
Automatic Generation of Invariants in SpinMandana Vaziri� and Gerard HolzmannyAugust 19, 1998AbstractSpin takes a model to be veri�ed and a property, and outputs true if themodel satis�es the property or otherwise false, with a counterexample. In the�rst case, the user has no indication about why the property is satis�ed. Itmay be the case that the model does not really represent what the user meantto express, and the property is void. It can therefore be useful if the tool couldprovide some additional information about the behavior of a model, regardlessof a property's validity.A way of providing such information is to have Spin discover invariants ofthe model automatically. In this paper we focus on generating invariants of theform a rel b, where a and b are integer variables, and rel is an ordering relation.We give an algorithm with a matching implementation in Spin, including agraphical user interface.1 IntroductionA model checker takes a model and a property as inputs and determines whetherthe model satis�es the property. Its output is either true, if the model satis�es theproperty, or false. In the latter case, the user has an indication of why the property isnot satis�ed in the form of a counterexample. But if the output is true, the user hasno indication why the property is true. In this case, it could be that the property isvoid, or that the model is invalid. It would be therefore useful for the model checkerto output some information about the behavior of the model even if the property issatis�ed.One way of conveying such information is to output invariants of the model au-tomatically. There are several existing methods for generating invariants. Forwardpropagation generates invariants by executing the model forward, either starting fromthe start state [3] or from some intermediate state [4]. In the former work, the in-variant obtained is an assertion that characterizes the set of reachable states of amodel. In the latter work, local invariants - invariants that are true of a particularcontrol location - are propagated to other control locations. Backward propagation�vaziri@theory.lcs.mit.eduygerard@research.bell-labs.com 1



allows for the strengthening of an existing invariant [4, 3] by calculating the weakestprecondition with respect to that invariant and taking it as a conjunct. Finally, localinvariants of components can be combined into global invariants of a composition [4].Invariants generated by the methods above quickly become complicated. Forexample, assertions that characterize the set of reachable states may be very large.Even though, these invariants may be appropriate for use by an automated tool suchas a theorem prover, they may not convey useful conceptual information to a humanuser.Our approach is to consider di�erent forms of invariants one at a time and tofocus on generating that form. In this approach, the invariants are simpler and morefocused on a particular kind of information. These invariants may still be used by atheorem prover but they are primarily intended to be interpreted by the user of themodel checker directly.We start by generating invariants of the form a rel b, where a and b are integervariables and rel is an ordering relation. We give an implementation of this algorithmin the model checker Spin [2], and provide a matching graphical user interface.The outline of the paper is as follows. Section 2 presents the algorithm andsection 3 the implementation. Section 4 gives some examples. Finally, section 5presents discussion and future work.2 Invariant Generation AlgorithmIn this section we describe the algorithm for the generation of invariants of the forma rel b, where a and b are integer variables and rel is an ordering relation.2.1 Informal DescriptionThe algorithm must be coupled with a state searching algorithm, which can be eitherbe depth-�rst or breadth-�rst, but that guarantees that all the reachable states of themodel are visited.At each reachable state of the model, the algorithm determines the ordering rela-tions for each pair of integer variables, and records them in a matrix of all invariantrelations seen so far. After examining all reachable states, the algorithm outputs allglobal invariant relations discovered.2.2 NotationWe use V to denote the set of integer variables of the model. We use v to denote anelement of V. We use R to denote the set f?;=; <;>;�;�; 6 rg, and r an element ofR. LetM(v1, v2) be a function that takes two integer variables and returns an elementof R.Let C(v1;v2) be a function that takes two variables and returns their orderingrelation. This function will be used to obtain the relation between variables in the2



seen := emptyforeach v1, v2, M(v1;v2) := ?inv-update(vin; iin) fif (vin 62 seen) then seen := seen [ fvingforeach v 2 seen except vinfLet v1, v2 such that v1 = minlex(v; vin) and v2 = maxlex(v; vin)M(v1,v2) := combine(C(v1;v2);M(v1;v2))ginv-verdict() fforeach v1,v2 2 seen such that M(v1;v2) 62 f6 r;?gprint v1 M(v1;v2) v2gcombine(rnew; rold) fif rnew = rold then return roldelse if frnew; roldg � f=; <;�g then return �else if frnew; roldg � f=; >;�g then return �else return 6 rg Figure 1: Pseudo-code for Invariant Generationcurrent state.2.3 AlgorithmThe external interface to the invariant generation algorithm contains the followingroutines.� inv-update(v; i): is called by the state searching algorithm whenever there is anassignment to variable v with value i.� inv-verdict(): is called by the state searching algorithm when all the reachablestates have been visited. This routine gives the invariants discovered.The pseudo-code for invariant generation is shown in Figure 1. The variable seen isa set of integer variables that have already been seen by the algorithm, and is initiallyempty. M holds the invariant relations seen so far between di�erent variables, and isinitially set to all ?.inv-update(vin; iin) works as follows. If vin has not been seen yet then it is addedto the seen set. Then for each v in seen except vin itself, the function M is updatedat (v1;v2), where v1 is the smallest of v and vin lexicographically and v2 the largest.3



M is a triangular matrix representing the ordering relations between variables, andit is updated using the function combine.We pass to combine the new ordering relation between v1 and v2 as given by thefunction C, and the current invariant relation between them as stored in M. Theroutine works as follows. If the new relation between v1 and v2 is the same as before,then that relation is returned. If the new and old relations are di�erent but can becombined into � (�) then � (�) is returned. Otherwise, the function returns 6 r whichindicates that no invariant ordering relation exists between v1 and v2.inv-verdict is called when all reachable states have been attained. It simply printsout the invariant relations, if any.The extra memory, in addition to what is needed for state searching, is O(n2),where n is the number of integer variables.3 ImplementationThis section describes an implementation of the invariant generation algorithm de-scribed above within the context of Spin. Our implementation is linked to the depth-�rst search algorithm employed by Spin to explore the state space.There are a few abstract concepts in the algorithm that need to be implemented.First, we need to de�ne what variables can be compared in the context of Spin.For example, local variables of Promela processes cease to exist when the processesterminate. The functionsM and C must also be developed. The following subsectionsexplain how we implement these concepts. We conclude with a description of thegraphical user interface.3.1 Promela VariablesPromela has global variables and local variables belonging to process instances.Local variables are created and destroyed during the execution of a program alongwith the processes to which they belong. A local variable is uniquely characterized byits name, its proctype which is the integer corresponding to its process type, and its pidwhich is the integer corresponding to its process instance. Thus Promela variablescan be thought of as triples of the form (name, proctype, pid). Global variables mayalso be viewed in this way by giving special values to proctype and pid.An abstract variable, corresponding to the variables used in the description of thealgorithm above, corresponds to a set of Promela variables having the same nameand proctype belonging to existing process instances. An abstract variable (name,proctype) may represent an empty set, in which case there are no existing processinstances of type proctype having the variable name. We use the notation �v to denotea Promela variable represented by abstract variable v.We de�ne the ordering relation between two abstract variables as follows. Let v1and v2 be two abstract variables and r 2 R,� If v1 is empty or v2 is empty or 8 �v1; �v2 , �v1 r �v2, where r 2 f=; <;>;�;�g, thenv1 r v2. 4



� Otherwise, v1 6 r v2.We say that v1 r v2 is an invariant if the statement is true of all reachable statesof the program. We use the shortcut notation �v r v1, to denote f�vg r v1.To re
ect the fact that we have to deal with Promela variables, we modify ourinterface routines. These are given in C as follows.� void inv_update(char *a, int value, long int proctype, long int pid)� void verdict()� void inv_start(long int proctype, int pid)� void inv_stop(long int proctype, int pid)The last two routines are used by Spin to tell our implementation of the creationand termination of processes.The invariant generation implementation produces relations of abstract variablesas described above.3.2 Implementing MThe main data structure used in the implementation is a two-dimensional triangularmatrix implemented with linked lists. An entry in the matrix corresponds to theordering relation between two abstract variables. This ordering is represented by aninteger (0: =, 1: <, 2: >, 3: �, 4: �). We also use �1 to denote the ordering relation6 r described in the previously. The initial relation ? is represented by the lack of anentry in the matrix.3.3 Implementing CWe implement the function C with a C routine named comp, which gives the newrelation between the abstract variables v1 and v2 in the current state. To this end,this function needs to access the values of the variables represented by v1 and v2.One way is to have the implementation access data structures maintained by theSpin code. However, this is di�cult in practice, because our implementation seesvariables as char * and these cannot be used to access �elds of C structures veryeasily.Instead we keep an image of the current state in our implementation. Thus eachtime an update occurs, the new value of a variable is stored in a data structure namedpidList. This data structure does not take a lot of memory since it only stores onestate at a time.To �nd the relation between v1 and v2, comp needs to compare each Promela vari-able in v1 to each Promela variable in v2. Then, the relation returned is combinedwith the current invariant relation stored in M. Since only one Promela variableis updated at a time, say �v1 without loss of generality, comp only needs to compare�v1 with all the variables represented by v2. Thus in the implementation, comp takes5



the value that was updated and an abstract variable, compares the Promela vari-ables one by one and combines the result using a similar routine to combine describedabove.3.4 Invoking the routines from SpinThe new routines add a modest amount of overhead to model checking runs, andthey are therefore only enabled when the user explicitly requests the computation ofthe invariants. To enable them, the user compiles the model checking code generatedby Spin with an extra compile-time directive -DINVARIANT. This will cause theinvariant tracking code to be compiled in, and invoked when the model checking runis performed. At the end of the run the results can be displayed in either textual orin graphical form, as illustrated in the next section.3.5 Graphical User InterfaceThe invariants can be communicated to the user via a graphical user interface. Therelations are then represented as a graph, where each node corresponds to a variableand each edge to an ordering relation.The interface can provide di�erent views of the invariants, selecting invariantseither by type (1 bit, 8 bits, 16 bits, etc.) or by name. In the latter case, for instance,only relations that correspond to a speci�c, named, variable are represented.We modi�ed the interface routines such that they take the type of the variablebeing updated as well. The type information is used by the graphical interface toprovide di�erent views by type.4 ExamplesThis section presents a simple example of invariant generation with the extendedversion of Spin, using a model from the standard Spin distribution.4.1 Peterson's Mutual ExclusionThe Promela code for the 2 process Peterson's algorithm is shown in Figure 2. Weuse this example to illustrate how adding constants to a model can cause the invariantgeneration implementation to output interesting invariants. In this case, we add theconstant 1 (tester constant), with the goal of obtaining the property that at mostone process must be in its critical section at a time.The protocol has three global variables, turn, flag, and ncrit. The turn andflag variables are used to ensure mutual exclusion. ncrit is incremented each timea process enters its critical section. The global constant tester is included for com-parison of other variables to 1.Figures 3, 4, and 5 show the output of the invariant generation program. Eachnode corresponds to a variable of the model, and the edges represent ordering rela-6



bool turn, flag[2];byte ncrit;byte tester = 1;active [2] proctype user(){assert(_pid == 0 || _pid == 1);again:flag[_pid] = 1;turn = _pid;(flag[1 - _pid] == 0 || turn == 1 - _pid);ncrit++;assert(ncrit == 1); /* critical section */ncrit--;flag[_pid] = 0;goto again} Figure 2: 2-process Peterson's Algorithm in Promelations. The edges are labeled with the order they represent, in this case greater thanor equal to. The output shows that the constant 1 is greater than or equal to all theother variables.The view menu provides a series of commands for modifying the presentation ofthe graph. Figure 4 shows choosing the view by variable ncrit. Then Figure 5presents the outcome of this command. Only the variables relating to ncrit areshown. Since ncrit is the number of processes that are in their critical sections, thisgraph presents the mutual exclusion property.5 Discussion and Future WorkThe invariant generation algorithm was tested on the suite of examples distributedwith Spin. These experiments revealed small ine�ciencies in some of the models,such as variables that are never assigned to or variables that have too generous atype assigned to it. Other observations we have made are:� Invariants give feedback about the model even if the veri�cation runs out ofmemory.� Dummy variables with constant values can be added to the model to makethe system output properties of interest such as the mutual exclusion propertypresented above. In addition, constants may be useful for determining upper orlower bounds for variables. 7



Figure 3: Output of Peterson's Algorithm

Figure 4: Output of Peterson's Algorithm - View

Figure 5: Output of Peterson's Algorithm - View8



The invariants may also prove useful when combining model checking and theoremproving. They can be used either directly by the theorem prover or indirectly. Inthe latter case, they can help the user to conceptually infer invariants of lower-levelimplementations of the model being veri�ed.As part of future work, we plan to build invariant generation programs for otherform of invariants. For example, invariants that are of the form a + b rel c may beuseful when a and b represent the number of elements on two di�erent channels, andc is a constant. In addition, we would like to explore directions in which the userinputs the desired form of the invariants and/or the variables to be to be related. Weplan to work from examples that are currently being used for theorem proving in theTheory of Distributed Systems group at MIT, such as a group communication service[1].References[1] R. DePrisco, A. Fekete, N. Lynch, and A. Shvartsman. A Dynamic View-Oriented Group Communication Service, in Proceedings of the 17th Annual ACMSIGACT-SIGOPS Symposium on Principles of Distributed Computing, PuertoVallarta, Mexico, 1998, 227-236.[2] G.J. Holzmann. Design and Validation of Computer Protocols, Prentice HallSoftware Series, 1991.[3] N. Bjorner, A. Browne, Z. Manna. Automatic generation of invariants and in-termediate assertions, Theoretical Computer Science, 173 (1997) 49-87.[4] S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful techniques for the AutomaticGeneration of Invariants, in Proc. 8th International Conference on ComputerAided Veri�cation, Lecture Notes in Computer Science, Vol. 1102 (Springer,Berlin, 1996) 323-335.

9


