Automatic Generation of Invariants in SPIN

Mandana Vaziri* and Gerard Holzmann!

August 19, 1998

Abstract

SPIN takes a model to be verified and a property, and outputs true if the
model satisfies the property or otherwise false, with a counterexample. In the
first case, the user has no indication about why the property is satisfied. It
may be the case that the model does not really represent what the user meant
to express, and the property is void. It can therefore be useful if the tool could
provide some additional information about the behavior of a model, regardless
of a property’s validity.

A way of providing such information is to have SPIN discover invariants of
the model automatically. In this paper we focus on generating invariants of the
form a rel b, where a and b are integer variables, and rel is an ordering relation.
We give an algorithm with a matching implementation in SPIN, including a
graphical user interface.

1 Introduction

A model checker takes a model and a property as inputs and determines whether
the model satisfies the property. Its output is either true, if the model satisfies the
property, or false. In the latter case, the user has an indication of why the property is
not satisfied in the form of a counterexample. But if the output is true, the user has
no indication why the property is true. In this case, it could be that the property is
void, or that the model is invalid. It would be therefore useful for the model checker
to output some information about the behavior of the model even if the property is
satisfied.

One way of conveying such information is to output invariants of the model au-
tomatically. There are several existing methods for generating invariants. Forward
propagation generates invariants by executing the model forward, either starting from
the start state [3] or from some intermediate state [4]. In the former work, the in-
variant obtained is an assertion that characterizes the set of reachable states of a
model. In the latter work, local invariants - invariants that are true of a particular
control location - are propagated to other control locations. Backward propagation

*vaziri@theory.lcs.mit.edu
tgerard@research.bell-labs.com

allows for the strengthening of an existing invariant [4, 3] by calculating the weakest
precondition with respect to that invariant and taking it as a conjunct. Finally, local
invariants of components can be combined into global invariants of a composition [4].

Invariants generated by the methods above quickly become complicated. For
example, assertions that characterize the set of reachable states may be very large.
Even though, these invariants may be appropriate for use by an automated tool such
as a theorem prover, they may not convey useful conceptual information to a human
user.

Our approach is to consider different forms of invariants one at a time and to
focus on generating that form. In this approach, the invariants are simpler and more
focused on a particular kind of information. These invariants may still be used by a
theorem prover but they are primarily intended to be interpreted by the user of the
model checker directly.

We start by generating invariants of the form a rel b, where ¢ and b are integer
variables and rel is an ordering relation. We give an implementation of this algorithm
in the model checker SPIN [2], and provide a matching graphical user interface.

The outline of the paper is as follows. Section 2 presents the algorithm and
section 3 the implementation. Section 4 gives some examples. Finally, section 5
presents discussion and future work.

2 Invariant Generation Algorithm

In this section we describe the algorithm for the generation of invariants of the form
a rel b, where a and b are integer variables and rel is an ordering relation.

2.1 Informal Description

The algorithm must be coupled with a state searching algorithm, which can be either
be depth-first or breadth-first, but that guarantees that all the reachable states of the
model are visited.

At each reachable state of the model, the algorithm determines the ordering rela-
tions for each pair of integer variables, and records them in a matrix of all invariant
relations seen so far. After examining all reachable states, the algorithm outputs all
global invariant relations discovered.

2.2 Notation

We use V to denote the set of integer variables of the model. We use v to denote an
element of V. We use R to denote the set {1, =,<,> < > f}, and r an element of
R.

Let M (v, v2) be a function that takes two integer variables and returns an element
of R.

Let C(v1,v2) be a function that takes two variables and returns their ordering
relation. This function will be used to obtain the relation between variables in the

seen ‘= empty
foreach vy, vy, M(vy,v9) := L

inv-update(viy, i) {
if (Vin, & seen) then seen := seen U {v;,}
foreach v € seen except v, {
Let vy, vy such that vy = mine,(v, viy,) and Ve = MaTe, (v, Vi)
} M(vy,v9) := combine(C(vy,v2), M(v1,02))

inv-verdict() {
foreach vi,vy € seen such that M(vy,ve) & { f, L}
print vy M(vy,ve) vy

}

combine(Tpew, roa) {
if Tnew = Towg then return rqyq
else if {Tnew, Toa} C {=, <, <} then return <
else if {Tnew, Tota} C {=,>, >} then return >
else return f

Figure 1: Pseudo-code for Invariant Generation

current state.

2.3 Algorithm

The external interface to the invariant generation algorithm contains the following
routines.

e inv-update(v,i): is called by the state searching algorithm whenever there is an
assignment to variable v with value 1.

e inv-verdict(): is called by the state searching algorithm when all the reachable
states have been visited. This routine gives the invariants discovered.

The pseudo-code for invariant generation is shown in Figure 1. The variable seen is
a set of integer variables that have already been seen by the algorithm, and is initially
empty. M holds the invariant relations seen so far between different variables, and is
initially set to all L.

inv-update(vy,, i;,) works as follows. If vy, has not been seen yet then it is added
to the seen set. Then for each v in seen except vy, itself, the function M is updated
at (v1,v2), where vy is the smallest of v and v;, lexicographically and v, the largest.

3

M is a triangular matrix representing the ordering relations between variables, and
it is updated using the function combine.

We pass to combine the new ordering relation between v; and v, as given by the
function C, and the current invariant relation between them as stored in M. The
routine works as follows. If the new relation between v; and v, is the same as before,
then that relation is returned. If the new and old relations are different but can be
combined into < (>) then < (>) is returned. Otherwise, the function returns # which
indicates that no invariant ordering relation exists between v; and vs.

inv-verdict is called when all reachable states have been attained. It simply prints
out the invariant relations, if any.

The extra memory, in addition to what is needed for state searching, is O(n?),
where n is the number of integer variables.

3 Implementation

This section describes an implementation of the invariant generation algorithm de-
scribed above within the context of SPIN. Our implementation is linked to the depth-
first search algorithm employed by SPIN to explore the state space.

There are a few abstract concepts in the algorithm that need to be implemented.
First, we need to define what variables can be compared in the context of SPIN.
For example, local variables of PROMELA processes cease to exist when the processes
terminate. The functions M and C must also be developed. The following subsections
explain how we implement these concepts. We conclude with a description of the
graphical user interface.

3.1 PROMELA Variables

PROMELA has global variables and local variables belonging to process instances.
Local variables are created and destroyed during the execution of a program along
with the processes to which they belong. A local variable is uniquely characterized by
its name, its proctype which is the integer corresponding to its process type, and its pid
which is the integer corresponding to its process instance. Thus PROMELA variables
can be thought of as triples of the form (name, proctype, pid). Global variables may
also be viewed in this way by giving special values to proctype and pid.

An abstract variable, corresponding to the variables used in the description of the
algorithm above, corresponds to a set of PROMELA variables having the same name
and proctype belonging to existing process instances. An abstract variable (name,
proctype) may represent an empty set, in which case there are no existing process
instances of type proctype having the variable name. We use the notation v to denote
a PROMELA variable represented by abstract variable v.

We define the ordering relation between two abstract variables as follows. Let vy
and vy be two abstract variables and r € R,

e If vy is empty or vy is empty or Vy, i, U1 7 U2, where r € {=, <, >, <, >}, then
U1 T Ug.

e Otherwise, vy f vs.

We say that vy r vy is an invariant if the statement is true of all reachable states
of the program. We use the shortcut notation v r vy, to denote {v} r v;.

To reflect the fact that we have to deal with PROMELA variables, we modify our
interface routines. These are given in C as follows.

e void inv_update(char *a, int value, long int proctype, long int pid)
e void verdict()

e void inv_start(long int proctype, int pid)

e void inv_stop(long int proctype, int pid)

The last two routines are used by SPIN to tell our implementation of the creation
and termination of processes.

The invariant generation implementation produces relations of abstract variables
as described above.

3.2 Implementing M

The main data structure used in the implementation is a two-dimensional triangular
matrix implemented with linked lists. An entry in the matrix corresponds to the
ordering relation between two abstract variables. This ordering is represented by an
integer (0: =, 1: <, 2: >, 3: <, 4: >). We also use —1 to denote the ordering relation
X described in the previously. The initial relation L is represented by the lack of an
entry in the matrix.

3.3 Implementing C

We implement the function C with a C routine named comp, which gives the new
relation between the abstract variables v; and v, in the current state. To this end,
this function needs to access the values of the variables represented by v; and wv,.
One way is to have the implementation access data structures maintained by the
SPIN code. However, this is difficult in practice, because our implementation sees
variables as char * and these cannot be used to access fields of C structures very
easily.

Instead we keep an image of the current state in our implementation. Thus each
time an update occurs, the new value of a variable is stored in a data structure named
pidList. This data structure does not take a lot of memory since it only stores one
state at a time.

To find the relation between v; and v, comp needs to compare each PROMELA vari-
able in v; to each PROMELA variable in vy. Then, the relation returned is combined
with the current invariant relation stored in M. Since only one PROMELA variable
is updated at a time, say v; without loss of generality, comp only needs to compare
v; with all the variables represented by vs. Thus in the implementation, comp takes

the value that was updated and an abstract variable, compares the PROMELA vari-
ables one by one and combines the result using a similar routine to combine described
above.

3.4 Invoking the routines from SPIN

The new routines add a modest amount of overhead to model checking runs, and
they are therefore only enabled when the user explicitly requests the computation of
the invariants. To enable them, the user compiles the model checking code generated
by SPIN with an extra compile-time directive -DINVARIANT. This will cause the
invariant tracking code to be compiled in, and invoked when the model checking run
is performed. At the end of the run the results can be displayed in either textual or
in graphical form, as illustrated in the next section.

3.5 Graphical User Interface

The invariants can be communicated to the user via a graphical user interface. The
relations are then represented as a graph, where each node corresponds to a variable
and each edge to an ordering relation.

The interface can provide different views of the invariants, selecting invariants
either by type (1 bit, 8 bits, 16 bits, etc.) or by name. In the latter case, for instance,
only relations that correspond to a specific, named, variable are represented.

We modified the interface routines such that they take the type of the variable
being updated as well. The type information is used by the graphical interface to
provide different views by type.

4 Examples

This section presents a simple example of invariant generation with the extended
version of SPIN, using a model from the standard SpPIN distribution.

4.1 Peterson’s Mutual Exclusion

The PROMELA code for the 2 process Peterson’s algorithm is shown in Figure 2. We
use this example to illustrate how adding constants to a model can cause the invariant
generation implementation to output interesting invariants. In this case, we add the
constant 1 (tester constant), with the goal of obtaining the property that at most
one process must be in its critical section at a time.

The protocol has three global variables, turn, flag, and ncrit. The turn and
flag variables are used to ensure mutual exclusion. ncrit is incremented each time
a process enters its critical section. The global constant tester is included for com-
parison of other variables to 1.

Figures 3, 4, and 5 show the output of the invariant generation program. Each
node corresponds to a variable of the model, and the edges represent ordering rela-

bool turn, flag[2];
byte ncrit;
byte tester = 1;

active [2] proctype user()

{

assert(_pid == 0 || _pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[l - _pid] == 0 || turn == 1 - _pid);

ncrit++;
assert(ncrit == 1); /* critical section */
ncrit--;

flag[_pid] = 0;
goto again

¥

Figure 2: 2-process Peterson’s Algorithm in PROMELA

tions. The edges are labeled with the order they represent, in this case greater than
or equal to. The output shows that the constant 1 is greater than or equal to all the
other variables.

The view menu provides a series of commands for modifying the presentation of
the graph. Figure 4 shows choosing the view by variable ncrit. Then Figure 5
presents the outcome of this command. Only the variables relating to ncrit are
shown. Since ncrit is the number of processes that are in their critical sections, this
graph presents the mutual exclusion property.

5 Discussion and Future Work

The invariant generation algorithm was tested on the suite of examples distributed
with SPIN. These experiments revealed small inefficiencies in some of the models,
such as variables that are never assigned to or variables that have too generous a
type assigned to it. Other observations we have made are:

e Invariants give feedback about the model even if the verification runs out of
memory.

e Dummy variables with constant values can be added to the model to make
the system output properties of interest such as the mutual exclusion property
presented above. In addition, constants may be useful for determining upper or
lower bounds for variables.

Figure 5: Output of Peterson’s Algorithm - View

The invariants may also prove useful when combining model checking and theorem
proving. They can be used either directly by the theorem prover or indirectly. In
the latter case, they can help the user to conceptually infer invariants of lower-level
implementations of the model being verified.

As part of future work, we plan to build invariant generation programs for other
form of invariants. For example, invariants that are of the form a + b rel ¢ may be
useful when a and b represent the number of elements on two different channels, and
c is a constant. In addition, we would like to explore directions in which the user
inputs the desired form of the invariants and/or the variables to be to be related. We
plan to work from examples that are currently being used for theorem proving in the
Theory of Distributed Systems group at MIT, such as a group communication service

[1].

References

[1] R. DePrisco, A. Fekete, N. Lynch, and A. Shvartsman. A Dynamic View-
Oriented Group Communication Service, in Proceedings of the 17th Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Puerto
Vallarta, Mexico, 1998, 227-236.

2] G.J. Holzmann. Design and Validation of Computer Protocols, Prentice Hall
Software Series, 1991.

[3] N. Bjorner, A. Browne, Z. Manna. Automatic generation of invariants and in-
termediate assertions, Theoretical Computer Science, 173 (1997) 49-87.

[4] S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful techniques for the Automatic
Generation of Invariants, in Proc. 8th International Conference on Computer
Aided Verification, Lecture Notes in Computer Science, Vol. 1102 (Springer,
Berlin, 1996) 323-335.

