possible formulation is the following: at each time step 𝑡, with

probability 𝜏 which does not depend on the number of neurons, a spiking event

becomes a non-spike event. Can the network still count exactly or approximately

with high probability? Can we find a noise tolerant network that can do this with

𝑂(log 𝑇) neurons?

Another aspect of the temporal input we have not explored is the time-scale invari-

ance of the problem. In biology, many problems are time-scale invariant. A person

who says “apple" fast can be understood as well as a person who says “apple" slowly.

If we exploit this invariance, we might be able to reduce the networks’ complexity

further.

44

Chapter 3

Plastic Neural Circuit: Oja’s Rule

and Sensory Adaptation

3.1 Introduction

One of the most influential theoretical ideas in neuroscience is Barlow’s efficient cod-

ing principle for sensory systems [11]. Barlow hypothesized that the main goal of

the sensory system is to reduce the redundancy in the sensory input and maximize

the information transmitted to downstream brain areas. One of its key predictions

is that the sensory neurons in the brain adapt to natural stimuli. Indeed, neuro-

scientists have shown in numerous sensory systems that by maximizing the mutual

information transmitted on natural stimuli, one can recover the response filters in the

respective sensory system. In the visual system, the structures of both the center-

surround receptive field of the retina ganglion cells [6, 7, 29] and Gabor filters of V1

simple cells can be mathematically derived from the efficient coding principle [62]. In

the auditory system, the temporal cochlear filters of inner ears can also be derived

from optimizing mutual information on natural sounds [48]. However, most works on

efficient coding of a sensory system have focused on optimizing the statistics of one

natural environment. In reality, the environmental statistics can change drastically

and the sensory system needs to continuously adapt to the changing environment

in a matter of seconds while having high dimensional sensory inputs. For example,

45

although the retina processes visual inputs from 100 million photoreceptors to 1 mil-

lion retina ganglion cells, it can change its receptive field to adapt to environments

with different illumination [74], contrast [74, 9, 75], spatial frequency [75, 37], ori-

entation and temporal correlation [37] in the time scale of seconds. Therefore, it is

important to have a theoretical understanding of how the efficient coding principle

can adapt to changing environments in a biologically realistic timescale with a bio-

logically plausible synaptic learning rule. In this chapter, we give the first theoretical

demonstration of sensory adaptation under the efficient coding principle in biologi-

cally realistic timescale through studying the convergence rate and behaviors of Oja’s

rule [59].

It is known that Oja’s rule maximizes the mutual information under Gaussian

inputs and linear networks by adapting to the direction that maximizes the variance

of the presynaptic inputs through solving Principal Component Analysis (PCA) [50].

Therefore, studying its convergence rate and behaviors can shed light on fast sensory

adaptation under the efficient coding principle. Since the dimensionality of the sen-

sory inputs is usually large, for Oja’s rule to behave in a biologically realistic time

scale, the convergence rate needs to have no dependency or only log dependency on

the input dimension. In addition to its relation to the efficient coding principle, as

a biologically plausible synaptic modification rule, Oja’s rule serves as a plasticity

candidate to investigate sensory adaptation. Oja’s rule is one of the earliest local

learning rules that incorporate both Hebbian and homeostatic plasticity [59], two ma-

jor activity-dependent synaptic modification mechanisms [1]. Both mechanisms work

together to form memory and drive learning behaviors in the brain. Hebbian plastic-

ity is a synapse-specific correlation-based plasticity mechanism that strengthens the

connection when the input has a high correlation with the weights while weakening

the connection when the input has a poor correlation [41, 22, 14]. However, this type

of mechanism alone can often make networks unstable since the highly correlated

input will keep strengthening synapses unboundedly [1]. Homeostatic plasticity, in

contrast, stabilizes the network by keeping the activities of the neurons relatively

constant through calcium sensors [80]. Synaptic scaling is a specific kind of home-

46

ostatic plasticity where the strength of the incoming synapses is normalized while

still encoding the information from Hebbian learning in their relative strength after

normalization [79]. It is thus an important problem in computational neuroscience

to understand the interplay between Hebbian and homeostatic plasticity [78]. Oja’s

rule is one example of this. Concretely, Oja’s rule can be expressed as the following

𝑤𝑡 = 𝑤𝑡−1 + 𝜂𝑡(𝑥𝑡𝑦𝑡 − 𝑦2𝑡𝑤𝑡−1)

where 𝑤𝑡 is the strength of the synapse at time 𝑡, 𝑥𝑡, 𝑦𝑡 are the firing rates of presy-

naptic, and postsynaptic neurons respectively, and 𝜂𝑡 is the learning rate. One can see

that 𝑥𝑡𝑦𝑡 term corresponds to the Hebbian plasticity while 𝑦2𝑡𝑤𝑡−1 term corresponds

to the homeostatic plasticity. One can then show the synaptic scaling property where

‖𝑤𝑡‖ ≈ 1 for all 𝑡.

Despite being a subject of extensive theoretical [59, 61, 70, 33, 60, 68, 21, 88,

87, 23, 5] and experimental [16, 43, 31, 40, 18, 73, 77, 51, 5] studies aimed at un-

derstanding its performance, the theoretical understanding of the Oja’s rule remains

incomplete. The state-of-the-art theoretical analysis only provides a guarantee on

convergence in the limit [23] through the Kushner-Clark methods [44]. However, to

the best of our knowledge, there is no prior work showing the convergence time of

Oja’s rule. Specifically, if the convergence time of Oja’s rule does not depend on the

input dimension or depend on only logarithmic factors of the input dimension, Oja’s

rule can serve as an example of sensory adaptation under the efficient coding principle

in a biologically realistic time scale.

In this work, we provide the first convergence rate analysis for biological Oja’s

rule in solving streaming PCA.

Theorem 3.1.1 (informal). Biological Oja’s rule efficiently solves streaming PCA

with (nearly) optimal convergence rate. Specifically, the convergence rate we obtain

matches the information-theoretic lower bound up to logarithmic factors.

Furthermore, the convergence rate has no dependency on the dimension when the

initial weight vector is close to the top eigenvector or has a dependency on logarithmic

factors of the dimension when the initial vector is random. Therefore, biological Oja’s

47

rule solves streaming PCA on a biologically realistic time scale.

Also, we show for-all-time convergence with a slowly diminishing learning rate.

Most convergence results in the literature show that

Pr(error at time T > 𝜖) < 𝛿.

However, this is not enough in a biological system. The sensory system cannot afford

to only be functional at time 𝑇 . It needs to be functional constantly. In contrast, the

convergence result we can show is

Pr(∃𝑡 ≥ 𝑇, error at time t > 𝜖) < 𝛿,

which guarantees the convergence at all time. Furthermore, in order to achieve this,

our learning rate 𝜂𝑡 only needs to be scaled as 𝜂𝑡 = 𝑂(1
log 𝑡

), in particular
∑︀

𝑡 𝜂
2
𝑡 = ∞.

In contrast, the Kushner-Clark theorem requires
∑︀

𝑡 𝜂
2
𝑡 <∞ where the learning rate

is commonly set as 𝜂𝑡 = 𝑂(1
𝑡
). Because our learning rate is slowly diminishing, when

the environment changes, the learning rate is still large enough to do efficient learn-

ing. This allows the sensory system to continuously adapt to changing environments

without taking a long time to adapt or reset the learning rate.

To show the (nearly) optimal convergence rate of biological Oja’s rule in solving

streaming PCA, we develop an ODE-inspired framework to analyze stochastic dy-

namics. Concretely, instead of the traditional step-by-step analysis, our framework

analyzes a dynamical system in one-shot by giving a closed-form solution for the

entire dynamic. The framework borrows ideas from ordinary differential equations

(ODE) and stochastic differential equations (SDE) to obtain a closed-form character-

ization of the dynamic and uses stopping time and martingale techniques to precisely

control the dynamic. This framework provides a more elegant and more general

analysis compared with the previous step-by-step approaches. We believe that this

novel framework can provide a simple and effective analysis of other problems with

stochastic dynamics.

We organize the rest of the introduction as follows. We first formally define bi-

ological Oja’s rule and streaming PCA in Section 3.1.1 and state the main results

48

and their biological relevance in Section 3.1.2. In Section 3.1.3, we provide a tech-

nical overview of the proof and the analysis framework. Finally, we conclude the

introduction with a survey and comparison of related works in Section 3.1.4.

3.1.1 Biological Oja’s rule and streaming PCA

In a biological neural network, two neurons primarily interact with each other via

action potentials or instantaneous signals, a.k.a., "spikes", through synapses between

them. The strength of a synapse might vary from time to time and is called the

synaptic weight. The ability of a synaptic weight to strengthen or weaken over time

is considered as a source for learning and long term memory in our brains. While

generally, the update of a synaptic weight could depend on the spiking patterns of

the end neurons, it is common for neuroscientists to focus on the averaging behaviors

of a spiking dynamic. Namely, they simplify the model by only considering the firing

rate, which is defined as the average number of spikes. This is known as the rate-based

model [82, 83] and since biological Oja’s rule was defined on a rate-based model, this

setting will be the focus of this work.

To understand how biological Oja’s rule works, consider the following baby exam-

ple with two neurons 𝑥 and 𝑦. Let 𝑥𝑡, 𝑦𝑡 ∈ R be the firing rates of neurons 𝑥, 𝑦 at time

𝑡 ∈ N and let 𝑤𝑡 ∈ R be the synaptic weight from 𝑥 to 𝑦 at time 𝑡. In a biological

neural network, 𝑤𝑡 could change over time and the dynamic is defined locally on the

previous synaptic weight as well as the firing rates of the end neurons. Namely, the

synaptic weight from the neuron 𝑥 to 𝑦 has the following dynamic

𝑤𝑡 = 𝑤𝑡−1 + 𝜂𝑡𝐹𝑡(𝑤𝑡−1, 𝑥𝑡, 𝑦𝑡)

where 𝐹𝑡 is an update function and 𝜂𝑡 is the plasticity coefficient, a.k.a., the learn-

ing rate. Biologically, the update function should further follow the Hebb postulate,

which has been informally paraphrased as “cells that fire together wire together” [32].

One naive way to implement Hebbian learning is to set the update function as

𝐹𝑡(𝑤𝑡−1, 𝑥𝑡, 𝑦𝑡) = 𝑥𝑡𝑦𝑡. However, the values of 𝑤𝑡 can grow unboundedly. biologi-

49

cal Oja’s rule is a self-normalizing Hebbian rule with the following synaptic updates.

𝑤𝑡 = 𝑤𝑡−1 + 𝜂𝑡𝑦𝑡 (𝑥𝑡 − 𝑦𝑡𝑤𝑡−1) .

Using the above synaptic update rule, Oja [59] configured a network that solves

streaming PCA while keeping the norm of the weights stable. Before introducing the

network, let us formally define the streaming PCA problem.

Streaming PCA Principal component analysis (PCA) [65, 38] is a problem to find

the top eigenvector of a covariance matrix of a dataset. Let 𝑛 be the dimension of

the data. In the offline setting, one can compute the covariance matrix in 𝑂(𝑛2)

space and use the power method to approximate the top eigenvector. As for its

variant, the streaming PCA (a.k.a. the stochastic online PCA, see [19] for a survey

on the literature), the input data arrives in a stream and the algorithm/dynamic only

has a limited amount of space, e.g., 𝑂(𝑛) space. Streaming PCA is important for

biological systems because the information inherently arrives in a stream in a living

system. On the other hand, it is also much more challenging than offline PCA (see

for example [3]). In the following, we formally define the streaming PCA problem. 1

Problem 3.1.2 (Streaming PCA). Let 𝑛, 𝑇 ∈ N and 𝒟 be a distribution over the unit

sphere of R𝑛. Suppose the input data x1,x2, . . . ,x𝑇
i.i.d.∼ 𝒟 are given one by one in a

stream. Let 𝐴 = Ex∼𝒟[xx
⊤] be the covariance matrix and 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛 ≥ 0 be

the eigenvalues of 𝐴. Assume 𝜆1 > 𝜆2 and let v1 be the top eigenvector of 𝐴 of unit

length. Then the goal of the streaming PCA problem is to output w ∈ R𝑛 such that
⟨w,v1⟩2
‖w‖22

≥ 1− 𝜖.

Since the inputs arrive in a stream, usually a streaming PCA algorithm/dynamic

would maintain a solution w𝑡 ∈ R𝑛 at each time 𝑡 ∈ N. Thus, the goal for a streaming

PCA algorithm/dynamic would be achieving Pr
[︁
⟨w𝑇 ,v1⟩2
‖w‖22

≥ 1− 𝜖
]︁
≥ 1− 𝛿 with small

1In related works, some (e.g., [3]) measure the error using 1 − ⟨w,v1⟩2, some (e.g., [72]) use
1 −w⊤𝐴w/‖𝐴‖, and some (e.g., [39]) use sin2(w,v1). We remark that all of these error measures
(including ours) are the same up to a constant multiplicative factor.

Also, some works emphasize other convergence notions such as the gap-free convergence [72].
Though we do not explicitly study the convergence of biological Oja’s rule under these notions,
we believe that our results could be easily extended to other convergence notions with comparable
convergence rate and leave this for future work.

50

𝑇 .

Biological Oja’s rule in solving streaming PCA Oja [59] proposed a streaming

PCA algorithm using 𝑛 input neurons and one output neuron. The firing rates of the

input neurons at time 𝑡 are denoted by a vector x𝑡 ∈ R𝑛 and the firing rate of the

output neuron is denoted by a scalar 𝑦𝑡 ∈ R. The synaptic weights at time 𝑡 from the

input neurons to the output neuron are denoted by a vector w𝑡 ∈ R𝑛. Note that the

weight vector will be the output and ideally it will converge to the top eigenvector

v1. The firing rate vector x𝑡 and the synaptic weight vector w𝑡 correspond to the

x𝑡,w in the streaming PCA problem in Problem 3.1.2.

The input stream x1,x2, . . . ,x𝑇 arrives in the form of firing rates of the input

neurons. The firing rate of the output neuron is simply the inner product of the

synaptic weight vector and the firing rate vector of the input neurons, i.e., 𝑦𝑡 =

x⊤
𝑡 w𝑡−1. Now, from biological Oja’s rule, the dynamic of the synaptic weight vector

is described by the following equation.

Definition 3.1.3 (Biological Oja’s rule). For any initial vector w0 ∈ R𝑛 such that

‖w0‖2 = 1, the dynamic of biological Oja’s rule is the following. For any 𝑡 ∈ N,

define

w𝑡 = w𝑡−1 + 𝜂𝑡𝑦𝑡 (x𝑡 − 𝑦𝑡w𝑡−1) (3.1.4)

where 𝑦𝑡 = x⊤
𝑡 w𝑡−1 and x𝑡 is the input at time 𝑡. See also in Figure 3-1 for a pictorial

definition of biological Oja’s rule in solving streaming PCA.

Figure 3-1: A neural network that uses biological Oja’s rule to solve streaming PCA.
The firing rate vector x𝑡 is the input and the weight vector w𝑡 is the output at time
𝑡.

Following from the definition, biological Oja’s rule is biologically-plausible in the

51

following sense. First, the synaptic update rule is local. Namely, each synapse only

depends on the previous synaptic weight and the firing rates of the two end neu-

rons. Second, with some simple calculations (e.g., Lemma 3.5.1), biological Oja’s

rule achieves the synaptic scaling guarantee [1], i.e., w𝑡,𝑖 being bounded for all 𝑡 ∈ N

and 𝑖 ∈ [𝑛]. Thus, one can then interpret the convergence results of this work as

showing further biological-plausibilities of biological Oja’s rule in the retina-optical

nerve pathway. See Section 3.1.2 for more discussions.

Oja’s derivation for biological Oja’s rule Before going into more technical con-

tents, it would be helpful to take a look at the original derivation for biological Oja’s

rule. Initially, Oja wanted to use the following update rule with normalization2 to

solve the streaming PCA problem.

w𝑡 =

(︀
𝐼 + 𝜂𝑡x𝑡x

⊤
𝑡

)︀
w𝑡−1

‖
(︀
𝐼 + 𝜂𝑡x𝑡x⊤

𝑡

)︀
w𝑡−1‖2

. (3.1.5)

However, the normalization term ‖
(︀
𝐼 + 𝜂𝑡x

⊤
𝑡 x𝑡
)︀
w𝑡−1‖−1

2 is global3 and does not seem

to have a biologically-plausible implementation. To bypass this issue, Oja applied

Taylor’s expansion on the normalization term and truncated the second order terms of

𝜂𝑡. This exactly results in biological Oja’s rule (i.e., Equation 3.1.4). See Section A.1

for more details on the derivation.

Also, to see why intuitively biological Oja’s rule could solve streaming PCA, one

can check that any eigenvector v of 𝐴 of unit length with eigenvalue 𝜆 is a fixed point

of biological Oja’s rule in expectation. Specifically, the expectation of the update

term 𝑦𝑡(x𝑡 − 𝑦𝑡w𝑡−1) with w𝑡−1 = v is the following.

E
[︀
x⊤
𝑡 vx𝑡 − (x⊤

𝑡 v)
2v
]︀
= 𝐴v − v⊤𝐴vv = 𝜆v − 𝜆‖v‖22v = 0 .

The first equality follows from for all 𝑖, 𝑗 ∈ [𝑛], E[x𝑡,𝑖x𝑡,𝑗] = 𝜆𝑖 · 1𝑖=𝑗, and the second

equality follows from 𝐴v = 𝜆v. By checking the Hessian at the top eigenvector v1,

one can even see that v1 is a stable fixed point.

2This update rule is doing a variant of power method with normalization. It is widely used in
the machine learning community to solve streaming PCA. See Section 3.1.4 for more discussion.

3It is global because computing the ℓ2 norm requires the information from every neurons.

52

Previous works: Results about convergence in the limit There were many

previous works on analyzing the convergence of biological Oja’s rule in solving stream-

ing PCA [59, 61, 70, 33, 60, 68, 21, 88, 87, 23]. However, these works only proved

guarantees on convergence in the limit. For example, Duflo [23] showed that w𝑡 con-

verges to the top eigenvector of 𝐴 in the limit under some constraints on the learning

rates.

Theorem 3.1.6 ([23], informal). Let w0 be a random unit vector in R𝑛. If 𝜂𝑡 ≤ 1
2

for

all 𝑡 ∈ N,
∑︀∞

𝑡=0 𝜂𝑡 = ∞, and
∑︀∞

𝑡=0 𝜂
2
𝑡 <∞, then lim𝑡→∞⟨w𝑡,v1⟩2 = 1 almost surely.

The proofs of these previous analyses are usually based on tools from dynamical

system such as the Kushner-Clark method or Lyapunov theory. Note that these proof

techniques are not sufficient for providing a convergence rate guarantee because they

only provide convergence in the limit.

To the best of our knowledge, prior to this work, there had been no efficiency

guarantee for biological Oja’s rule. The main technical barrier is due to the non-

linear terms in the update rule which introduces correlations in the traditional step-

by-step analysis and thus naive analysis would not work. We explain the difficulty

further in Section 3.1.3 and Section A.3. Given this situation, natural questions on

the frontier would then be:

Question: What is the convergence rate of biological Oja’s rule in solving

streaming PCA? Is the convergence rate fast enough to be an example

of fast sensory adaptation under the efficient coding principle with high

dimensional sensory inputs?

3.1.2 Our results

In this chapter, we answer the above questions by giving the first convergence rate

guarantee for biological Oja’s rule in solving streaming PCA. Furthermore, the con-

vergence rate matches the information-theoretic lower bound for streaming PCA up

to logarithmic factors [3]. In terms of the techniques, we develop an ODE-inspired

framework to analyze stochastic dynamics. We believe this general framework of us-

ing tools and insights from ODE and SDE in analyzing stochastic dynamics is elegant

53

and powerful. We provide more details and intuitions on the ODE-inspired framework

in the section on the technical overview (see Section 3.1.3). Also, as a byproduct, our

convergence rate guarantee for biological Oja’s rule outperforms the state-of-the-art

upper bound for streaming PCA (using other variants of Oja’s rule).

There are two common convergence notions in the streaming PCA literature. The

global convergence requires the algorithm/dynamic to start from a random initial

vector while the local convergence allows the algorithm/dynamic to start from an

initial vector that is highly correlated to the top eigenvector of the covariance matrix.

Now, we are ready to state our main theorem as follows.

Theorem 3.1.7 (Global and local convergence). With the setting in Problem 3.1.2

and dynamic in Definition 3.1.3, let gap := 𝜆1 − 𝜆2 > 0. For any 𝜖, 𝛿 ∈ (0, 1), we

have the following results.

∙ (Local Convergence) Suppose ⟨w0,v1⟩2
‖w0‖22

= Ω(1). For any 𝑛 ∈ N, 𝛿, 𝜖 ∈ (0, 1)), let

𝜂 = Θ̃

(︂
𝜖gap
𝜆1

)︂
, 𝑇 = Θ

(︂
𝜆1

𝜖gap2
· log2

(︂
1

𝜖
,
1

𝛿

)︂)︂
.

Then, we have

Pr

[︂
⟨w𝑇 ,v1⟩2

‖w𝑇‖22
< 1− 𝜖

]︂
< 𝛿 .

∙ (Global Convergence) Suppose w0 is uniformly sampled from the unit sphere of R𝑛.

For any 𝑛 ∈ N, 𝛿, 𝜖 ∈ (0, 1), let

𝜂 = Θ̃

(︂
(𝜖 ∧ 𝛿2)gap

𝜆1

)︂
, 𝑇 = Θ

(︂
𝜆1

(𝜖 ∧ 𝛿2)gap2
· log3

(︂
1

𝜖
,
1

𝛿
,

1

gap
, 𝑛

)︂)︂
Then, we have

Pr

[︂
⟨w𝑇 ,v1⟩2

‖w𝑇‖22
< 1− 𝜖

]︂
< 𝛿 .

The notation 𝑎 ∧ 𝑏 stands for min{𝑎, 𝑏} and Θ̃ hides the poly-logrithmic factors with

respect to 𝜖−1, 𝛿−1, gap−1, 𝑛.

Biological perspectives Our results use biological Oja’s rule as an example to pro-

vide the first theoretical demonstration of how a sensory system can adapt to changing

environments in a biologically realistic time scale under the efficient coding principle.

In a linear network with Gaussian input, biological Oja’s rule maximizes the mutual

54

information of the presynaptic inputs by selecting the top principal component as

the output. Specifically, we show that biological Oja’s rule is a local synaptic modifi-

cation mechanism that not only incorporates both Hebbian learning and homeostatic

plasticity but also can solve streaming PCA in a biologically realistic time scale. In

particular, in this work we demonstrate that biological Oja’s rule does not have any

dependency on the dimension (i.e., 𝑛, the number of neurons) in the local conver-

gence setting while the dependency is logarithmic in the global convergence setting.

Moreover, in the local convergence setting, the dependency of the convergence rate

on the failure probability 𝛿 is inverse-logarithmic instead of 𝑂(1/𝛿). The local conver-

gence is particularly important for sensory adaptation because different environments

in nature are usually still correlated and therefore the sensory system does not need

to start at a random initialization to adapt to the new environment. Since the local

convergence does not depend on the dimension of the inputs, this demonstrates that

it is possible for a sensory system with high dimensional sensory inputs to adapt to

changing environments in seconds.

Furthermore, we prove the for-all-time guarantee of biological Oja’s rule as a

corollary of the techniques used in the proof for the main theorems. By for-all-

time guarantee, we refer to the behavior of a dynamic that always stays around the

optimal solution after convergence. In particular, the dynamic would not leave even

temporarily the neighborhood of the optimal solution. The for-all-time guarantee is

of biological importance because a biological system constantly adapts and functions,

and it is not enough for a mechanism to hold for only a brief moment. We state the

theorem for the for-all-time guarantee as follows.

Theorem 3.1.8 (For-all-time guarantee with slowly diminishing rate). With the set-

ting in Problem 3.1.2 and dynamic in Definition 3.1.3, let gap := 𝜆1−𝜆2 > 0. For any

𝜖, 𝛿 ∈ (0, 1), suppose ⟨w0,v1⟩2
‖w0‖22

≥ 1− 𝜖/2. For any 𝑡 ∈ N, there exists 𝜂𝑡 ≥ Θ
(︁

𝜖·gap
𝜆1 log(𝑡/𝛿)

)︁
such that

Pr

[︂
∀𝑡 ∈ N,

⟨w𝑡,v1⟩2

‖w𝑡‖22
≥ 1− 𝜖

]︂
≥ 1− 𝛿 .

We should further notice that the learning rate is slowly-diminishing, i.e., 𝜂𝑡 =

55

Θ(1/ log 𝑡) instead of the commonly used 𝜂𝑡 = 𝑂(1/𝑡), in the for-all-time guarantee

(i.e., Theorem 3.1.8). This suggests the capability of continual adaptation, which

is crucial in the biological scenario. For example, if a person walks into a new en-

vironment, the retina cells need to quickly adapt to the new environment and this

cannot be achieved if the learning rate already diminished too fast in the previous en-

vironment. Since our learning rate decreases like Ω(1/ log 𝑡), when the environment

changes, the learning rate is still large enough to do efficient adaptation without

resetting the learning rate.

We remark that prior to this work, the for-all-time guarantee with slowly di-

minishing learning rates was even unknown to any streaming PCA algorithms. The

convergence in the limit result for biological Oja’s rule requires 𝜂𝑡 = 𝑜(1/
√
𝑡) [23]

and the convergence rate analysis for non-biologically-plausible variants of Oja’s rule

requires 𝜂𝑡 = �̃�(1/𝑡) [39, 3, 49] or 𝜂𝑡 = 𝑂(1/
√
𝑡) [72]. In particular, all previous works

satisfy
∑︀

𝑡 𝜂
2
𝑡 < ∞ while in this work we can achieve for-all-time convergence with

much weaker assumptions 𝜂𝑡 = Ω(1/ log 𝑡) (hence
∑︀

𝑡 𝜂
2
𝑡 = ∞) for biological Oja’s

rule.

3.1.3 Technical overview

In this work, we give the first efficiency guarantee for biological Oja’s rule in solving

streaming PCA with an (nearly) optimal convergence rate. In this subsection, we

highlight three technical insights of our analysis which lead us to a clear understanding

of how biological Oja’s rule solves streaming PCA. In short, our high-level strategy is

to first consider the continuous version of Oja’s rule where the learning rate 𝜂 is set

to be infinitesimal. In the continuous setting, the dynamic can be fully understood by

tools from the theory of ordinary differential equations (ODE) or stochastic differential

equations (SDE). With the inspiration from the continuous analysis, we are able to

identify the right tools (e.g., linearization at two different centers, etc.) to tackle the

discrete dynamic.

Before we start, let us recall the problem setting and the goal. For simplicity, here

we consider the diagonal case where the covariance matrix 𝐴 is a diagonal matrix,

56

i.e., 𝐴 = diag(𝜆1 . . . , 𝜆𝑛) with 𝜆1 > 𝜆2 ≥ 𝜆3 ≥ · · · ≥ 𝜆𝑛 ≥ 0. Thus the top eigenvector

of 𝐴 is e1, i.e., the indicator vector for the first coordinate, and the goal becomes

showing that w2
𝑡,1 efficiently converges to 1 when 𝑡 → ∞. A reduction from the

general case to the diagonal case is provided in Section 3.5.1.

Insight 1: Inspiration from the continuous dynamics The first insight is to

analyze biological Oja’s rule in a way inspired by its continuous analog. The advantage

of considering the continuous dynamics is that not only does it capture the inherent

dynamics but also we can apply the theory of ODE and SDE to obtain closed-form

solutions. Thus, the continuous dynamic would serve as a hint on how to derive a

tight and closed-form analysis for the discrete dynamic.

Interestingly, the continuous SDE of biological Oja’s rule degenerates into a simple

deterministic ODE almost surely (see Section 3.3 for a derivation). Specifically, for

any 𝑡 ≥ 0, we have

𝑑w𝑡,1

𝑑𝑡
≥ (𝜆1 − 𝜆2)w𝑡,1(1−w2

𝑡,1) and ‖w𝑡‖2 = 1 (3.1.9)

almost surely. Furthermore, observe that the continuous Oja’s rule is non-decreasing

and has three fixed points 0 and ±1 for w𝑡,1 while the first is unstable and the later

two are stable. Namely, in the continuous dynamic, w𝑡 will eventually converge to

±e1, i.e., the top eigenvector of 𝐴.

Note that in a discrete stochastic dynamic, there are two sources of noise: (i) the

intrinsic stochasticity from its continuous analog and (ii) the noise due to discretiza-

tion. Thus, Equation 3.1.9 suggests that the noise in biological Oja’s rule comes only

from discretization since the continuous Oja’s rule is deterministic.

In addition to the limiting behavior, one can also read out finer structures of the

continuous dynamic from Equation 3.1.9 by solving the differential equation using

standard tools from dynamical system. The right hand side (RHS) of the inequality

in Equation 3.1.9 is non-linear which usually does not have a clean solution. A natural

idea from dynamical system would then be linearizing the differential equation around

fixed points and applying the exact solution for a linear ordinary differential equation.

Moreover, as there are three fixed points in Equation 3.1.9, one can linearize the

57

differential equation with the center being either 0 or ±1. For simplicity, we focus on

the two fixed points 0 and 1 while −1 can be analyzed similarly due to symmetry.

For example, we can linearize at 0 by lower bounding the RHS of Equation 3.1.9

by 𝜖(𝜆1 − 𝜆2)w𝑡,1 for any w𝑡,1 ∈ [0,
√
1− 𝜖] (see Figure 3-2a). Similarly, we can

linearize at 1 by using w0,1(𝜆1 − 𝜆2)(1 − w𝑡,1) for any w𝑡,1 ∈ [w0,1, 1] (see Figure 3-

2b). Another choice would be linearizing at both 0 and 1. Concretely, we linearize at

0 for w𝑡,1 ∈ [0, 2/3] and linearize at 1 for w𝑡,1 ∈ [2/3, 1] (see Figure 3-2c).

(a) Linearization only at 0. (b) Linearization only at 1.

(c) Linearization at both 0
and 1.

Figure 3-2: In (a), we only linearize at 0 and use 𝜖 · gap ·w𝑡,1 to lower bound Equa-
tion 3.1.9 for w𝑡,1 ∈ [0,

√
1− 𝜖]. In (b), we only linearize at 1 and use (w0,1 · gap ·

(1−w𝑡,1)) for w𝑡,1 ∈ [w0,1, 1]. On the other hand, in (c), we linearize at both 0 and
1. For w𝑡,1 ∈ [0, 2

3
], we use 5

9
gap ·w𝑡,1 while for w𝑡,1 ∈ [2

3
, 1] we use 10

9
gap · (1−w𝑡,1).

One can see that the lower bounds in (c) are much tighter than that in (a) and (b)
in the sense that the slopes are of order Ω(gap) instead of 𝑂(𝜖 · gap) or 𝑂(w0,1 · gap).

The main difference between linearizing only at a single fixed point and lineariz-

ing at two fixed points is the slope in the linearization. Note that the slopes of the

linearizations in Figure 3-2a and Figure 3-2b are 𝜖(𝜆1 − 𝜆2) and w0,1(𝜆1 − 𝜆2) re-

spectively while the slope is of the order Ω(𝜆1 − 𝜆2) in Figure 3-2c. As the slope

corresponds to the speed of the convergence, the extra 𝜖 or w0,1 in the slope of lin-

earization at a single fixed point would result in an extra 𝜖−1 or w−1
0,1 in the convergence

58

rate. See Figure 3-2 for a pictorial explanation.

Another key inspiration from the continuous dynamic is the ODE trick which

provides a closed form characterization of the dynamic in terms of the drifting term

captured by the continuous dynamic and the noise term originated from the lineariza-

tion and discretization. The ODE trick is inspired by the solution to a linear ordinary

differential equation (linear ODE). Consider the following simple linear ODE

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑎𝑦(𝑡) + 𝑏(𝑡)

for some constant 𝑎 and function 𝑏(𝑡). To put into the context, one can think of 𝑎 as

the drifting term and 𝑏(𝑡) as the noise term in the continuous Oja’s rule due to the

linearization4. By the standard tool for solving linear ODE, the solution of 𝑦(𝑡) at

𝑡 = 𝑇 is

𝑦(𝑇) = 𝑒𝑎𝑇 ·
(︂
𝑦(0) +

∫︁ 𝑇

0

𝑒−𝑎𝑡𝑏(𝑡)𝑑𝑡

)︂
. (3.1.10)

From the above equation, one can see that the solution of a linear ODE extracts the

drifting term into a multiplier 𝑒𝑎𝑇 and decouples the initial condition 𝑦(0) with the

noise term
∫︀ 𝑇
0
𝑒−𝑎𝑡𝑏(𝑡)𝑑𝑡. As a consequence, once we can show that the noise term

is much smaller than the initial value, then 𝑦(𝑇) is dominated by the drifting term

𝑒𝑎𝑇𝑦(0) and thus we are able to analyze the progress of 𝑦(𝑇).

To sum up, the continuous dynamic informs us how to linearize biological Oja’s

rule at different centers in different phases of the analysis. Further, the ODE trick

provides us a closed-form approximation to the dynamic. We are then able to ana-

lyze biological Oja’s rule in one shot rather than doing the traditional step-by-step

analysis.

Insight 2: One-shot analysis instead of step-by-step analysis The second

insight of this work is performing an one-shot analysis instead of the traditional

step-by-step analysis (e.g., [3]).

4In biological Oja’s rule, the discretization also contributes in the noise term.

59

Traditional step-by-step analysis To see the difference, let us illustrate how

the step-by-step analysis on biological Oja’s rule would work. Denote the natural

filtration as {ℱ𝑡} where ℱ𝑡 is the 𝜎-algebra generated by x1,x2, . . . ,x𝑡. For any

𝑡 ∈ N, we have

E [w𝑡,1] = E
[︀
E
[︀
w𝑡−1,1 + 𝜂𝑡(x

⊤
𝑡 w𝑡−1)x𝑡,1 − 𝜂𝑡(x

⊤
𝑡 w𝑡−1)

2w𝑡−1,1 | ℱ𝑡−1

]︀]︀
= E

[︃
w𝑡−1,1 + 𝜂𝑡𝜆1w𝑡−1,1 − 𝜂𝑡

(︃
𝑛∑︁
𝑖=1

𝜆𝑖w
2
𝑡−1,𝑖

)︃
w𝑡−1,1

]︃
where the second equation is due to the fact that for any 𝑖, 𝑗 ∈ [𝑛], E[x𝑡,𝑖x𝑡,𝑗 | ℱ𝑡−1] =

𝐴𝑖𝑗 = 𝜆𝑖 ·1𝑖=𝑗 and for any 𝑖 ∈ [𝑛], E[w𝑡−1,𝑖 | ℱ𝑡−1] = w𝑡−1,𝑖. In a step-by-step analysis,

one then argues that the expectation E[w𝑡,1] would be improved from E[w𝑡−1,1] by a

certain factor. Then, an induction on each step followed by showing concentration

would give some convergence rate guarantee. However, there are two difficulties in

getting an optimal convergence rate (these difficulties usually also appear in the step-

by-step analysis for other problems).

∙ First, there are some non-linear terms of w𝑡−1,1 in the update noise. This usually

requires some hacks tailored to the specific problem to enable the analysis.

∙ Second, the improvement factor at each step can depend on w𝑡−1 and at worst

case, the dynamic can show no improvement or even deteriorate. Taking expec-

tation loses precise controls of the values of w𝑡−1. This makes naive martingale

analysis difficult to work and probably requires more ad hoc tricks.

For instance, the first difficulty is exactly what [3] encountered in their analysis for a

variant of biological Oja’s rule. They resolved the first difficulty by decomposing the

non-linear term in the dynamic into a multi-dimensional chain and carefully bounding

the chain with strong assumptions on learning rates to enable martingale analysis.

They used extremely delicate and complicated techniques tailored to the dynamic

to achieve optimal convergence rate. biological Oja’s rule, in addition to having the

first difficulty, also has the second difficulty (see Section A.3 for more discussions).

Therefore, applying the traditional step-by-step analysis of biological Oja’s rule will

encounter great obstacles.

60

Our one-shot analysis In this work, we use an one-shot analysis to avoid the

complication of a step-by-step analysis. Namely, instead of looking at the process

iteratively, we study the entire dynamic at once. Two key ingredients are needed to

implement such a one-shot analysis: (i) a closed-form characterization of the dynamic

and (ii) stopping time techniques. As discussed in the previous discussion, the con-

tinuous dynamic of biological Oja’s rule inspires us to get a closed-form lower bound

for w𝑡,1 by the ODE trick. Concretely, as a simplified example5, we have

w𝑇,1 = 𝐻𝑇 ·

(︃
w0,1 +

𝑇∑︁
𝑡=1

𝑁𝑡

𝐻 𝑡

)︃
(3.1.11)

where 𝐻 > 1 is the multiplier term and {𝑁𝑡} is the noise term which forms a martin-

gale on the natural filtration. See Corollary 3.7.21 and Corollary 3.6.4 for a precise

formulation of 𝐻 and {𝑁𝑡} in our analysis. Intuitively, one should think of 𝐻𝑇w0,1

as the drifting term and the other part as the noise term. The goal of the ODE trick

in the discrete dynamic is to show that the drifting term dominates the noise term.

To show that the noise in Equation 3.1.11 is small, Azuma’s inequality would

be a natural tool to start with (see Lemma 3.2.3). However, the bounded difference

condition in Azuma’s inequality would immediately cause an issue: the noise at time

𝑡 is correlated with w𝑡−1,1 and thus one cannot get a small bounded difference almost

surely. For example, suppose the bounded difference of {𝑁𝑡} at time 𝑡 is at most

w2
𝑡−1,1. Since we do not yet know the behavior of w𝑡−1,1, we can only upper bound

the bounded difference of {𝑁𝑡} in the worst case6 by 1+ 𝑜(1). In the meantime, both

w2
𝑡,1 and the noise are expected to be very small in the early stage of the dynamic

with high probability.

To circumvent this obstacle, we consider the stopped process of the original martin-

gale in which the bounded difference is under control. For example, consider the above

situation where the noise term {𝑁𝑡} is a martingale and a stopping time 𝜏 for the

event {w2
𝜏,1 ≥ 0.1}. The stopped process, denoted by {𝑁𝑡∧𝜏} where 𝑡∧𝜏 = min{𝑡, 𝜏},

5In general, the multiplier term also varies with respect to time 𝑡.
6This is because we are able to upper bound w𝑡−1,1 by 1 + 𝑜(1) almost surely. See Section 3.5.2.

Note that there are ways to get better bounded difference conditions in the worst case but this is
still not sufficient.

61

is a process that simulates {𝑁𝑡} and stops at the first time 𝑡* such that w2
𝑡*,1 ≥ 0.1.

It is known that a stopped process of a martingale is also a martingale. Furthermore,

the bounded difference of the stopped process {𝑁𝑡∧𝜏} would be 0.1 almost surely by

the choice of 𝜏 . It turns out that this improvement in the bounded difference con-

dition drastically increases the quality of Azuma’s inequality and gives the desiring

concentration for the stopped process.

There is one last missing step before showing the dominance of w0,1 in Equa-

tion 3.1.11: we have to show that the concentration for the stopped process {𝑁𝑡∧𝜏}

can be extended to the original process {𝑁𝑡}. We achieve this task by developing a

pull-out lemma which is able to utilize the structure of the martingale and pull out

the stopping time from a concentration inequality.

Insight 3: Maximal martingale inequality and pull-out lemma In general,

there is no hope pulling out the stopping time from a concentration inequality for the

stopped process without blowing up the failure probability. The naive union bound

would give a blow-up of factor 𝑇 in the failure probability and it is undesirable.

Let 𝑀𝑡 =
∑︀𝑡

𝑡′=1𝐻
−𝑡′𝑁𝑡′ be the noise term in the ODE trick (i.e., Equation 3.1.11)

and 𝜏 be a stopping time that ensures good bounded difference condition. Note that

as {𝑁𝑡} is a martingale, we know that {𝑀𝑡∧𝜏} is also a martingale. There are two

key ingredients to pull out the stopping time from {𝑀𝑡∧𝜏}, i.e., the stopped process

of the noise term.

First, we use the maximal concentration inequality (e.g., Lemma 3.2.4) which

gives the following stronger guarantee than the traditional Azuma’s inequality.

Pr

[︂
sup

1≤𝑡≤𝑇
|𝑀𝑡∧𝜏 −𝑀0| ≥ 𝑎

]︂
< 𝛿 (3.1.12)

for some 𝑎 > 0, 𝑇 ∈ N, and 𝛿 ∈ (0, 1). Note that the maximal concentration inequality

gives concentration for any 1 ≤ 𝑡 ≤ 𝑇 without paying an union bound.

Second, we identify a chain structure on the martingale and the stopping time 𝜏

we are working with. Concretely, we are able to show that for all 𝑡 ∈ [𝑇],

Pr

[︂
𝜏 ≥ 𝑡+ 1

⃒⃒⃒
sup

1≤𝑡′≤𝑡
|𝑀𝑡′ −𝑀0| < 𝑎

]︂
= 1 . (3.1.13)

62

Namely, if the bad event has not happened, then the martingale would not stop

immediately. Intuitively, Equation 3.1.13 holds because {sup1≤𝑡′≤𝑡 |𝑀𝑡′ −𝑀0| < 𝑎}

implies the noise term to be small and thus the drifting term dominates in the ODE

trick. As 𝜏 is properly chosen such that the martingale would not stop if the process

w𝑡 followed the drifting term, we know that 𝜏 ≥ 𝑡+ 1.

Combining the above two ingredients (i.e., Equation 3.1.12 and Equation 3.1.13),

we are able to show in the pull-out lemma that

Pr

[︂
sup

1≤𝑡≤𝑇
|𝑀𝑡 −𝑀0| ≥ 𝑎

]︂
< 𝛿 ,

i.e., the stopping time has been pulled out.

Let us end this subsection with a high-level sketch on the proof for the pull-out

lemma. The key idea is to consider another stopping time 𝜏 ′ for the event {|𝑀𝜏 ′ −

𝑀0| ≥ 𝑎} and partition the probability space of the error event {sup1≤𝑡≤𝑇 |𝑀𝑡−𝑀0| ≥

𝑎} in to two parts 𝑃1 and 𝑃2 with the following properties. In 𝑃1, we can show that

Pr

[︂
sup

1≤𝑡≤𝑇
|𝑀𝑡 −𝑀0| ≥ 𝑎, 𝑃1

]︂
= Pr

[︂
sup

1≤𝑡≤𝑇
|𝑀𝑡∧𝜏 −𝑀0| ≥ 𝑎, 𝑃1

]︂
.

As for 𝑃2, we use the chain condition in Equation 3.1.13 to show that the probability

of error event is 0 based on a diagonal argument. Thus, we have

Pr

[︂
sup

1≤𝑡≤𝑇
|𝑀𝑡 −𝑀0| ≥ 𝑎

]︂
= Pr

[︂
sup

1≤𝑡≤𝑇
|𝑀𝑡 −𝑀0| ≥ 𝑎, 𝑃1

]︂
+ Pr

[︂
sup

1≤𝑡≤𝑇
|𝑀𝑡 −𝑀0| ≥ 𝑎, 𝑃2

]︂
= Pr

[︂
sup

1≤𝑡≤𝑇
|𝑀𝑡∧𝜏 −𝑀0| ≥ 𝑎, 𝑃1

]︂
+ 0

≤ Pr

[︂
sup

1≤𝑡≤𝑇
|𝑀𝑡∧𝜏 −𝑀0| ≥ 𝑎

]︂
< 𝛿 .

See Section 3.6.2 and Figure 3-3 for more details on the chain condition for biological

Oja’s rule and how to partition the probability space of the error event.

3.1.4 Related works

Related theory work on biological Oja’s variants Computational neurosci-

entists have proposed several variants of biological Oja’s rule to solve streaming

63

PCA [59, 60, 70, 26, 46, 69, 43, 67]. In a single neuron case, Oja used stochastic

approximation theory [44] to prove the global convergence in the limit [59]. In a

multi-neurons case, Hornik and Kuan demonstrated the connection between the dis-

crete dynamics and the associated ODE [36] from the Kushner-Clark theory [44].

However, most existing analyses on the multi-neurons dynamics show only local con-

vergence [70, 26, 46, 69, 43, 67]. Even for the ODE dynamic, the global convergence

for most networks in a multi-neurons case is difficult to show. Yan et al. provide the

only global analysis on Oja’s multi-neurons subspace network [60, 86, 85]. Previously

there is no work showing the convergence rate on the discrete dynamics. This thesis

shows the first convergence rate bound on biological Oja’s rule.

Oja’s rule in machine learning Unlike the situation in biological Oja’s rule, a

line of recent exciting results [30, 20, 10, 72, 39, 3] showed convergence rate analysis

for variants of Oja’s rule in the machine learning community. Since the update rules of

these works are not biologically-plausible, we call them ML Oja’s rules to distinguish

from biological Oja’s rule.

To see the difference between biological Oja’s rule and ML Oja’s rules, let us take

the update rule from [72, 39, 3] as an example. Note that the other variants of ML

Oja’s rules also have a similar fundamental difference from biological Oja’s rule as

illustrated by the following example. Let w𝑡 ∈ R𝑛 be the output vector at time

𝑡 = 0, 1, . . . , 𝑇 , the update rule is

w𝑡 =
𝑡∏︁

𝑡′=1

(︀
1 + 𝜂𝑡′x𝑡′x

⊤
𝑡′

)︀
w0

and the output is w𝑇/‖w𝑇‖2. Note that the above update rule is equivalent to Equa-

tion 3.1.5, i.e., applying Taylor’s expansion on the ML Oja’s rule and truncating the

higher-order terms would result in biological Oja’s rule.

A natural idea would be trying to couple biological Oja’s rule with the ML Oja’s

rule by showing that for every 𝑡 ∈ N, the weight vectors from the two dynamics would

be close to each other. However, this seems to be more difficult than direct analysis

and we leave it as an open problem to investigate whether this is the case. Moreover,

the corresponding continuous dynamics suggest an intrinsic difference between the

64

two: the continuous version of the ML Oja’s rule can be tightly characterized by

a single linear ODE while that of biological Oja’s rule requires two linear ODEs in

different regimes for tight analysis. See Section 3.3 and Section A.3 for more details.

To sum up, biological Oja’s rule and the ML Oja’s rule are similar but the analysis

of the latter cannot be directly applied to the former. While following the proof idea

for the ML Oja’s rule might give some hints on how to analyze biological Oja’s rule,

in this work we develop a completely different framework (as briefly discussed in Sec-

tion 3.1.3). This framework not only gives the first and nearly optimal convergence

rate guarantee for biological Oja’s rule but also could improve the convergence rate

of the ML Oja’s rule with better logarithmic dependencies and we leave it as future

work.

Comparing with other streaming PCA algorithms Streaming PCA is a well-

studied and challenging computational problem. Many works [20, 72, 49, 39, 3] pro-

vided theoretical guarantees for streaming PCA algorithms. Interestingly, all of the

streaming PCA algorithms in these works are some variants of biological Oja’s rule.

Recall that there are two standard convergence notions: the global convergence

where w0 is an uniformly random unit vector and the local convergence where w0 is

constantly correlated with the top eigenvector. There are 5 parameters of interest: the

dimension 𝑛 ∈ N, the eigenvalue gap gap := 𝜆1 − 𝜆2 ∈ (0, 1), the top eigenvalue 𝜆1 ∈

(0, 1), the error parameter 𝜖 ∈ (0, 1), and the failure probability 𝛿 ∈ (0, 1). Ideally, the

goal is to achieve the information-theoretic lower bound Ω(𝜆1gap−2𝜖−1 log(𝛿−1)) given

by [3]. Prior to this work, the state-of-the-art for both global and local convergences

are achieved by [3] using ML Oja’s rule (see the second to last row of Table 3.1).

In this work, as a byproduct, the convergence rate we get for biological Oja’s rule

outperforms [3] by a logarithmic factor in both settings. See Table 3.1 for a summary.

*Let 𝑓(log 𝑛, log(1/𝜖), log(1/𝛿), log(1/gap)) be the polynomial of the logarithmic dependencies in
the convergence rate. We compare the maximum degree of 𝑓 among different analyses. Note that
this measure makes sense when 𝑛, 1/𝜖, 1/𝛿, 1/gap are polynomially related.

†Both [20] and [72] cannot handle arbitrary failure probability so we ignore their 𝛿 dependency
on the table.

‡In [20, 72, 49], their convergence rates are far from the information-theoretic lower bound. So
we do not trace down their logarithmic dependencies.

§In [3], they only stated Ω(𝜆1

gap · 1
𝜖) lower bound. We observe that their lower bound can be

65

Algorithm Reference Any
Input

Global Convergence Local Convergence

Convergence
Rate

Degree in
Log Terms*

Convergence
Rate

Degree in
Log Terms*

Biological
Oja’s Rule This Work Y �̃�

(︁
𝜆1

gap2 ·
1

𝜖∧𝛿2

)︁
3 �̃�

(︁
𝜆1

gap2 ·
1
𝜖

)︁
2

ML
Oja’s Rule

[20] N �̃�
(︁

𝑛
gap2 ·

1
𝜖

)︁
† - ‡ �̃�

(︁
𝑛

gap2 ·
1
𝜖

)︁
† - ‡

[72] Y �̃�
(︁

𝑛
gap2 ·

1
𝜖

)︁
† - ‡ �̃�

(︁
𝑛

gap2 ·
1
𝜖

)︁
† - ‡

[49] N �̃�
(︁
𝜆1𝑛
gap2 ·

1
𝜖𝛿6

)︁
- ‡ �̃�

(︁
𝜆1𝑛
gap2 ·

1
𝜖𝛿4

)︁
- ‡

[39] Y �̃�
(︁

𝜆1
gap2 ·

1
𝜖𝛿3

)︁
2 �̃�

(︁
𝜆1

gap2 ·
1
𝜖𝛿3

)︁
2

[3] Y �̃�
(︁

𝜆1
gap2 ·

1
𝜖∧𝛿2

)︁
≥ 4 �̃�

(︁
𝜆1

gap2 ·
1
𝜖

)︁
≥ 3

Any
Algorithm [3] Ω

(︁
𝜆1

gap2 ·
log 1

𝛿

𝜖

)︁
§

Table 3.1: Convergence rate for biological Oja’s rule and ML Oja’s rule in solving
streaming PCA. The “Any Input” column indicates that whether the analysis has
higher moment conditions on the unknown distribution 𝒟. Note that having higher
moment conditions would drastically simplify the problem because the non-linear
terms in the update rule can then be non-trivially replaced with the first order term.

Algorithms inspired by biological neural networks In recent years, the study

of the algorithmic aspect of mathematical models for biological neural networks is an

emerging field in theoretical CS. For example, the efficiency of spiking neural networks

in solving the winner-take-all (WTA) problem [56, 54, 55, 53, 76], the efficiency

of spiking neural networks in storing temporal information [57, 34], assemblies [47,

64], spiking neural networks in solving optimization problems [17, 66] and learning

hierarchically structured concepts [52]. Under this context, this work provides an

algorithmic insight in a biologically-plausible learning rule that solves streaming PCA.

3.2 Preliminaries

In this section, we introduce the mathematical notations and tools that we use in this

work.

improved by a log(1/𝛿) factor using the fact that distinguishing a fair coin from a biased coin with
probability at least 𝛿 requires Ω(log(1/𝛿)) samples.

66

3.2.1 Notations

We use N = {1, 2, . . . } and N≥0 = {0, 1, . . . }. For each 𝑛 ∈ N, denote [𝑛] =

{1, 2, . . . , 𝑛} and [𝑛]≥0 = {0, 1, . . . , 𝑛}. For a vector indexed by time 𝑡, e.g., w𝑡,

its 𝑖th coordinate is denoted by w𝑡,𝑖. The notation �̃� (similarly, Ω̃ and Θ̃) is the same

as the big-O notation by ignoring extra poly-logarithmic term. 1𝐸 stands for the indi-

cator function for a probability event 𝐸. We sometimes abuse the big O notation by

𝑦 = 𝑂(𝑥) meaning |𝑦| = 𝑂(𝑥) and this will be clear in the context. Throughout the

chapter, 𝜆 is used to denote the vector (𝜆1, 𝜆2, . . . , 𝜆𝑛) where 𝜆1 > 𝜆2 ≥ · · · ≥ 𝜆𝑛 ≥ 0

are the eigenvalues of the covariance matrix 𝐴. diag(𝜆) denotes the diagonal matrix

with 𝜆 on the diagonal. We will follow the convention of stochastic process and de-

note min{𝑎, 𝑏} as 𝑎 ∧ 𝑏. We say an event happens almost surely if it happens with

probability one.

3.2.2 Probability toolbox

Random process and concentration inequality Random process is a central

tool in this chapter. Let us start with the most general definition on adapted random

process.

Definition 3.2.1 (Adapted random process). Let {𝑋𝑡}𝑡∈N≥0
be a sequence of random

variables and {ℱ𝑡}𝑡∈N≥0
be a filtration. We say {𝑋𝑡}𝑡∈N≥0

is an adapted random

process with respect to {ℱ𝑡}𝑡∈N≥0
if for each 𝑡 ∈ N≥0, the 𝜎-algebra generated by

𝑋0, 𝑋1, . . . , 𝑋𝑡 is contained in ℱ𝑡.

In most of the situation, we use ℱ𝑡 to denote the natural filtration of {𝑋𝑡}𝑡∈N≥0
,

namely, ℱ𝑡 is defined as the 𝜎-algebra generated by 𝑋0, 𝑋1, . . . , 𝑋𝑡. One of the most

common adapted processes is the martingale.

Definition 3.2.2 (Martingale). Let {𝑀𝑡}𝑡∈N≥0
be a sequence of random variables and

let {ℱ𝑡}N be its natural filtration. We say {𝑀𝑡}𝑡∈N≥0
is a martingale if for each 𝑡 ∈ N,

E[𝑀𝑡+1 | ℱ𝑡] =𝑀𝑡.

Note that for any adapted random process {𝑋𝑡}𝑡∈N≥0
, one can always turn it into a

martingale by defining 𝑀0 = 𝑋0 and for any 𝑡 ∈ N, let 𝑀𝑡 = 𝑋𝑡−E[𝑋𝑡 | ℱ𝑡−1]. When

67

the difference of a martingale can be bounded almost surely, the Azuma’s inequality

provides an useful concentration inequality with exponential tail.

Lemma 3.2.3 (Azuma’s inequality [8]). Let {𝑀𝑡}𝑡∈N≥0
be a martingale. Let 𝑇 ∈ N

and 𝑎, 𝑐 ≥ 0 be some constants. Suppose for each 𝑡 = 1, 2, . . . , 𝑇 , |𝑀𝑡 −𝑀𝑡−1| ≤ 𝑐

almost surely, then we have

Pr [|𝑀𝑇 −𝑀0| ≥ 𝑎] < exp

(︂
−Ω

(︂
𝑎2

𝑐2𝑇

)︂)︂
.

The following maximal Azuma’s inequality shows that one can even get union

bound for free with the help of Doob’s inequality.

Lemma 3.2.4 (Maximal Azuma’s inequality [28, Section 3]). Let {𝑀𝑡}𝑡∈N≥0
be a

martingale. Let 𝑇 ∈ N and 𝑎, 𝑐 ≥ 0 be some constants. Suppose for each 𝑡 =

1, 2, . . . , 𝑇 , |𝑀𝑡 −𝑀𝑡−1| ≤ 𝑐 almost surely, then we have

Pr

[︂
sup

0≤𝑡≤𝑇
|𝑀𝑡 −𝑀0| ≥ 𝑎

]︂
< exp

(︂
−Ω

(︂
𝑎2

𝑐2𝑇

)︂)︂
.

The Azuma’s inequality can be strengthen by considering the conditional variance.

This is known as the Freedman’s inequality.

Lemma 3.2.5 (Freedman’s inequality [25]). Let {𝑀𝑡}𝑡∈N≥0
be a martingale. Let 𝑇 ∈

N and 𝑎, 𝑐, 𝜎𝑡 ≥ 0 be some constants for all 𝑡 ∈ [𝑇]. Suppose for each 𝑡 = 1, 2, . . . , 𝑇 ,

|𝑀𝑡 −𝑀𝑡−1| ≤ 𝑐 almost surely and Var[𝑀𝑡 −𝑀𝑡−1 | ℱ𝑡−1] ≤ 𝜎2
𝑡 , then we have

Pr

[︂
sup

0≤𝑡≤𝑇
|𝑀𝑡 −𝑀0| ≥ 𝑎

]︂
< exp

(︃
−Ω

(︃
𝑎2∑︀𝑇

𝑡=1 𝜎
2
𝑡 + 𝑐𝑎

)︃)︃
.

Finally, we state a corollary of Freedman’s inequality for adapted random process

with small conditional expectation.

Corollary 3.2.6. Let {𝑀𝑡}𝑡∈N≥0
be a random process. Let 𝑇 ∈ N and 𝑎, 𝑐, 𝜎𝑡, 𝜇𝑡 ≥ 0

be some constants for all 𝑡 ∈ [𝑇]. Suppose for each 𝑡 = 1, 2, . . . , 𝑇 , |𝑀𝑡 −𝑀𝑡−1| ≤ 𝑐

almost surely, Var[𝑀𝑡 −𝑀𝑡−1 | ℱ𝑡−1] ≤ 𝜎2
𝑡 , and |E[𝑀𝑡 −𝑀𝑡−1 | ℱ𝑡−1]| ≤ 𝜇𝑡, then we

have

Pr

[︃
sup

0≤𝑡≤𝑇
|𝑀𝑡 −𝑀0| ≥ 𝑎+ max

1≤𝑡≤𝑇

𝑇∑︁
𝑡=1

𝜇𝑡

]︃
< exp

(︃
−Ω

(︃
𝑎2∑︀𝑇

𝑡=1 𝜎
2
𝑡 + 𝑐𝑎

)︃)︃
.

68

Stopping time One powerful technique for studying martingale is the notion of

stopping time defined as follows.

Definition 3.2.7 (Stopping time). Let {𝑋𝑡}𝑡∈N≥0
be an adapted random process as-

sociated with filtration {ℱ𝑡}𝑡∈N≥0
. An integer-valued random variable 𝜏 is a stopping

time for {𝑋𝑡}𝑡∈N≥0
if for all 𝑡 ∈ N, {𝜏 = 𝑡} ∈ ℱ𝑡.

Let {𝑀𝑡}𝑡∈N≥0
be a martingale, the most common stopping time for {𝑀𝑡}𝑡∈N≥0

is

of the following form. For any 𝑎 ∈ R, let

𝜏 := min
𝑀𝑡≥𝑎

𝑡 .

Namely, 𝜏 is the first time when the martingale becomes at least 𝑎. For convenience,

in the rest of the chapter, we would define stopping time of this form by saying “𝜏 is

the stopping time for the event {𝑀𝑡 ≥ 𝑎}”.

Given a martingale {𝑀𝑡}𝑡∈N≥0
and a stopping time 𝜏 , it is then natural to consider

the corresponding stopped process {𝑀𝑡∧𝜏}𝑡∈N≥0
where 𝑡 ∧ 𝜏 = min{𝑡, 𝜏} is also a

random variable. An useful and powerful fact here is that the stopped process of a

martingale is also a martingale. See [81, Theorem 10.9] for a proof for this classic

result.

Brownian motion In Section 3.3, we consider a continuous version of biological

Oja’s rule by modeling the input stream as a Brownian motion. Here, we provide

background that is sufficient for the readers to understand the discussion there.

First, we introduce the 1-dimensional Brownian motion using the following opera-

tional definition. In the following, we use𝑁(𝜇, 𝜎2) to denote the Gaussian distribution

with mean 𝜇 and variance 𝜎2.

Definition 3.2.8 (1-dimensional Brownian motion). Let {𝛽𝑡}𝑡≥0 be a real-valued ran-

dom process. We say {𝛽𝑡}𝑡≥0 is a 1-dimensional Brownian motion if the following

holds.

∙ 𝛽0 = 0 and 𝛽𝑡 is almost surely continuous.

∙ For any 𝑡1, 𝑡2, 𝑡3, 𝑡4 such that 0 ≤ 𝑡1 < 𝑡2 ≤ 𝑡3 < 𝑡4, 𝛽𝑡2 − 𝛽𝑡1 is independent

from 𝛽𝑡4 − 𝛽𝑡3.

69

∙ For any 𝑡1, 𝑡2 such that 0 ≤ 𝑡1 < 𝑡2, 𝛽𝑡2 − 𝛽𝑡1 ∼ 𝑁(0, 𝑡2 − 𝑡1).

With the above definition, it is then natural to consider some variants such as

putting 𝑛 independent copies of 1-dimensional Brownian motion into a vector, i.e., the

𝑛-dimensional Brownian motion, or applying linear operations on an 𝑛-dimensional

Brownian motion, or considering the calculus on Brownian motion by looking at

𝑑𝛽𝑡 = limΔ→0 𝛽𝑡+Δ − 𝛽𝑡. The role of Brownian motion in the study of continuous

random process is similar to Gaussian random variance in discrete random process

and many properties in the discrete world directly extend to the continuous world.

One property of Brownian motion though obviously does not hold in the discrete

setting and might be counter-intuitive for people who see this for the first time. This

is the quadratic variation of Brownian motion as stated below.

Lemma 3.2.9 (Quadratic variation of Brownian motion). Let {𝛽𝑡}𝑡≥0 and {𝛽′
𝑡}𝑡≥0 be

two independent 1-dimensional Brownian motions. The following holds almost surely.

𝑑𝛽2
𝑡 = 𝑑𝑡 and 𝑑𝛽𝑡𝑑𝛽

′
𝑡 = 0 .

We omit the proof of Lemma 3.2.9 here and refer the interested readers to standard

textbook such as [45] for more details on Brownian motion.

3.2.3 ODE toolbox

Lemma 3.2.10 (ODE trick for scalar). Let {𝑋𝑡}𝑡≥N≥0
, {𝐴𝑡}𝑡∈N, and {𝐻𝑡}𝑡∈N be

sequences of random variables with the following dynamic

𝑋𝑡 = 𝐻𝑡𝑋𝑡−1 + 𝐴𝑡 (3.2.11)

for all 𝑡 ∈ N. Then for all 𝑡0, 𝑡 ∈ N≥0 such that 𝑡0 < 𝑡, we have

𝑋𝑡 =
𝑡∏︁

𝑖=𝑡0+1

𝐻𝑖 ·

(︃
𝑋𝑡0 +

𝑡∑︁
𝑖=𝑡0+1

𝐴𝑖∏︀𝑖
𝑗=𝑡0+1𝐻𝑗

)︃
.

Proof of Lemma 3.2.10. For each 𝑡0 < 𝑖 ≤ 𝑡, dividing Equation 3.2.11 with
∏︀𝑖

𝑗=𝑡0+1𝐻𝑗

on both sides, we have

𝑋𝑖∏︀𝑖
𝑗=𝑡0+1𝐻𝑗

=
𝑋𝑖−1∏︀𝑖−1
𝑗=𝑡0+1𝐻𝑗

+
𝐴𝑖∏︀𝑖

𝑗=𝑡0+1𝐻𝑗

.

70

By telescoping the above equation from 𝑡 = 𝑡0+1 to 𝑡, we get the desiring expression.

Lemma 3.2.12 (ODE trick for vector). Let {𝑋𝑡}𝑡∈N≥0
, {𝐴𝑡}𝑡∈N be sequences of 𝑚𝑡-

dimensional random variables and {𝐻𝑡}𝑡∈N be a sequence of random 𝑚𝑡 ×𝑚𝑡−1 ma-

trices with the following dynamic

𝑋𝑡 = 𝐻𝑡𝑋𝑡−1 + 𝐴𝑡 (3.2.13)

for all 𝑡 ∈ N. Then for all 𝑡0, 𝑡 ∈ N≥0 such that 𝑡0 < 𝑡, we have

𝑋𝑡 =
𝑡∏︁

𝑖=𝑡0+1

𝐻𝑖𝑋𝑡0 +
𝑡∑︁

𝑖=𝑡0+1

𝑡∏︁
𝑗=𝑖+1

𝐻𝑡−𝑗𝐴𝑖 .

Proof of Lemma 3.2.12. The proof is a direct induction.

3.2.4 Approximation toolbox

Here we state some useful inequalities. Since some are quite standard, the proofs are

omitted.

Lemma 3.2.14. For any 𝑥 ∈ (−0.5, 1),

1 + 𝑥 ≤ 𝑒𝑥 ≤ 1 + 𝑥+ 𝑥2 ≤ 1 + 2𝑥 .

In fact for all 𝑥 ≥ 0, the first inequality holds.

Lemma 3.2.15. For any 𝑥 ∈ (0, 0.5) and 𝑡 ∈ N,

1 +
𝑥𝑡

2
≤ 𝑒

𝑥𝑡
2 ≤ (1 + 𝑥)𝑡 ≤ 𝑒𝑥𝑡 .

Lemma 3.2.16. For any 𝜖 ∈ (0, 1), we have(︁ 𝜖
8

)︁1− 1

log 8
𝜖 =

𝜖

4
.

Proof. Rewrite the expression as the follows.(︁ 𝜖
8

)︁1− 1

log 8
𝜖 = 𝜖 ·

(︂
8

𝜖

)︂ 1

log 8
𝜖 · 1

8
.

It suffices to show that
(︀
8
𝜖

)︀ 1

log 8
𝜖 · 1

8
= 1

4
. Consider the logarithm of the term, we have

log

(︃(︂
8

𝜖

)︂ 1

log 8
𝜖 · 1

8

)︃
=

1

log 8
𝜖

(︂
3 + log

1

𝜖

)︂
− 3 = 1− 3 = −2

71

as desired.

3.3 Analyzing the Continuous Version of Oja’s Rule

In this section, we introduce the continuous version of Oja’s rule and analyze its

convergence rate. The analysis here serves as an inspiration for attacking the discrete

dynamic. Specifically, in Section 3.3.1, we show a surprising fact, the randomness in

the input disappears at the continuous limit. Therefore, the continuous limit of Oja’s

rule is deterministic almost surely. In Section 3.3.2, we formalize the key insights 1

in Section 3.1.3 by proving that one needs to linearize the continuous dynamic at 0

first and then at 1 to obtain a tight analysis. This provides three insights for analyzing

the discrete dynamic. First, it suggests that one should linearize at 0 at the beginning

of the process and switch to linearizing at 1 when w𝑡,1 becomes Ω(1). Second, after

the linearization, using linear ODE to give an exact characterization of the dynamic

would give a tight analysis. Finally, the continuous dynamic is deterministic and will

stay around the optimal region for all time after a certain point. This suggests that

the for-all-time guarantee could potentially happen in the original discrete setting.

To model the continuous dynamics, we use Brownian motion to capture the con-

tinuous stream of inputs. Surprisingly, it turns out that this continuous version of

Oja’s rule is deterministic. Thus, we can use the tools from ODE to easily give an

exact characterization of how it converges to the top eigenvector of the covariance

matrix. As a disclaimer, since the analysis for continuous Oja’s rule is mainly for

intuition, we would omit some mathematical details and point the interested readers

to the corresponding resources.

3.3.1 Continuous Oja’s rule is deterministic

In the rest of the section, we are going to focus on the diagonal case where the

covariance matrix 𝐴 = diag(𝜆) and the goal is showing that w𝑡,1 goes to 1. This

is sufficient since there is a reduction from the general case to the diagonal case as

explained in Section 3.5.1. In this section, we will show that the continuous dynamic

of Oja’s rule is actually deterministic almost surely. Specifically, we will derive the

72

following ODE as the continuous dynamic of Oja’s rule

𝑑w𝑡 =
[︀
diag(𝜆)w𝑡 −w⊤

𝑡 diag(𝜆)w𝑡w𝑡

]︀
𝑑𝑡 . (3.3.1)

Intuitively, the continuous dynamic is the limiting process of biological Oja’s rule

with learning rate 𝜂 going to 0. Formally, for each 𝑖 ∈ [𝑛], let (𝛽
(𝑖)
𝑡)𝑡≥0 be an inde-

pendent 1-dimensional Brownian motion and let (𝐵𝑡)𝑡≥0 be an 𝑛-dimensional random

process with the 𝑖th entry being 𝐵𝑡,𝑖 =
√
𝜆𝑖𝛽

(𝑖)
𝑡 for each 𝑡 ≥ 0. Now, the difference of

𝐵𝑡 should then be thought of as 𝜂x𝑡.

Concretely, to see why (𝐵𝑡)𝑡≥0 captures the input behavior of streaming PCA in

the continuous setting, let us first discretize (𝐵𝑡)𝑡≥0 using constant step size Δ > 0.

Now, observe that for each 𝑡 ≥ 0, 𝐵𝑡+Δ −𝐵𝑡 is an isotropic Gaussian vector with the

variance of the 𝑖th entry being 𝜆𝑖 ·Δ. Namely,

1

Δ
E
[︁
(𝐵𝑡+Δ −𝐵𝑡) (𝐵𝑡+Δ −𝐵𝑡)

⊤
]︁
= diag(𝜆) . (3.3.2)

Thus, by discretizing 𝐵𝑡 into intervals of length Δ > 0,
{︁

1√
Δ

(︀
𝐵𝑗·Δ −𝐵(𝑗−1)·Δ

)︀}︁
𝑗∈N

naturally forms a stream of i.i.d. input7 with covariance matrix being 𝐴. To put this

into the context of biological Oja’s rule, one should think of 𝜂 = Δ, x𝑗 = 1√
Δ
Δ𝐵𝑗,

and 𝑦𝑗 = x⊤
𝑗 w𝑗−1 for each 𝑗 ∈ N where Δ𝐵𝑗 =

(︀
𝐵𝑗·Δ −𝐵(𝑗−1)·Δ

)︀
8. Then, we get the

following dynamic.

w𝑗 = w𝑗−1 + 𝜂 · 𝑦𝑗 (x𝑗 − 𝑦𝑗w𝑗−1)

= w𝑗−1 +Δ𝐵⊤
𝑗 w𝑗−1Δ𝐵𝑗 −

[︀
Δ𝐵⊤

𝑗 w𝑗−1

]︀2
w𝑗−1 .

The above dynamics becomes continuous once we let Δ → 0. Formally, we replace

𝐵𝑡+Δ−𝐵𝑡 with 𝑑𝐵𝑡 and index the weight vector by 𝑡 ≥ 0, i.e., (w𝑡)≥0. We then obtain

the following SDE as the continuous Oja’s rule dynamic.

𝑑w𝑡 = 𝑑𝐵⊤
𝑡 w𝑡𝑑𝐵𝑡 −

(︀
𝑑𝐵⊤

𝑡 w𝑡

)︀2
w𝑡 . (3.3.3)

It might look absurd at first glance (for those who have not seen stochastic calculus

7Though here is a caveat that the length of the input vector might not be 1. Nevertheless, the
point of continuous dynamic is not to exactly characterize the limiting behavior of discrete Oja’s
rule. Instead, the goal here is to capture the intrinsic properties of biological Oja’s rule.

8Here we abuse the notation of Δ. When we write Δ𝐵𝑗 , the Δ is regarded as an operator instead
of the interval length.

73

before) that there is a quadratic term of 𝑑𝐵𝑡 in Equation 3.3.3. Nevertheless, it

is in fact mathematically well-defined and we recommend a standard resource such

as [45] for more details. Intuitively, the quadratic term (which is formally called the

quadratic variation) of a Brownian motion should be thought of as a deterministic

quantity. Concretely, let (𝛽𝑡)≥0 be a Brownian motion, we have 𝑑𝛽2
𝑡 = 𝑑𝑡 almost

surely (see Lemma 3.2.9). Thus, for the (𝐵𝑡)𝑡≥0 defined here, we would have

𝑑𝐵𝑡,𝑖𝑑𝐵𝑡,𝑗 =

⎧⎨⎩ 𝜆𝑖𝑑𝑡 , 𝑖 = 𝑗

0 , 𝑖 ̸= 𝑗

for each 𝑖, 𝑗 ∈ [𝑛]. As a consequence, the randomness from the input disappears, and

the continuous Oja’s rule defined in Equation 3.3.3 can be rewritten as Equation 3.3.1,

a deterministic process, almost surely.

𝑑w𝑡 =
[︀
diag(𝜆)w𝑡 −w⊤

𝑡 diag(𝜆)w𝑡w𝑡

]︀
𝑑𝑡 . (3.3.1)

With the continuous Oja’s rule being deterministic as in Equation 3.3.1, it is then not

difficult to have a tight analysis on its convergence using tools from ODE as explained

in the next section.

3.3.2 One-sided versus two-sided linearization

In this subsection, we analyze Equation 3.3.1 by linearizing the dynamic at 0 and 1

respectively and get two incomparable convergence rates (Theorem 3.3.4 and Theo-

rem 3.3.5).

Theorem 3.3.4 (Linearization at 0). Suppose w0,1 > 0. For any 𝜖 ∈ (0, 1), when

𝑡 ≥ Ω
(︁

log(1/w2
0,1)

𝜖(𝜆1−𝜆2)

)︁
, we have w2

𝑡,1 > 1− 𝜖.

Theorem 3.3.5 (Linearization at 1). Suppose w0,1 > 0. For any 𝜖 ∈ (0, 1), when

𝑡 ≥ Ω
(︁

log(1/𝜖)
w0,1(𝜆1−𝜆2)

)︁
, we have w2

𝑡,1 > 1− 𝜖.

The proofs for Theorem 3.3.4 and Theorem 3.3.5 are based on applying Taylor’s

expansion on Equation 3.3.1 with a center either being 0 or 1. Then, we approximate

the dynamics with linear differential equations and use tools from ODE to get a tight

74

analysis. See Section A.2 for the analysis on the linearizations of continuous Oja’s

rule.

When starting with a random vector, i.e., w0,1 = Ω(1/
√
𝑛) with high probabil-

ity, the above convergence rates become 𝑂
(︁

log𝑛
𝜖(𝜆1−𝜆2)

)︁
and 𝑂

(︁√
𝑛 log(1/𝜖)
𝜆1−𝜆2

)︁
respectively.

This indicates that linearizing only on one side (either at 0 or at 1) would not give

tight analysis. Nevertheless, if we invoke Theorem 3.3.4 with the error parameter

being 0.5, then for some 𝑡1 = 𝑂
(︁

log𝑛
𝜆1−𝜆2

)︁
, we have w𝑡1,1 > 0.5. Next, we invoke The-

orem 3.3.5 starting from w𝑡1 and with the error parameter being 𝜖, then for some

𝑡2 = 𝑂
(︁

log(1/𝜖)
𝜆1−𝜆2

)︁
, we have w𝑡1+𝑡2,1 > 1 − 𝜖. Putting these together, we have the

following theorem combining the linearizations on both sides.

Theorem 3.3.6 (Linearization at both 0 and 1). Suppose w0,1 > 0. For any 𝜖 ∈

(0, 1), when

𝑡 ≥ Ω

(︃
log 1

w2
0,1

+ log 1
𝜖

𝜆1 − 𝜆2

)︃
,

we have w2
𝑡,1 > 1− 𝜖.

The above theorem for the convergence rate of the continuous Oja’s rule gives

three key insights. First, it suggests that one should linearize at 0 at the beginning

of the process and switch to linearizing at 1 when w𝑡,1 becomes Ω(1). Second, after

the linearization, using linear ODE to give an exact characterization of the dynamic

would give a tight analysis. Finally, the continuous dynamic is deterministic and will

stay around the optimal region for all time after a certain point. This suggests that

the for-all-time guarantee could potentially happen in the original discrete setting.

3.4 Main Results

In this section, we state the main technical results of this chapter. In the following, all

of the theorems and lemmas are stated with respect to the setting of streaming PCA

defined as Problem 3.1.2 and discrete biological Oja’s rule defined as Definition 3.1.3.

Thus, for simplicity, we would not repeat the setup in their statements. Now, let us

state the formal version of the main theorem for biological Oja’s rule.

75

In Theorem 3.4.1, we show that both the local and the global convergence of

Oja’s rule are efficient. We remind readers that in the local convergence setting,

the weight vector is correlated with the top eigenvector by a constant while in the

global convergence setting, the weight vector is randomly initiated. In Theorem 3.4.2

we show that once w𝑡 becomes 𝜖-close to the top eigenvector v1, it will stay in the

neighborhood of v1 for a long time without decreasing the learning rate too much.

This demonstrates the capacity of Oja’s rule as a continual learning mechanism in a

living system.

Theorem 3.4.1 (Main Theorem). We have the following results on the local and

global convergence of Oja’s rule.

∙ (Local Convergence) Let 𝑛 ∈ N, 𝛿 ∈ (0, 1), 𝜖 ∈ (0, 1
8
). Suppose ⟨w0,v1⟩2

‖w0‖22
≥ 2/3. Let

𝜂 = Θ

(︃
𝜖(𝜆1 − 𝜆2)

𝜆1 log
log log 1

𝜖

𝛿

)︃
, 𝑇 = Θ

(︂
log 1

𝜖

𝜂(𝜆1 − 𝜆2)

)︂
.

Then, we have

Pr

[︂
⟨w𝑇 ,v1⟩2

‖w𝑇‖22
< 1− 𝜖

]︂
< 𝛿 .

Namely, the convergence rate is of order

Θ

(︃
𝜆1 log

1
𝜖

(︀
log log log 1

𝜖
+ log 1

𝛿

)︀
𝜖(𝜆1 − 𝜆2)2

)︃
with probability at least 1− 𝛿.

∙ (Global Convergence) Let 𝑛 ∈ N, 𝛿 ∈ (0, 1), 𝜖 ∈ (0, 1
4
). Suppose w0 is uniformly

sampled from the unit sphere of R𝑛. Let

𝜂 = Θ

(︃
𝜆1 − 𝜆2
𝜆1

·

(︃
𝜖

log
log 𝑛

𝜖

𝛿

⋀︁ 𝛿2

log2 𝜆1𝑛
𝛿(𝜆1−𝜆2)2

)︃)︃
, 𝑇 = Θ

(︂
log 1

𝜖
+ log 𝑛

𝛿

𝜂(𝜆1 − 𝜆2)

)︂
.

Then, we have

Pr

[︂
⟨w𝑇 ,v1⟩2

‖w𝑇‖22
< 1− 𝜖

]︂
< 𝛿 .

Namely, the convergence rate is of order

Θ

(︃
𝜆1
(︀
log 1

𝜖
+ log 𝑛

𝛿

)︀
(𝜆1 − 𝜆2)2

·max

{︃
log

log 𝑛
𝜖

𝛿

𝜖
,
log2 𝜆1𝑛

𝛿(𝜆1−𝜆2)2

𝛿2

}︃)︃
with probability at least 1− 𝛿.

76

Proof structure of Theorem 3.4.1 To prove Theorem 3.4.1, we first reduce

the general setting where the covariance matrix 𝐴 is PSD to the special case where

𝐴 = diag(𝜆) in Section 3.5. For local convergence, we show that starting from constant

correlation, Oja’s rule can efficiently converge to the top eigenvector up to arbitrarily

small error in Section 3.6. For global convergence, we show that starting from random

initialization, Oja’s rule can efficiently converge to the top eigenvector up to arbitrarily

small error in Section 3.7.

Theorem 3.4.2 (Continual Learning). We have the following results on the continual

learning aspects of Oja’s rule.

∙ (Finite continual learning) Let 𝑛, 𝑙 ∈ N, 𝜖, 𝛿 ∈ (0, 1). Suppose ⟨w0,v1⟩2
‖w0‖22

≥ 1− 𝜖
2
. Let

𝜂 = Θ

(︃
𝜖(𝜆1 − 𝜆2)

𝜆1 log
𝑙
𝛿

)︃
.

Then

Pr

[︂
∃1 ≤ 𝑡 ≤ Θ

(︂
𝑙

𝜂(𝜆1 − 𝜆2)

)︂
,
⟨w𝑇 ,v1⟩2

‖w𝑇‖22
< 1− 𝜖

]︂
< 𝛿 .

∙ (For-all-time continual learning) Let 𝑛, 𝑡0 ∈ N, 𝜖, 𝛿 ∈ (0, 1). Suppose ⟨w0,v1⟩2
‖w0‖22

≥ 1− 𝜖
2
.

Then there is

𝜂𝑡 ≥ Θ

(︂
𝜖(𝜆1 − 𝜆2)

𝜆1 log
𝑡
𝛿

)︂
such that

Pr

[︂
∃𝑡 ∈ N,

⟨w𝑡,v1⟩2

‖w𝑡‖22
< 1− 𝜖

]︂
< 𝛿 .

Proof structure of Theorem 3.4.2 We first reduce the general setting to the

special case where 𝐴 = diag(𝜆) in Section 3.5. The proof of finite continual learning is

then a direct application of techniques developed in local convergence. By repetitively

applying finite continual learning, we can show for-all-time continual learning. The

results will be proven in Section 3.6.4.

3.5 Preprocessing

Before the main analysis of biological Oja’s rule, we provide two useful observations

on the dynamic in this section. Specifically, we show in Section 3.5.1 that considering

77

the covariance matrix being diagonal is sufficient for the analysis and in Section 3.5.2

that ‖w𝑡‖22 = 1±𝑂(𝜂) almost surely for all 𝑡 ∈ N.

3.5.1 A reduction to the diagonal case

In this subsection, we show that it suffices to analyze the case where the covariance

matrix 𝐴 is a diagonal matrix 𝐷. Recall that 𝐴 is defined as the expectation of xx⊤

and thus it is positive semidefinite. Namely, there exists an orthonormal matrix 𝑈

and a diagonal matrix 𝐷 such that 𝐴 = 𝑈𝐷𝑈⊤. Especially, the eigenvalues of 𝐴,

i.e., 1 ≥ 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛 ≥ 0, are the entries of 𝐷 from top left to bottom right

on the diagonal. Thus, by a change of basis, we can focus on the case where 𝐴 = 𝐷

without loss of generality.

To see this, consider w̃𝑡 = 𝑈w𝑡 and x̃𝑡 = 𝑈x𝑡. As 𝑈⊤𝑈 = 𝑈𝑈⊤ = 𝐼, we have

x̃⊤
𝑡 w̃ = x⊤

𝑡 w and E[x̃x̃⊤] = 𝐷. Let v1 be the top eigenvector of 𝐴 (i.e., the first row

of 𝑈), we also have

‖w𝑡 − v1‖2 = ‖𝑈w𝑡 − 𝑈v1‖2 = ‖w̃𝑡 − e1‖2

where e1 is the indicator vector for the first coordinate. Namely, it suffices to analyze

how fast does w̃𝑡 converge to e1. Thus we without loss of generality consider the

diagonal case where the goal would be showing that w2
𝑡,1 ≥ 1− 𝜖.

3.5.2 Bounded conditions of Oja’s rule

In this section, we show that the ℓ2 norm of the weight vector is always close to 1.

Lemma 3.5.1. For any 𝜂 ∈ (0, 0.1), if for all 𝑡 ∈ N, 𝜂𝑡 ≤ 𝜂, then for all 𝑡 ∈ N≥0,

1− 10𝜂 ≤ ‖w𝑡‖22 ≤ 1 + 10𝜂 almost surely.

Proof. Here we prove only the upper bound while the lower bound can be proved

using the same argument. The proof is based on induction. For the base case where

𝑡 = 0, we have ‖w0‖22 = 1 from the problem setting. For the induction step, consider

any 𝑡 ∈ N such that w𝑡−1 satisfies the bounds, we have

‖w𝑡‖22 = ‖w𝑡−1‖22 + 2𝜂𝑡w
⊤
𝑡−1

[︀
𝑦𝑡x𝑡 − 𝑦2𝑡w𝑡−1

]︀
+ 𝜂2𝑡 · ‖𝑦𝑡x𝑡 − 𝑦2𝑡w𝑡−1‖2

= ‖w𝑡−1‖22 − 2𝜂𝑡(𝑦𝑡)
2 · (‖w𝑡−1‖22 − 1) + 2𝜂2𝑡 𝑦

2
𝑡 ·max{‖x𝑡‖22, 𝑦2𝑡 ‖w𝑡−1‖22} .

78

Consider two cases: (i) ‖w𝑡−1‖22 ≤ 1 + 8𝜂 and (ii) 1 + 8𝜂 < ‖w𝑡−1‖22 ≤ 1 + 10𝜂. Note

that ‖w𝑡‖22 ≤ 1+ 10𝜂 in both cases. This completes the induction and the proof.

3.6 Local Convergence: Starting With Correlated

Weights

For the local convergence result, the synaptic weight w0 is correlated with the top

eigenvector by a constant. To be precise, we suppose that w2
0,1 ≥ 2

3
. The goal of this

section is to show that 1−w2
𝑡,1 ≤ 𝜖 for some 𝑡 = 𝑂

(︁
𝜆1 log(1/𝜖)(log log log(1/𝜖)+log(1/𝛿))

𝜖(𝜆1−𝜆2)2

)︁
for

any small 𝜖. Let us first state the main theorem of this section as follows.

Theorem 3.6.1. Suppose w2
0,1 ≥ 2/3. For any 𝑛 ∈ N, 𝛿 ∈ (0, 1), 𝜖 ∈ (0, 1

8
), let

𝜂 = Θ

(︃
𝜖(𝜆1 − 𝜆2)

𝜆1 log
log log 1

𝜖

𝛿

)︃
, 𝑇 = Θ

(︂
log 1

𝜖

𝜂(𝜆1 − 𝜆2)

)︂
.

Then

Pr
[︀
w2
𝑇,1 < 1− 𝜖

]︀
< 𝛿 .

Namely, the convergence rate is of order Θ

(︂
𝜆1 log

1
𝜖 (log log log

1
𝜖
+log 1

𝛿)
𝜖(𝜆1−𝜆2)2

)︂
with probability

at least 1− 𝛿.

By applying the diagonal reduction argument in Section 3.5.1, we prove the local

convergence part of Theorem 3.4.1 as a corollary. The proof structure of Theo-

rem 3.6.1 is as follows. First, in Section 3.6.1 we derive a linearization of the dynamic

using a center at 1 instead of 0 based on intuition from the continuous dynamic in Sec-

tion 3.3. Furthermore, we use the ODE trick to write down the dynamic in closed

form with respect to the linearization.

Next, in Section 3.6.2, we want to show that the noise term is small. However, the

difficulty here is that w𝑡,1 might go back to the small region (e.g., w̃𝑡,1 < −2/3) and

thus the bounded difference might become too large to bound the noise effectively

with Freedman’s inequality. To deal with this issue, we consider a stopping time

where w̃𝑡,1 < −𝑎 to give good control on the bounded difference and subsequently

bound the stopped process in Lemma 3.6.8. After we show that the stopped process

79

is small, we want to pull out the stopping time from the stopped process to show

the concentration on the original process. In general, pulling out the stopping time

is impossible without introducing extra failure probability; however, by exploiting

the structure of the dynamics, we are able to pull out the stopping time without

additional cost in Lemma 3.6.9.

Finally in Section 3.6.3, by combining the small noise and the ODE trick, we are

able to prove Theorem 3.6.1 with an interval analysis. As a corollary of Lemma 3.6.7

in the local convergence, we show that biological Oja’s rule has the continual learning

capacity in Section 3.6.4. In a biological system, it is important to function for

a long period of time instead of at one time point. In this section, we prove two

theorems on continual learning. Theorem 3.6.12 guarantees Oja’s rule can maintain

the convergence for any finite time length efficiently while Theorem 3.6.13 guarantees

Oja’s rule can function for all time without sacrificing too much efficiency to adapt

to a new environment.

3.6.1 Linearization and ODE trick centered at 1

In this section, we derive the linearization of Oja’s rule with a center at 1 in Lemma 3.6.2

and the closed form solution of Oja’ rule in Corollary 3.6.4. In addition, we show that

the bounded differences and moments of the noise can be controlled in Lemma 3.6.5.

In the analysis of the local convergence, we use the linearization with a center at

1 instead of 0. The idea is inspired from the analysis of the continuous dynamics as

explained in Section 3.3. To ease the notation, we define w̃𝑡,1 = w𝑡,1 − 1 and the goal

becomes to show that w̃𝑡0+𝑡2,1 > −𝜖 with probability at least 1 − 𝛿. The following

lemma states the linearization for w̃𝑡,1.

Lemma 3.6.2 (Linearization at 1). Let w̃𝑡 = w2
𝑡,1 − 1 and z𝑡 = x𝑡𝑦𝑡 − 𝑦2𝑡w𝑡−1. For

any 𝑡 ∈ N≥0 and 𝜂 ∈ (0, 1), we have

w̃𝑡 ≥ 𝐻 · w̃𝑡−1 + 𝐴𝑡 +𝐵𝑡

80

almost surely, where

𝐻 = 1− 2

3
(𝜆1 − 𝜆2)𝜂,

𝐴𝑡 = 2𝜂z𝑡,1w𝑡−1,1 + 𝜂2z2𝑡,1 − E [2𝜂z𝑡,1w𝑡−1,1|w𝑡−1] + 2𝜂𝜆2(1− ‖ℱ𝑡−1‖2)w2
𝑡−1,1,

𝐵𝑡 = −2𝜂(𝜆1 − 𝜆2)w̃𝑡,1(
2

3
+ w̃𝑡,1).

Proof of Lemma 3.6.2. By expanding w2
𝑡,1 with the Oja’s rule (Equation 3.1.4), we

have

w2
𝑡,1 = w2

𝑡−1,1 + 2𝜂z𝑡,1w𝑡−1,1 + 𝜂2z2𝑡 .

Add and subtract E [2𝜂z𝑡,1w𝑡−1,1|ℱ𝑡−1]− 2𝜂𝜆2(1− ‖w𝑡−1‖2)w2
𝑡−1. We have

= w2
𝑡−1,1 + 2𝜂(𝜆1w

2
𝑡−1,1 −

𝑛∑︁
𝑖=1

𝜆𝑖w
2
𝑡−1,𝑖w

2
𝑡−1,1 − 𝜆2(1− ‖w𝑡−1‖2)w2

𝑡−1,1) + 𝐴𝑡.

Upperbound
∑︀𝑛

𝑖=2 𝜆𝑖w
2
𝑡−1,𝑖w

2
𝑡−1,1 by 𝜆2

∑︀𝑛
𝑖=2w

2
𝑡−1,𝑖w

2
𝑡−1,1, we then have

≥ w2
𝑡−1,1 + 2𝜂(𝜆1(w

2
𝑡−1,1 −w4

𝑡−1,1)− 𝜆2(w
2
𝑡−1,1 −w4

𝑡−1,1)) + 𝐴𝑡

= w2
𝑡−1,1 + 2𝜂(𝜆1 − 𝜆2)w

2
𝑡−1,1(1−w2

𝑡−1,1) + 𝐴𝑡. (3.6.3)

Based on the intuition from the continuous dynamic in Section 3.3, since we want

to converge from constant error to 𝜖 error, we want to linearize at 1. Hence we

rewrite Equation 3.6.3 in terms of w̃𝑡,1 = w2
𝑡,1 − 1 and get

w̃𝑡 ≥ w̃𝑡−1 − 2𝜂(𝜆1 − 𝜆2)w̃𝑡−1(1 + w̃𝑡−1) + 𝐴𝑡

= 𝐻 · w̃𝑡−1 + 𝐴𝑡 +𝐵𝑡

as desired.

We apply the ODE trick (see Lemma 3.2.10) on Lemma 3.6.2 and get the following

corollary.

Corollary 3.6.4 (ODE trick). For any 𝑡0 ∈ N≥0, 𝑡 ∈ N, and 𝜂 ∈ (0, 1), we have

w̃𝑡0+𝑡 ≥ 𝐻 𝑡 ·

(︃
w̃𝑡0 +

𝑡0+𝑡∑︁
𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0

)︃
.

To control the noise term, we need to have bounds on the bounded differences and

the moments of 𝐴𝑖, 𝐵𝑖.

81

Lemma 3.6.5. Let 𝐴𝑡, 𝐵𝑡 be defined as in Lemma 3.6.2. For any 𝑡 ∈ N, we have

𝐴𝑡, 𝐵𝑡 satisfy the following properties:

∙ (Bounded difference) |𝐴𝑡| = 𝑂(𝜂|w̃𝑡−1| + 𝜂|w̃𝑡−1|
1
2 + 𝜂

3
2) almost surely. If

w̃𝑡−1,1 ≥ −2
3
, then 𝐵𝑡 ≥ −𝑂(𝜂2) almost surely.

∙ (Conditional expectation) E[𝐴𝑡 | ℱ𝑡−1] = 𝑂(𝜂2𝜆1).

∙ (Conditional variance) Var [𝐴𝑡 | ℱ𝑡−1] = 𝑂
(︀
𝜂2𝜆1

(︀
|w̃𝑡−1|2 + |w̃𝑡−1|+ 𝜂

)︀)︀
.

Proof. First by Lemma 3.5.1, we have |w𝑡,1|, |𝑦𝑡| <
√
1 + 10𝜂 < 1 + 10𝜂 < 2. Now

let’s bound |z𝑡,1| first. By expanding |z𝑡,1|, we have

|z𝑡,1| = |𝑦𝑡(x𝑡,1 − 𝑦𝑡w𝑡−1,1)|

=

⃒⃒⃒⃒
⃒𝑦𝑡
(︃
x𝑡,1(1−w2

𝑡−1,1)−
𝑛∑︁
𝑖=2

x𝑡,𝑖w𝑡−1,𝑖w𝑡−1,1

)︃⃒⃒⃒⃒
⃒

≤ |𝑦𝑡| ·

(︃
|x𝑡,1w̃𝑡−1|+

⃒⃒⃒⃒
⃒
𝑛∑︁
𝑖=2

x𝑡,𝑖w𝑡−1,𝑖w𝑡−1,1

⃒⃒⃒⃒
⃒
)︃
.

By Cauchy-Schwarz and the fact that ‖x‖2 = 1, we have

≤ |𝑦𝑡| ·

⎛⎝|w̃𝑡−1|+

⃒⃒⃒⃒
⃒⃒
⎯⎸⎸⎷(︃ 𝑛∑︁

𝑖=2

x2
𝑡,𝑖

)︃(︃
𝑛∑︁
𝑖=2

w2
𝑡−1,𝑖

)︃
w𝑡−1,1

⃒⃒⃒⃒
⃒⃒
⎞⎠ .

By Lemma 3.5.1 and the definition of w̃𝑡−1, we have

≤ |𝑦𝑡| ·
(︁
|w̃𝑡−1|+

⃒⃒⃒√︀
−w̃𝑡−1 + 10𝜂

⃒⃒⃒)︁
≤ |𝑦𝑡| ·

(︁
|w̃𝑡−1|+

√︀
|w̃𝑡−1|+

√︀
10𝜂
)︁
. (3.6.6)

Since |𝑦𝑡| ≤ 2, we have

≤ 2
(︁
|w̃𝑡−1|+

√︀
|w̃𝑡−1|+

√︀
10𝜂
)︁
.

Combining above, Lemma 3.5.1 and the fact that z𝑡,1 = 𝑂(1), we have

|𝐴𝑡| = 𝑂
(︁
𝜂|w̃𝑡−1|+ 𝜂|w̃𝑡−1|

1
2 + 𝜂

3
2

)︁
and for w̃𝑡−1 ≥ −2

3
, we have 𝐵𝑡 ≥ −𝑂(𝜂2) because 2

3
+ w̃𝑡−1 > 0 and w̃𝑡−1 ≤ 𝑂(𝜂).

For conditional expectation, notice that E[𝑦2𝑡 |ℱ𝑡−1] = w𝑇
𝑡−1diag(𝜆)w𝑡−1 = 𝑂(𝜆1).

This implies that E[z2𝑡,1|ℱ𝑡−1] = 𝑂(𝜆1) and hence E [𝐴𝑡|ℱ𝑡−1] = 𝑂(𝜂2𝜆1). Now the

82

conditional variance is

Var [𝐴𝑡|ℱ𝑡−1] = 𝑂
(︀
𝜂2E[z2𝑡,1|ℱ𝑡−1]w

2
𝑡−1,1 + 𝜆1𝜂

4
)︀
.

By Equation 3.6.6, we have

= 𝑂

(︂
𝜂2E[𝑦2𝑡 |ℱ𝑡−1]

(︁
|w̃𝑡−1|+

√︀
|w̃𝑡−1|+

√︀
10𝜂
)︁2

+ 𝜆1𝜂
4

)︂
.

= 𝑂
(︀
𝜂2𝜆1

(︀
|w̃𝑡−1|2 + |w̃𝑡−1|+ 𝜂

)︀
+ 𝜆1𝜂

4
)︀

= 𝑂
(︀
𝜂2𝜆1

(︀
|w̃𝑡−1|2 + |w̃𝑡−1|+ 𝜂

)︀)︀
as desired.

3.6.2 Concentration of noise and pulling out the stopping time

In this subsection, we want to show that the noise term in Corollary 3.6.4 is small.

Specifically, we prove the following lemma.

Lemma 3.6.7. Let 𝜖, 𝛿 ∈ (0, 1), 𝑇 ∈ N≥0. Suppose given 𝑡0 ∈ N, 𝑣0 ∈ (−1
3
, 0)

and 𝑎 ∈ [0, 1], we have w̃𝑡0 ≥ 𝑣0 and 𝑣0 = −Θ(𝜖1−𝑎). Let 𝜂 = Θ
(︁
𝜖(𝜆1−𝜆2)
𝜆1 log

1
𝛿

)︁
. If

𝐻−𝑇 = Θ(𝜖−
𝑎
2), then

Pr

[︃
min
1≤𝑡≤𝑇

𝑡0+𝑡∑︁
𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0
≤ 𝑣0

]︃
< 𝛿.

The most natural way to prove such a statement is using a martingale concentra-

tion inequality. However, the difficulty here is that w̃𝑡 might go back to the small

region (e.g., w̃𝑡 < −2/3) and thus the bounded difference might become too large to

bound the noise effectively with Freedman’s inequality. Nevertheless, the continuous

dynamic (see Section 3.3) suggests that this situation should happen with only a

small probability because the w1 term in the continuous dynamic increases monoton-

ically to 1. To enforce the analysis, we consider a stopped process where the dynamic

stops once w̃𝑡 is too small. This stopped process satisfies good bounded difference

conditions by its construction and thus we can apply Freedman’s inequality on it.

See Lemma 3.6.8 for a formal statement of the above intuition.

After obtaining good control of the noise term in the stopped process, we want

to remove the stopping time and show the concentration of the original non-stopped

83

process in order to prove Lemma 3.6.7. This can be done by Lemma 3.6.9 which pulls

out the stopping time from the concentration inequality for the stopped process. In

general, pulling out the stopping time is impossible without introducing additional

failure probability; however, the following structure of the stochastic process we are

looking at allows us to pull out the stopping time. Intuitively, given a stopping time

𝜏 with 𝜏 ≥ 𝑡 for some 𝑡, with high probability all the noise terms before time 𝑡 are

small (using a maximal martingale inequality). Next, the noise being small at time

𝑡 would further imply that 𝜏 ≥ 𝑡 + 1 (using the ODE trick). The above argument

forms a chain of implications as pictured in Figure 3-3.

𝜏 ≥ 𝑡 noises before time
𝑡 are small 𝜏 ≥ 𝑡+ 1 noises before time

𝑡+1 are small

Maximal
martingale
inequality ODE trick

Maximal
martingale
inequality

Figure 3-3: Intuition on why it is possible to pull out stopping time in Phase 2.

With the above chain structure in the noise terms, we are then able to pull out

the stopping time in Lemma 3.6.8 by introducing another stopping time to help us

properly partition the probability space. The rest of this subsection is devoted to

formalizing the above intuition and completing the proof for Lemma 3.6.7.

First, let us show the concentration of the stopped process.

Lemma 3.6.8 (Concentration of stopped noise in an interval). Let 𝜖, 𝛿 ∈ (0, 1), 𝑇 ∈

N≥0. Suppose given 𝑡0 ∈ N, 𝑣0 ∈ (−1
3
, 0) and 𝑎 ∈ [0, 1], we have w̃𝑡0 ≥ 𝑣0 and

𝑣0 = −Θ(𝜖1−𝑎). Let 𝜏𝑣0 to be the stopping time {w̃𝑡 < 2𝑣0} such that 𝑡 > 𝑡0. Let

𝜂 = Θ
(︁
𝜖(𝜆1−𝜆2)
𝜆1 log

1
𝛿

)︁
. If 𝐻−𝑇 = Θ(𝜖−

𝑎
2), then

Pr

⎡⎣ min
1≤𝑡≤𝑇

(𝑡0+𝑡)∧𝜏𝑣0∑︁
𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0
≤ 𝑣0

⎤⎦ < 𝛿.

Proof. We are going to apply Freedman’s inequality Corollary 3.2.6 on the stopped

process
∑︀(𝑡0+𝑡)∧𝜏𝑣0

𝑖=𝑡0+1
𝐴𝑖

𝐻𝑖−𝑡0
. First notice that given a stopping time 𝜏 and an adapted

stochastic process 𝑀𝑡, the difference of the stopped process can be described as

𝑀𝑡∧𝜏 −𝑀(𝑡−1)∧𝜏 = 1𝜏≥𝑡(𝑀𝑡 −𝑀𝑡−1).

84

For notational convenience, we denote 1𝜏𝑣0≥(𝑡0+𝑡)𝐴𝑡 as 𝐴𝑡. Now by Lemma 3.6.5 and

geometric series, i.e.,
∑︀𝑇

𝑖=1𝐻
−𝑖 ≤ 𝑂

(︁
𝐻−𝑇

𝜂(𝜆1−𝜆2)

)︁
, we have

∀1 ≤ 𝑡 ≤ 𝑇,

⃒⃒⃒⃒
𝐴𝑡0+𝑡
𝐻 𝑡

⃒⃒⃒⃒
≤ 𝑂

(︁
𝜂𝜖

1−𝑎
2

)︁
,⃒⃒⃒⃒

⃒
𝑡0+𝑇∑︁
𝑖=𝑡0+1

E
[︂

𝐴𝑖
𝐻 𝑖−𝑡0

⃒⃒⃒⃒
ℱ𝑖−1

]︂⃒⃒⃒⃒
⃒ ≤ 𝑂

(︂
𝜂2

𝐻−𝑇

𝜂(𝜆1 − 𝜆2)

)︂
= 𝑂

(︂
𝜂𝜆1𝜖

−𝑎
2

𝜆1 − 𝜆2

)︂
, and

⃒⃒⃒⃒
⃒
𝑡0+𝑇∑︁
𝑖=𝑡0+1

Var

[︂
𝐴𝑖

𝐻 𝑖−𝑡0

⃒⃒⃒⃒
ℱ𝑖−1

]︂⃒⃒⃒⃒
⃒ ≤ 𝑂

(︂
𝜂2𝜆1𝜖

1−𝑎 𝐻−2𝑇

𝜂(𝜆1 − 𝜆2)

)︂
= 𝑂

(︂
𝜂𝜆1𝜖

1−2𝑎

𝜆1 − 𝜆2

)︂
.

By applying the above bounds to Lemma 3.2.5, we have

Pr

⎡⎣max
0≤𝑡≤𝑇

⃒⃒⃒⃒
⃒⃒(𝑡0+𝑡)∧𝜏𝑣0∑︁
𝑖=𝑡0+1

𝐴𝑖
𝐻 𝑖−𝑡0

⃒⃒⃒⃒
⃒⃒ ≥ |𝑣0|

2

⎤⎦ < 𝛿

because the deviation term is𝑂
(︂√︁

log 1
𝛿
𝜂𝜆1𝜖1−2𝑎

𝜆1−𝜆2

)︂
= 𝑂 (𝜖1−𝑎) ≤ |𝑣0|

4
and the summation

of the conditional expectation terms is 𝑂
(︁
𝜂𝜆1𝜖

−𝑎
2

𝜆1−𝜆2

)︁
= 𝑂 (𝜖1−𝑎) ≤ |𝑣0|

4
. By stopping

time and Lemma 3.6.5, we have
(𝑡0+𝑇)∧𝜏𝑡0∑︁
𝑖=𝑡0+1

𝐵𝑖

𝐻 𝑖−𝑡0
≥ −𝑂

(︂
𝜂2

𝜖−
𝑎
2

𝜂(𝜆1 − 𝜆2)

)︂
≥ −𝑂(𝜖1−

𝑎
2) ≥ −𝑣0

2
.

By combining both inequalities, we get

Pr

⎡⎣ min
1≤𝑡≤𝑇

(𝑡0+𝑡)∧𝜏𝑣0∑︁
𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0
≤ 𝑣0

⎤⎦ < 𝛿.

We are going to pull out the stopping time 𝜏𝑡0 in Lemma 3.6.8. The following

lemma shows that under a certain chain condition, it is possible to pull out the

stopping time without introducing additional failure probability.

Lemma 3.6.9. Let {𝑀𝑡}𝑡∈N≥0
be an adapted stochastic process and 𝜏 be a stopping

time. Let {𝑀*
𝑡 }𝑡∈N≥0

be the maximal process of {𝑀𝑡}𝑡∈N≥0
where 𝑀*

𝑡 = max1≤𝑡′≤𝑡𝑀𝑡.

For any 𝑡 ∈ N, 𝑎 ∈ R, and 𝛿 ∈ (0, 1), suppose

1. Pr[𝑀*
𝑡∧𝜏 ≥ 𝑎] < 𝛿 and

85

2. For any 1 ≤ 𝑡′ < 𝑡, Pr[𝜏 ≥ 𝑡′ + 1 | 𝑀*
𝑡′ < 𝑎] = 1.

Then, we have

Pr[𝑀*
𝑡 ≥ 𝑎] < 𝛿 .

Proof of Lemma 3.6.9. The key idea is to introduce another stopping time which

helps us partition the probability space. Let 𝜏 ′ be the stopping time for the event

{𝑀*
𝑡∧𝜏 ≥ 𝑎}. The following claim shows that if 𝜏 stopped before time 𝑡, then 𝜏 ′ should

stop earlier than 𝜏 .

Claim 3.6.10. Let 𝜏 and 𝜏 ′ be stopping times as defined above. Suppose the conditions

in Lemma 3.6.9 hold. Then we have

Pr[𝜏 < 𝑡, 𝜏 ′ > 𝜏] = 0 .

Proof of Claim 3.6.10. The claim can be proved by contradiction as follows. Suppose

both 𝜏 < 𝑡 and 𝜏 ′ > 𝜏 . By the definition of 𝜏 ′, we know that 𝑀*
𝜏 < 𝑎 since 𝜏 < 𝜏 ′.

However, by the second condition of the lemma, we then have

Pr[𝜏 ≥ 𝜏 + 1 | 𝑀*
𝜏 < 𝑎] = 1,

which is a contradiction.

Next, we will show that Pr[𝑀*
𝑡 ≥ 𝑎] ≤ Pr[𝑀*

𝑡∧𝜏 ≥ 𝑎]. The idea is partitioning the

probability space as follows. We have

Pr[𝑀*
𝑡 ≥ 𝑎] = Pr[𝑀*

𝑡 ≥ 𝑎, 𝜏 ≥ 𝑡] + Pr[𝑀*
𝑡 ≥ 𝑎, 𝜏 < 𝑡, 𝜏 ′ ≤ 𝜏]

+ Pr[𝑀*
𝑡 ≥ 𝑎, 𝜏 < 𝑡, 𝜏 ′ > 𝜏].

By Claim 3.6.10, we have Pr[𝑀*
𝑡 ≥ 𝑎, 𝜏 < 𝑡, 𝜏 ′ > 𝜏] = 0. We have

= Pr[𝑀*
𝑡 ≥ 𝑎, 𝜏 ≥ 𝑡] + Pr[𝑀*

𝑡 ≥ 𝑎, 𝜏 < 𝑡, 𝜏 ′ ≤ 𝜏].

For the first term, when 𝜏 ≥ 𝑡, we have 𝑡 = 𝑡 ∧ 𝜏 and thus 𝑀*
𝑡 = 𝑀*

𝑡∧𝜏 . As for the

second term, when 𝜏 ′ ≤ 𝜏 < 𝑡, we have both 𝑀*
𝑡 ,𝑀

*
𝑡∧𝜏 ≥ 𝑎. Thus, the equation

becomes

= Pr[𝑀*
𝑡∧𝜏 ≥ 𝑎, 𝜏 ≥ 𝑡] + Pr[𝑀*

𝑡∧𝜏 ≥ 𝑎, 𝜏 < 𝑡, 𝜏 ′ ≤ 𝜏]

≤ Pr[𝑀*
𝑡∧𝜏 ≥ 𝑎] .

86

Thus, we conclude that Pr[𝑀*
𝑡 ≥ 𝑎] ≤ Pr[𝑀*

𝑡∧𝜏 ≥ 𝑎] < 𝛿 as desired.

By applying the above Lemma 3.6.9 on Lemma 3.6.8, we can pull out the stopping

time and show concentration on the original process in Lemma 3.6.7.

Lemma 3.6.7. Let 𝜖, 𝛿 ∈ (0, 1), 𝑇 ∈ N≥0. Suppose given 𝑡0 ∈ N, 𝑣0 ∈ (−1
3
, 0)

and 𝑎 ∈ [0, 1], we have w̃𝑡0 ≥ 𝑣0 and 𝑣0 = −Θ(𝜖1−𝑎). Let 𝜂 = Θ
(︁
𝜖(𝜆1−𝜆2)
𝜆1 log

1
𝛿

)︁
. If

𝐻−𝑇 = Θ(𝜖−
𝑎
2), then

Pr

[︃
min
1≤𝑡≤𝑇

𝑡0+𝑡∑︁
𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0
≤ 𝑣0

]︃
< 𝛿.

Proof. Let 𝜏𝑣0 be the stopping time {w̃𝑡 < 2𝑣0} such that 𝑡 > 𝑡0. We want to

apply Lemma 3.6.9 with 𝑀𝑡 = −
∑︀𝑡0+𝑡

𝑖=𝑡0+1
𝐴𝑖+𝐵𝑖

𝐻𝑖−𝑡0
, 𝑎 = −𝑣0 and 𝜏 = 𝜏𝑣0 − 𝑡0. First

condition is satisfied by Lemma 3.6.8. So it is suffice to check that

Pr

[︃
𝜏𝑣0 ≥ 𝑡′ + 𝑡0 + 1

⃒⃒⃒⃒
⃒ min
1≤𝑡≤𝑡′

𝑡0+𝑡∑︁
𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0
≤ 𝑣0

]︃
= 1.

And indeed we have by Corollary 3.6.4

w̃𝑡0+𝑡′ ≥ 𝐻 𝑡′ ·

(︃
w̃𝑡0 +

𝑡0+𝑡′∑︁
𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0

)︃
> 𝐻 𝑡′ · (𝑣0 + 𝑣0)

≥ 2𝑣0.

This implies that 𝜏𝑣0 ≥ 𝑡′ + 𝑡0 + 1 as desired.

3.6.3 Interval Analysis

Given 𝜖 ∈ (0, 1), let 𝜖 = 𝜖
8
. The goal of this section is to prove the local conver-

gence of Oja’s rule (Theorem 3.6.1) with the following interval scheme that shows the

improvement of w̃𝑡

−1

3
→ −𝜖1−

1
2 → −𝜖1−

1
4 → · · · → −𝜖

1− 1

log 1
𝜖 .

Proof of Theorem 3.6.1. Let 𝜖 = 𝜖
8

and 𝑣0 = −1
3
, 𝑙 = log log 1

𝜖
. For 1 ≤ 𝑖 ≤ 𝑙, choose

𝑇𝑖 ∈ N such that 1
2
𝜖

1

2𝑖 ≥ 𝐻𝑇𝑖 ≥ 1
4
𝜖

1

2𝑖 and 𝑣𝑖 = −𝜖1−
1

2𝑖 . Let 𝑆𝑗 =
∑︀𝑗

𝑖=1 𝑇𝑖 and let

𝑇 = 𝑆𝑙. Notice that by Lemma 3.2.16, we have 𝑣𝑙 = − 𝜖
4
.

87

We are going to show that for all 1 ≤ 𝑗 ≤ 𝑙, we have

Pr
[︀
w̃𝑆𝑗

≤ 𝑣𝑗
⃒⃒
w̃𝑆𝑗−1

≥ 𝑣𝑗−1

]︀
<
𝛿

𝑙
. (3.6.11)

Then by union bounding over 𝑗, we have Pr
[︀
w̃𝑇 ≤ − 𝜖

4

]︀
< 𝛿 and

1

4

𝑙 𝜖

4
≤ 𝐻𝑇 ≤ 1

2

𝑙 𝜖

4
⇒ 𝑇 = Θ

(︂
log log 1

𝜖
+ log 1

𝜖

𝜂(𝜆1 − 𝜆2)

)︂
= Θ

(︂
log 1

𝜖

𝜂(𝜆1 − 𝜆2)

)︂
as desired. What remains to be shown is Equation 3.6.11. Now by Lemma 3.6.7, for

𝜂 = Θ

(︂
𝜖(𝜆1−𝜆2)

𝜆1 log
log log 1

𝜖
𝛿

)︂
, we have for all 1 ≤ 𝑗 ≤ 𝑙

Pr

⎡⎣ min
1≤𝑡≤𝑆𝑗

𝑆𝑗−1+𝑡∑︁
𝑖=𝑆𝑗−1+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑆𝑗−1
≤ 𝑣𝑗

⃒⃒⃒⃒
⃒⃒w̃𝑆𝑗−1

≥ 𝑣𝑗−1

⎤⎦ < 𝛿

𝑙
.

Now by Corollary 3.6.4, the following is true with probability 1− 𝛿

w̃𝑆𝑗
≥ 𝐻𝑇𝑗 ·

⎛⎝w̃𝑆𝑗−1
+

𝑆𝑗−1+𝑡∑︁
𝑖=𝑆𝑗−1+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑆𝑗−1

⎞⎠
≥ 1

2
𝜖

1

2𝑗 · 2𝑣𝑗−1

≥ 𝑣𝑗.

This shows that

Pr
[︀
w2
𝑇,1 ≤ 1− 𝜖

]︀
≤ Pr

[︁
w̃𝑇 ≤ − 𝜖

4

]︁
< 𝛿

as desired.

3.6.4 Continual Learning

One of the most remarkable aspects of the biological learning system is its ability

to function indefinitely and continuously adapt. In previous sections, we have only

been looking at the convergence of Oja’s rule at a time point. However, the sensory

system needs to function for a long period of time or even for all time. In this section,

we explore the capacity of Oja’s rule for continual learning as an application of the

previous techniques. In Theorem 3.6.12, we show that Oja’s rule can maintain its

convergence for any finite time while in Theorem 3.6.13, we show that Oja’s rule can

maintain its convergence for all time with a slowly diminishing learning rate that scales

88

like Ω(1
log 𝑡

). This shows that even if the animal switches to a new environment after

a period of time, the learning rate is still large enough to allow efficient continual

learning. Notice that the Kushner-Clark theorem requires
∑︀

𝑡 𝜂
2
𝑡 < ∞ where the

learning rate is commonly set as 𝜂𝑡 = 𝑂(1
𝑡
). In comparison, our slowly diminishing

learning rate can achieve
∑︀

𝑡 𝜂
2
𝑡 = ∞ and thus enables efficient continual learning.

First, we have the following finite continual learning theorem. By applying the

diagonal reduction argument in Section 3.5.1, we prove the finite continual learning

part of Theorem 3.4.2 as a corollary.

Theorem 3.6.12 (Finite continual learning). Let 𝑛, 𝑙 ∈ N, 𝜖, 𝛿 ∈ (0, 1). Suppose

w2
0,1 ≥ 1− 𝜖

2
. Let

𝜂 = Θ

(︃
𝜖(𝜆1 − 𝜆2)

𝜆1 log
𝑙
𝛿

)︃
.

Choose 𝑡′ such that 1
4
≥ 𝐻 𝑡′ ≥ 1

8
. Then

Pr
[︀
∃1 ≤ 𝑡 ≤ 𝑙𝑡′, w2

𝑡,1 < 1− 𝜖
]︀
< 𝛿 .

Proof. Given any 1 ≤ 𝑗 ≤ 𝑙, by Lemma 3.6.7, we have

Pr

[︂
min
1≤𝑡≤𝑡′

∑︁𝑗𝑡′+𝑡

𝑖=(𝑗−1)𝑡′+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−(𝑗−1)𝑡′
≤ − 𝜖

2

⃒⃒⃒⃒
w̃(𝑗−1)𝑡′ ≥ − 𝜖

2

]︂
<
𝛿

𝑙
.

Notice conditioned on w̃(𝑗−1)𝑡′ ≥ − 𝜖
2

and min1≤𝑡≤𝑡′
∑︀𝑗𝑡′+𝑡

𝑖=(𝑗−1)𝑡′+1
𝐴𝑖+𝐵𝑖

𝐻𝑖−(𝑗−1)𝑡′ > − 𝜖
2
, we

have for 1 ≤ 𝑡 ≤ 𝑡′ by Corollary 3.6.4

w̃(𝑗−1)𝑡′+𝑡 ≥ 𝐻 𝑡 ·
(︂
w̃(𝑗−1)𝑡′ +

∑︁(𝑗−1)𝑡′+𝑡

𝑖=(𝑗−1)𝑡′+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−(𝑗−1)𝑡′

)︂
≥ 𝐻 𝑡(− 𝜖

2
− 𝜖

2
)

≥ −𝐻 𝑡𝜖.

In particular, w̃𝑗𝑡′ ≥ − 𝜖
2
. This implies that

Pr
[︁(︀
∃0 ≤ 𝑡 ≤ 𝑡′, w̃(𝑗−1)𝑡′+𝑡 < −𝜖

)︀
∪
(︁
w̃𝑗𝑡′ < − 𝜖

2

)︁ ⃒⃒⃒
w̃(𝑗−1)𝑡′ ≥ − 𝜖

2

]︁
<
𝛿

𝑙
.

Union bound over 1 ≤ 𝑗 ≤ 𝑙, we get

Pr
[︀
∃1 ≤ 𝑡 ≤ 𝑙𝑡′, w2

𝑡,1 < 1− 𝜖
]︀
< 𝛿

as desired.

89

As a corollary of the above finite continual learning theorem, we can obtain the

following for-all-time continual learning theorem. By applying the diagonal reduction

argument in Section 3.5.1, we prove the for-all-time continual learning part of Theo-

rem 3.4.2 as a corollary.

Theorem 3.6.13 (For-all-time continual learning). Let 𝑛, 𝑡0 ∈ N, 𝜖, 𝛿 ∈ (0, 1). Sup-

pose w2
0,1 ≥ 1− 𝜖

2
. There is

𝜂𝑡 ≥ Θ

(︂
𝜖(𝜆1 − 𝜆2)

𝜆1 log
𝑡
𝛿

)︂
such that

Pr
[︀
∃𝑡 ∈ N, w2

𝑡,1 < 1− 𝜖
]︀
< 𝛿 .

Proof. The proof proceeds by recursively choosing 𝜂𝑡 in intervals and apply Theo-

rem 3.6.12 repetitively. Let 𝛿𝑖 = 𝛿
2𝑖2

. Then notice that
∑︀∞

𝑖=1 𝛿𝑖 < 𝛿. Now apply The-

orem 3.6.12 with 𝑡0 = 1 with failure probability 𝛿1 to get the corresponding 𝜂, 𝑡′ and

denote them as 𝜂(1), 𝑡′(1). Now for 1 ≤ 𝑗 ≤ 𝑡′(1), define 𝜂𝑗 = 𝜂(1). By Theorem 3.6.12,

this shows that

Pr
[︀
∃1 ≤ 𝑡 ≤ 𝑡′(1), w

2
𝑡,1 < 1− 𝜖

]︀
< 𝛿.

For the 𝑖th interval, we apply Theorem 3.6.12 with 𝑡0 = 1 with failure probability 𝛿𝑖 to

get the corresponding 𝜂, 𝑡′ and denote them as 𝜂(𝑖), 𝑡′(𝑖). Now for 𝑡′(𝑖−1) ≤ 𝑗 ≤ 𝑡′(𝑖), define

𝜂𝑗 = 𝜂(𝑖). Notice that the above recursive scheme ensures that 𝜂𝑡 ≥ Θ
(︁
𝜖(𝜆1−𝜆2)
𝜆1 log

𝑡
𝛿

)︁
. And

by union bound, we get

Pr
[︀
∃𝑡 ∈ N, w2

𝑡,1 < 1− 𝜖
]︀
< 𝛿 .

3.7 Global Convergence: Starting From Random Ini-

tialization

For the global convergence result, the synaptic weight w0 starts from a random initial-

ization. Specifically, we suppose that w0 is uniformly sampled from the unit sphere

of R𝑛. The main theorem in this section states the convergence of Oja’s rule starting

90

from random initialization for the diagonal case. By applying the diagonal reduction

argument in Section 3.5.1, we prove the global convergence part of Theorem 3.4.1 as

a corollary. The following theorem is the main theorem of this section.

Theorem 3.7.1. Suppose w0 is uniformly sampled from the unit sphere of R𝑛. For

any 𝑛 ∈ N, 𝛿 ∈ (0, 1), 𝜖 ∈ (0, 1
4
), let

𝜂 = Θ

(︃
𝜆1 − 𝜆2
𝜆1

·

(︃
𝜖

log
log 𝑛

𝜖

𝛿

⋀︁ 𝛿2

log2 𝜆1𝑛
𝛿(𝜆1−𝜆2)2

)︃)︃
, 𝑇 = Θ

(︂
log 1

𝜖
+ log 𝑛

𝛿

𝜂(𝜆1 − 𝜆2)

)︂
.

Then

Pr
[︀
w2
𝑇,1 < 1− 𝜖

]︀
< 𝛿 .

The main difficulty in the global convergence is that at the beginning the bounded

differences of the noise in Lemma 3.7.22 cannot be controlled directly. To be precise,

the |𝑦𝑡| term at the worst case needs to be bounded by 𝑂(
√
𝑛|w𝑡,1|). This will intro-

duce a polynomial dependency on 𝑛, which makes the convergence inefficient. To deal

with this issue, in Section 3.7.1, we provide an initialization lemma and the definition

of the stopping time 𝜉𝑝,𝛿 that controls the bounded difference of |𝑦𝑡|. Next, in Sec-

tion 3.7.2, we construct 𝑛−1 auxiliary stopping times and use an induction argument

to show that the stopping time 𝜉𝑝,𝛿 is large with high probability in Theorem 3.7.4.

In Section 3.7.3 we derive a linearization using a center at 0 instead of 1 based on

the intuition from the continuous dynamic in Section 3.3. Furthermore, we use the

ODE trick to write down the dynamic in closed form with respect to the linearization.

Similar to the local convergence, in Section 3.7.4, we show the noise from the

ODE trick can be controlled with the stopping time and we can pull out the stop-

ping time carefully to bound the original noise. In Section 3.7.5, we prove that w2
𝑡,1

is greater than 2/3 efficiently with high probability in an interval analysis in Theo-

rem 3.7.29. Finally, in Section 3.7.6, by combining Theorem 3.7.29, Theorem 3.6.1

and Theorem 3.6.12, we prove the efficient global convergence in Theorem 3.7.1.

3.7.1 Initialization and the main stopping time

In this section, we begin with Definition 3.7.2, which introduces the key stochastic pro-

cesses that we study in Section 3.7.2. Then we give an initialization lemma, Lemma 3.7.3,

91

which guarantees that the processes perform well with good probability at the first

time step.

Definition 3.7.2. For each 2 ≤ 𝑗 ≤ 𝑛, 𝑡 ∈ [𝑇], and w ∈ R𝑛, define

𝑓𝑡,𝑗(w) =

∑︀𝑗
𝑖=2 x𝑡,𝑖w𝑖

w1

.

We cite the initialization lemma in [3, Lemma 5.1] with some straightforward

modification below.

Lemma 3.7.3 (Initialization lemma in [3, Lemma 5.1]). For any 𝑛, 𝑇 ∈ N, and 𝒟 a

distribution over unit vectors in R𝑛. Let w0 ∈ R𝑛 be a random unit vector, then for

any 𝑗 ∈ [𝑛] and 𝑝, 𝛿 ∈ (0, 1), there exists

Λ𝑝,𝛿 = Θ

(︃
1

𝑝

√︂
log

𝑛𝑇

𝛿

)︃
,Λ′

𝑝 = Θ

(︂
𝑛

𝑝2
log

𝑛

𝑝

)︂
such that

Pr
x1,...,x𝑇∼𝒟

[∃𝑗 ∈ [𝑛], 𝑡 ∈ [𝑇], |𝑓𝑡,𝑗(w0)| > Λ𝑝,𝛿] < 𝛿

and

w2
0,1 ≥

1

Λ′
𝑝

with probability at least 1 − 𝑝 − 𝛿 where the randomness is over w0. Notice that we

denote the above event as 𝒞𝑝,𝛿𝑖𝑛𝑖𝑡 and we denote the event inside the probability as 𝒞𝑝,𝛿0 .

In particular, the probability inequality reads Pr[𝒞𝑝,𝛿0 | 𝒞𝑝,𝛿𝑖𝑛𝑖𝑡] < 𝛿.

Given 𝑝, 𝛿 ∈ (0, 1) in Lemma 3.7.3, we define the stopping time 𝜓𝑝,𝛿 to be the

first time 𝑡 such that w2
𝑡,1 < 1/2Λ′

𝑝,𝛿 and the stopping time 𝜉𝑝,𝛿 to be the first time 𝑡

such that |𝑓𝑡,𝑛(w(𝑡−1)∧𝜓𝑝,𝛿
)| > 2Λ𝑝,𝛿. When there is no confusion, we will abbreviate

𝜓𝑝,𝛿, 𝜉𝑝,𝛿,Λ𝑝,𝛿,Λ
′
𝑝 as 𝜓, 𝜉,Λ,Λ′.

3.7.2 Bounding the stopping time 𝜉𝑝,𝛿

As we said at the beginning of the section, in order to keep the bounded differences

of the noise in the global convergence small, we need to make 𝑓𝑡,𝑛(w𝑡−1) small with

high probability. Therefore, the main goal of this section is to show that 𝜉𝑝,𝛿 is large

with high probability in Theorem 3.7.4. In order to prove Theorem 3.7.4, we consider

92

a vector linearization and the ODE trick of the auxiliary processes of Definition 3.7.2

in Corollary 3.7.8 and Corollary 3.7.9. Similar to the local convergence, we consider

a stopped version of the stochastic processes, but because the randomness in 𝜉 is

shifted by 1 we define a special stopped process in Definition 3.7.5. We then obtain

the concentration on the stopped processes in Lemma 3.7.15. Finally, to prove the

main theorem by induction, we prove the induction step in Lemma 3.7.16 by carefully

pull out the stopping time to finish the proof.

The following is the main theorem of this section.

Theorem 3.7.4. Let 𝑇 ∈ N and 𝑝, 𝛿 ∈ (0, 1). Let 𝜂 = Θ

(︂
(𝜆1−𝜆2)

𝜆1Λ2
𝑝,𝛿/4𝑛2𝑇

log 𝑛𝑇
𝛿

)︂
. If we

have 𝑇 = Ω(1
𝜂𝜆1

) and 𝑝 = 𝑂(𝛿), then we have

∀𝑡 ∈ [𝑇], Pr

[︂
𝜉 = 𝑡

⃒⃒⃒⃒
𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡

]︂
<

𝛿

2𝑛2𝑇
.

In particular we have

∀𝑡 ∈ [𝑇], Pr
[︁
𝜉 = 𝑡

⃒⃒⃒
𝜉 ≥ 𝑡, 𝒞𝑝,

𝛿
4𝑛𝑇

𝑖𝑛𝑖𝑡

]︁
≤ 𝛿

𝑛2𝑇

and

Pr
[︁
𝜉 ≤ 𝑇

⃒⃒⃒
𝒞𝑝,

𝛿
4𝑛𝑇

𝑖𝑛𝑖𝑡

]︁
<

𝛿

2𝑛2
.

First notice that the usual notion of the stopped process is not enough to use this

stopping time. To give an intuition, we have

w𝑡∧𝜉 −w(𝑡−1)∧𝜉 = 1𝜉≥𝑡𝜂𝑦𝑡(x𝑡 − 𝑦𝑡w𝑡−1).

However, 1𝜉≥𝑡 only ensures 𝑓𝑡−1,𝑛(w𝑡−2) is bounded and hence 𝑦𝑡−1 is bounded, but

we need 𝑦𝑡 to be bounded instead. Therefore, we need to consider a different notion of

the stopped process. In particular, consider the following notion of a shifted stopped

process.

Definition 3.7.5. Given an adapted stochastic process 𝑀𝑡 with respect to filtration

ℱ𝑡 and a stopping time 𝜏 , we define a new adapted process 𝑀𝑡⋆𝜏 with respect to ℱ𝑡 to

be

𝑀𝑡⋆𝜏 = 1𝜏>𝑡𝑀𝑡 + 1𝜏≤𝑡𝑀𝜏−1.

93

Given 𝑡 ∈ N, we define a random variable 𝑡 ⋆ 𝜏 as

𝑡 ⋆ 𝜏 = 1𝜏>𝑡𝑡+ 1𝜏≤𝑡(𝜏 − 1).

Given a stopping time 𝜏 and an adapted stochastic process 𝑀𝑡, the difference of

a normal stopped process can be described as

𝑀𝑡∧𝜏 −𝑀(𝑡−1)∧𝜏 = 1𝜏≥𝑡(𝑀𝑡 −𝑀𝑡−1).

Similarly, we want to understand the difference of this shifted stopped process.

Lemma 3.7.6. Given a stochastic process 𝑀𝑡 and a stopping time 𝜏 . We have

𝑀𝑡⋆𝜏 −𝑀(𝑡−1)⋆𝜏 = 1𝜏>𝑡(𝑀𝑡 −𝑀𝑡−1).

Proof. We have

𝑀𝑡⋆𝜏 −𝑀(𝑡−1)⋆𝜏 = 1𝜏>𝑡𝑀𝑡 + 1𝜏≤𝑡𝑀𝜏−1 − 1𝜏>𝑡−1𝑀𝑡−1 − 1𝜏≤𝑡−1𝑀𝜏−1

= 1𝜏>𝑡𝑀𝑡 − 1𝜏>𝑡−1𝑀𝑡−1 + 1𝜏=𝑡𝑀𝜏−1.

Since 𝜏 = 𝑡 at the last term, we can combine the last two terms to have

= 1𝜏>𝑡𝑀𝑡 − 1𝜏>𝑡𝑀𝑡−1

= 1𝜏>𝑡(𝑀𝑡 −𝑀𝑡−1)

as desired.

To bound the stopping time 𝜉, we need to show the concentration of 𝑓𝑡,𝑗(w(𝑡−1)∧𝜓)

and as before the linearization and the ODE trick would be our main tools.

Linearization and ODE trick Let us start with the linearization and the ODE

trick for function 𝑓𝑡,𝑗 in this subsection.

Lemma 3.7.7 (Linearization). Let 𝑡 ∈ [𝑇], 𝑠 ∈ [𝑡 − 1]. Let w𝑠 = w𝑠−1 + 𝜂z𝑠 where

z𝑠 = 𝑦𝑠(x𝑠 − 𝑦𝑠w𝑠−1). Then there exists w𝑠−1 = w𝑠−1 + 𝑐𝜂z𝑠 for some 𝑐 ∈ [0, 1] such

that for all 𝑗, 2 ≤ 𝑗 ≤ 𝑛,

𝑓𝑡,𝑗(w𝑠) = (1− 𝜂(𝜆1 − 𝜆𝑗))𝑓𝑡,𝑗(w𝑠−1) + 𝜂

𝑗−1∑︁
𝑖=2

(𝜆𝑖 − 𝜆𝑖+1)𝑓𝑡,𝑖(w𝑠−1) + 𝐴
(𝑡)
𝑠,𝑗

94

where

𝐴
(𝑡)
𝑠,𝑗 = 𝜂∇𝑓𝑡,𝑗(w𝑠−1)

𝑇 (z𝑠 − E[z𝑠 | ℱ𝑠−1]) + 𝜂2z𝑇𝑠∇2𝑓𝑡,𝑗(w𝑠−1)z𝑠.

Proof. This is a direct application of Taylor expansion. Concretely, there exists

w𝑠−1 = w𝑠−1 + 𝑐𝜂z𝑠 for some 𝑐 ∈ [0, 1] such that

𝑓𝑡,𝑗(w𝑠) = 𝑓𝑡,𝑗(w𝑠−1) + 𝜂∇𝑓𝑡,𝑗(w𝑠−1)
𝑇z𝑠 + 𝜂2z𝑇𝑠∇2𝑓𝑡,𝑗(w𝑠−1)z𝑠.

Note that 𝜕𝑓𝑡,𝑗(w)

𝜕w1
= −𝑓𝑡,𝑗(w)/w1 and 𝜕𝑓𝑡,𝑗(w)

𝜕w𝑖
= 1𝑖≤𝑗 ·x𝑡,𝑖/w1 for 𝑖 = 2, . . . , 𝑛.We have

= 𝑓𝑡,𝑗(w𝑠−1)− 𝜂
𝑓𝑡,𝑗(w𝑠−1)

w𝑠−1,1

· z𝑠,1 + 𝜂

∑︀𝑗
𝑖=2 x𝑠,𝑖z𝑠,𝑖
w𝑠−1,1

+ 𝜂2z𝑇𝑠∇2𝑓𝑡,𝑗(w𝑠−1)z𝑠.

Next, recall that E[z𝑠,𝑖 | ℱ𝑠−1] = (𝜆𝑖 − w⊤
𝑠−1diag(𝜆)w𝑠−1) · w𝑠−1,𝑖. By adding and

subtracting the expectations, the equation becomes

= 𝑓𝑡,𝑗(w𝑠−1)− 𝜂𝜆1𝑓𝑡,𝑗(w𝑠−1) + 𝜂

∑︀𝑗
𝑖=2 𝜆𝑖x𝑠,𝑖w𝑠−1,𝑖

w𝑠−1,1

+ 𝜂
(︀
w⊤
𝑠−1diag(𝜆)w𝑠−1

)︀
·

(︃
𝑓𝑡,𝑗(w𝑠−1)−

∑︀𝑗
𝑖=2 x𝑠,𝑖w𝑠−1,𝑖

w𝑠−1,1

)︃
+ 𝐴

(𝑡)
𝑠,𝑗.

Observe that the two terms in the parenthesis becomes 0 after cancelling out with

each other. Finally, by adding and subtracting 𝜂𝜆𝑖𝑓𝑡,𝑖(w𝑠−1) for each 𝑖 = 2, 3, . . . , 𝑗,

we have

= (1− 𝜂(𝜆1 − 𝜆𝑗)) · 𝑓𝑡,𝑗(w𝑠−1) + 𝜂

𝑗−1∑︁
𝑖=2

(𝜆𝑖 − 𝜆𝑖+1)𝑓𝑡,𝑖(w𝑠−1) + 𝐴
(𝑡)
𝑠,𝑗

as desired.

We can write the above lemma in the vector form. For any 𝑡 ∈ [𝑇], let f𝑡(w),A
(𝑡)
𝑠 ∈

R𝑛−1 be (𝑛− 1)-dimensional vectors where the 𝑖th coordinates of them are 𝑓𝑡,𝑖+1(w),

𝐴
(𝑡)
𝑠,𝑖+1 respectively. The following is an immediate corollary of Lemma 3.7.7 by rewrit-

ing everything into a vector form.

Corollary 3.7.8 (Linearization in vector form). For any 𝑡 ∈ [𝑇] and 𝑠 ∈ [𝑡− 1], we

have

f𝑡(w𝑠) = 𝐻f𝑡(w𝑠−1) +A(𝑡)
𝑠

95

where

𝐻 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− 𝜂(𝜆1 − 𝜆2) 0 0 · · · 0

𝜂(𝜆2 − 𝜆3) 1− 𝜂(𝜆1 − 𝜆3) 0 · · · 0

𝜂(𝜆2 − 𝜆3) 𝜂(𝜆3 − 𝜆4) 1− 𝜂(𝜆1 − 𝜆4) · · · 0
...

...
...

𝜂(𝜆2 − 𝜆3) 𝜂(𝜆3 − 𝜆4) 𝜂(𝜆4 − 𝜆5) · · · 1− 𝜂(𝜆1 − 𝜆𝑛)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By the ODE trick for vector (see Lemma 3.2.12), we immediately have the follow-

ing corollary for a closed form solution to f𝑡(w𝑠).

Corollary 3.7.9 (ODE trick). For any 𝑡 ∈ [𝑇], 𝑠 ∈ [𝑡− 1], we have

f𝑡(w𝑠) = 𝐻𝑠f𝑡(w0) +
𝑠∑︁

𝑠′=1

𝐻𝑠−𝑠′A
(𝑡)
𝑠′ .

Concentration of the noise terms We want to control the noise term in Corol-

lary 3.7.9. However, same as the situation before, we cannot get the concentration

for the noise terms of the ODE trick directly. As a consequence, we have to introduce

a new stopping time 𝜏𝑡 to make sure the bounded difference of the stopped processes

are small enough for the martingale concentration inequality.

For a fixed 𝑡 ∈ [𝑇], we define a stopping time 𝜏𝑡 for the noise terms from 𝑠 =

1, 2, . . . , 𝑡 − 1 as follows. First, we work on a slightly different filtration {ℱ (𝑡)
𝑠 }𝑠∈[𝑡−1]

than the natural filtration {ℱ𝑠}𝑠∈[𝑡−1]. The key idea is that the stopping time can

depend on x𝑡 since we only look at the noise term up to 𝑡 − 1. Concretely, for each

𝑠 ∈ [𝑡 − 1], let ℱ (𝑡)
𝑠 be the 𝜎-algebra generated by {x1,x2, . . . ,x𝑠} ∪ {x𝑡}. Note

that {ℱ (𝑡)
𝑠 }𝑠∈[𝑡−1] is well-defined and {𝐴𝑡,𝑠,𝑗}𝑠∈[𝑡−1] is an adapted random process with

respect to {ℱ (𝑡)
𝑠 }𝑠∈[𝑡−1], i.e., 𝐴𝑡,𝑠,𝑗 lies in ℱ (𝑡)

𝑠 for all 𝑠 ∈ [𝑡 − 1]. Also, note that

E[z𝑠 | ℱ𝑠−1] = E[z𝑠 | ℱ (𝑡)
𝑠−1]. That is, the conditional expectation and conditional

variance of z are the same with respect to {ℱ𝑠} and {ℱ (𝑡)
𝑠 }.

Now we define 𝜏𝑡 to be the stopping time for the first 𝑠 such that {‖f𝑡(w𝑠∧𝜓⋆𝜉)‖∞ >

2Λ𝑝,𝛿}. Before we bound the bounded differences and the moments for 1𝜏𝑡,𝜓≥𝑠,𝜉>𝑠A𝑡,𝑠,

observe that we have the following helper lemma on the conditional expectation.

96

Lemma 3.7.10. Let 𝑇 ∈ N, 𝜉 be the stopping time specified before and 𝑡 ∈ [𝑇]. For

𝑠 < 𝑡, given

Pr
[︁
𝜉 = 𝑠

⃒⃒⃒
𝜉 ≥ 𝑠,ℱ (𝑡)

𝑠−1

]︁
< 𝛿′,

we have ⃒⃒⃒
E
[︁
x𝑠,𝑖x𝑠,𝑗

⃒⃒⃒
ℱ (𝑡)
𝑠−1, 𝜉 > 𝑠

]︁
− E

[︁
x𝑠,𝑖x𝑠,𝑗

⃒⃒⃒
ℱ (𝑡)
𝑠−1

]︁⃒⃒⃒
<

2𝛿′

1− 𝛿′

and furthermore⃦⃦⃦
E
[︁
x𝑠x

𝑇
𝑠

⃒⃒⃒
ℱ (𝑡)
𝑠−1, 𝜉 > 𝑠

]︁
− E

[︁
x𝑠x

𝑇
𝑠

⃒⃒⃒
ℱ (𝑡)
𝑠−1

]︁⃦⃦⃦
2
<

2𝛿′

1− 𝛿′
.

Proof. By laws of total expectation and rearrange the terms we have

E[x𝑠,𝑖x𝑠,𝑗|ℱ (𝑡)
𝑠−1, 𝜉 > 𝑠]

=
E[x𝑠,𝑖x𝑠,𝑗|ℱ (𝑡)

𝑠−1, 𝜉 ≥ 𝑠]− E[x𝑠,𝑖x𝑠,𝑗|ℱ (𝑡)
𝑠−1, 𝜉 = 𝑠] Pr[𝜉 = 𝑠|𝜉 ≥ 𝑠]

1− Pr[𝜉 = 𝑠|𝜉 ≥ 𝑠]
.

So we have⃒⃒⃒
E[x𝑠,𝑖x𝑠,𝑗|ℱ (𝑡)

𝑠−1, 𝜉 > 𝑠]− E[x𝑠,𝑖x𝑠,𝑗|ℱ (𝑡)
𝑠−1, 𝜉 ≥ 𝑠]

⃒⃒⃒
=

⃒⃒⃒⃒
⃒E[x𝑠,𝑖x𝑠,𝑗|ℱ (𝑡)

𝑠−1, 𝜉 ≥ 𝑠] Pr[𝜉 = 𝑠|𝜉 ≥ 𝑠]− E[x𝑠,𝑖x𝑠,𝑗|ℱ (𝑡)
𝑠−1, 𝜉 = 𝑠] Pr[𝜉 = 𝑠|𝜉 ≥ 𝑠]

1− Pr[𝜉 = 𝑠|𝜉 ≥ 𝑠]

⃒⃒⃒⃒
⃒

≤ 2𝛿′

1− 𝛿′
.

Similarly, we get ⃦⃦⃦
E[x𝑠x𝑇𝑠 |ℱ

(𝑡)
𝑠−1, 𝜉 > 𝑠]− E[x𝑠x𝑇𝑠 |ℱ

(𝑡)
𝑠−1]
⃦⃦⃦
2
≤ 2𝛿′

1− 𝛿′
.

Lemma 3.7.11. Let 𝑇 ∈ N, 𝜂 ∈ (0, 1), 𝑡 ∈ [𝑇] and 𝑠 ∈ [𝑡−1]. Let Λ be the parameter

specified before and 𝜉, 𝜏𝑡 be the stopping times as chosen before. If 𝜂 = 𝑂
(︀
1
Λ

)︀
, 𝑇 =

Ω(1
𝜂𝜆1

), 𝑝 = 𝑂(𝛿) and the following condition holds

∀1 ≤ 𝑡′ ≤ 𝑡− 1, Pr[𝜉 = 𝑡′|𝜉 ≥ 𝑡′, 𝒞𝑝,𝛿𝑖𝑛𝑖𝑡] ≤
1

𝑛2𝑇
(3.7.12)

then the following holds almost surely.

97

∙ (Bounded difference) We have⃦⃦
1𝜏𝑡,𝜓≥𝑠,𝜉>𝑠A

(𝑡)
𝑠

⃦⃦
∞ = 𝑂(𝜂Λ2).

∙ (Conditional expectation) We have⃦⃦⃦
E[1𝜏𝑡,𝜓≥𝑠,𝜉>𝑠A(𝑡)

𝑠 | ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡]
⃦⃦⃦
∞

= 𝑂(𝜂2𝜆1Λ
3) .

∙ (Conditional variance) We have⃦⃦⃦
E[1𝜏𝑡,𝜓≥𝑠,𝜉>𝑠A(𝑡)

𝑠 A(𝑡)
𝑠

𝑇 | ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡]
⃦⃦⃦
𝑚𝑎𝑥

= 𝑂(𝜂2𝜆1Λ
4).

where the ‖ · ‖𝑚𝑎𝑥 is the entrywise maximum of a matrix.

Proof. The proof is basically direct verification using the definition of stopping time

and Lemma 3.7.10. We postpone the proof to Section A.4.

Now note that given 𝑠 ∈ [𝑡− 1] the stopped process
{︁∑︀𝑠∧𝜓⋆𝜉∧𝜏𝑡

𝑠′=1 𝐻𝑠−𝑠′A𝑡,𝑠′

}︁
𝑠∈[𝑡−1]

is an adapted stochastic process with respect to {ℱ (𝑡)
𝑠 }𝑠∈[𝑠]. Furthermore, it has small

bounded difference and moments. Concretely we have the following.

Lemma 3.7.13 (Structure of the stopped processes). Let 𝑇 ∈ N, 𝜂, 𝛿 ∈ (0, 1), 𝑡 ∈

[𝑇], 𝑠 ∈ [𝑡 − 1]. Let Λ be the parameter specified before and 𝜉, 𝜏𝑡 be the stopping

times as chosen before. For any 𝑠 ∈ [𝑠] and 𝑗 ∈ [𝑛 − 1], let 𝑀𝑡,𝑠,𝑗 be the 𝑗th entry

of
∑︀𝑠∧𝜓⋆𝜉∧𝜏𝑡

𝑠′=1 𝐻𝑠−𝑠′A𝑡,𝑠′. If 𝜂 = 𝑂
(︀
1
Λ

)︀
, 𝑇 = Ω

(︁
1
𝜂𝜆1

)︁
, 𝑝 = 𝑂(𝛿) and the following

condition is true

∀1 ≤ 𝑡′ ≤ 𝑡− 1, Pr[𝜉 = 𝑡′|𝜉 ≥ 𝑡′, 𝒞𝑝,𝛿𝑖𝑛𝑖𝑡] ≤
1

𝑛2𝑇
,

then the following holds.

∙ (Bounded difference) For any 𝑗 ∈ [𝑛− 1], we have

max
𝑠∈[𝑠]

|𝑀𝑡,𝑠,𝑗 −𝑀𝑡,𝑠−1,𝑗| = 𝑂(𝜂Λ2) almost surely.

∙ (Conditional expectation) For any 𝑗 ∈ [𝑛− 1], we have
𝑠∑︁
𝑠=1

E
[︁
𝑀𝑡,𝑠,𝑗 −𝑀𝑡,𝑠−1,𝑗

⃒⃒⃒
ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡

]︁
= 𝑂

(︂
𝜂𝜆1Λ

3

𝜆1 − 𝜆2

)︂
.

98

∙ (Conditional variance) For any 𝑗 ∈ [𝑛− 1], we have
𝑠∑︁
𝑠=1

Var
[︁
𝑀𝑡,𝑠,𝑗 −𝑀𝑡,𝑠−1,𝑗

⃒⃒⃒
ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡

]︁
= 𝑂

(︂
𝜂𝜆1Λ

4

𝜆1 − 𝜆2

)︂
.

Proof of Lemma 3.7.13. For notational convenience given a matrix 𝐴, we will denote

its 𝑗th row as 𝐴(𝑗) for the rest of the proof. Notice that 𝐻 = 𝑉 𝐷𝑉 −1 is invertible

where

𝑉 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

1 1 0 · · · 0

1 1 1 · · · 0
...

...
...

1 1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and 𝑉 −1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
...

0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Also, observe that for any diagonal matrix 𝐷′ = diag(𝑑1, 𝑑2, . . . , 𝑑𝑛−1), we have

𝑉 𝐷′𝑉 −1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑1 0 0 · · · 0

𝑑1 − 𝑑2 𝑑2 0 · · · 0

𝑑1 − 𝑑2 𝑑2 − 𝑑3 𝑑3 · · · 0
...

...
...

𝑑1 − 𝑑2 𝑑2 − 𝑑3 𝑑3 − 𝑑4 · · · 𝑑𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that if 𝑑1 ≥ 𝑑2 ≥ · · · ≥ 𝑑𝑛−1 ≥ 0, then we have

‖
(︀
𝑉 𝐷′𝑉 −1

)︀
(𝑖)

‖1 = 𝑑𝑖 +
𝑖−1∑︁
𝑗=1

𝑑𝑗 − 𝑑𝑗+1 = 𝑑1. (3.7.14)

Fixed 𝑗 ∈ [𝑛]. First we have for all 𝑠 ∈ [𝑠],

|𝑀𝑡,𝑠,𝑗 −𝑀𝑡,𝑠−1,𝑗| = |1𝜏𝑡≥𝑠∧𝜓⋆𝜉,𝜉>𝑠∧𝜓,𝜓≥𝑠𝐻𝑠−𝑠A𝑡,𝑠| = |1𝜏𝑡,𝜓≥𝑠,𝜉>𝑠𝐻𝑠−𝑠A𝑡,𝑠| ≤ 𝑂(𝜂Λ2)

by Equation 3.7.14. For conditional expectation, we similarly have

E
[︁
𝑀𝑡,𝑠,𝑗 −𝑀𝑡,𝑠−1,𝑗

⃒⃒⃒
ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡

]︁
= E

[︁
1𝜏𝑡,𝜓≥𝑠,𝜉>𝑠𝐻

𝑠−𝑠A𝑡,𝑠

⃒⃒⃒
ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡

]︁
≤
⃦⃦⃦
𝐻𝑠−𝑠

(𝑗)

⃦⃦⃦
1

⃦⃦⃦
E
[︁
1𝜏𝑡,𝜓≥𝑠,𝜉>𝑠A𝑡,𝑠

⃒⃒⃒
ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡

]︁⃦⃦⃦
∞

By Equation 3.7.14 and Lemma 3.7.11, we have

≤ (1− 𝜂(𝜆1 − 𝜆2))
𝑠−𝑠 ·𝑂(𝜂2𝜆1Λ3)

99

So by geometric series, we have
𝑠∑︁
𝑠=1

E
[︁
𝑀𝑡,𝑠,𝑗 −𝑀𝑡,𝑠−1,𝑗

⃒⃒⃒
ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡

]︁
= 𝑂

(︂
𝜂𝜆1Λ

3

𝜆1 − 𝜆2

)︂
.

For conditional variance, we similarly have

Var
[︁
𝑀𝑡,𝑠,𝑗 −𝑀𝑡,𝑠−1,𝑗

⃒⃒⃒
ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡

]︁
= E

[︁
1𝜏𝑡,𝜓≥𝑠,𝜉>𝑠(𝐻

𝑠−𝑠A𝑡,𝑠)
2
⃒⃒⃒
ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡

]︁
= (𝐻𝑠−𝑠

(𝑗))𝑇E
[︁
1𝜏𝑡,𝜓≥𝑠,𝜉>𝑠A𝑡,𝑠A

𝑇
𝑡,𝑠

⃒⃒⃒
ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡

]︁
(𝐻𝑠−𝑠

(𝑗))

≤
⃦⃦⃦
𝐻𝑠−𝑠

(𝑗)

⃦⃦⃦
1

⃦⃦⃦
E
[︁
1𝜏𝑡,𝜓≥𝑠,𝜉>𝑠A𝑡,𝑠A

𝑇
𝑡,𝑠

⃒⃒⃒
ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡

]︁⃦⃦⃦
𝑚𝑎𝑥

⃦⃦⃦
𝐻𝑠−𝑠

(𝑗)

⃦⃦⃦
1

By Equation 3.7.14 and Lemma 3.7.11, we have

≤ (1− 𝜂(𝜆1 − 𝜆2))
2(𝑠−𝑠) ·𝑂(𝜂2𝜆1Λ4).

So by geometric series, we have
𝑠∑︁
𝑠=1

Var
[︁
𝑀𝑡,𝑠,𝑗 −𝑀𝑡,𝑠−1,𝑗

⃒⃒⃒
ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡

]︁
= 𝑂

(︂
𝜂𝜆1Λ

4

𝜆1 − 𝜆2

)︂
.

As a consequence of Lemma 3.7.11, we are able to prove the following concentra-

tion for the stopped processes of the noise terms.

Lemma 3.7.15 (Concentration for the stopped process of the noise vectors). Let 𝑇 ∈

N≥0, 𝑝, 𝛿, 𝛿
′ ∈ (0, 1), 𝑡 ∈ [𝑇]. Let Λ𝑝,𝛿′ be the parameter specified before and 𝜉, 𝜏𝑡 be the

stopping times as chosen before. Let 𝜂 = Θ

(︂
(𝜆1−𝜆2)

𝜆1Λ2
𝑝,𝛿′ log

1
𝛿

)︂
. If 𝑇 = Ω(1

𝜂𝜆1
), 𝑝 = 𝑂(𝛿′)

and the following condition is true

∀1 ≤ 𝑡′ ≤ 𝑡− 1, Pr[𝜉 = 𝑡′|𝜉 ≥ 𝑡′, 𝒞𝑝,𝛿𝑖𝑛𝑖𝑡] ≤
1

𝑛2𝑇
,

then for all 𝑠 ∈ [𝑡− 1],

Pr
[︁
∃𝑖 ∈ [𝑛− 1],

∑︁𝑠∧𝜓⋆𝜉𝑝,𝛿′∧𝜏𝑡

𝑠=1

(︀
𝐻𝑠−𝑠A𝑡,𝑠

)︀
𝑖
≥ Λ𝑝,𝛿′ | 𝒞𝑝,𝛿

′

𝑖𝑛𝑖𝑡

]︁
< 𝑛𝛿 .

Proof of Lemma 3.7.15. The proof is based on applying the corollary of Freedman’s

inequality (see Corollary 3.2.6) on each coordinate using Lemma 3.7.13. We have

Pr
[︁∑︁𝑠∧𝜓⋆𝜉𝑝,𝛿′∧𝜏𝑡

𝑠=1

(︀
𝐻𝑠−𝑠A𝑡,𝑠

)︀
𝑖
≥ Λ𝑝,𝛿′ | 𝒞𝑝,𝛿

′

𝑖𝑛𝑖𝑡

]︁
< 𝛿 .

100

by noticing that the deviation term is 𝑂

(︃√︂
𝜂𝜆1Λ4

𝑝,𝛿′ log
1
𝛿

𝜆1−𝜆2

)︃
<

Λ𝑝,𝛿′

2
and the sum of

conditional expectation term is 𝑂
(︂
𝜂𝜆1Λ3

𝑝,𝛿′

𝜆1−𝜆2

)︂
<

Λ𝑝,𝛿′

2
. Now we obtain the desired

inequality by union bounding over 𝑖 ∈ [𝑛− 1].

Wrap up First fix 𝛿′, 𝛿 in the Lemma 3.7.15 as 𝛿
4𝑛2𝑇

, 𝛿
4𝑛3𝑇 2 respectively. The follow-

ing lemma proves the inductive step toward the main theorem.

Lemma 3.7.16. Let 𝑇 ∈ N≥0, 𝑝, 𝛿 ∈ (0, 1) be the parameters and 𝜉 be the stopping

times as chosen before. Let 𝜂 = Θ

(︂
(𝜆1−𝜆2)

𝜆1Λ2
𝑝,𝛿/4𝑛2𝑇

log 𝑛𝑇
𝛿

)︂
. If 𝑇 = Ω(1

𝜂𝜆1
) and

∀1 ≤ 𝑡′ ≤ 𝑡− 1, Pr[𝜉 = 𝑡′|𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡] <

𝛿

2𝑛2𝑇
,

then

Pr[𝜉 = 𝑡|𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡] <

𝛿

2𝑛2𝑇
.

Proof. We have

Pr[𝜉 = 𝑡|𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡] = Pr[|𝑓𝑡,𝑛(w(𝑡−1)∧𝜓⋆𝜉)| > 2Λ, 𝜉 ≥ 𝑡|𝒞

𝑝, 𝛿
4𝑛2𝑇

𝑖𝑛𝑖𝑡]

≤ Pr[𝜏𝑡 < 𝑡, 𝜉 ≥ 𝑡|𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡]

≤ Pr[𝜏𝑡 < 𝑡|𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡].

So it suffices to bound Pr[𝜏𝑡 < 𝑡|𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡]. Notice that we have ∀1 ≤ 𝑡′ ≤ 𝑡− 1,

Pr[𝜉 = 𝑡′|𝜉 ≥ 𝑡′, 𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡] ≤ Pr[𝜉 = 𝑡′|𝒞𝑝,

𝛿
2𝑛𝑇

𝑖𝑛𝑖𝑡]

1− Pr[𝜉 < 𝑡′|𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡]

<
𝛿

4𝑛2𝑇

1− (𝑡−1)𝛿
2𝑛𝑇

≤ 1

𝑛𝑇
. (3.7.17)

So we satisfy the condition of Lemma 3.7.15.

Let 𝒜𝑠0 = {∃𝑖 ∈ [𝑛],
∑︀𝑠0∧𝜓⋆𝜉

𝑠=1 (𝐻𝑠0−𝑠A𝑡,𝑠)𝑖 ≥ Λ} and 𝒜𝜏𝑡
𝑠0

to be its stopped version

{∃𝑖 ∈ [𝑛],
∑︀𝑠0∧𝜓⋆𝜉∧𝜏𝑡

𝑠=1 (𝐻𝑠0−𝑠A𝑡,𝑠)𝑖 ≥ Λ}. Recall from Lemma 3.7.3 that 𝒞
𝑝, 𝛿

4𝑛2𝑇
0 is the

event

{∃𝑗 ∈ [𝑛], 𝑡 ∈ [𝑇], |𝑓𝑡,𝑗(w0)| > Λ𝑝,𝛿} .

We claim that

Pr

[︂
𝜏𝑡 ≥ 𝑠0 + 1

⃒⃒⃒⃒
𝒞
𝑝, 𝛿

4𝑛2𝑇
0 ,𝒜𝑠0

]︂
= 1. (3.7.18)

101

This Equation 3.7.18 is a direct consequence from the ODE trick Corollary 3.7.9. We

have for any 𝑡 ∈ [𝑇],

|f𝑡(w𝑠0∧𝜓⋆𝜉)| = |𝐻𝑠0∧𝜓⋆𝜉f𝑡(w0) +

𝑠0∧𝜓⋆𝜉∑︁
𝑠′=1

𝐻𝑠0−𝑠′A𝑡,𝑠′| ≤ 2Λ

by the definition of 𝒞
𝑝, 𝛿

4𝑛2𝑇
0 ,𝒜𝑠0 and Equation 3.7.14. Now we have by union bound

Pr

[︂
𝜏𝑡 < 𝑡

⃒⃒⃒⃒
𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡

]︂
≤ Pr

[︂
𝜏𝑡 < 𝑡, 𝒞

𝑝, 𝛿
4𝑛2𝑇

0 ,𝒜𝑡−1

⃒⃒⃒⃒
𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡

]︂
+ Pr

[︂
𝒜𝑡−1 ∪ 𝒞

𝑝, 𝛿
4𝑛2𝑇

0

⃒⃒⃒⃒
𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡

]︂
.

By Equation 3.7.18, the first term is 0, we have

≤ 0 + Pr

[︂
𝒜𝑡−1, 𝒞

𝑝, 𝛿
4𝑛2𝑇

0

⃒⃒⃒⃒
𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡

]︂
+ Pr

[︂
𝒞
𝑝, 𝛿

4𝑛2𝑇
0

⃒⃒⃒⃒
𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡

]︂
.

Then by union bound and Lemma 3.7.3, we have

≤
𝑡−1∑︁
𝑠=1

Pr

[︂
𝒜𝑠,𝒜𝑠−1, 𝒞

𝑝, 𝛿
4𝑛2𝑇

0

⃒⃒⃒⃒
𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡

]︂
+

𝛿

4𝑛2𝑇
.

By Equation 3.7.18 again, we can rewrite the terms as

=
𝑡−1∑︁
𝑠=1

Pr

[︂
𝒜𝑠,𝒜𝑠−1, 𝒞

𝑝, 𝛿
4𝑛2𝑇

0 , 𝜏𝑡 ≥ 𝑠

⃒⃒⃒⃒
𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡

]︂
+

𝛿

4𝑛2𝑇

=
𝑡−1∑︁
𝑠=1

Pr

[︂
𝒜𝜏𝑡
𝑠 ,𝒜𝑠−1, 𝒞

𝑝, 𝛿
4𝑛2𝑇

0 , 𝜏𝑡 ≥ 𝑠

⃒⃒⃒⃒
𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡

]︂
+

𝛿

4𝑛2𝑇

≤
𝑡−1∑︁
𝑠=1

Pr

[︂
𝒜𝜏𝑡
𝑠

⃒⃒⃒⃒
𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡

]︂
+

𝛿

4𝑛2𝑇
.

By Lemma 3.7.15, we can bound the first term by (𝑡− 1)𝑛𝛿/4𝑛3𝑇 2

≤ (𝑡− 1)𝑛
𝛿

4𝑛3𝑇 2
+

𝛿

4𝑛2𝑇
≤ 𝛿

2𝑛2𝑇
.

Now the main theorem can be derived as a corollary.

Theorem 3.7.4. Let 𝑇 ∈ N and 𝑝, 𝛿 ∈ (0, 1). Let 𝜂 = Θ

(︂
(𝜆1−𝜆2)

𝜆1Λ2
𝑝,𝛿/4𝑛2𝑇

log 𝑛𝑇
𝛿

)︂
. If we

have 𝑇 = Ω(1
𝜂𝜆1

) and 𝑝 = 𝑂(𝛿), then we have

∀𝑡 ∈ [𝑇], Pr

[︂
𝜉 = 𝑡

⃒⃒⃒⃒
𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡

]︂
<

𝛿

2𝑛2𝑇
.

102

In particular we have

∀𝑡 ∈ [𝑇], Pr
[︁
𝜉 = 𝑡

⃒⃒⃒
𝜉 ≥ 𝑡, 𝒞𝑝,

𝛿
4𝑛𝑇

𝑖𝑛𝑖𝑡

]︁
≤ 𝛿

𝑛2𝑇

and

Pr
[︁
𝜉 ≤ 𝑇

⃒⃒⃒
𝒞𝑝,

𝛿
4𝑛𝑇

𝑖𝑛𝑖𝑡

]︁
<

𝛿

2𝑛2
.

Proof. The proof proceed by induction. For the base case, we have

Pr[𝜉 = 1|𝒞
𝑝, 𝛿

4𝑛2𝑇
𝑖𝑛𝑖𝑡] = Pr[|𝑓1,𝑗(w0)| > 2Λ|𝒞

𝑝, 𝛿
4𝑛2𝑇

𝑖𝑛𝑖𝑡] <
𝛿

2𝑛2𝑇
.

The induction step is exactly Lemma 3.7.16. The second conclusion is exactly Equa-

tion 3.7.17 and the last conclusion can be obtained from union bounding over 𝑇 .

3.7.3 Linearization and ODE trick centered at 0

In the analysis of the global convergence, we use a linearization with a center at 0

instead of 1. The idea is inspired from the analysis of the continuous dynamics as

explained in Section 3.3. However, unlike in the local convergence case, the bounded

differences here can only be controlled after applying the stopping time 𝜉𝑝,𝛿 from the

last section. For the rest of the section, we set a stopping time and an initialization

event from Section 3.7.2 to be 𝜉𝑇 = 𝜉𝛿/4,𝛿/8𝑛2𝑇 and 𝒞𝑇𝑖𝑛𝑖𝑡 = 𝒞𝛿/4,𝛿/8𝑛
2𝑇

𝑖𝑛𝑖𝑡 . In particular

by Lemma 3.7.3 and Theorem 3.7.4, we have ∀𝑡 ∈ [𝑇],

Pr[𝒞𝑇𝑖𝑛𝑖𝑡] ≥ 1− 𝛿

2
, Pr[𝜉𝑇 < 𝑇 | 𝒞𝑇𝑖𝑛𝑖𝑡] <

𝛿

4𝑛2
, Pr[𝜉 = 𝑡|𝜉 ≥ 𝑡, 𝒞𝑇𝑖𝑛𝑖𝑡] ≤

𝛿

2𝑛2𝑇
. (3.7.19)

We abbreviate the corresponding Λ𝛿/4,𝛿/8𝑛2𝑇 ,Λ
′
𝛿/4 as Λ,Λ′ for the rest of the section.

We first derive the linearization with a center at 0.

Lemma 3.7.20 (Linearization at 0). Let z𝑡 = x𝑡𝑦𝑡 − 𝑦2𝑡w𝑡−1. For any 𝑡 ∈ N and

𝜂 ∈ (0, 1), we have

w2
𝑡,1 ≥ 𝐻 ·w2

𝑡−1,1 + 𝐴𝑡 +𝐵𝑡

103

almost surely, where

𝐻 = 1 +
2

3
(𝜆1 − 𝜆2)𝜂,

𝐴𝑡 = 2𝜂z𝑡,1w𝑡−1,1 + 𝜂2z2𝑡,1 − E [2𝜂z𝑡,1w𝑡−1,1|ℱ𝑡−1] + 2𝜂𝜆2(1− ‖w𝑡−1‖2)w2
𝑡−1,1, and

𝐵𝑡 = 2𝜂(𝜆1 − 𝜆2)w
2
𝑡−1,1(1−w2

𝑡−1,1 −
1

3
).

Proof of Lemma 3.7.20. By Equation 3.6.3, we have

w2
𝑡,1 ≥ w2

𝑡−1,1 + 2𝜂(𝜆1 − 𝜆2)w
2
𝑡−1,1(1−w2

𝑡−1,1) + 𝐴𝑡

= w2
𝑡−1,1 +𝐻 ·w2

𝑡−1,1 + 𝐴𝑡 +𝐵𝑡

as desired.

We apply the ODE trick (see Lemma 3.2.10) on Lemma 3.6.2 and get the following

corollary.

Corollary 3.7.21 (ODE trick). For any 𝑡0 ∈ N≥0, 𝑡 ∈ N, and 𝜂 ∈ (0, 1), we have

w2
𝑡0+𝑡,1

≥ 𝐻 𝑡 ·

(︃
w2
𝑡0,1

+

𝑡0+𝑡∑︁
𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0

)︃
.

To control the noise term, we need to have bounds on the bounded differences and

the moments of 𝐴𝑖, 𝐵𝑖.

Lemma 3.7.22. Let 𝐴𝑡, 𝐵𝑡 be defined as in Lemma 3.6.2. Let 𝜂 = 𝑂
(︁

𝜆1−𝜆2
𝜆1Λ2 log 𝑛𝑇

𝛿

)︁
.

If 𝑇 = Ω(1
𝜂𝜆1

), then for any 𝑡 ∈ [𝑇] we have 𝐴𝑡, 𝐵𝑡 satisfy the following properties:

∙ (Bounded difference) |1𝜉𝑇>𝑡,𝜓≥𝑡𝐴𝑡| = 𝑂
(︀
𝜂Λw2

𝑡−1,1

)︀
almost surely. If w2

𝑡−1,1 ≤ 2
3
,

then 𝐵𝑡 ≥ 0 almost surely.

∙ (Conditional expectation) E[1𝜉𝑇>𝑡,𝜓≥𝑡𝐴𝑡 | ℱ𝑡−1, 𝒞𝑇𝑖𝑛𝑖𝑡] = 𝑂
(︀
𝜆1𝜂

2Λ2w2
𝑡−1,1

)︀
.

∙ (Conditional variance) Var
[︀
1𝜉𝑇>𝑡,𝜓≥𝑡𝐴𝑡 | ℱ𝑡−1, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀
= 𝑂

(︀
𝜆1𝜂

2Λ2w4
𝑡−1,1

)︀
.

Proof. First by the definition of 𝜉𝑇 , we have |1𝜉𝑇>𝑡,𝜓≥𝑡𝑦𝑡| = 𝑂(Λ|w𝑡−1,1|) and |1𝜉𝑇>𝑡,𝜓≥𝑡z𝑡⋆,1| =

𝑂(Λ|w𝑡−1,1|). Combining above and Lemma 3.5.1, we have

|1𝜉𝑇>𝑡,𝜓≥𝑡𝐴𝑡| = 𝑂
(︀(︀
𝜂Λ + 𝜂2Λ2 + 𝜂2

)︀
w2
𝑡−1,1

)︀
= 𝑂(𝜂Λw2

𝑡−1,1).

104

And for w2
𝑡−1,1 ≤ 2

3
, we have 𝐵𝑡 ≥ 0 because 1−w2

𝑡−1,1 − 1
3
> 0. For the conditional

expectation, we have

E
[︀
1𝜉𝑇>𝑡,𝜓≥𝑡z

2
𝑡,1

⃒⃒
ℱ𝑡−1, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀
= E

[︀
1𝜉𝑇>𝑡,𝜓≥𝑡𝑦

2
𝑡 (𝑥𝑡,1 − 𝑦𝑡w𝑡−1,1)

2
⃒⃒
ℱ𝑡−1, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀
By Lemma 3.7.10, Theorem 3.7.4 and definition of 𝜉𝑇 , we have

≤ 𝑂(𝜆1Λ
2w2

𝑡−1,1).

Given a random variable 𝑣, we denote E[1𝜉𝑇>𝑡,𝜓≥𝑡𝑣|ℱ𝑡−1, 𝒞𝑇𝑖𝑛𝑖𝑡]− E[𝑣|ℱ𝑡−1] as 𝑣. Now

we also have

z̄𝑡,1 = w𝑇
𝑡−1x𝑡x𝑡,1 −w𝑇

𝑡−1x𝑡x
𝑇
𝑡 w𝑡−1w𝑡−1,1.

By applying Lemma 3.7.10 with Equation 3.7.19 and Cauchy-Scharwz, we have

= 𝑂

(︂
‖w𝑡−1‖2

√
𝑛

𝑛2𝑇
+ ‖w𝑡−1‖32

1

𝑛2𝑇

)︂
.

Conditioning on 𝜓 ≥ 𝑡 we have 1
𝑛
= 𝑂(Λ2w2

𝑡−1,1) by the definition of Λ,Λ′. We have

= 𝑂(𝜂𝜆1Λ
2w2

𝑡−1,1).

So combining above we have

E[1𝜉𝑇>𝑡,𝜓≥𝑡𝐴𝑡|ℱ𝑡−1] = 𝑂(𝜂2𝜆1Λ
2w2

𝑡−1,1).

And similarly applying Lemma 3.7.10, we obtain that the conditional variance is

Var
[︀
1𝜉𝑇>𝑡,𝜓≥𝑡𝐴𝑡|ℱ𝑡−1, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀
= 𝑂

(︀
𝜂2E

[︀
1𝜉𝑇>𝑡,𝜓≥𝑡z

2
𝑡,1|ℱ𝑡−1, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀
w2
𝑡−1,1 + 𝜂4E

[︀
1𝜉𝑇>𝑡,𝜓≥𝑡z

4
𝑡,1|ℱ𝑡−1, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀)︀
= 𝑂(𝜂2𝜆1Λ

2w4
𝑡−1,1)

as desired.

3.7.4 Concentration of noise

In this subsection, we want to show that the noise term in Corollary 3.7.21 is small.

As in the local analysis, we are going to use a stopping time to control good bounded

differences. Specifically,

Lemma 3.7.23 (Concentration of stopped noise in an interval). Let 𝑡0, 𝑇, 𝑡′ ∈ N, 𝛿, 𝛿′ ∈

105

(0, 1) and 𝑎 ∈ (0, 2
3
). Suppose w2

𝑡0∧𝜓⋆𝜉𝑇 ,1 ≥
𝑎
2
. Let 𝜏𝑎 be the stopping time {w2

𝑡∧𝜓⋆𝜉𝑇 ,1 ≥

𝑎}. Let 𝜂 = Θ
(︁

(𝜆1−𝜆2)
𝜆1Λ2 log 1

𝛿′

)︁
. If 𝛿′ = 𝑂(𝛿

𝑛𝑇
), 8 ≥ 𝐻 𝑡′ ≥ 4 and 𝑇 = Ω(1

𝜂𝜆1
), then

Pr

[︂
min
1≤𝑡≤𝑡′

∑︁(𝑡0+𝑡)∧𝜓⋆𝜉𝑇∧𝜏𝑎

𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0
≤ −𝑎

2

⃒⃒⃒⃒
𝒞𝑇𝑖𝑛𝑖𝑡

]︂
< 𝛿′.

Proof. For notational convenience, we denote 1𝜏𝑎,𝜓≥𝑡,𝜉>𝑡𝐴𝑡 as𝐴𝑡. Now by Lemma 3.7.22

and geometric series, i.e.,
∑︀𝑇

𝑖=1𝐻
−𝑖 ≤ 𝑂

(︁
1

𝜂(𝜆1−𝜆2)

)︁
, we have

∀𝑡0 + 1 ≤ 𝑡 ≤ 𝑡0 + 𝑡′,

⃒⃒⃒⃒
𝐴𝑡

𝐻 𝑡−𝑡0

⃒⃒⃒⃒
≤ 𝑂 (𝜂Λ𝑎) ,⃒⃒⃒⃒

⃒
𝑡0+𝑡′∑︁
𝑖=𝑡0+1

E
[︂

𝐴𝑖
𝐻 𝑖−𝑡0

⃒⃒⃒⃒
ℱ𝑖−1, 𝒞𝑇𝑖𝑛𝑖𝑡

]︂⃒⃒⃒⃒
⃒ ≤ 𝑂

(︂
𝜂𝜆1Λ

2𝑎

𝜆1 − 𝜆2

)︂
, and

⃒⃒⃒⃒
⃒
𝑡0+𝑡′∑︁
𝑖=𝑡0+1

Var

[︂
𝐴𝑖

𝐻 𝑖−𝑡0

⃒⃒⃒⃒
ℱ𝑖−1, 𝒞𝑇𝑖𝑛𝑖𝑡

]︂⃒⃒⃒⃒
⃒ ≤ 𝑂

(︂
𝜂𝜆1Λ

2𝑎2

𝜆1 − 𝜆2

)︂
.

Apply the above bounds to Lemma 3.2.5, we have

Pr

⎡⎣max
1≤𝑡≤𝑡′

⃒⃒⃒⃒
⃒⃒(𝑡0+𝑡)∧𝜓⋆𝜉𝑇∧𝜏𝑎∑︁

𝑖=𝑡0+1

𝐴𝑖
𝐻 𝑖−𝑡0

⃒⃒⃒⃒
⃒⃒ ≥ 𝑎

2

⃒⃒⃒⃒
⃒⃒ 𝒞𝑇𝑖𝑛𝑖𝑡

⎤⎦ < 𝛿′

because the deviation term is
√︁

log 1
𝛿′ 𝜂𝜆1Λ

2𝑎2

𝜆1−𝜆2 = 𝑂 (𝑎) ≤ 𝑎
4

and the summation of condi-

tional expectation term is 𝜆1𝜂Λ2𝑎
𝜆1−𝜆2 = 𝑂 (𝑎) ≤ 𝑎

4
. By stopping time 𝜏𝑎 and Lemma 3.7.22,

we have
(𝑡0+𝑡)∧𝜓⋆𝜉𝑇∧𝜏𝑎∑︁

𝑖=𝑡0+1

𝐵𝑖

𝐻 𝑖−𝑡0
≥ 0.

Combining both inequality we get

Pr

⎡⎣ min
1≤𝑡≤𝑡′

(𝑡0+𝑡)∧𝜓⋆𝜉𝑇∧𝜏𝑎∑︁
𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0
≤ −𝑎

2

⃒⃒⃒⃒
⃒⃒ 𝒞𝑇𝑖𝑛𝑖𝑡

⎤⎦ < 𝛿′.

Now we will pull out the stopping time 𝜓, 𝜏𝑎 and 𝜉𝑇 together to show that w2
𝑡,1

doubles itself efficiently with high probability.

Lemma 3.7.24 (Pull out stopping time in an interval). Let 𝑡0, 𝑇, 𝑡′ ∈ N, 𝛿, 𝛿′ ∈ (0, 1)

and 𝑎 ∈ (0, 2
3
). Suppose w2

𝑡0∧𝜓⋆𝜉𝑇 ,1 ≥
𝑎
2
. Let 𝜏 be the stopping time of {w2

𝑡,1 ≥ 𝑎}. Let

106

𝜂 = Θ
(︁

(𝜆1−𝜆2)
𝜆1Λ2 log 1

𝛿′

)︁
. If 𝛿′ = 𝑂(𝛿

𝑛𝑇
), 8 ≥ 𝐻 𝑡′ ≥ 4, 𝑡0 + 𝑡′ ≤ 𝑇 and 𝑇 = Ω(1

𝜂𝜆1
), then

Pr[𝜏 > 𝑡0 + 𝑡′|𝜉 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡] < 𝛿′.

Proof. Let 𝜏𝑎 be the stopping time {w2
𝑡∧𝜓⋆𝜉𝑇 ,1 ≥ 𝑎}. Notice that now we only have

controls on w2
𝑡∧𝜓⋆𝜉𝑇∧𝜏𝑎,1. To conclude a statement about 𝜏 , we need to pull out

𝜓, 𝜏𝑎, 𝜉𝑇 . 𝜉𝑇 will be pull out by paying union bounds in conditioning. 𝜏𝑎 and 𝜓 will

be pulled out similar to Lemma 3.6.9. Denote the event

min
1≤𝑡≤𝑡′

(𝑡0+𝑡)∧𝜓⋆𝜉∧𝜏𝑎∑︁
𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0
≤ −𝑎

2

as 𝒜. By Lemma 3.7.23 we have Pr[𝒜|𝒞𝑇𝑖𝑛𝑖𝑡] < 𝛿′

4
. First let’s deal with 𝜏𝑎 first. I claim

that we have

Pr
[︀
𝜏𝑎 > 𝑡0 + 𝑡′, 𝜓 > 𝑡0 + 𝑡′|𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀
<
𝛿′

2
(3.7.25)

Notice if 𝜏𝑎 > 𝑡0 + 𝑡′, 𝜉𝑇 > 𝑇, 𝜓 > 𝑡0 + 𝑡′ and 𝒜 are true, by Corollary 3.7.21 we have

w2
(𝑡0+𝑡′)∧𝜓⋆𝜉,1 ≥ 𝐻 𝑡′∧(𝜓−𝑡0)⋆(𝜉−𝑡0)

⎛⎝w2
𝑡0,1

+

(𝑡0+𝑡)∧𝜓⋆𝜉∑︁
𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0

⎞⎠
= 𝐻 𝑡′

⎛⎝w2
𝑡0,1

+

(𝑡0+𝑡)∧𝜓⋆𝜉∧𝜏𝑎∑︁
𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0

⎞⎠
≥ 4(𝑎− 𝑎

2
) = 2𝑎.

Contradict with 𝜏𝑎 > 𝑡0 + 𝑡′. This implies that

Pr[𝜏𝑎 > 𝑡0 + 𝑡′, 𝜉𝑇 > 𝑇, 𝜓 > 𝑡0 + 𝑡′,𝒜] = 0. (3.7.26)

Now we have

Pr
[︀
𝜏𝑎, 𝜓 > 𝑡0 + 𝑡′

⃒⃒
𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀
= Pr

[︀
𝜏𝑎, 𝜓 > 𝑡0 + 𝑡′,𝒜

⃒⃒
𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀
+ Pr

[︀
𝜏𝑎, 𝜓 > 𝑡0 + 𝑡′,𝒜

⃒⃒
𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀
.

The second term vanishes because of Equation 3.7.26. We have

≤ Pr
[︀
𝒜
⃒⃒
𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀
=

Pr
[︀
𝒜
⃒⃒
𝒞𝑇𝑖𝑛𝑖𝑡

]︀
Pr [𝜉𝑇 > 𝑇 | 𝒞𝑇𝑖𝑛𝑖𝑡]

107

Since Pr
[︀
𝒜
⃒⃒
𝒞𝑇𝑖𝑛𝑖𝑡

]︀
< 𝛿′

4
and Pr

[︀
𝜉𝑇 > 𝑇

⃒⃒
𝒞𝑇𝑖𝑛𝑖𝑡

]︀
< 1

2
from Equation 3.7.19, we have

≤ 𝛿′

2
.

Now let’s deal with 𝜓. I claim that we have

Pr
[︀
𝜏𝑎 > 𝑡0 + 𝑡′, 𝜓 ≤ 𝑡0 + 𝑡′|𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀
<
𝛿′

2
. (3.7.27)

Notice that from Pr
[︀
𝒜
⃒⃒
𝒞𝑇𝑖𝑛𝑖𝑡

]︀
< 𝛿′

4
, we have

Pr

⎡⎣ min
1≤𝑡≤𝑡′

(𝑡0+𝑡)∧𝜓∑︁
𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0
≤ −𝑎

2
, 𝜏𝑎 > 𝑡0 + 𝑡′, 𝜉𝑇 > 𝑇

⃒⃒⃒⃒
⃒⃒ 𝒞𝑇𝑖𝑛𝑖𝑡

⎤⎦ < 𝛿′

4
.

We will apply Lemma 3.6.9 to pull out 𝜓 in the above inequality. Denote the event

min
1≤𝑡≤𝑡′

𝑡0+𝑡∑︁
𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0
≤ −𝑎

2

as ℬ. It suffices to check that if ℬ̄ is true, then we have 𝜓 > 𝑡0+𝑡. By Corollary 3.7.21

we have for all 𝑡 ∈ [𝑡′]

w2
𝑡0+𝑡,1

≥ 𝐻 𝑡

(︃
w2
𝑡0,1

+

𝑡0+𝑡∑︁
𝑖=𝑡0+1

𝐴𝑖 +𝐵𝑖

𝐻 𝑖−𝑡0

)︃
≥ 𝐻 𝑡(𝑎− 𝑎

2
) ≥ 𝑎

2

as desired. By Lemma 3.6.9, this shows that

Pr
[︀
ℬ, 𝜏𝑎 > 𝑡0 + 𝑡′, 𝜉𝑇 > 𝑇

⃒⃒
𝒞𝑇𝑖𝑛𝑖𝑡

]︀
<
𝛿′

4
.

Then notice that if 𝜏𝑎 > 𝑡0 + 𝑡′, 𝜉𝑇 > 𝑇, 𝜏 ≤ 𝑡0 + 𝑡′ and ℬ is true, by second condition

of Lemma 3.6.9 we just checked, we have 𝜏 > 𝑡0 + 𝑡′. Contradict with 𝜏 ≤ 𝑡0 + 𝑡′.

This implies that

Pr[𝜏𝑎 > 𝑡0 + 𝑡′, 𝜉𝑇 > 𝑇, 𝜓 ≤ 𝑡0 + 𝑡′,ℬ] = 0.

Now we have

Pr
[︀
𝜏𝑎 > 𝑡0 + 𝑡′, 𝜓 ≤ 𝑡0 + 𝑡′

⃒⃒
𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀
= Pr

[︀
𝜏𝑎 > 𝑡0 + 𝑡′, 𝜓 ≤ 𝑡0 + 𝑡′,ℬ

⃒⃒
𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀
+ Pr

[︀
𝜏𝑎 > 𝑡0 + 𝑡′, 𝜓 ≤ 𝑡0 + 𝑡′,ℬ

⃒⃒
𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀
.

108

The second term vanishes because of Equation 3.7.4. We have

= Pr
[︀
𝜏𝑎 > 𝑡0 + 𝑡′, 𝜓 ≤ 𝑡0 + 𝑡′,ℬ

⃒⃒
𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡

]︀
=

Pr
[︀
𝜏𝑎 > 𝑡0 + 𝑡′, 𝜉𝑇 > 𝑇, 𝜓 ≤ 𝑡0 + 𝑡′,ℬ

⃒⃒
𝒞𝑇𝑖𝑛𝑖𝑡

]︀
Pr[𝜉𝑇 > 𝑇 |𝒞𝑇𝑖𝑛𝑖𝑡]

The numerator can be bounded by 𝛿′

4
and the denominator can be bounded by 1

2

from Equation 3.7.19, so we have

≤ 𝛿′

2
.

Now we have

Pr[𝜏 > 𝑡0 + 𝑡′|𝜉 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡]

≤ Pr[𝜏, 𝜓 > 𝑡0 + 𝑡′|𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡] + Pr[𝜏, 𝜓 ≤ 𝑡0 + 𝑡′|𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡].

Because 𝜏 > 𝑡0 + 𝑡′ implies 𝜏𝑎 > 𝑡0 + 𝑡′, we have

≤ Pr[𝜏𝑎, 𝜓 > 𝑡0 + 𝑡′|𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡] + Pr[𝜏𝑎, 𝜓 ≤ 𝑡0 + 𝑡′|𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡].

By Equation 3.7.25 and Equation 3.7.27, we have

<
𝛿′

2
+
𝛿′

2
= 𝛿′

as desired.

3.7.5 Interval Analysis

In this section, we proceed with the following interval scheme to show the improvement

of w2
𝑡,1

1

Λ′ → 2
1

Λ′ → · · · → 2⌊log
2Λ′
3

⌋ 1

Λ′ →
2

3
.

We first show in Lemma 3.7.28 on how to choose the learning rate without dependency

on 𝑇 and then show that w2
𝑡,1 is going to reach 2/3 efficiently.

Lemma 3.7.28. Given 𝑡′ such that 8 ≥ 𝐻 𝑡′ ≥ 4, there exists

𝑇 = Θ

(︃
𝜆1 log

𝑛
𝛿
log2 𝑛𝜆1

𝛿(𝜆1−𝜆2)2

𝛿2(𝜆1 − 𝜆2)2

)︃

109

such that

𝜂 = Θ

(︃
𝜆1 − 𝜆2

𝜆1Λ2
𝑇 log

𝑛𝑇
𝛿

)︃
, 𝑇 ≥ 𝑡′ log Λ′.

Proof. Since 8 ≥ 𝐻 𝑡′ ≥ 4, we have that 𝑡′ = Θ(1/𝜂(𝜆1 − 𝜆2)). Now

𝑡′ log Λ′ = Θ

(︃
𝜆1 log Λ

′ log2 𝑛𝑇
𝛿

𝛿2(𝜆1 − 𝜆2)2

)︃
For notational convenience we let 𝐴 = 𝜆1 log Λ′

𝛿2(𝜆1−𝜆2)2 . Then we need 𝑇 ≥ 𝐴 log2 𝑛𝑇
𝛿

and

𝑇 = Θ(𝐴 log2 𝑛𝐴) = Θ

(︃
𝜆1 log

𝑛
𝛿
log2 𝑛𝜆1

𝛿(𝜆1−𝜆2)2

𝛿2(𝜆1 − 𝜆2)2

)︃
satisfied the requirement as desired.

Theorem 3.7.29. Let 𝑛 ∈ N, 𝜖, 𝛿 ∈ (0, 1). Let 𝑇 = Θ

(︂
𝜆1 log

𝑛
𝛿
log2

𝑛𝜆1
𝛿(𝜆1−𝜆2)

2

𝛿2(𝜆1−𝜆2)2

)︂
. Let 𝜏 be

the stopping time of w2
𝑡,1 ≥ 2

3
. Let

𝜂 = 𝑂

(︃
(𝜆1 − 𝜆2)

𝜆1Λ2 log 𝑛𝑇
𝛿

)︃
, 𝑇0 =

⌊log 2
3Λ′ ⌋+ 1

𝜂(𝜆1 − 𝜆2)
.

Then we have

Pr [𝜏 > 𝑇0] < 𝛿 .

Proof. Choose 𝑡′ such that 8 ≥ 𝐻 𝑡′ ≥ 4 and let 𝑚 = ⌊log 2
3Λ′ ⌋ + 1, 𝑣𝑖 = 1

Λ′2
𝑖 for 𝑖 =

0, · · · ,𝑚−1 and 𝑣𝑚 = 2
3
. Let 𝜏𝑣𝑖 be the stopping time of {w2

𝑡,1 ≥ 𝑣𝑖} and let 𝑇0 = 𝑚𝑡′.

We will apply Lemma 3.7.24 with 𝛿′ = 𝛿
4𝑚

. Notice that since log Λ′ = 𝑂(𝑛𝑇), we can

choose 𝛿′ this way. Now we have

Pr[𝜏 > 𝑇0] = Pr[𝜏𝑣𝑚 > 𝑚𝑡′]

≤ Pr[𝜏𝑣𝑚 > 𝑚𝑡′|𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡] + Pr[𝜉 ≤ 𝑇 |𝒞𝑇𝑖𝑛𝑖𝑡] + Pr[𝒞𝑇𝑖𝑛𝑖𝑡]

By Equation 3.7.19 and union bound, we have

<
𝑚∑︁
𝑖=1

Pr[𝜏𝑣𝑖 > 𝑖𝑡′, 𝜏𝑣𝑖−1
≤ (𝑖− 1)𝑡′|𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡] +

𝛿

4𝑛2
+
𝛿

2

≤
𝑚∑︁
𝑖=1

Pr[𝜏𝑣𝑖 > 𝜏𝑣𝑖−1
+ 𝑡′|𝜉𝑇 > 𝑇, 𝒞𝑇𝑖𝑛𝑖𝑡] +

𝛿

4𝑛2
+
𝛿

2

By Lemma 3.7.24, each summand can be bounded by 𝛿
4𝑚

, we have

<
𝛿𝑚

4𝑚
+

𝛿

4𝑛2
+
𝛿

2
≤ 𝛿

110

as desired.

3.7.6 Combining Theorem 3.7.29 with the local analysis

In this section, since we have shown that w2
𝑡,1 efficiently reaches 2/3 in Theorem 3.7.29,

by combining Theorem 3.7.29, the local convergence (Theorem 3.6.1) and the finite

continual learning (Theorem 3.6.12), we derive Theorem 3.7.1.

Proof of Theorem 3.7.1. Let 𝜏 to be the hitting time of w2
𝑡,1 > 1− 𝜖

2
. With

𝜂 = Θ

(︃
𝜆1 − 𝜆2
𝜆1

·

(︃
𝜖

log
log 𝑛

𝜖

𝛿

⋀︁ 𝛿2

log2 𝜆1𝑛
𝛿(𝜆1−𝜆2)2

)︃)︃
,

we can apply Theorem 3.7.29, Theorem 3.6.1 to get that

Pr[𝜏 > 𝑇] <
𝛿

2

where 𝑇 = Θ(
log 1

𝜖
+log Λ′

𝜂(𝜆1−𝜆2)) = Θ(
log 1

𝜖
+log 𝑛

𝛿

𝜂(𝜆1−𝜆2)). Now we initialize Theorem 3.6.12 with

𝑡0 = Θ(log 1
𝜖
+ log 𝑛

𝛿
) with failure probability 𝛿

2
to get

Pr[∃1 ≤ 𝑡 ≤ 𝑇,w2
𝜏+𝑡,1 < 1− 𝜖] <

𝛿

2
.

Since 𝑇 ∈ [𝜏, 𝜏 + 𝑇] if 𝜏 ≤ 𝑇 , now by union bounding two inequalities, we have

Pr[w2
𝑇,1 < 1− 𝜖] < 𝛿.

3.8 Discussion and Future Directions

In this work, our contributions are three-fold. In terms of biology, we show that Oja’s

rule can solve streaming PCA in a biologically realistic time scale as an example of fast

sensory adaptation under the efficient coding principle. Moreover, we demonstrate the

capacity of Oja’s rule for continual learning. With only slowly diminishing learning

rate that decreases like Ω(1/ log 𝑡), we show that

Pr[∃𝑡 ≥ 𝑇, error at time 𝑡 > 𝜖] < 𝛿.

This shows that Oja’s rule not only can function indefinitely but also can continuously

adapt to different environments without sacrificing much efficiency or resetting the

111

learning rate.

In terms of algorithms, we give the first convergence rate analysis for biological

Oja’s rule in solving streaming PCA. As a byproduct, the convergence rate we get

for biological Oja’s rule outperforms the state-of-the-art upper bound for streaming

PCA (using ML Oja’s rules) and matches the information-theoretic lower bound up

to logarithmic factors.

In terms of mathematics, we develop a novel one-shot framework to analyze a

stochastic process using inspiration from the continuous dynamic as a guide. Instead

of using the traditional step-by-step analysis, this framework writes down the closed

form solution of the dynamic and uses stopping times to obtain precise control of

the dynamics. This framework provides a more elegant and more general analysis

compared with the previous step-by-step approaches. And we hope it can inspire

future works on analyzing stochastic processes.

At the rest of the section, we discuss some future directions in both the biological

aspects and the algorithmic aspects.

3.8.1 Biological aspects

Spiking Oja’s Rule In this thesis, we simplify the biological dynamic using a rate-

based model. It would be interesting to design a spiking version of the learning rule

to solve streaming PCA. On the other hand, it has been shown that Spike Timing

Dependent Plasticity (STDP) has self-normalizing behaviors [1], so the higher-order

terms in biological Oja’s rule might not be needed for the normalization in the spiking

version.

Convergence rate analysis for other biological-plausible learning rules As

mentioned in Section 3.1.4, there are plenty of Hebbian-type learning rules that had

been proposed to solve some computational problems [71, 14, 70, 84, 63, 4, 67]. Nev-

ertheless, most of them do not have an efficiency guarantee and we think it would be

of interest to use our frameworks to systematically analyze the convergence rates of

these update rules. This is not only a natural theoretical question but also could po-

tentially provide insights on how these biologically-plausible algorithms are different

112

from standard algorithms.

Convergence rate analysis for biologically-plausible learning rules for on-

line 𝑘-PCA In this work, we focus on biological Oja’s rule in finding the top eigen-

vector of the covariance matrix. It is a natural question to ask: whether there is a

biologically-plausible algorithm for finding top 𝑘 eigenvectors (a.k.a. the 𝑘-PCA prob-

lem)? In the setting of ML Oja’s rule, this can be achieved by QR decomposition [3].

As mentioned in Section 3.1.4, computational neuroscientists have proposed several

variants of biological Oja’s rule to solve streaming 𝑘-PCA [60, 70, 26, 46, 69, 43, 67].

Some networks use feedforward connections only but the learning rules are not lo-

cal [60, 70] while some use Hebbian learning on the feedforward connection and use

anti-Hebbian learning on the recurrent connection to decorrelate the outputs [26, 46,

69, 43, 67]. However, there is no convergence rate analysis for these networks and

even the results on the global convergence in the limit are not known for most of

these networks. Therefore, it will be interesting to apply our framework to derive a

convergence rate analysis for these biologically-plausible learning rules to solve online

𝑘-PCA.

3.8.2 Algorithmic aspects

Improving the guarantees for biological Oja’s rule In this thesis, we mainly

focus on the situation when 𝜆1 > 𝜆2 while some of the previous works also considered

the gap-free setting. We believe our framework can be easily extended to the gap-

free setting and leave it as future work. Also, there are some logarithmic terms (e.q.

additive log log log(1/𝜖) in the local convergence) in the convergence rate and do not

seem to be inherent. It would be interesting to find out the optimal logarithmic

dependency.

On the other hand, we suspect the log(1/𝜖) term in the convergence rate of bi-

ological Oja’s rule might be necessary. Thus, showing a lower bound with log(1/𝜖)

would be of great interest. Note that there exists (non-streaming) algorithm which

solves PCA using only 𝑂 (𝜆1𝜖
−1gap−2) samples so the lower bound should be tailored

to the dynamic.

113

Tighter analysis for ML Oja’s rule Using the objective function from [3], one

can also easily generalize our framework to ML Oja’s rule and tighten the bounds for

both the local and global convergence rates.

Other Stochastic Dynamics There are many stochastic optimization problems

in machine learning where the optimal analysis still remains elusive, e.g., stochastic

gradient dynamics of matrix completion, low-rank approximation, nonnegative matrix

factorization, etc. It is of great interest to apply our one-shot framework to analyze

other important stochastic dynamics.

3.9 Contribution Statement

The work in this chapter is done as joint work with Chi-Ning Chou.

∙ Analysis framework conception: Mien Brabeeba Wang

∙ Mathematical analysis: Chi-Ning Chou and Mien Brabeeba Wang

∙ Biological motivation: Mien Brabeeba Wang

∙ Writing: Chi-Ning Chou and Mien Brabeeba Wang

∙ Editing: Chi-Ning Chou and Mien Brabeeba Wang

114

Appendix A

Appendix

A.1 Oja’s Derivation for the Biological Oja’s Rule

Recall that Oja wanted to use the following normalized update rule to solve the

streaming PCA problem.

w𝑡 =

(︀
𝐼 + 𝜂𝑡x𝑡x

⊤
𝑡

)︀
w𝑡−1

‖
(︀
𝐼 + 𝜂𝑡x𝑡x⊤

𝑡

)︀
w𝑡−1‖2

. (A.1.1)

Oja applied Taylor’s expansion on the normalization term and truncated the higher-

order term of 𝜂𝑡. Concretely, we have

‖
(︀
𝐼 + 𝜂𝑡x𝑡x

⊤
𝑡

)︀
w𝑡−1‖−1

2 =

(︃
𝑛∑︁
𝑖=1

(w𝑡−1,𝑖 + 𝜂𝑡𝑦𝑡x𝑡,𝑖)
2

)︃−1/2

=

(︃
𝑛∑︁
𝑖=1

w2
𝑡−1,𝑖 + 2𝜂𝑡𝑦𝑡x𝑡,𝑖w𝑡−1,𝑖 +𝑂(𝜂2𝑡)

)︃−1/2

.

As 𝑦𝑡 = x⊤
𝑡 w𝑡−1 and ‖w𝑡−1‖2 is expected to be 1, the equation approximately becomes

=
(︀
1 + 2𝜂𝑡𝑦

2
𝑡 +𝑂(𝜂2𝑡)

)︀−1/2
= 1− 𝜂𝑡𝑦

2
𝑡 +𝑂(𝜂2𝑡) . (A.1.2)

Replace the denominator of Equation A.1.1 with Equation A.1.2 and truncate the

𝑂(𝜂2𝑡) term, one recovers biological Oja’s rule (Equation 3.1.4).

115

A.2 Details of the Linearizations in Continuous Oja’s

Rule

Recall that the dynamic of the continuous Oja’s rule is the following.

𝑑w𝑡

𝑑𝑡
= diag(𝜆)w𝑡 −w⊤

𝑡 diag(𝜆)w𝑡w𝑡 .

Before proving the two convergence theorems of continuous Oja’s rule using different

linearizations, let us first prove the following lemma on some basic properties.

Lemma A.2.1 (Properties of continuous Oja’s rule). Let w0 ∈ R𝑛 such that ‖w0‖2 =

1 and w0,1 > 0. For any 𝑡 ≥ 0, we have

1. ‖w𝑡‖2 = 1,

2. 𝑑w𝑡,1

𝑑𝑡
≥ (𝜆1 − 𝜆2)w𝑡,1(1−w2

𝑡,1), and

3. w𝑡,1 is non-decreasing

almost surely.

Proof of Lemma A.2.1. In the following, everything holds almost surely so we would

not mention this condition every time. First, consider

𝑑‖w𝑡‖22
𝑑𝑡

= 2w⊤
𝑡

𝑑w𝑡

𝑑𝑡
= 2w⊤

𝑡

(︀
diag(𝜆)w𝑡 −w⊤

𝑡 diag(𝜆)w𝑡w𝑡

)︀
= 2w⊤

𝑡 diag(𝜆)w𝑡 ·
(︀
1− ‖w𝑡‖22

)︀
.

As 1− ‖w0‖22 = 0, by induction, we have ‖w𝑡‖2 = 1 for all 𝑡 ≥ 0.

For the second item of the lemma, we have

𝑑w𝑡,1

𝑑𝑡
=

⎛⎝𝜆1 −
⎛⎝∑︁
𝑖∈[𝑛]

𝜆𝑖w
2
𝑡,𝑖

⎞⎠⎞⎠w𝑡,1 ≥ (𝜆1 − 𝜆2)w𝑡,1(1−w2
𝑡,1)

= 𝜆1(w𝑡,1 −w3
𝑡,1)−

𝑛∑︁
𝑖=2

𝜆𝑖w
2
𝑡,𝑖w𝑡,1 .

From the first item, we have
∑︀𝑛

𝑖=2 w
2
𝑡,𝑖 = 1−w2

𝑡,1. Thus, we have

≥ 𝜆1(w𝑡,1 −w3
𝑡,1)− 𝜆2(1−w2

𝑡,1)w𝑡,1 = (𝜆1 − 𝜆2)w𝑡,1(1−w2
𝑡,1) .

116

The last item of the lemma is then an immediate corollary of the first two items.

Now, we restate and prove Theorem 3.3.4 as follows.

Theorem 3.3.4 (Linearization at 0). Suppose w0,1 > 0. For any 𝜖 ∈ (0, 1), when

𝑡 ≥ Ω
(︁

log(1/w2
0,1)

𝜖(𝜆1−𝜆2)

)︁
, we have w2

𝑡,1 > 1− 𝜖.

Proof of Theorem 3.3.4. Observe that for any 𝑡 ≥ 0 such that w2
𝑡,1 ≤ 1 − 𝜖, by the

second item of Lemma A.2.1, we have

𝑑w𝑡,1

𝑑𝑡
≥ (𝜆1 − 𝜆2)w𝑡,1(1−w2

𝑡,1) ≥ 𝜖(𝜆1 − 𝜆2)w𝑡,1 .

Let 𝜏 =
10 log(1/w2

0,1)

𝜖(𝜆1−𝜆2) and assume w2
𝜏,1 ≤ 1− 𝜖 for the sake of contradiction. From the

above linearization and w𝑡,1 being non-decreasing (the third item of Lemma A.2.1),

we have

w𝜏,1 ≥ 𝑒𝜖(𝜆1−𝜆2)𝜏 ·w0,1 > 1 ,

which is a contradiction to the first item of Lemma A.2.1. Thus, we conclude that

for any 𝑡 = Ω
(︁

log(1/w2
0,1)

𝜖(𝜆1−𝜆2)

)︁
, w2

𝑡,1 > 1− 𝜖.

Now, we restate and prove Theorem 3.3.5 as follows.

Theorem 3.3.5 (Linearization at 1). Suppose w0,1 > 0. For any 𝜖 ∈ (0, 1), when

𝑡 ≥ Ω
(︁

log(1/𝜖)
w0,1(𝜆1−𝜆2)

)︁
, we have w2

𝑡,1 > 1− 𝜖.

Proof of Theorem 3.3.5. Observe that for 𝑡 ≥ 0, by the second item of Lemma A.2.1,

we have

𝑑(w𝑡,1 − 1)

𝑑𝑡
≥ (𝜆1 − 𝜆2)w𝑡,1(1−w2

𝑡,1)

= −(𝜆1 − 𝜆2)(w𝑡,1 − 1)(w𝑡,1 +w2
𝑡,1) .

As w𝑡,1 is non-decreasing (the third item of Lemma A.2.1) and at most 1, we have

≥ −(𝜆1 − 𝜆2)w0,1(w𝑡,1 − 1) .

By solvign the linear ODE, we have

w𝑡,1 − 1 ≥ (w0,1 − 1) · 𝑒−(𝜆1−𝜆2)w0,1𝑡 .

117

Thus, for any 𝑡 ≥ Ω
(︁

log(1/𝜖)
w0,1(𝜆1−𝜆2)

)︁
, we have w2

𝑡,1 > 1− 𝜖.

A.3 Why the Analysis of ML Oja’s Rule Cannot be

Applied to Biological Oja’s Rule

In this section, we discuss what makes biological Oja’s rule much harder to analyze

compared to the previous approaches for ML Oja’s rule [3]. We study this problem

through the lens of their corresponding continuous dynamics. Observe that, to study

ML Oja’s rule, it suffices to study the following dynamic

𝑑w𝑡

𝑑𝑡
= diag(𝜆)w𝑡 .

The dynamic of the objective function
∑︀𝑛

𝑖=2w
2
𝑡,𝑖/w

2
𝑡,1 would be

𝑑
∑︀𝑛

𝑖=2 w
2
𝑡,𝑖

w2
𝑡,1

𝑑𝑡
=

−2
∑︀𝑛

𝑖=2 w
2
𝑡,𝑖

w3
𝑡,1

𝜆1w𝑡,1 +
𝑛∑︁
𝑖=2

2w𝑡,𝑖

w2
𝑡,1

𝜆𝑖w𝑡,𝑖

≤ −2(𝜆1 − 𝜆2)

∑︀𝑛
𝑖=2w

2
𝑡,𝑖

w2
𝑡,1

.

Namely, the continuous dynamic is just a linear ODE with slope being independent

to the value of w𝑡. In comparison, the dynamic of the biological Oja’s rule is the

following.
𝑑w𝑡,1

𝑑𝑡
≥ (𝜆1 − 𝜆2)w𝑡,1(1−w2

𝑡,1)

where you must use at least two objective functions with different linearizations to

get a tight analysis. Furthermore, for any linearization, there exist some values of w𝑡

that make the improvement extremely small or even vanishing. It is also not obvious

how to choose which two objective functions to analyze unless you are guided by the

continuous dynamics.

We remark that the discussion here only suggests the difficulty of applying previous

techniques of ML Oja’s rule to biological Oja’s rule. It might still be the case that

the two dynamics are coupled but we argue here that even if this is the case, previous

techniques cannot show this.

118

A.4 Proof of Lemma 3.7.11

Proof of Lemma 3.7.11. The proof is basically direct verification using the definition

of 𝜉, 𝜏𝑡, 𝜓 and Lemma 3.7.10. Let’s first describe ∇𝑓𝑡,𝑗(w𝑠−1) and ∇2𝑓𝑡,𝑗(w𝑠−1) and

give their corresponding bounds. We have

(∇𝑓𝑡,𝑗(w𝑠−1))1 =
−𝑓𝑡,𝑗(w𝑠−1)

w𝑠−1,1

, ∀1 < 𝑖 ≤ 𝑗, (∇𝑓𝑡,𝑗(w𝑠−1))𝑖 =
x𝑡,𝑖

w𝑠−1,1

and all other coordinates are zero. In particular, conditioning on 𝜏𝑡, 𝜓 ≥ 𝑠, we have

‖∇𝑓𝑡,𝑗(w𝑠−1)‖2 = 𝑂(
Λ

w2
𝑠−1,1

) = 𝑂(
√
Λ′Λ). (A.4.1)

For ∇2𝑓𝑡,𝑗(w𝑠−1), we have

(∇2𝑓𝑡,𝑗(w𝑠−1))1,1 =

∑︀𝑗
𝑖=2 x𝑡,𝑖w̄𝑠−1,𝑖

w̄3
𝑠−1,1

,

∀1 < 𝑖 ≤ 𝑗, (∇2𝑓𝑡,𝑗(w𝑠−1))1,𝑖 = (∇2𝑓𝑡,𝑗(w𝑠−1))𝑖,1 = − x𝑡,𝑖
w̄2
𝑠−1,1

and all other coordinates are zero. In particular, we can rewrite it as linear combina-

tion of three rank one matrices

∇2𝑓𝑡,𝑗(w𝑠−1) = 𝛼1x
(𝑗,1)
𝑡 x

(𝑗,1)
𝑡

𝑇
+ 𝛼2x

(𝑗,0)
𝑡 x

(𝑗,0)
𝑡

𝑇
+ 𝛼3𝑒1𝑒

𝑇
1

where

𝛼1 = − 1

w̄2
𝑠−1

, 𝛼2 =
1

w̄2
𝑠−1

, 𝛼3 =

∑︀𝑗
𝑖=2 x𝑡,𝑖w̄𝑠−1,𝑖

w̄3
𝑠−1

+
1

w̄2
𝑠−1

, and

𝑒1 is the basis vector of first coordinate and x
(𝑗,𝑎)
𝑡,𝑖 = x𝑡,𝑖 if 1 < 𝑖 ≤ 𝑗, x(𝑗,𝑎)

𝑡,1 = 𝑎 and it

is zero at all other coordinates. Now we would like to bound the coefficient. Notice

that since 𝜂 = 𝑂(1
Λ
),

w̄𝑠−1,𝑖 = w𝑠−1,𝑖 + 𝑐𝜂z𝑠,𝑖 = w𝑠−1,𝑖 +𝑂(w𝑠−1,1x𝑠,𝑖 + 𝜂w𝑠−1,𝑖).

In particular, w̄𝑠−1,𝑖 = 𝑂(w𝑠−1,𝑖 + w𝑠−1,1x𝑠,𝑖). Now we can bound the coefficient

|𝛼1| = 𝑂(1
w2

𝑠−1,1
), |𝛼2| = 𝑂(1

w2
𝑠−1,1

) and

|𝛼3| = 𝑂

(︂
Λ

w2
𝑠−1,1

)︂
.

119

In particular, given any vector 𝑣, we have

|𝑣𝑇∇2𝑓𝑡,𝑗(w𝑠−1)𝑣| =
⃒⃒⃒
𝛼1𝑣

𝑇x
(𝑗,1)
𝑡 x

(𝑗,1)
𝑡

𝑇
𝑣 + 𝛼2𝑣

𝑇x
(𝑗,0)
𝑡 x

(𝑗,0)
𝑡

𝑇
𝑣 + 𝛼3𝑣

𝑇 𝑒1𝑒
𝑇
1 𝑣
⃒⃒⃒

=
⃒⃒⃒
𝛼1x

(𝑗,1)
𝑡

𝑇
𝑣𝑣𝑇x

(𝑗,1)
𝑡 + 𝛼2x

(𝑗,0)
𝑡

𝑇
𝑣𝑣𝑇x

(𝑗,0)
𝑡 + 𝛼3𝑒

𝑇
1 𝑣𝑣

𝑇 𝑒1

⃒⃒⃒
.

By combining the bound 𝛼𝑖 = 𝑂
(︁

Λ
w2

𝑠−1,1

)︁
, ‖𝑣𝑣𝑇‖2 = ‖𝑣‖22 and ‖𝑒1‖2, ‖x(𝑗,0)

𝑡 ‖2,

‖x(𝑗,1)
𝑡 ‖2 ≤ 2, we have

≤ 𝑂

(︂
Λ

w2
𝑠−1,1

‖𝑣‖22
)︂

(A.4.2)

Now we are ready to analyze the bounds on A
(𝑡)
𝑠,𝑗. For notational convenience, denote

z𝑠−E[z𝑠 | ℱ𝑠−1] as z̄𝑠 and separate A(𝑡)
𝑠,𝑗 into two terms where A(𝑡,1)

𝑠,𝑗 = 𝜂∇𝑓𝑡,𝑗(w𝑠−1)
𝑇 z̄𝑠

and A
(𝑡,2)
𝑠,𝑗 = 𝜂2z𝑇𝑠∇𝑓 2

𝑡,𝑗(w𝑠−1) · z𝑠. By Cauchy-Schwarz and Equation A.4.1, We have

|A(𝑡,1)
𝑠,𝑗 | ≤ 𝜂‖∇𝑓𝑡,𝑗(w𝑠−1)‖2‖z̄𝑠‖2 = 𝑂

(︂
𝜂 · Λ

w𝑠−1

· 𝑦𝑠
)︂

= 𝑂(𝜂Λ2).

We also have

|A(𝑡,2)
𝑠,𝑗 | = |𝜂2z𝑇𝑠∇2𝑓𝑡,𝑗(w𝑠−1)z𝑠|

By Equation A.4.2, we have

= 𝑂

(︂
𝜂2

Λ

w2
𝑠−1,1

‖z𝑠‖22
)︂

Because ‖z𝑠‖22 = 𝑂(𝑦2𝑠), we have

= 𝑂

(︂
𝜂2

Λ

w2
𝑠−1,1

𝑦2𝑠

)︂
= 𝑂(𝜂2Λ3) = 𝑂(𝜂Λ2)

This gives us |1𝜓,𝜏𝑡≥𝑠,𝜉>𝑠A
(𝑡)
𝑠,𝑗| = 𝑂(𝜂Λ2). For conditional expectation, we have⃒⃒⃒

E[1𝜓,𝜏𝑡≥𝑠,𝜉>𝑠A
(𝑡,1)
𝑠,𝑗 |ℱ (𝑡)

𝑠−1, 𝒞
𝑝,𝛿
𝑖𝑛𝑖𝑡]
⃒⃒⃒

=
⃒⃒⃒
E[1𝜓,𝜏𝑡≥𝑠,𝜉>𝑠𝜂∇𝑓𝑡,𝑗(w𝑠−1)

𝑇 z̄𝑠|ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡]
⃒⃒⃒
.

Notice that we have E[z𝑠|ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡] = E[x𝑠x𝑇𝑠w𝑠−1−w𝑇

𝑠−1x𝑠x
𝑇
𝑠w𝑠−1w𝑠−1|ℱ (𝑡)

𝑠−1, 𝒞
𝑝,𝛿
𝑖𝑛𝑖𝑡].

By Lemma 3.7.10 applying on x𝑠x
𝑇
𝑠 and Cauchy-Schawrtz, we have

≤ 𝑂

(︂
𝜂‖∇𝑓𝑡,𝑗(w𝑠−1)‖2

1

𝑛𝑇
‖x𝑠‖2) + 𝜂‖∇𝑓𝑡,𝑗(w𝑠−1)‖2‖w𝑠−1‖32

1

𝑛𝑇

)︂

120

By Equation A.4.1 and 𝑇 = Ω(1
𝜂𝜆1

), we have

≤ 𝑂

(︂
𝜂2𝜆1Λ

2

√
𝑛

)︂
= 𝑂(𝜂2𝜆1Λ

3).

For A
(𝑡,2)
𝑠,𝑗 , we have⃒⃒⃒

E[1𝜓,𝜏𝑡≥𝑠,𝜉>𝑠A(𝑡,2)
𝑠 |ℱ (𝑡)

𝑠−1, 𝒞
𝑝,𝛿
𝑖𝑛𝑖𝑡]
⃒⃒⃒
=
⃒⃒⃒
E[1𝜓,𝜏𝑡≥𝑠,𝜉>𝑠𝜂2z𝑇𝑠∇2𝑓𝑡,𝑗(w𝑠−1)

𝑇z𝑠|ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡]
⃒⃒⃒
.

Notice we have ‖E[1𝜓,𝜏𝑡≥𝑠,𝜉>𝑠z𝑠z𝑇𝑠 |ℱ
(𝑡)
𝑠−1]‖2 = 𝑂(𝑦2𝑠𝜆1) by Lemma 3.7.10. Again by Equa-

tion A.4.2, we have

≤ 𝑂

(︂
𝜂2𝑦2𝑠𝜆1

Λ

w2
𝑠−1,1

)︂
= 𝑂(𝜂2𝜆1Λ

3).

So we have ⃒⃒⃒
E[1𝜓,𝜏𝑡≥𝑠,𝜉>𝑠A(𝑡)

𝑠 |ℱ (𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡]
⃒⃒⃒
= 𝑂(𝜂2𝜆1Λ

3)

For the last moment bound, fix 2 ≤ 𝑗, 𝑗′ ≤ 𝑛. Expanding the definition, we get

E[1𝜓,𝜏𝑡≥𝑠,𝜉>𝑠A
(𝑡,1)
𝑠,𝑗 A

(𝑡,1)
𝑠,𝑗′ +A

(𝑡,1)
𝑠,𝑗 A

(𝑡,2)
𝑠,𝑗′ +A

(𝑡,2)
𝑠,𝑗 A

(𝑡,1)
𝑠,𝑗′ +A

(𝑡,2)
𝑠,𝑗 A

(𝑡,2)
𝑠,𝑗′ |ℱ𝑠−1, 𝒞𝑝,𝛿𝑖𝑛𝑖𝑡].

For the first term, we have

|E[1𝜓,𝜏𝑡≥𝑠,𝜉>𝑠A
(𝑡,1)
𝑠,𝑗 A

(𝑡,1)
𝑠,𝑗′ |ℱ𝑠−1, 𝒞𝑝,𝛿𝑖𝑛𝑖𝑡]|

= |E[1𝜓,𝜏𝑡≥𝑠,𝜉>𝑠𝜂2∇𝑓𝑡,𝑗(w𝑠−1)
𝑇 z̄𝑠z̄

𝑇
𝑠∇𝑓𝑡,𝑗′(w𝑠−1)|ℱ𝑠−1, 𝒞𝑝,𝛿𝑖𝑛𝑖𝑡]|

Notice we have ‖E[1𝜓,𝜏𝑡≥𝑠,𝜉>𝑠z̄𝑠z̄𝑇𝑠 |ℱ
(𝑡)
𝑠−1, 𝒞

𝑝,𝛿
𝑖𝑛𝑖𝑡]‖2 = 𝑂(𝑦2𝑠𝜆1) by Lemma 3.7.10. We have

≤ 𝑂(𝜂2‖∇𝑓𝑡,𝑗(w𝑠−1)‖2𝑦2𝑠𝜆1‖∇𝑓𝑡,𝑗′(w𝑠−1)‖2)

Since we know ‖∇𝑓𝑡,𝑗(w𝑠−1)‖2 = 𝑂
(︁

Λ
w2

𝑠−1,1

)︁
, we have

= 𝑂(𝜂2𝜆1Λ
4).

For the second and third term, since they are symmetric, we will only deal with the

second term. We have

|E[1𝜓,𝜏𝑡≥𝑠,𝜉>𝑠A
(𝑡,1)
𝑠,𝑗 A

(𝑡,2)
𝑠,𝑗′ |ℱ𝑠−1, 𝒞𝑝,𝛿𝑖𝑛𝑖𝑡]|

= |E[1𝜓,𝜏𝑡≥𝑠,𝜉>𝑠𝜂3∇𝑓𝑡,𝑗(w𝑠−1)
𝑇 z̄𝑠z

𝑇
𝑠∇2𝑓𝑡,𝑗′(w𝑠−1)z

𝑇
𝑠 |ℱ𝑠−1, 𝒞𝑝,𝛿𝑖𝑛𝑖𝑡]|

121

By taking the maximum of the A
(𝑡,1)
𝑠,𝑗 and combining with Equation A.4.2, we have

≤ 𝑂(𝜂Λ2 · 𝜂2𝜆1Λ3)

= 𝑂(𝜂3𝜆1Λ
5) = 𝑂(𝜂2𝜆1Λ

4).

For the last term, we can deal with it completely analogously. In particular we have

|E[1𝜓,𝜏𝑡≥𝑠,𝜉>𝑠A
(𝑡,2)
𝑠,𝑗 A

(𝑡,2)
𝑠,𝑗′ |ℱ𝑠−1, 𝒞𝑝,𝛿𝑖𝑛𝑖𝑡]| ≤ 𝑂(𝜂Λ2 · 𝜂2𝜆1Λ3·) = 𝑂(𝜂2𝜆1Λ

4).

Combining all the terms, we get

|E[1𝜓,𝜏𝑡≥𝑠,𝜉>𝑠A
(𝑡)
𝑠,𝑗A

(𝑡)
𝑠,𝑗′|ℱ𝑠−1, 𝒞𝑝,𝛿𝑖𝑛𝑖𝑡]| = 𝑂(𝜂2𝜆1Λ

4).

122

Bibliography

[1] Larry F. Abbott and Sacha B. Nelson. Synaptic plasticity: taming the beast.
Nature Neuroscience, 3:1178–1183, 2000.

[2] Edgar D. Adrian and Yngve Zotterman. The impulses produced by sensory
nerve-endings: Part ii. the response of a single end-organ. Journal of Physiology,
61(2):151–171, 1926.

[3] Zeyuan Allen-Zhu and Yuanzhi Li. First efficient convergence for streaming
k-pca: a global, gap-free, and near-optimal rate. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 487–492. IEEE,
2017.

[4] Vladimir Aparin. Simple modification of oja rule limits 𝑙1-norm of weight vector
and leads to sparse connectivity. Neural computation, 24(3):724–743, 2012.

[5] Raman Arora, Andy Cotter, and Nati Srebro. Stochastic optimization of pca
with capped msg. In Advances in Neural Information Processing Systems, pages
1815–1823, 2013.

[6] Joseph J. Atick and A. Norman Redlich. Towards a theory of early visual pro-
cessing. Neural Computation, 2:308–320, 1990.

[7] Joseph J. Atick and A. Norman Redlich. What does the retina know about
natural scenes? Neural Computation, 4:196–210, 1992.

[8] Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku
Mathematical Journal, Second Series, 19(3):357–367, 1967.

[9] Stephen A. Baccus and Markus Meister. Fast and slow contrast adaptation in
retinal circuitry. Neuron, 36:909–919, 2002.

[10] Maria-Florina Balcan, Simon Shaolei Du, Yining Wang, and Adams Wei Yu. An
improved gap-dependency analysis of the noisy power method. In Conference on
Learning Theory, pages 284–309, 2016.

[11] Horace B. Barlow. Possible principles underlying the transformations of sensory
messages. pages 217–234. The MIT Press, 1961.

123

[12] Guo-qiang Bi and Mu-ming Poo. Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell
type. Journal of Neuroscience, 18:10464–10472, 1998.

[13] William Bialek, Rob de Ruyter van Steveninck, Fred Rieke, and David Warland.
Spikes - exploring the neural code. MIT Press, Cambridge, MA., 1996.

[14] Elie L. Bienenstock, Leon N. Cooper, and Paul W. Munro. Theory for the de-
velopment of neuron selectivity: orientation specificity and binocular interaction
in visual cortex. Journal of Neuroscience, 2(1):32–48, 1982.

[15] Tim V. Bliss and Terje Lømo. Long-lasting potentiation of synaptic transmis-
sion in the dentate area of the anaesthetized rabbit following stimulation of the
perforant path. Journal of Physiology, 232(2):331–356, 1973.

[16] Hong Chen and Ruey-Wen Lin. An online unsupervised learning machine for
adaptive feature extraction. IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, 41(2):87–98, 1994.

[17] Chi-Ning Chou, Kai-Min Chung, and Chi-Jen Lu. On the algorithmic power
of spiking neural networks. In 10th Innovations in Theoretical Computer Sci-
ence Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA,
pages 26:1–26:20, 2019.

[18] Andrzej Cichocki, Wlodzimierz Kasprzak, and Wladyslaw Skarbek. Adaptive
learning algorithm for principal component analysis with partial data. Cybernet-
ics and Systems Research, pages 1014–1019, 1996.

[19] Pierre Comon and Gene H Golub. Tracking a few extreme singular values and
vectors in signal processing. Proceedings of the IEEE, 78(8):1327–1343, 1990.

[20] Christopher De Sa, Kunle Olukotun, and Christopher Ré. Global convergence of
stochastic gradient descent for some non-convex matrix problems. In Proceedings
of the 32Nd International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, pages 2332–2341. JMLR.org, 2015.

[21] Konstantinos I. Diamantaras and Sun Yuan Kung. Principal component neural
networks: theory and applications. John Wiley & Sons, Inc., 1996.

[22] Serena M. Dudek and Mark F. Bear. Homosynaptic long-term depression in
area ca1 of hippocampus and effects of n-methyl-d-aspartate receptor blockade.
Proceedings of the National Academy of Sciences of the United States of America,
89:4363–4367, 1992.

[23] Marie Duflo. Random iterative models, volume 34. Springer Science & Business
Media, 2013.

124

[24] Nicolas Fourcaud-Trocmé, David Hansel, Carl van Vreeswijk, and Nicolas Brunel.
How spike generation mechanisms determine the neuronal response to fluctuating
input. Journal of Neuroscience, 23:11628–11640, 2003.

[25] David A. Freedman. On tail probabilities for martingales. The Annals of Prob-
ability, pages 100–118, 1975.

[26] Peter Földiák. Adaptive network for optimal linear feature extraction. Interna-
tional 1989 Joint Conference on Neural Networks, pages 401–405, 1989.

[27] Tim Gollisch and Markus Meister. Rapid neural coding in the retina with relative
spike latencies. Science, 319:1108–1111, 2008.

[28] Michel Habib, Colin McDiarmid, Jorge Ramirez-Alfonsin, and Bruce Reed. Prob-
abilistic methods for algorithmic discrete mathematics, volume 16. Springer Sci-
ence & Business Media, 2013.

[29] M. Haft and J. Leo van Hemmen. Theory and implementation of infomax filters
for the retina. Network: Computation in Neural Systems, 9(1):39–71, 1998.

[30] Moritz Hardt and Eric Price. The noisy power method: A meta algorithm
with applications. In Advances in Neural Information Processing Systems, pages
2861–2869, 2014.

[31] George F. Harpur and Richard W. Prager. Experiments with simple Hebbian-
based learning rules in pattern classification tasks. Citeseer, 1994.

[32] Donald O. Hebb. The organization of behavior: A neuropsychological theory.
Wiley, New York, June 1949.

[33] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the theory
of neural computation. Santa Fe Institute Studies in the Sciences of Complexity;
Lecture Notes, Redwood City, Ca.: Addison-Wesley, 1991, 1991.

[34] Yael Hitron and Merav Parter. Counting to ten with two fingers: Compressed
counting with spiking neurons. 27th Annual European Symposium on Algorithms,
2019.

[35] Alan L. Hodgkin and Andrew F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. Journal of
Physiology, 117(4):500–544, 1952.

[36] Kurt Hornik and Chung-Ming Kuan. Convergence analysis of local feature ex-
traction algorithms. Neural Networks, 5:229–240, 1992.

[37] Toshihiko Hosoya, Stephen A. Baccus, and Markus Meister. Dynamic predictive
coding by the retina. Nature, 436:71–77, 2005.

[38] Harold Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of educational psychology, 24(6):417, 1933.

125

[39] Prateek Jain, Chi Jin, Sham M Kakade, Praneeth Netrapalli, and Aaron Sidford.
Streaming pca: Matching matrix bernstein and near-optimal finite sample guar-
antees for oja’s algorithm. In Conference on learning theory, pages 1147–1164,
2016.

[40] Nicolaos B. Karayiannis. Accelerating the training of feedforward neural net-
works using generalized hebbian rules for initializing the internal representations.
IEEE transactions on neural networks, 7(2):419–426, 1996.

[41] Stephan R. Kelso, Alan H. Ganong, and Thomas H. Brown. Hebbian synapses
in hippocampus. Proceedings of the National Academy of Sciences of the United
States of America, 83:5326–5330, 1986.

[42] Werner M. Kistler, Wulfram Gerstner, and J. Leo van Hemmen. Reduction of
hodgkin-huxley equations to a threshold model. Neural Computation, 9:1069–
1100, 1997.

[43] Sun-Yuan Kung, Konstantinos I. Diamantaras, and Jin-Shiuh Taur. Adaptive
principal component extraction (apex) and applications. IEEE Transactions on
Signal Processing, 42(5):1202–1217, 1994.

[44] Harold. J. Kushner and Dean S. Clark. Stochastic approximataon for constrained
and unconstrained systems. Springer, Berlin, 1978.

[45] Jean-François Le Gall. Brownian motion, martingales, and stochastic calculus,
volume 274. Springer, 2016.

[46] Tood K. Leen. Dynamics of learning in linear feature-discovery networks. Net-
work, 2(1):85–105, 1991.

[47] Robert A. Legenstein, Wolfgang Maass, Christos H. Papadimitriou, and San-
tosh Srinivas Vempala. Long term memory and the densest k-subgraph problem.
In 9th Innovations in Theoretical Computer Science Conference, ITCS 2018,
January 11-14, 2018, Cambridge, MA, USA, pages 57:1–57:15, 2018.

[48] Michael S. Lewicki. Efficient coding of natural sounds. Nature Neuroscience,
5(4):356–363, 2002.

[49] Chris Junchi Li, Mengdi Wang, Han Liu, and Tong Zhang. Near-optimal stochas-
tic approximation for online principal component estimation. Mathematical Pro-
gramming, 167(1):75–97, 2018.

[50] Ralph Linsker. Towards an organizing principle for a layered perceptual network.
In D. Z. Anderson, editor, Neural Information Processing Systems, pages 485–
494. American Institute of Physics, 1988.

[51] Jian Cheng Lv, Kok Kiong Tan, Zhang Yi, and Sunan Huang. A family of fuzzy
learning algorithms for robust principal component analysis neural networks.
IEEE Transactions on Fuzzy Systems, 18(1):217–226, 2009.

126

[52] Nancy A. Lynch and Frederik Mallmann-Trenn. Learning hierarchically struc-
tured concepts. arXiv preprint arXiv:1909.04559, 2019.

[53] Nancy A. Lynch and Cameron Musco. A basic compositional model for spiking
neural networks. arXiv preprint arXiv:1808.03884, 2018.

[54] Nancy A. Lynch, Cameron Musco, and Merav Parter. Computational tradeoffs
in biological neural networks: Self-stabilizing winner-take-all networks. In 8th
Innovations in Theoretical Computer Science Conference, ITCS 2017, January
9-11, 2017, Berkeley, CA, USA, pages 15:1–15:44, 2017.

[55] Nancy A. Lynch, Cameron Musco, and Merav Parter. Neuro-ram unit with
applications to similarity testing and compression in spiking neural networks. In
31st International Symposium on Distributed Computing, DISC 2017, October
16-20, 2017, Vienna, Austria, pages 33:1–33:16, 2017.

[56] Nancy A. Lynch, Cameron Musco, and Merav Parter. Spiking neural networks:
An algorithmic perspective. In Workshop on Biological Distributed Algorithms
(BDA), July 28th, 2017, Washington DC, USA, 2017.

[57] Nancy A. Lynch and Mien Brabeeba Wang. Integrating temporal information to
spatial information in a neural circuit. arXiv preprint arXiv:1903.01217, 2019.

[58] Wolfgang Maass. Lower bounds for the computational power of networks of
spiking neurons. Neural Computation, 8:1–40, 1996.

[59] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal
of mathematical biology, 15(3):267–273, 1982.

[60] Erkki Oja. Principal components, minor components, and linear neural networks.
Neural networks, 5(6):927–935, 1992.

[61] Erkki Oja and Juha Karhunen. On stochastic approximation of the eigenvectors
and eigenvalues of the expectation of a random matrix. Journal of mathematical
analysis and applications, 106(1):69–84, 1985.

[62] Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete
basis set: A strategy employed by v1? Vision Research, 37(23):3311–3325, 1997.

[63] Shan Ouyang, Zheng Bao, and Gui-Sheng Liao. Robust recursive least squares
learning algorithm for principal component analysis. IEEE Transactions on Neu-
ral Networks, 11(1):215–221, 2000.

[64] Christos H. Papadimitriou and Santosh S. Vempala. Random projection in the
brain and computation with assemblies of neurons. In 10th Innovations in The-
oretical Computer Science Conference (ITCS 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

127

[65] Karl Pearson. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2:559–572, 1901.

[66] Cengiz Pehlevan. A spiking neural network with local learning rules derived from
nonnegative similarity matching. In IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP 2019, Brighton, United Kingdom,
May 12-17, 2019, pages 7958–7962, 2019.

[67] Cengiz Pehlevan, Tao Hu, and Dmitri B. Chklovskii. A hebbian/anti-hebbian
neural network for linear subspace learning: A derivation from multidimensional
scaling of streaming data. Neural computation, 27(7):1461–1495, 2015.

[68] Mark D. Plumbley. Lyapunov functions for convergence of principal component
algorithms. Neural Networks, 8(1):11–23, 1995.

[69] Jeanne Rubner and Paul Tavan. A self-organizing network for principal-
component analysis. Europhysics Letters (EPL), 10(7):693–698, 1989.

[70] Terence D. Sanger. Optimal unsupervised learning in a single-layer linear feed-
forward neural network. Neural networks, 2(6):459–473, 1989.

[71] Terrence J. Sejnowski. Storing covariance with nonlinearly interacting neurons.
Journal of mathematical biology, 4:303—-321, 1977.

[72] Ohad Shamir. Convergence of stochastic gradient descent for pca. In Interna-
tional Conference on Machine Learning, pages 257–265, 2016.

[73] Lifeng Shang, Jian Cheng Lv, and Zhang Yi. Rigid medical image registration
using pca neural network. Neurocomputing, 69(13-15):1717–1722, 2006.

[74] Robert Shapley and Christina Enroth-Cugell. Visual adaptation and retinal gain
controls. Progress in Retinal Research, 3:263–346, 1984.

[75] Stellos M. Smirnakis, Michael J. Berry, David K. Warland, William Bialek, and
Markus Meister. Adaptation of retinal processing to image contrast and spatial
scale. Nature, 386:69–73, 1997.

[76] Lili Su, Chia-Jung Chang, and Nancy Lynch. Spike-based winner-take-all
computation: Fundamental limits and order-optimal circuits. arXiv preprint
arXiv:1904.10399, 2019.

[77] Christian D. Swinehart and Larry F. Abbott. Dimensional reduction for reward-
based learning. Network: Computation in Neural Systems, 17(3):235–252, 2006.

[78] Taro Toyoizumi, Megumi Kaneko, Michael P. Stryker, and Kenneth D. Miller.
Modeling the dynamic interaction of hebbian and homeostatic plasticity. Neuron,
84(1):497–510, 2014.

[79] Gina G. Turrigiano. The self-tuning neuron: Synaptic scaling of excitatory
synapses. Cell, 135(3):422–435, 2008.

128

[80] Gina G. Turrigiano. Homeostatic synaptic plasticity: Local and global mecha-
nisms for stabilizing neuronal function. Cold Spring Harb Perspective in Biology,
4(1):1–17, 2012.

[81] David Williams. Probability with martingales. Cambridge university press, 1991.

[82] Hugh R. Wilson and Jack D. Cowan. Excitatory and inhibitory interactions in
localized populations of model neurons. Biophysical journal, 12(1):1–24, 1972.

[83] Hugh R. Wilson and Jack D. Cowan. A mathematical theory of the functional
dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2):55–80, 1973.

[84] Lei Xu, Erkki Oja, and Ching Y. Suen. Modified hebbian learning for curve and
surface fitting. Neural Networks, 5(3):441–457, 1992.

[85] Wei-Yong Yan. Stability and convergence of principal component learning al-
gorithms. SIAM Journal on Matrix Analysis and Applications, 19(4):933–955,
1998.

[86] Wei-Yong Yan, Uwe Helmke, and John B. Moore. Global analysis of oja’s flow
for neural networks. IEEE Transactions on Neural Networks, 5:674–683, 1994.

[87] Zhang Yi, Mao Ye, Jian Cheng Lv, and Kok Kiong Tan. Convergence analysis
of a deterministic discrete time system of oja’s pca learning algorithm. IEEE
Transactions on Neural Networks, 16(6):1318–1328, 2005.

[88] Pedro J. Zufiria. On the discrete-time dynamics of the basic hebbian neural
network node. IEEE Transactions on Neural Networks, 13(6):1342–1352, 2002.

129

	Introduction
	Processing of temporal information
	Oja's rule and sensory adaptation
	Summary

	Static Neural Circuit: Processing of Temporal Information
	Introduction
	Model
	Problem Statement
	Main Theorems

	First Consecutive Spikes Counting
	First Stage: Counter Network
	Second Stage: Capture Network
	Wrap up

	Total Spikes Counting
	Mod 4 Counter Network
	TSC Network
	Wrap up

	Time Lower Bound for FCSC and TSC
	Discussion and Future Directions

	Plastic Neural Circuit: Oja's Rule and Sensory Adaptation
	Introduction
	Biological Oja's rule and streaming PCA
	Our results
	Technical overview
	Related works

	Preliminaries
	Notations
	Probability toolbox
	ODE toolbox
	Approximation toolbox

	Analyzing the Continuous Version of Oja's Rule
	Continuous Oja's rule is deterministic
	One-sided versus two-sided linearization

	Main Results
	Preprocessing
	A reduction to the diagonal case
	Bounded conditions of Oja's rule

	Local Convergence: Starting With Correlated Weights
	Linearization and ODE trick centered at 1
	Concentration of noise and pulling out the stopping time
	Interval Analysis
	Continual Learning

	Global Convergence: Starting From Random Initialization
	Initialization and the main stopping time
	Bounding the stopping time p,
	Linearization and ODE trick centered at 0
	Concentration of noise
	Interval Analysis
	Combining Theorem 3.7.29 with the local analysis

	Discussion and Future Directions
	Biological aspects
	Algorithmic aspects

	Contribution Statement

	Appendix
	Oja's Derivation for the Biological Oja's Rule
	Details of the Linearizations in Continuous Oja's Rule
	Why the Analysis of ML Oja's Rule Cannot be Applied to Biological Oja's Rule
	Proof of Lemma 3.7.11

