
Reprinted with permission from the 4th PODC Conference Proceedings . ACM 1985 .

Distributed Match-Making for Processes in Computer Networks *
Preliminary Version

Sape f. Mullende r

Paul M.B . Vitdnyi

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherland s

ABSTRACT

In the very large multiprocessor systems and, on a grander scale, computer networks now emerging, processe s
are not tied to fixed processors but run on processors taken from a pool of processors . Processors are release d
when a process dies, migrates or when the process crashes . In distributed operating systems using the servic e
concept, processes can be clients asking for a service, servers giving a service or both . Establishing
communication between a process asking for a service and a process giving that service, without centralize d
control in a distributed environment with mobile processes, constitutes the problem of distributed match -
making . Logically, such a match-making phase precedes routing in store-and-forward computer networks o f
this type . Algorithms for distributed match-making are developed and their complexity is investigated i n
terms of message passes and in terms of storage needed . The theoretical limitations of distributed match-
making are established, and the techniques are applied to several network topologies .

1 . Introduction

We investigate the problem of setting up communication-
when-needed between processes in a multiprocessor networ k
where processes have names but no permanent addresses . A
mechanism for this purpose is called a name-server, analogous
to the telephone system's directory assistance server : given a
name it returns an address. A single centralized name server i n
the network can be taken out through a single processo r
crash, thereby effectively killing all communication an d
crashing the entire network . A more robust solution is
distributing the name server . A great variety of options and
problems of both theoretical and practical interest ar e
attached to this issue . Our motivation was provided by the
design objectives of the Amoeba distributed operating system
project [Ill .

1 .1 . The Catering Service Problem

Suppose you want to give a party in your Silicon Valle y
home, but do not care for the bother. You want a caterin g
service . Now it so happens, that you do not know the address
or telephone number of such a service. Anyway, even if you

* This work was supported by the Stichting Mathematisch Centrtan .

Permission to copy without fee all or part of this material is grante d
provided that the copies are not made or distributed for direc t
commercial advantage, the ACM copyright notice and the title of th e
publication and its date appear, and notice is given that copying is b y
permission of the Association for Computing Machinery . To cop y
otherwise, or to republish, requires a fee and/or specific permission .

©1985 ACM 0-89791-167-9/1985/0800-0261 $00 .75

did, this would not do you much good . In Silicon Valley
such small outfits come and go so fast that it is unlikely tha t
this service, which you used two years ago, still exists at th e
old address . You can phone them, but the number gets yo u
somebody who has never heard of your old catering service .
There are several courses of action you can take .

• One way to solve your problem is to send mail t o
everybody in town asking whether they supply caterin g
service . In computer networks this is called broadcasting .

• Another way is to wait until you get an advertisemen t
leaflet of a catering service in your mailbox . Below we cal l
this sweeping .

Most likely, you do one of the following :

• You look in the Yellow Pages under the appropriat e
heading . If everybody exclusively uses YP for all services
then we may view the YP outfit as a centralized name
server . Services reveal their whereabouts by advertisin g
there and clients look them up there . If the YP compan y
crashes then clients and services cannot be matched
anymore, and society grinds to a halt .

• You buy a suitable newspaper and look up "catering" i n
the advertisement section . Now the name server i s
distributed . Catering services advertise in man y
newspapers. If one newspaper flounders, this will not create
problems for you .

•You ask some of your friends whether they know where t o
find the desired service . Some of your friends crashing wil l
not prevent you finding a caterer. The name server i s
distributed in this case as well, and, depending on how
sociable you are, perhaps better .

54

Having found the address or telephone number of a catering
service, you have to find a way to route your request to
them. Thus, match-making between clients and service s
necessarily precedes routing in a mobile society . Note that
the catering service, in order to execute the task you se t
them, may call on other services such as a car rental service .
The catering service then is a client with respect to the ca r

rental service . Clearly, everybody can be server, client o r
both.

1 .2 . Multiprocessors & Computer Networks

New generation computers must be fast, reliable, and flexible .
One way to achieve this is to build them from a smal l
number of basic processor-memory modules that can b e

assembled together to realize machines of various sizes . The
use of multiple modules can make the machines not only fast,
but also achieve a substantial amount of fault tolerance . The
primary difference between machines should be the number
of modules, rather than the type of the modules . In
principle, any of these machines can be gracefully increase d
in size to improve performance by adding new modules or
decreased in size to allow removal and repair of defectiv e
modules . The software running on the various machines
should be in essence identical . It should be possible to
connect different machines together to form even large r
machines and to partition existing machines into disjoin t
pieces when necessary, all in a way transparent to the use r
level software . When a user has a heavy computation to do ,
an appropriate number of processor-memory modules are
temporarily assigned to him . When the computation i s
completed, they are returned to the idle pool for use by othe r
users . Note that in this view a computer network is essentiall y
such machine on a grand scale .

Software design for these new machines ca n
advantageously be based on the object model. In this model ,
the system deals with abstract objects, each of which has some
set of abstract operations that can be performed on it . At the
user level, the basic system primitive is performing a n
operation on an object, rather than such things as
establishing connections, sending and receiving messages, and
closing connections. For example, a typical object is the file ,
with operations to read and write portions of it. The object
model is also known under the name of "abstract data type "
[6] . A major advantage of the object or abstract data typ e
model is that the semantics are inherently locatio n
independent . The concept of performing an operation on a n
object does not require the user to be aware of where object s
are located or how the communication is actuall y
implemented . This property gives the system the possibility
of moving objects around to position them close to wher e
they are frequently used . Furthermore, the issue of ho w
many processes are involved in carrying out an operation ,
and where they are located is also hidden from the user .

1 .3. The Service Mode l

It is convenient to implement the object model in terms of
clients (users) who send messages to services [10] . A servic e
is defined by a set of commands and responses . Each service
is handled by one or more server processes that accept
messages from clients, carry out the required work, and send
back replies .

As an example, consider a file sewer. The design must deal wit h
how and where information is stored, how and when it is moved ,
how it is backed up, how concurrent reads and writes ar e
controlled, how local caches are maintained, how information i s
named, and how accounting and protection are accomplished .
The internal structure of the service must be designed : how many
server processes are there, where are they located, how and whe n
do they communicate, what happens when one of them fails, ho w
is a server process organized internally for both reliability and
high performance, and so on . A server can itself be client to
another service . The possible hierarchy of services is the strengt h
of the model :

human

	

termina l
serve r

A crash of the database server, will be detected by the quer y
server, which must then try to recover from it . The query serve r
can retry the request, it might rephrase a query to get the answe r
from another database server, and as a last resort, it can repor t
failure to its client, the command interpreter . In this way the
human client at the top of the hierarchy gets to cope only wit h
irrecoverable errors and crashes in the system .

More precisely, Services are offered by a number of serve r

processes, distributed over the network . Client processes send
requests to services ; the services carry out these requests and
return a reply . Essentially, every job in the system i s
executed by a dynamic network of servers executing eac h
other's requests . So a process can be a client, a server, o r
both, and change its role dynamically . New services can be
created by installing server processes for them . Services ca n
be removed by destroying their server processes (or b y
making them stop behaving like a server, i .e ., by telling them
to stop receiving requests) . Server processes can be migrate d
through the network, either by actually moving the process
from one host to another, or only in effect, by destroying th e
server process in one host and creating another one in a
different host at the same time . A specific service may be
offered by one, or by more than one server process . In the
latter case, we assume that all server processes that belong to
one service are equivalent : a client sees the same result ,
regardless which server process carries out its request . A
process resides in a network node. Each node has an address

and we assume that, given an address, the network is capabl e
of routing a message to the node at that address . A service i s
identified by its port . A port uniquely names a service . We
shall therefore also refer to a service by its port. Ports giv e
no clue about the physical location of a server process .

1 .4 . The Problem of Match-Makin g

Before a client can send a request to a server which provide s
the desired service, the client has to locate that server . The
problem of efficient routing arises at a later stage ; first the

data
bane

query
YNer

command
	 interprete r

55

address of the destination has to be found in a match-making

phase. We can view match-making as yet another service i n
the system, be it the primus inter pares. Thus, we need to
implement a name server to serve a connection between clien t
process and server process .

A centralized name server must reside at a so-called well-

known address which does not change and is known to al l
processes. (Clearly, the name server cannot be used to locat e
itself.) When the host of the name server crashes, the entir e
network crashes. This solution also causes an overload o f
messages in the neighborhood of the host .

When clients broadcast for services with "where are you "
messages, we have an example of a distributed name server.
This solution is more robust than the centralized one . But in
large store-and-forward networks, where messages are
forwarded from node to node to their destination ,
broadcasting is considerably more costly than sending a
message directly to its destination . Broadcast messages are
sent to every host, while point-to-point messages need onl y
pass through the hosts on the path between client and server.
Conventional broadcast methods for locating services need a
minimum of f(n) message passes to do the broadcast (e .g . ,
via a spanning tree [2]) .

We investigate realizations of name servers in the entire
range between centralized and distributed forms . The
efficiency of solutions is measured in terms of message passes
and local storage . It appears that, in many n -node networks ,
very efficient distributed match-making between processe s
can be done in 0()./Ti) message passes, by using limited
numbers of point-to-point messages .

1 .5. Locate Algorithms

In all cases, the method used to locate a port is the following :
A server process s located at address A, and offering a
service identified by a port IT, selects a collection Ps o f
network nodes and posts at these nodes that server s receives
requests on port 9r at the address A, . Each of the nodes in Ps

stores this information in a cache for future reference . When
a client process c located at address A, has a request to send
to 7r, it selects a collection of network nodes Qr and queries

each node in Q,, for the address of it . When Ps fl Qr ' 0 ,

the node(s) in the intersection will return a message to c
stating that 7r is available at A, . If Pr = {s } and Q, = U then
the technique is called broadcasting ; if P, =U and Q, = (c }
then the technique is called sweeping .

1 .6. Outline of the paper .

We develop a class of distributed algorithms for match -
making between client processes and server processes i n
computer networks . We investigate the expected
performance of such an algorithm under random choices .
Subsequently, we determine the optimal lower bound on th e
performance in number of message passes or "hops " for any
such algorithm, in any network, under any strategy ,
distributed or not . This yields a combinatorial lemma whic h
may be interesting in its own right, and results in a lower

bound on the trade-off product between the number of node s
a server advertises at and the number of nodes a clien t
inquires at . We consider criteria for robustness . Second, we
apply the method to particular networks, both designed
networks and spontaneously emerged networks . Finally, a
probabilistic and a hashing algorithm for match-making are
investigated .

1 .7 . Related work .

Distributed match-making between clients and servers will b e
used in the Amoeba distributed operating system [II] .
Essentially the Manhattan topology method below has bee n
used before in the torus-shaped Stony Brook Microcompute r
Network [5] . Some current multiprocessor systems avoid th e
communication overload due to mobile processes, which us e
broadcasting to do the match-making, by opting for th e
processes to run on fixed processors [8] . Other syste m
designers have chosen for mobile processes, but use th e
crash-vulnerable solution of a centralized name server [7] .
The present paper introduces, and systematically explores fo r
the first time, the general concept of distributed match -
making .

2 . A Theory of Distributed Match-Makin g

Below we obtain lower bounds on the message pas s
complexity of a class of Locate algorithms (called Shotgun
Locate), for the entire range from centralized to distribute d
methods, and for any network topology. In the next section
we give methods which achieve these lower bounds, or nearly
achieve these lower bounds, for many network topologies.

2 .1 . Framework for Shotgun Locate

The networks we consider are point-to-point (store-and-
forward) communications networks described by a n
undirected communications graph G=(U,E), with a set o f
nodes U representing the processors of the network, and a se t
of edges E representing bidirectional noninterfering
communication channels between them. No common
memory is shared by the node-processors. Each nod e
processes messages it receives from its neighbors, performs
local computations on messages and sends messages to
neighbors . All these actions take finite time . A message pass o r
hop consists of the sending of a message from one node to on e
of its direct neighbors.

1 . The number of message passes needed for match-makin g
depends on the topology of a network . We want to obtai n
topology independent lower bounds . Therefore, assum e
that all messages can be routed in one message pass to
their destinations . Equivalently, assume that the network i s
a complete graph . Lower bounds on the needed number of
message passes in complete networks a fortiori hold for al l
networks .

56

2. For each network G=(U,E) and associated match-makin g
algorithm, there are total functions P, Q such that :

P,Q: U ---s 2u .

(Here 2 L' is the set of all subsets of U .) Any serve r
residing at node i starts its stay there by posting its (port ,
address) pair at each node in P(i) . Any client residing at
node j queries each node in Q(j) for each service (port) i t
requires .

3. We assume that all nodes j have a cache which is large
enough to store all (port, address) pairs associated wit h
addresses i such that j EP(i) . That is, the nodes at whic h
the rendez-vous' are made can hold all posted material .
The caches are large enough to hold so many (port,
address) pairs that they never have to discard one for a
server that is still active . Entries are made or update d
whenever a message is received from a server process wit h
its address (or when a reply from a locate operation i s
received) . We can timestamp the messages to determin e

.which addresses are out of date in case of a conflict .

We have dubbed this class of algorithms Shotgun Locat e

algorithms . (Put so many pheasants in the bushes that th e
hunter can expect success for the amount of shot he is willing
to spend .) Later we consider alternative locate methods :
Hash Locate where the functions P, Q depend on the servic e
ports as well, and Lighthouse Locate which is a probabilisti c
version of Shotgun Locate where too-small caches ca n
discard (port, address) pairs .

2 .2 . Probabilistic Analysis

Let the number of elements in a given set U (universe) o f
nodes be n . Let a given server s reside at node i . Let p b e
the cardinality of P(i) C U, the set of nodes where s posts it s
whereabouts . Let a given client c reside at node j . Let q he
the number of elements in Q(j) C U, the set of nodes queried
by c . If the elements of P(i) and Q(j) arc randomly chosen
then the probability for any one element of U to be an
element of P(i) [Q(j)] is p / n /n] . If P(i) and Q(j) are
chosen independently then the probability for any one
element of U to be an element in both PO) and Q(j) i s
pq /n 2 . Since there are a elements in U, the expected size of
P (1) fl Q(j) is given b y

E(IP (P(i)nQ(j))) = P
2,,

Therefore, to expect one full node in P(i) fl Q()), we mus t
have p + q > 2 \ . This is the situation for a particular pai r
of nodes. For the performance of the whole network we have
to consider the combined performance of the n 2 pairs o f
nodes . The above analysis holds for each pair i, j o f
elements of U, since they are all interchangeable .
Consequently, the minimal average value of p + q over al l
pairs in U2 must he 2 n , in order to expect a successfu l
match-making for each pair .
By choice of the sets P(i) and Q()), we may improve th e
situation in two ways :

e The method deterministically yields success .

• We get by with p + q < 26 .

2 .3 . Number of Messages for Match-Making

To match a server at node i to a client at node j th e
following actions have to take place . The server at i tells a
set P(i) of nodes about its location . Client j queries a se t
Q(j) of nodes for the desired service . Call the set of node s
r, = P(i)fl Q(j) the set of rendez-vous nodes, that is, th e
nodes at which a rendez-vous between a client at j looking for
a service and a server at i offering that service can be made .

Definition . The n Xn matrix, R , with entries r, ,

(1 i ,) Win) is the rendez-vous matrix . Each entry r,,, in the
ith row and jth column of R , represents the set of rendez-vous

nodes where the client at node j can find the location i and
port of the server at node i . Note that :

n

	

n
Ur,,- C P(i) & UC Q(I) .

	

(MI)
I =I

	

i = 1

To prevent waste in message passes, we can take care tha t
the inclusions in (M1) are replaced by equalities . (But then
the surviving subnetwork after a node crash may lack thi s
property again .) An optimal shotgun method has exactly on e

element in each ri ,1 . Below, we represent such singleton sets
by their single element. (If faults occur in the network then
we may opt for more redundancy by using larger r,,1 , cf. §
2 .4 .)

2 .3 .1 . Examples of rendez-vous matrices associated wit h
both well-known and lesser known strategies .

1. Broadcasting. The server stays put and client looks
everywhere :

C l i e n t s

I 2 3 4 5 6 7 8 9

I 1 1 1 1 I 1 1

S 2 2 2 2 2 2 2 2 2 2

e 3 3 3 3 3 3 3 3 3 3

r 4 4 4 4 4 4 4 4 4 4

v 5 5 5 5 5 5 5 5 5 5

c 6 6 6 6 6 6 6 6 6 6

r 7 7 7 7 7 7 7 7 7 7

s 8 8 8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9 9

2. Sweeping . The client stays put and the server looks fo r
work :

57

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8

	

9

1 2 3 4 5 6 7 8 9 t 7 7 7 9 9 9 9 9

	

9
S 2 1 2 3 4 5 6 7 8 9 S 2 7 7 7 9 9 9 9 9

	

9
e 3 1 2 3 4 5 6 7 8 9 e 3 7 7 7 9 9 9 9 9

	

9

r 4 1 2 3 4 5 6 7 8 9 r 4 9 9 9 8 8 8 9 9

	

9
v 5 1 2 3 4 5 6 7 8 9 v 5 9 9 9 8 8 8 9 9

	

9
e 6 1 2 3 4 5 6 7 8 9 e 6 9 9 9 8 8 8 9 9

	

9

r 7 1 2 3 4 5 6 7 8 9 r 7 9 9 9 9 9 9 9 9

	

9
s 8 1 2 3 4 5 6 7 8 9 s 8 9 9 9 9 9 9 9 9

	

9
9 1 2 3 4 5 6 7 8 9 9 9 9 9 9 9 9 9 9

	

9

3. Centralized name server. All services post at node 3 and all

	

6 . Distributed name server for the binary 3-cube topology . The
clients query for services at node 3 :

	

node addresses are the 3-bit addresses of the corners of th e
cube . For all a,b,c E{0,1), P(abc) _ (axy x,y E{0,1))

C l i e n t s

	

and Q(abc) = (xbc I x E {0,1} } :

1 2 3 4 5 6 7 8 9 C

	

l

	

i

	

e

	

n

	

t

	

s

3 3 3 3 3 3 3 3 3
000 001 010 011 100 101 110 Il lS 2 3 3 3 3 3 3 3 3 3

e 3 3 3 3 3 3 3 3 3 3 000 000 001 010 0ll 000 001 010 01 1
r 4 3 3 3 3 3 3 3 3 3 S 001 000 001 010 011 000 001 010 01 l
v 5 3 3 3 3 3 3 3 3 3 e 010 000 001 010 011 000 001 010 01 1

e 6 3 3 3 3 3 3 3 3 3 r 011 000 001 010 011 000 001 010 01 l

r 7 3 3 3 3 3 3 3 3 3 v 100 00 101 110 Ill 100 101 110 Il l

s 8 3 3 3 3 3 3 3 3 3 e 101 100 101 110 111 100 101 110 II I
9 3 3 3 3 3 3 3 3 3 r 110 00 101 110 111 100 101 110 II I

s Ill 00 101 110 1 1 1 100 101 110 Il l

4. Truly distributed name server. All nodes are used equally ofte n
as rendez-vous node :

C l

	

i e n t s

1

	

2

	

3

	

4

	

5

	

6

	

7

	

8

	

9

1

	

1

	

1

	

2

	

2

	

2

	

3

	

3

	

3
S

	

2 1

	

1

	

1

	

2

	

2

	

2

	

3

	

3

	

3
e

	

3 1

	

1

	

1

	

2

	

2

	

2

	

3

	

3

	

3
r

	

4 4

	

4

	

4

	

5

	

5

	

5

	

6

	

6

	

6

v

	

5 4

	

4

	

4

	

5

	

5

	

5

	

6

	

6

	

6
e

	

6 4

	

4

	

4

	

5

	

5

	

5

	

6

	

6

	

6

r

	

7 7

	

7

	

7

	

8

	

8

	

8

	

9

	

9

	

9
s

	

8 7

	

7

	

7

	

8

	

8

	

8

	

9

	

9

	

9
9 7

	

7

	

7

	

8

	

8

	

8

	

9

	

9

	

9

5 . Hierarchically distributed name server. Links for nodes lower i n
the hierarchy are served by rendez-vous nodes higher in th e
hierarchy . The nodes are hierarchically ordered by 1,2,3<7 ;
4,5,6<8; 7,8<9 :

2 .3 .2 . Lower Bound

There are n possible rendez-vous nodes and n 2 elements in R .
By choice of P, Q the algorithm distributes the load of being
a rendez-uous node over the nodes in the network . It is
sometimes preferable to distribute the load unevenly. For
instance, in the very large networks with millions o f
processors which are now envisioned, \/;-i message passes is
just too much because n is so large . In hierarchical networks
(Example 5) the number of message passes for a match-
making instance can be as low as log n . This means tha t
some nodes are used very often as rendez-vous node, and others
very seldom or not at all . A combination of hierarchical and
local posting may also be useful .
Let the rendez-vous matrix R have n 2 node entries, constituted
by k, 0 copies of each node i , 1 i S n . Clearly,

Ek, = n 2 ,

	

(M2)
= 1

To match a server at node i with a client at node j, the
server sends messages to all nodes in P(i) and the clien t
sends messages to all nodes in Q(j) . So, all in all, the number

of message passes rn (i ,j) involved in this match-making instance i s

5 8

given, in a complete network, by

m(i j) = #P(i) + #Q(j)

	

(M3)

In the examples above we have seen that, for differen t
pairs i j, the number of message passes m(i,j) for a match -
making instance can, in a single match-making strategy, range
all the way from a minimum of 2 to n, and beyond . We
determine the quality and complexity of a match-makin g
strategy by the minimum of m (i j), the maximum of m (i , j) and ,
above all, the average of m (i j), for I <i d' <n .

Definition . The average number of message passes m (n) o f
the given match-making st r ategy (which is determined by th e
rendez-vous matr ix R) is :

,
m(n) = - E E' m(i j) .

	

(M4)
n i=1j = 1

We now proceed to derive an exact lower hound on m(n)
expressed in terms of the number k ; of times node i occurs i n
R , i .e ., is used as rendez-vous for a pair of nodes (1<i <n) .

Proposition 1 . Consider the rendez-vous matrix R as defined.

Then the average value n-12E,"=1Gj=1#P(i)#Q(j) is bounded

below by:
,,

	

1 2

E E #P (i)#Q(1)

	

I ±'A
7

	

(M5)
=1J =1

	

l

n

	

n

= 1

Proof. Let r, [c,] be the number of different nodes in row i
[column i] (1

	

n). The n

n

	

n
r ; =

	

U

	

&

	

.

	

(1)
l = 1

Let R, be the number of different rows containing node i ,
and let C, be the number of different columns containing
node i (1 <i <n) . Let p ; = 1 if node i occurs in row j an d
else lo w = 0, and let y,, =1 if node i occurs in column j and
else y, d =0, (1ij<n) . Then,

Hence,

E E #P(i)#Q(J)

	

E E ri cj (by (MI) & (1))
i=1j=1

	

i=1j = 1

= E' ri X E' cj
=1

	

j= 1

= E R ; X E Cj (by (2))
=1

	

j= 1

• E Ri E kj Rj 1 (by (3))
1=1 j= I

	

ki] 2

	

(b y (4)) ,
,- 1

which yields the Proposition . q

The constraints (Ml)-(M5) imply a lower bound trade-off
between the number of message passes (and nodes) fo r
posting a server's (port, address) and the number of messag e
passes due to a client querying nodes for the whereabouts o f
services .

We can adjust the distributed match-making strategy to th e
relative frequency of these happenings, so as to minimize th e
weighted overall number of messages . For instance, if the averag e
call for a service at i by a client at j occurs a,, times more ofte n
than the average posting of a service available at i, then we ma y
want to minimize m(n) replacing (M3) by (M3') :

m(ij) = #P(i)+a,~#Q(j) . (M3')

Proposition 1 immediately gives us a lower bound on th e
average number of messages involved with a rendez-vows :

Proposition 2 . For a complete n-node network and any Shotgun
Locate strategy, with the k1 's as defined above, the average numbe r
m(n) of message passes (c .o., distinct nodes accessed) to make a
match is

m(n) �-- ?

	

l- .
= 1

n

	

n

= E E piJ = E Ri
j = 1

	

j=1i=1

	

,=

Proof. Assume, by way of contradiction, that th e
Proposition is false, that is ,(2)

± el = E ± 'r , = E C;

	

j =1

	

j = 1i=I

	

1= 1

	

Clearly, for all i (I

	

<n) we hav e

R;C; ski .

E E (ri +cj) = nE (r,+c i)
i=tj= 1

(3)

<2nE k;
i= 1

Furthermore, since

k3 R,2 —2\/k,k3 P-1— k;Rl2 = (-\/-k;R1 — k;Rj)2

0 ,

for all i ,j (1 <i j-<_n), we obtain immediately :

kj R;

+

	

Rj

	

Ri

from which it follows that :

	

n

	

n

	

n

E R, E kj Rj-1

	

± ± \/k ; kj .

	

(4)
i=I j=1

	

i=1j=1

Then,
2

i ri i ei < E k i
= 1

which contradicts Proposition 1 . q

It is not difficult to see that Propositions 1 and 2 hol d
mutatis mutandis for nonsquare matrices R, that is, fo r
networks where some nodes can host only servers and othe r
nodes perhaps only clients .

2 \/k; kj

59

2 .3 .3 . Truly Distributed Match-Making, Centralized Link -
Serve r

Propositions 1 and 2 specialize to the Corollary below for
kr = k 2 = • =kn = n, the truly distributed case . Here, each
node occurs equally often as rendez-vous node in matrix R ,
and hence carries an equal load of the work.

Corollary. Consider the rendez-vous matrix R as defined, fo r
kr=k 2 =

	

k,, = n . Then:

1

	

n

	

n

E#P(r)#Q(J) n
n _I, _

	

nt(n)

	

2\ .

This lower bound we saw before in the probabilisti c
approach . Another choice of the k i 's gives:

Corollary. For k 2 = k 3 = •

	

-k,, = 0 and kr = n 2, tha t
is, there is a centralized name server, we obtain :

	

n

	

n

2 E E#P(i)#Q(j) >- 1
n = U = r

	

m(n)

	

2

2 .3 .4. Upper Bound for Complete Networks

For complete networks the above lower bounds on the
number of message passes for match-making are about sharp .
For instance :

Proposition 3 . For the truly distributed case arrangements can be
constructed such that the lower bounds are (nearly) matched by upper
bounds. Viz., for each complete network there exists functions P, Q
such

	

that, f o r

	

all

	

1 <i j <n,

	

#P(i)#Q(j)

	

n ,
#P(i)+#Q(j) ,':,-n-' 2V, and lc,

Proofsketch . Arrange the rendez-vous matrix R as a checke r
-VWboard consisting of (as near as possible) vc X

	

squares,
or nearly squares, of about n entries each . Each square is
filled with about n copies of one unique node out of the n
nodes, a different one for each square ; cf. Example 4. q

Proposition 4. Let R be the rendez-vous matrix for an n -node
network . Let k ; (1<i <n) be the multiplicity of node i in R, and
let m (n) be the average match-making cost associated with R . We
can li this strategy to a 4n -node network by constructing a 4n X 4 n
rendez-vous matrix R' with k;'=4ki mode the multiplicity of node i
in R' (1 <i <4n) and m'(4n) = 2m (n) the associated averag e
match-making cost .

Proof. Replace each entry r, j of R by a 2X2 submatrix
consisting of 4 copies of The resulting 2n X2n matrix i s
M . Let R, (i = 1,2,3,4) be four, pairwise element disjoint ,
isomorphic copies of M . Consider the 4n X 4n matrix R ' :

[

R I R 2 -

R3
R 4

The number of distinct nodes in R ' is 16 times that in R and
= 4ki mod, (1 <i <4n) . It is easy to see that th e

(2i mod 2n)th column [row] of R ' contains twice as man y
distinct nodes as the (i mod n)th column [row] of R
(1<i <2n) . Therefore, the average match-making cos t
associated with R ' is m ' (4n) =2m (n) . q

The

	

most

	

inefficient

	

match-making

	

strategy

	

i s
P(i)=QU)= U (1 <i,J <n), yielding m (n)-=2n .

2 .3 .5 . Upper Bound for Non-Complete Network s

The topology of a network G=(U,E) determines the
overhead in message passes needed for routing a message to
its destination . For the complete networks we hav e
considered, the number of message passes m (i,j) for a
match-making between a service at node i and a client a t
node j equals #P(i)+#Q(j) . If the subgraph induced by
the sets P(i), Q(j) (1 <i j <n) is connected, and i EP(i)
and j EQ(j), and we broadcast the messages over spannin g
trees in these subgraphs, then the number of message passe s
m (i,j) equals the number of addressed nodes #P(i)+#Q(j).
Otherwise, there is an overhead m(i,j)—#P(i)—#Q(j) > 0
of message passes for routing messages from id to P(i), Q(j) .
In designing distributed name servers for non-complet e
networks, the achievable message pass efficiency of match -
making very much depends on how far we can reduce thi s
overhead . For this reason, in a ring network, no match-makin g
algorithms can do significantly better than broadcasting (i .e. ,
m (n) E SZ(n)).

2 .4 . Robustness, Fault-Tolerance, and Efficiency

In computer networks, and also in multiprocessor systems ,
the communication algorithms must be able to cope with
faulty processors, crashed processors, broken communicatio n
links, reconfigured network topology and similar issues . A
centralized name server (Example 3) is very efficient, but if it s
host crashes the whole network fails . It is one of the
advantages of truly distributed algorithms that they may
continue in the presence of faults. With respect t o
implementing the name server, we can distinguish tw o
distinct criteria for robustness .

• The name server should be distributed in the sense that no
number of node crashes, which leaves a surviving network ,
can prevent surviving clients from locating surviving
servers offering a desired service (for instance, by firs t
moving to another address) . This rules out a centralize d
name server, but the distributed Examples 1, 2, 4, 5, 6 ar e
fine . It is lack of robustness according to this criterion tha t
makes the efficient Hash Locate (last section) so fragile .

• The name server should be redundant in the sense that no
number of node crashes can prevent a client at a survivin g
node from locating a service offered at a surviving node .
For example, the Shotgun algorithm expounded above,
may be locally incapacitated by a rendez-vous node
crashing . We can remedy this situation by choosing P an d
Q such that, for all 1 <i j <n ,

#(P(i)fQ(J)) % .f+ 1 ,

where f is the maximal number of faults at any time i n
the network . (There remains of course the problem of how ,
or whether it is still possible, to route the match-makin g
messages to their destinations in the surviving subnetwork .)
The safest solution is obviously P(i)0Q(j) = U

R' =

60

(1 - i ,j n) . This criterion holds equally for Shotgun
Locate and Hash Locate .

Robustness is inefficient and has a price tag in number o f

message passes per match-making instance . That question is
not addressed in this paper .

3 . Implementations in Particular Network s

We assume that each node has a table containing the name s
of all other nodes together with the minimum cost to reach

them and the neighbor at which the minimum cost pat h

starts . In [4] a construction is given to divide every connecte d
graph in 0(\) disjoint connected subgraphs of 's \ nodes

each . Number the nodes in each subgraph I through %/II (i f

necessary, divide the excess numbers over the nodes) . Eac h
node i has a table containing the route to the next (adjacent)
node i . In the worst case such a path consists of 2

message passes . (Each of the connected subgraphs contain s
at most V nodes . The shortest path, between the tw o
nodes labelled i in two adjacent connected subgraphs, i s
therefore not longer than 2\ .)

Server's Algorithm . A server at the node labelled i in one o f
the subgraphs communicates its (port, address) to all nodes i

in the remaining O(subgraphs . It follows from above
that this takes O(n) message passes . Size 0('VW) suffices fo r

the cache of each node .
Client 's Algorithm. A client broadcasts for a service (along a

spanning tree) in the subgraph where it resides. This takes a t
most n message passes.

Under the practical assumption that clients need to locat e
services usually far more frequently than servers need to pos t
(port, address), this scheme is fairly optimal . Additionally ,
the caches are kept to a moderate size . Moreover, i n
practice, many store-and-forward networks will require but
0(\/) message passes on the average to broadcast over the

-VWrequired subsets of

	

nodes of the server 's algorithm. Al l
this suggests that in most networks using this method th e
average number of message passes per match-makin g
instance can be substantially less than the order n figure . I n
the remainder of this section we look at match-making i n
some networks with specific topologies .

3.1 . Manhattan Networks

The network is laid out as a p Xq rectangular grid of nodes .
Post availability of a service along its row and request a
service along the column the client is on. Caches are of size
O(q) and number of message passes for each match-makin g
instance is O(p + q) . For p = q we have m (n) = 2 1./,T an d

-VWcaches of size

	

. For the 9-node network below,

1

	

2

	

3

4

	

5

	

6

7

	

8

	

9

the rendez-vous matrix looks as follows :

C l

	

i e n t

	

s

1 2 3 4 5 6 7 8

	

9

1 1 2 3 1 2 3 1 2

	

3

S 2 1 2 3 1 2 3 1 2

	

3

e 3 1 2 3 1 2 3 1 2

	

3

r 4 4 5 6 4 5 6 4 5

	

6

v 5 4 5 6 4 5 6 4 5

	

6

e 6 4 5 6 4 5 6 4 5

	

6

r 7 7 8 9 7 8 9 7 8

	

9

8 7 8 9 7 8 9 7 8

	

9

9 7 8 9 7 8 9 7 8

	

9

Wrap-around versions of the method can also be used i n
cylindrical networks, or torus-shaped networks . It is, in fact ,
the method used in the torus-shaped Stony Brook
Microcomputer Network [5] . In the obvious generalizatio n
to d-dimensional meshes the method takes m(n)=2n(d—1)/ d

message passes .

3.2. Multidimensional Cube s

The network G =(U,E) is a d-dimensional cube with U the
set of nodes of the cube with addresses of d bits and E the se t
of edges which connect nodes of which the addresses differ i n
a single bit . n=#U=2d and #E=d2d-1 . Assume that d is

even .
Server's Algorithm . A server at an address s =s Is2 . . sd

broadcasts its (port, address) along a spanning tree to al l
nodes in the d / 2-dimensional cube spanned by the nodes i n

P(s) = (a l a 2 . . .n d sd 1 1
. .s d I al, .. .,ad E (0,1)) .

2 2

	

2

Client's Algorithm . A client at an address c =c 1c2 . • cd
broadcasts its query along a spanning tree to all nodes in the
d / 2-dimensional cube spanned by the nodes i n

Q(c) = (c i c 2 . . .cdad . . .a5 a d s l,
. .,,a5E(0,1} }

	

2 2

	

2

For each pair s ,c E (1, . . . , n } the rendez-vous node is give n
by

	

P (s) nQ(c)

	

(c i c 2 . . .c d s d+1 . . .s d) .
z 2

The number of message passes is the same for each server-
client pair, and therefore

m(n) = #P(s)+#Q(c) = 2 n

61

The nodes need n -size caches . Variants of the algorithm
are obtained by splitting the corner address used in th e
algorithm not in the middle but in pieces of ed and (1 —e)d
bits . Cf. Example 6 . For instance, to adapt the method to
take advantage of relative immobility of servers, to get lower
average. Excessive clogging at intermediate nodes may b e
prevented by sending messages to a random address first, t o
be forwarded to their true destination second [12] .

3 .3 . Fast Permutation Network s

For various reasons Ill fast permutation networks like the
Cube-Connected Cycles network are important interconnectio n
patterns . An algorithm similar to that of the d-dimensiona l
cube yields, appropriately tuned, for an n -node CCC network
caches of size \/n / log n and m (n) E O('n log n) .

3 .4 . Projective Plane Topology.

The projective plane PG(2,k) has n = k 2 + k + 1 point s
and equally many lines. Each line consists of k + 1 points
and k + 1 lines pass through each point . Each pair of line s
has exactly one point in common . A server s posts its (port ,
address) to all nodes on an arbitrary line incident on its hos t
node . A client c queries all nodes on an arbitrary line
incident on its own host node . The common node of the tw o
lines is the rendez-vents node . A ' n size cache for each node
suffices. Since the nodes are symmetric, it is easy to see tha t

m(n) _ #P(s)+#Q(c) = 2(k+1)

	

26n .

This combination of topology and algorithm is resistant to
failures of lines, provided no point has all lines passing
through it removed .

3 .5 . Hierarchical Network s

Local-area networks are often connected, by gateway nodes, to
wide-area networks, which, in turn, may also b e
interconnected. Locating services and objects in suc h
network hierarchies is bound to become an acute problem .

Service naming preferably should be resolved in a way which i s
machine-independent and network-address-independent .
Consequently, ways will have to be found to locate services i n
very large networks of hierarchical structure. There, the truly

-VWdistributed

	

solutions to the locate problem are no t
acceptable any more . Fortunately, in network hierarchies, it ca n
be expected that local traffic is most frequent : most message
passing between communicating entities is intra-hos t
communication ; of the remaining inter-host communication, mos t
will be confined to a local-area network, and so on, up th e
network hierarchy. For locate algorithms these statistics for th e
locality of communication can be used to advantage. When a
client initiates a locate operation, the system first does a loca l
locate at the lowest level of the network hierarchy (e .g., inside th e
client host). If this fails, a locate is carried out at the next leve l
of the hierarchy, and this goes on until the top level is reached .

Assume that a level i network connects n ; level i - 1
networks through n, gateways, for each 1 <i 'ek (or basi c
nodes, at the lowest level 0 for i = I) . Assume also that the
n, gateway hosts compose a level i network with a topolog y
which allows thrifty truly distributed match-making with

2 NAT message passes per match, for all i > 1 .
Server's Algorithm . A server posts its (port, address) b y

selecting n gateways, connecting level i — I level networks
in a level i network, at each level i of the hierarchy, on a
path from its host node to the highest level network, t o
advertise their location .

Client's Algorithm . Similarly, at each level i on a path fro m
its host node to the highest level network, a client's locate in
a network of that level can be done in 0(\) message
passes.

This gives an average message pass complexity
m(n) 0(E

k_

	

n;) for a hierarchical network with a total
of n Ilk-t n ; nodes . Assuming that all n ;'s equal a fixe d
a, the number of levels in the hierarchy is k, and the tota l
number of nodes in the network is n = ah then the messag e
pass complexity of the locate is m (n) E 0(k V) . Therefore ,

m (n) E O(kn 2't) .

Having the number k of levels in the hierarchy depend on n ,
the minimum value

m(n) E 0(logn)

is reached for k = //slog n . This message pass complexity i s
much better than ll(\/-r-C), but the cache size towards the to p
of the hierarchy increases rapidly . Essentially, the cache of a
node may need to hold as many (port, address)'s as there ar e
nodes in the subtree it dominates . In some cases this can be
avoided. For in a network hierarchy, as we have sketched ,
services are often exclusively accessed by local clients .

In the Amoeba distributed operating system, for instance, even th e
operating system itself is accessed just like any other service [11] .
"Operating System Service" is thus a local service, useful only t o
local clients . Clients on other hosts must use similar services ,
local to their host . The Amoeba system provides a way fo r
services to restrict the availability of the service they offer to
some local group of processes, the processes within the host wher e
the service resides, the processes within the local-area network o f
the service, within the campus network, etc . This last mode l
seems the most likely model for the interaction between client s
and services. Nearly every service will be a local service in som e
sense, with only few services being truly global . Under these
assumptions, the burden of the processing of locate postings an d
requests can be distributed more or less evenly over the hosts a t
each level of the network hierarchy . This is essentially the
generalization presented later in the section on Hash Locate .

3 .6 . Existing Networks

Many wide-area computer networks are not completel y
designed at the outset but grow and change dynamically . Ye t
one can identify common characteristics .
• The network resembles an undirected tree with a core i n
which we can imagine the root, and with some additiona l
edges thrown in . It appears that UUCPnet (the anarchisti c
network connecting most UNIX* systems) has this form i n
the sense that the number of extra edges thrown in are no t
more than the the number of nodes in a spanning tree . The
extra edges would typically occur between geographicall y
near nodes .

UNIX is a trademark of Bell Laboratories .

62

®• The degree of the nodes should not be to large . Ideall y
bounded by a constant . Yet nodes nearer to the core of the
tree tend to be of higher degree . Compare backbone sites ,
feeder sites and terminal sites in UUCPnet . The hierarchy o f

the nodes towards the core is very pronounced as can be see n
in the table . The degree of super-backbone sites like ihnp4 is

over 600, of backbone sites like decuax 40 and mcvax 45, and a
feeder site like sdcsvax is 17 . Terminal sites like ace hav e
degree I .
o The network is planar to a large extent . This reflects th e
geographical cost factor but also the tree aspect mentione d
above. Thus, the ARPAnet, to a large extent predesigned, is
approximately planar and even the chaotic UUCPnet is no t
too unplanar .

In the table below we have collected some statistics about th e
state of the known sites of UUCPnet at August 15, 1984. The
total number of sites of UUCPnet is 1916 and of EUne t
(European part) 153 . The total number of edges in UUCPnet i s
3848 and in EUnet 211 . The degree of the nodes varies betwee n
the unlikely number 0 (one such node is appropriately named
loyalist) and 641 (which is ihnf4, in real life AT&T in Naperville) .
In the table below we list the number of nodes having a give n
degree .

#sites degree #sites degree
25 0 3 2 5

840 1 1 27
384 2 2 28
207 3 2 30
115 4 2 32
83 5 1 33
71 6 2 34
32 7 1 35
29 8 2 36
11 9 1 3 7
17 10 1 3 8

5 11 1 39
7 12 1 40

14 13 1 4 2
10 14 1 4 3

6 15 1 4 4
2 16 3 4 5
2 17 1 4 6
3 18 1 4 7
3 19 1 5 2
3 20 2 6 3
3 21 1 7 0
4 22 1 47 1
3 23 1 64 1
3 24

Tabl e

Let us consider trees as described above . The number of
nodes in the balanced tree is n, the number of levels is 1
with the root at level 1 and the leaves at level 0, and the
degree of nodes at the i-th level is d(i) . Then a `factorial '
relation holds :

	

d(1)d(1—1)

	

(J(1) = n

Setting

	

d (1) = c! r +`,

	

for

	

constants

	

c ,e > 0,

	

yields
c t (1 !) r+' = n . By Stirling's approximation, we get after some
calculation :

1	 	 log n
(1+€) log logn

If the exponent 1+ c in the expression for d(m) is double d
then the depth of the tree is halved for the same number of
nodes .
Setting d(l) = c2'1 , for constants c ,e>0 yields :

n = ct2E,_ E, = ct22 1

Therefore,

/ = V log2 c + 2 s logn	 loge

(The logarithms have base 2 .) If c is quadrupled then the
depth of the tree is halved for the same number of nodes .

The strategy in such trees can be simple : all services
advertise at the path leading to the root of the tree, an d
similarly the clients request services on the path to the root o f
the tree . Then the average number of message passes use d
for each match-making instance, is m (n) E 0(1) . The cach e
at each node needs to be of the order of the number of
elements in the subtree of which it is the root . For smaller
caches the older and less used entries can be discarded i n
favour of new ones, leading to a Lighthouse Locate lik e
algorithm (see below) . It may seem that such large caches
are unrealistic and that, anyway, in distributed networks al l
nodes should be symmetric . However, even in a genuinely
distributed and anarchistically growing network as UUCPnet
a hierarchy of nodes develops according to the node degre e
(number of links with other nodes in the network) . Thi s
points to the fact that nodes higher in the hierarchy mus t
dedicate more computing power and memory to running the
network . Hence it is not unrealistic to have the cache size
increase for nodes higher in the hierarchy .

4. Lighthouse Locate

We imagine the processors as discrete coordinate points i n
the 2-dimensional Euclidean plane grid spanned by (c,0) an d
(0,c) . The number of servers satisfying a particular port in a n
n -element region of the grid has expected value sn for som e
fixed constant s>0 .

Server's Algorithm. Each server sends out a random direction
beam of length 1 every a time units . Each trail left by such a
beam disappears after d time units . That is, a node discard s
a (port, address) posting after d time units . Assume that th e
time for a message to run through a path of length 1 is s o
small in relation to d that the trail appears and disappear s
instantaneously .

Client's Algorithm. To locate a server, the client beams a
request in a random direction at regular intervals . Originally ,
the length of the beam is 1 and the intervals are S. After e

unsuccessful trials, the client increases its effort by doublin g
the length of the inquiry beam and the intervals between
them (1 E-- 21 & 8 — 28) . And so on .

Another possibility is to govern the length of the locat e
beam (and its duration) by the sequenc e

12131214121312151213121412131216121312 •

6 3

Here the length of the locate beam is it once in each interva l
of 2' trials . (This sequence is sequence 51 in Sloane' s
catalogue [9] .) The schedule can conveniently be maintaine d
by a binary counter : the position i of the most significant hi t
changed by the current unit increment indicates the curren t
beam length il . This schedule has the additional profit tha t
the servers which drift nearer to the client are located wit h
less time-loss. Note that in a sequence of 2 A trials there are
2A –' length i/ trials (1

	

<k) .

Before the locate method for the euclidean plane can be
converted into a practical algorithm for locating services it i s
necessary to find ways of mapping point-to-point networks ont o
the euclidean plane in such a way that the euclidean plane
algorithm can be converted into an algorithm for a point-to-poin t
network . Fortunately, such a mapping can often be found . Mos t
point-to-point networks have routing tables that tell each node
which outgoing arc to use to get a message to its destination . In
[3] these tables are used back-to-front to broadcast messages over
the network in near optimal fashion . We can use these tables
back-to-front to simulate sending messages along "a straight line "
of certain length. The technique is as follows.
A client (or server) wishing to send a beam of length k (usin g
message passes as the unit of length) chooses a random outgoin g
arc and sends the message along it to its neighbor . This
neighbor, upon reception of such a message decreases the ho p
count (in the message) by 1, and sends the message on any on e
outgoing arc that is used to send messages from the node at th e
other end of the arc to the original client (or server) where the bea m
started from . And so on, until the hop count reaches O .

5 . Hash Locate and Beyon d

Let in a given network G = (U,E) the set of ports (i .e ., types
of services available) be H . We can define the functions P
and Q like in the Shotgun Locate but using the por t
identities as well :

P,Q: UXII —> 2 U

If we are dealing with a very large network, where it i s
advantageous to have servers and clients look for nearb y
matches, we can hash a service onto nodes in neighborhoods .
A neighborhood can be a local network, but also th e
network connecting the local networks, and so on . Therefore ,
such functions can be used to implement the idea of certai n
services being local and others being more global (cf. th e
section on hierarchically structured networks) thus balancing
the processing load more evenly over the hosts at each level
of the network hierarchy . Like Shotgun Locate, the Has h
Locate below is a specialization of this more general method .

In Hash Locate we construct hash functions that map service
names onto network addresses . That is,

P,Q :II–s2 ' F~ P=Q.

This technique .is very efficient . Each server s posts its (port,
address) at the node(s) P(g), if 77 is the port of s, and eac h
client in need for a service at port sr queries the node(s) i n
P (sr) . Apart from redundancy for fault-tolerance, clients an d
servers need only use one network node each in every
match-making . (Clearly, the rendez-vous matrix must be
interpreted differently in this setting.) Provided the hash

function is well-chosen, it distributes the burden of the locat e
work over the network . It suffers from the drawback that, i f
nodes are added to the network, the hash function must b e
changed to incorporate these nodes in the set of potentia l
rendez-vous nodes . Moreover, if all rendez-vous nodes for a
particular service crash then this takes out completely that
particular service from the entire network . If the service i s
indispensable, the entire network crashes . In this sense Hash
Locate is far more vulnerable to node crashes than the mor e
distributed versions of Shotgun Locate . Examples 1, 2 and 3
may also be viewed as borderline examples of Hash Locate .
Examples 4, 5 and 6 are not Hash Locate methods, sinc e
Hash Locate cannot be distributed in this genuine sense .

Two obvious approaches can make Hash Locate more
robust for node crashes . First, the hash function can map a
service name onto many different network addresses fo r
added reliability . Second, when the rendez-vous node for a
particular service is down, rehashing can come up wit h
another network address to act as a backup rendez-vous node .
It then becomes necessary that services regularly poll thei r
rendez-vous nodes to see if they are still alive .

References

[1] Broomel, G . and J .R . Heath, "Classification categories an d
historical development of circuit switching topologies," ACM
Computing Surveys, vol . 15, pp .95-133, 1983 .

[2] Dalal, Y .K ., "Broadcast Protocols in Packet-Switched
Computer Networks", Ph.D . Thesis, Stanford University ,
April 1977 .

[3] Dalal, Y .K . and R. Metcalfe, "Reverse path forwarding of
broadcast packets," Communication of the ACM„ vol . 21 ,
pp .1040-1048, 1978 .

[4] Erdos, P ., L . Gerencscr, and A . Mate, "Problems of grap h
theory concerning optimal design, " pp. 317-325 i n
Colloquium Math . Soc . Janos Bolyai 4, ed . P. Erdos, V.T.
S6s, North-Holland Publishing Company, Amsterda m
(1970) .

[5] Gelernter, D. and A.J . Bernstein, "Distribute d
communication via a global buffer," pp. 10-18 i n
Proceedings Ith ACM SIGACT-SIGOPS Symposium o n
Principles of Distributed Computing (1982) .
Liskov, B . and S . Zilles, "Programming with abstract dat a
types," SICPLAN Notices, vol . 9, pp .50-59, 1974 .
Needham, R . M . and A . J. Herbert, The Cambridge Distributed
Computer System . Addison-Wesley, 1982 .

[8]

	

Seitz, Ch .L ., "The cosmic cube," Communications of the Ass.
Comp . Mach ., vol . 28, pp .22-33, 1985.

[9]

	

Sloane, N .J .A ., A Handbook of Integer Sequences. New
York :Academic Press, 1973 .

[10] Tanenbaum, A. S . and S .J . Mullender, "An overview of the
Amoeba distributed operating system, " Operating System
Review, vol . 15, pp .5I-64, 1981 .

1 1] Tanenbaum, A . S . and S .J . Mullender, "The design of a
capability-based distributed operating system," Computer

Journal, to appear .
12] Valiant, L .G ., " A scheme for fast parallel communication, "

SIAM'. on Computing, vol . 11, pp .350-361, 1982 .

64

