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Motivation Approximation to normative models

Animals flexibly select actions that maximize future rewards despite facing * |t is usually difficult to understand a mechanistic model on a computational
uncertainty in sensory inputs, action-outcome associations or contexts. level due to its complexity.

The computational and circuit mechanisms underlying the representation, * To overcome this, we mathematically approximate our mechanistic model
estimation and computational role of uncertainty are poorly understood. to a novel normative model and analyze its functions and performance.

Animal experiments indicate that the thalamocortical-basal ganglia loop | | Theorem 1. If we choose the sparsity K, initial corticostriatal weight

represents ditferent forms of uncertainty. | {f/(f)/ °g Yacia), the learning rate {ng)}.cir) appropriately, then the regret
Normative models excel at providing insights on computational roles of un-

. . , of the normative model after 'I' trials in a static A-AFC task is at most
certainty, but they cannot be directly related to neural mechanisms. O \/ AT log(AT) for some constant C

A gap exists between what we know about the neural representation of
uncertainty and the computational functions uncertainty serves in cognition.

It has been shown that no algorithm can achieve regret smaller than

.. O(v AT) [9], so our normative model has near-optimal performance.
A mechanistic neural model

Associative Contextual Theorem 2. After PFC-MD synapses learn the contextual generative model
uncertainty uncertainty P(as,r|c), our PFC-MD circuit approximates to a multiple change points gen-
Representation eralization of CUSUM algorithm, an algorithm that is known to detect single

environmental changes optimally [10].
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1]/ Nanlbii T S
10 B L BT Ll BT Y . A Thalamus
® A T T O
o 0 —
Corticostriatal T T T PFC-MD - | g | 30
distributi | 0.0 0.5 1.0 ical
Istributiona Categorlca IBERLATERL L A 20 i o
code [1] code [5] : —>
2 10
Estimation AL R U R O O L B
| TP <
6 0 250 500 750 :'PIGC' 1250 1500 1750 2000 11'cm 11'25 11'54:1 11'?5 1200 12'25 12'50 12'?5 13'00
ral Trials
l BCM-type Recurrent
t/bg . . :
) —r, —V° lasticity [6] dvnamics for L . .
() =78 T4y P / / Our PFC-MD circuit approximates a normative model that can detect
D , tod A1t/ 5 for contexual contexual . , N il
opamine-gate —no o .
P o 9 (Ay) 11°0(A) likelihood at likelihood across sequential environmental changes optimally.
plasticity [2] . . .
single trial past trials

Computational Role
& Implementatin

Experimental results
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Our mechanistic model performs efficient exploration in a variety of

static environments compared to Thompson sampling.
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Our model learns how to more flexibly switch its behaviors in dynamic
B S S environments compared to other widely used algorithms.
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