
Proving Correctness of a Controller Algorithm for the RAIDLevel 5 SystembyMandana Vaziri-FarahaniSubmitted to the Department of Electrical Engineering and Computer Sciencein partial ful�llment of the requirements for the degree ofMaster of Science in Electrical Engineering and Computer Scienceat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYAugust 1996c
 Massachusetts Institute of Technology 1996. All rights reserved.Author :Department of Electrical Engineering and Computer ScienceAugust 9, 1996Certi�ed by :Nancy A. LynchCecil H. Green Professor of Computer Science and EngineeringThesis SupervisorAccepted by :Frederic R. MorgenthalerChairman, Departmental Committee on Graduate Students

Proving Correctness of a Controller Algorithm for the RAID Level 5SystembyMandana Vaziri-FarahaniSubmitted to the Department of Electrical Engineering and Computer Scienceon August 9, 1996, in partial ful�llment of therequirements for the degree ofMaster of Science in Electrical Engineering and Computer ScienceAbstractA RAID system is composed of two components: a disk array and a disk array controller.The disk array is a collection of magnetic disks that can be accessed in parallel. Thecontroller's function is to receive an operation from the user of the disk array, and tocarry out that operation by performing a set of actions on speci�c disks. The user has noknowledge about the existence of a disk array and sees it as one large, logical disk with highperformance.RAID systems have two main advantages over traditional secondary storage systems. First,data on the disks can be accessed in parallel, which improves the I/O performance. Secondly,disk arrays contain some form of redundancy which allows fault tolerance.Many algorithms have been devised for the controller. These algorithms allow �ne inter-leavings between actions on the disks. As a consequence, their implementations are di�cultto test. This is the reason why it is useful to apply formal methods to validate thesealgorithms.An algorithm for the RAID Level 5 controller is considered. The algorithm and its spec-i�cation are described using I/O automata and the simulation proof technique is used toshow that the algorithm implements its speci�cation. The proof is written in such a waythat its main structure and invariants can be reused for the proof of correctness of controlleralgorithms for other RAID architectures.Thesis Supervisor: Nancy A. LynchTitle: Cecil H. Green Professor of Computer Science and Engineering

AcknowledgmentsFirst of all, I would like to thank my advisor Nancy Lynch for her wonderful supervisionof this thesis. I started working on the veri�cation of RAID systems in the summer beforecoming to MIT, and Nancy gave me the freedom to continue working on this researchproject. She indicated a direction for this research that has been very enriching to me.Her suggestions, comments and careful reading of previous drafts have made this thesispossible. I would also like to thank my former advisor, Jeannette Wing, for all her help andencouragement, and for initiating the project on verifying RAID systems. I wish to thankBill Courtright who was always very patient with answering my numerous questions aboutRAID.Then, I would like to thank everyone in the Theory of Distributed Systems group for beingso supportive and creating such a warm environment in which to work. Special thanks goto Roberto De Prisco, Victor Luchangco, and Giovanni Della-Libera.But above all, I would like to thank my parents Chahnaz and Faramarz Vaziri, and mybrother Shahram Vaziri, for all their love and support during all these years, without whichthis thesis would have never been possible.

Contents1 Introduction 82 Algorithm 132.1 Informal Description : 132.2 Speci�cation and Algorithm Automata : 152.2.1 Conventions : 152.2.2 Speci�cation : 172.2.3 RAID : 203 Proof of Correctness 363.1 De�nitions : 363.2 RAID Properties : 383.2.1 Basic Properties : 423.2.2 Parity and Antecedence Correctness : : : : : : : : : : : : : : : : : : 483.2.3 Read Correctness for Read and Write Graphs : : : : : : : : : : : : : 523.2.4 Write Correctness for Write Graphs : : : : : : : : : : : : : : : : : : 553.2.5 Consistency Invariants : 563.2.6 Properties Used in the Proof of Correctness of RAID : : : : : : : : : 693.3 Correctness Proof : 734

4 Extensions 794.1 Disks with More than One Block : 794.2 Verifying Controller Algorithms for other RAID Architectures : : : : : : : : 814.2.1 RAID Level 6: Architecture Details : : : : : : : : : : : : : : : : : : 824.2.2 RAID Level 6: New De�nition for V B : : : : : : : : : : : : : : : : : 824.2.3 Error Found in a RAID Level 6 DAG : : : : : : : : : : : : : : : : : 835 Conclusions 84

5

List of Figures2-1 Algorithm : 152-2 Antecedence Graphs : 162-3 Overall System Architecture : 182-4 I/O Automaton for the Speci�cation : 192-5 System Architecture : 212-6 I/O Automaton for the Controller : 232-7 I/O Automaton for the Controller (Continued). : : : : : : : : : : : : : : : : 242-8 I/O Automaton for Graph 1 - Simple Read : : : : : : : : : : : : : : : : : : 252-9 I/O Automaton for Graph 2 - Degraded Read. : : : : : : : : : : : : : : : : 262-10 I/O Automaton for Graph 3 - Small Write : : : : : : : : : : : : : : : : : : 272-11 I/O Automaton for Graph 3 - Small Write (Continued) : : : : : : : : : : : 282-12 I/O Automaton for Graph 4 - Reconstruct Write. : : : : : : : : : : : : : : : 292-13 I/O Automaton for Graph 4 - Reconstruct Write. (Continued) : : : : : : : 302-14 I/O Automaton for Graph 5 - Large Write : : : : : : : : : : : : : : : : : : 312-15 I/O Automaton for Graph 5 - Large Write (Continued) : : : : : : : : : : : 322-16 I/O Automaton for Graph 6 - Parity Failed : : : : : : : : : : : : : : : : : : 322-17 I/O Automata for a Disk : 342-18 I/O Automata the Failer module : 354-1 RAID Level 5 Architecture : 806

4-2 RAID Level 6 Architecture : 824-3 Small Write for RAID Level 6 - Non-recoverable Graph : : : : : : : : : : : 83

7

Chapter 1IntroductionImprovements in semiconductor technology make possible faster microprocessors and largerprimary memory systems, making secondary storage systems the bottleneck of overall sys-tem performance. As microprocessors get faster, the overall system improvement will notbe signi�cant unless there is also an improvement in secondary storage systems.The emergence of new applications such as video, hypertext and multimedia has also in-creased the need for larger secondary storage systems with higher performance. RAIDor Redundant Arrays of Inexpensive Disks were developed in the 1980's to address thisneed. They were �rst described at the beginning of the decade [Lawlor81, Park86], andpopularized by the work of a group at UC Berkeley [Patterson88, Patterson89].Abstractly, we can think of a RAID system as being composed of two components:� A disk array, and� A disk array controller.The disk array is a collection of magnetic disks that can be accessed in parallel. Thecontroller's function is to receive an operation from the user of the disk array, and tocarry out that operation by performing a set of actions on speci�c disks. The user has noknowledge about the existence of a disk array and sees it as one large, logical disk with highperformance. 8

RAID systems have two main advantages over traditional secondary storage systems. First,the data on the disks can be accessed in parallel which improves the I/O performance.Each �le that is stored in the array is decomposed into blocks and placed on several disks.This scheme improves the response time when the user accesses that �le [Kim86, Reddy89,Salem86]. The controller can also carry out several operations at the same time if theset of disks involved in these operations are non-con
icting. This scheme improves thethroughput.Secondly, when the number of disks increases in a disk array, the availability of data and thereliability of the disk array, may decrease dramatically [Gibson93]. To overcome this prob-lem, RAID systems are designed to be fault-tolerant by storing redundant data [Gibson90].RAID systems are usually 1 or 2 fault tolerant. The redundancy can be an identical copyof each data unit, also known as disk mirroring [Bitton88, Gray90]. In this case if thedisk containing one copy fails, the controller can use the other copy which is on a separatedisk. Having two copies of each data unit also has the advantage that if the disk containingone copy is busy with a di�erent operation, the other disk can be used instead, improvingthroughput. In this form of redundancy, lost or damaged data can be recovered by usingthe backup copy.Another form of redundancy is having a parity block for every group of n blocks, inde-pendently stored [Patterson88]. The parity block is computed by performing an exclusiveor operation on the blocks it covers. Given any set of n � 1 blocks, the nth block can berecovered by performing an exclusive or operation on the n � 1 blocks.There are several RAID architectures that are classi�ed as �ve \levels" [Patterson88]. RAIDLevel 1 employs disk mirroring and thus uses twice as many disks as a non-redundant diskarray for the same amount of data. RAID Level 2 provides redundancy by using Hammingcodes. Levels 3, 4 and 5 all use parity. RAID Level 3 is bit-interleaved meaning that datais interleaved bit-wise over the data disks. RAID Level 4 is block-interleaved. RAID Level5 is also block-interleaved, but distributes parity among all the disks in the array. All thearchitectures mentioned above tolerate a single fault. Recently, two other levels have beenintroduced. The �rst one is RAID Level 6 which is a two fault-tolerant architecture. Itemploys two parities, one of which is computed using Reed-Solomon codes. The second one9

is just a non-redundant disk array, RAID Level 0, which is not fault-tolerant.When the disk array controller receives an operation from the user, it chooses a localalgorithm to carry out that operation given the state of the disk array. If a disk is neededduring an operation but that disk has failed, then the controller is responsible for recoveringthe data needed, transparently to the user. If a disk fails during the execution of anoperation, then the controller must complete the operation by operating in a degradedmode.Traditional controller algorithms employ forward error-recovery, which consists of transi-tioning from an erroneous state1 directly to completion. This method requires knowingabout the context in which an error occurred and thus involves enumerating a large num-ber of erroneous states. Courtright and Gibson propose a form of backward error-recoverymethod [Courtright94] to allow context-free recovery. Traditional backward error-recoverymethods consist of undoing operations and returning the disk array to an error-free state.The disadvantage of these methods is that they are expensive. However, Courtright andGibson's method is based on retry. When an error is encountered, the state of the system ismodi�ed to note which disk has failed, and the operation is retried based on the new state.In this approach, operations are represented as Directed Acyclic Graphs (DAGs), which is anexpansion on the representation used in TickerTAIP [Cao93], a distributed implementationof RAID Level 5. Each node in a DAG is an action to be performed on a disk or an actionthat computes data. DAGs provide a visualization of operations which simpli�es reasoningabout the ordering of actions.Courtright and Gibson's method to error-recovery [Courtright94] has two requirements.First, actions must be idempotent. When a DAG fails, some actions may have been executedand some may have not. The controller then retries the operation with a similar DAG andactions that have already been performed will be performed again. So idempotency ensuresthat an action that is executed several times has the same e�ect as if it is executed onlyonce. Secondly, the execution of each DAG must not result in the modi�cation of dataresiding on disks that are not to be written. If a DAG changes the value of a disk and fails,then a following DAG will not be able to restore that value, because DAGs are selected1An erroneous state is one in which a disk failure occurred in the middle of the execution of an operation.10

independently from the context in which an error occurs. This requirement seems trivialto satisfy: DAGs must not directly write to disks that are not to be written. However, thematter gets more complicated in the presence of failures. When a disk has failed, its valueis inferred by the disk array. This inferred value can be changed by a DAG that does notupdate the redundant data correctly. In this case, the second requirement implies that theinferred value of a disk not to be written, must not be changed with the execution of eachDAG. A DAG satisfying the second requirement is said to preserve consistency.Although many RAID controller algorithms perform actions that are idempotent, thereexists some algorithms for which this is not the case [Courtright96]. Also for some archi-tectures, it is impossible to build DAGs that preserves consistency for all operations. Inorder to provide a context-free error recovery method that would be general enough for allalgorithms, Gibson et al. have devised roll-away recovery, which is a hybrid between Cour-tright and Gibson's method described above and more traditional backward error-recoveryapproaches [Courtright96].In this thesis, we are concerned with controller algorithms that use Courtright and Gibson'serror-recovery method [Courtright94] described previously2. Although these algorithmsemploy context-free3 error recovery, the logics used to select a new DAG are nonethelesscomplicated. Also these algorithms allow �ne interleavings between actions on the disks.As a consequence, these algorithms are di�cult to test and to reason about. This is whyformal methods are useful for proving the correctness of these algorithms.The topic of this thesis is to prove the correctness of a controller algorithm for the RAIDLevel 5 System [Gibson95], that uses Courtright and Gibson's error recovery method, withthe objective of formalizing the general notion of consistency.We describe the algorithm and its speci�cation using the I/O Automaton model [Lynch89].This model is suitable for specifying components of asynchronous concurrent systems. Al-though the algorithm we consider is essentially sequential, the concurrency due to diskfailures and actions on the disks, make the I/O Automaton model a suitable model to use.We prove that the algorithm is correct by showing that it implements its speci�cation, using2This method is di�erent from the roll-away error recovery method described in the previous paragraph.3Context-free means independent from the context in which an error occurs.11

the proof by simulation technique [Lamport83, Lynch87, Lynch95, Lynch96].In the course of this proof, we formalize the general notion of consistency, in a way that it canbe applied to DAGs of other similar RAID controller algorithms. We used our consistencyproperty to �nd an error in a DAG for the RAID Level 6 architecture, which appears in[Gibson95].The outline of the thesis is the following. Chapter 2 presents the RAID Level 5 algorithmand its speci�cation. Chapter 3 presents the proof of correctness. We show extensions ofthe algorithm in Chapter 4. Finally, Chapter 5 presents a summary of our conclusions.

12

Chapter 2Algorithm2.1 Informal DescriptionWe now describe a controller algorithm for the RAID level 5 system [Gibson95], that usesCourtright and Gibson's error recovery method [Courtright96]. When the controller receivesan operation, it chooses a local algorithm based on the state of the disk array and startsexecuting it. Local algorithms are represented as antecedence graphs. Each node in a graphis a Read or aWrite action to a particular disk or an Xor action. If action A precedes actionB in a graph, then the controller performs A before B. When a failure occurs in the middleof the execution of a graph, the graph stops executing and the controller then changes thestate of the disk array and chooses a new graph to complete the initial operation. Figure2-1 is a high-level representation of the algorithm.Antecedence Graphs When the controller �rst receives an operation from the user, itdetermines which disks are directly involved in the operation. These are the disks thatcontain the data to be read, or the disks that must be written. We call the set of such disksUsedDisks. Note that the parity disk is not included in the UsedDisks set. The antecedencegraphs are represented in Figure 2-2. We assume that the RAID system contains a single�le that can be read and written by the user. The unit of data storage is a block. We alsoassume that the RAID system is composed of n+1 disks, indexed from 0 to n where the nth13

disk is the parity disk and each disk holds one block of data. The latter assumptions seemsto be an over-simpli�cation at �rst sight, since the RAID Level 5 has distributed paritythat cannot be modeled with only one block per disk. However, we prove the correctness ofa sub-controller that deals with only one parity group. Any number of these sub-controllerscan be composed together and run concurrently. Since sub-controllers do not share anydata, proving that their composition is correct does not require any special consideration.Blocks are numbered from 0 to n � 1. The initial value stored at disk Di is Block0i. Wealso have the condition that: Block00 � : : :�Block0n = 0:In the �gures the notation \RDi" means read from disk i and other node labels have similarmeanings. The notation \ud" refers to a disk that belongs to UsedDisks and \nud" refersto one that does not.� Fault Free Read The Fault-Free Read graph is used when there is no failure amongthe disks in UsedDisks. It consists of reading each disk directly.� Degraded Read The Degraded Read is used when one of the disks to be read hasfailed. It consists of reading the entire array and reconstructing the missing data usingthe parity block.� Small Write The Small Write operation is used in the absence of failures, when lessthan half of the array is to be written. In the presence of a failure in a disk that isnot in UsedDisks, the Small Write is also used regardless of the number of disks to bewritten. It consists of reading the old data on the disks to be written and the parity,computing the new parity and writing the new parity and the new data.� Large Write The Large Write is used when all the disks are to be written, in theabsence of failures. In this case, the controller computes the new parity directly andwrites to all the disks.� Reconstruct Write The Reconstruct Write graph is used in the absence of failures,when more than half of the array is to be written. In the presence of a failure of a14

CHANGE STATE

INITIAL OPERATION

NO FAILURE FAILURE

CHOOSE GRAPH

EXECUTE GRAPHFigure 2-1: Algorithmdisk that is in UsedDisks, the Reconstruct Write is used regardless of the number ofdisks being written. It consists of reading the data from the disks that are not tobe written, computing the parity from the data read and the data to be written andwriting the new parity and data.� Parity Failed The Parity Failed graph is used when the parity disk has failed. Itconsists of writing the disks directly without updating the parity disk.2.2 Speci�cation and Algorithm AutomataIn this section, we describe the algorithm and its speci�cation formally using I/O automata.2.2.1 ConventionsIn the following sections, we follow the conventions shown below:� b, b1 and b2 are block numbers that are in f 0, ... , n� 1 g.15

WR nXOR WR n
XOR

WR0

WR1

XOR

RD ud

RD ud

RD ud

RD ud

WR ud

WR ud

RD n

RD nud

RD nud

WR ud

WR ud

WR n

Fault−Free Read

Small Write

Reconstruct Write

Large Write

XOR

RD0

RDn

Degraded Read

1 2

3
4

5

WR ud

WR ud

Parity Failed Write

6

WR n−1 Figure 2-2: Antecedence Graphs16

� V alue is an array of data blocks of variable length, indexed starting at 0.� V is an array of data blocks of length n+ 1, indexed from 0 to n.� v is one block of data.� D is an array of n booleans, indexed from 0 to n � 1.� g is a graph index. It is an integer from 1 through 6. The corresponding graphs areshown in Figure 2-2.� i is a disk index in f 0, ... , n g.� F is a set of disk indeces.We also use the following functions:� Size(V alue), where V alue is an array of data blocks, gives the length of V alue inblocks.� Concat(UD ; Data), where UD is an array of booleans of size n, indexed from 0 ton� 1, and Data is an array of data blocks of size n+ 1, indexed from 0 to n, returnsan array of data blocks of variable size that is the concatenation of all the blocks inData with index i, such that UD [i] is True.� Number(UD), where UD is the same as above, returns the number of indeces i forwhich UD [i] is True.2.2.2 Speci�cationFigure 2-3 shows the overall system architecture. The user interacts with the RAID systemwith the following set of actions:� Read(b1, b2) : Read portion of �le between block number b1 and b2, both endpointsincluded. 17

USER

Read(b1,b2)

RAID

Write(b, Value)

ReadBack(Value)

WriteOK

Figure 2-3: Overall System Architecture� Write(b, Value) : Write portion of �le starting at block number b with the datacontained in V alue, where V alue is an array of data blocks with a length l such thatl � n� b.The RAID system responds to the user's actions with the following:� ReadBack(Value) : Data contained in the array V alue has been read from the diskarray, where the length l of V alue is such that l � n.� WriteOK : The disk array has been written successfully.We describe the speci�cation of the algorithm as an I/O automaton (Figure 2-4).The speci�cation automaton, which we call Spec, has the following state variables. Thevariable Register is an array of n data blocks. The variable Data is used to store data to bewritten to the Register or to be read from it and UD is used to indicate which disks are to18

SpecSignatureInputs:Read(b1, b2)Write(b, Value) The length l of V alue is such that l � n � b.Fail(i)Internals:ReadWriteOutputs:ReadBack(Value) V alue is an array of data blocks of size l such that0 � l � n � 1.WriteOKStateRegister Array of n data blocks, indexed from 0 to n � 1, initially arbitrary values.pc Ranges over f idle, read, write, readAck, writeAck g, initially idle.UD Array of n booleans, indexed from 0 to n � 1, initially all False.Data Array of n data blocks, indexed from 0 to n � 1, initially arbitrary values.Transitionsinput: Read(b1, b2)E�: pc := readFor all i, i 2 fb1; :::;b2g doUD[i] := Trueinternal: ReadPre: pc = readE�: For all i, s.t. (UD[i] = True) doData[i] := Register[i]pc := readAckoutput: ReadBack(Value)Pre: pc = readAckV alue = Concat(UD;Data)E�: pc := idleFor all i, i 2 f0; :::;n-1g doUD[i] := False
input: Write(b, Value)E�: pc := writeFor all i, i 2 fb; :::;b+ Size(V alue) - 1g doUD[i] :=TrueData[i] :=V alue[i� b]internal: WritePre: pc= writeE�: For all i, (UD[i] = True) doRegister[i] := Data[i]pc := writeAckoutput: WriteOKPre: pc = writeAckE�: pc := idleFor all i, i 2 f0; :::;n-1g doUD[i] := FalseFigure 2-4: I/O Automaton for the Speci�cation19

be written or read. Finally, pc is used for the control of the automaton.When Spec receives the input Read(b1, b2), it reads the corresponding elements of Register.Similarly, when it receives the input Write(b, Value), it writes to the elements of Register.2.2.3 RAIDFigure 2-5 shows the organization of the RAID system. The controller, antecedence graphs,disks, and Failer module are modeled as separate I/O automata. The �gure also shows theinterfaces between the automata. The controller communicates with the graphs with thefollowing actions:� ReadExecuteg(D;F) : Signals Read graph g to start executing; D is a UsedDisks set,F a FailedDisk set, that may be empty.� WriteExecuteg(D; V ; F) : Signals Write graph g to start executing. D and F havethe same meaning as above, V contains the data to be written.Graphs communicate with the controller using the following actions:� ReadDoneg(V) : Read graph g has completed execution successfully and is returningdata in array V .� WriteDoneg : Write graph g has completed execution successfully,� FailedGraphg : Graph g has stopped executing because of a disk failure in the middleof execution.Graphs also communicate with the disks using the following actions, the index g is the indexof the graph:� RDi: Read data from disk i.� WRi(v): Write data v to disk i.Disks respond to graph using the actions: 20

CONTROLLER

RAID SYSTEM

USER

Read(b1,b2)

READ
GRAPH

WRITE
GRAPH

ReadBack(Value)

FailedGraph_g

FailedGraph_g

ReadExecute_g(D,F)

WriteExecute_g(D,V,F)

RdBack_i(v)
RdBack_i(v) WrOK_i

RD_i

RD_i WR_i(v)

g g

Disk i

Fail(i)

Write(Value)WriteOK

FAILER

ReadDone_g(V)
WriteDone_g

RW−Fail_iRW−Fail_i

FailedGraph_gFailedGraph_g

Figure 2-5: System Architecture21

� RdBacki(v): Data v has been read from disk i.� WrOKi: Data has been written successfully to disk i.� RwFaili: Reading or writing disk i has failed.Finally, the Failer module communicates with the disks and the controller with the followingaction.� Fail(i): Causes disk Di to fail.Informally, the system works as follows. Upon receiving an operation from the user, thecontroller chooses a graph based on the state of the disk array and sends an appropriatemessage to it. The graph then executes by sending messages to individual disks. When thegraph �nishes executing or fails because of a disk failure, it sends a message back to thecontroller. The controller then either acknowledges the user or chooses another graph toexecute.We now describe each I/O automaton in more detail.Controller Automaton Figure 2-6 shows the I/O automaton for the controller. Thecontroller automaton has the following state variables. The variable UD is an array ofn booleans and indicates which disks are going to be read or written directly during theoperation. The variable Data is an array of n + 1 data blocks and is used as a temporarybu�er. The variable Graph indicates the graph number that is currently executing. Thevariable FailedDisk is a set of disks that indicates which disks have currently failed, andop is used to indicate whether the system is currently performing a read or a write. Thevariable rec is a boolean that indicates whether the system is recovering from a failed graphor not, i.e. whether it is running a second graph to complete the operation. Finally pc isused for the control of the automaton.When the controller receives an operation from the user, it �rst determines which disks areused in the operation. Then it chooses a graph to execute based on the state of the diskarray and performs an appropriate output action to start its execution. If the graph �nishes22

ControllerSignatureInputs:Read(b1, b2), Write(b, Value), Fail(i), ReadDoneg(V), WriteDoneg , FailedGraphgInternals:RChooseGraph, WChooseGraphOutputs:ReadBack(Value), WriteOK , ReadExecuteg(D;F), WriteExecuteg(D;V ;F)StateUD Array of n booleans, indexed from 0 to n � 1, initially all False.Data Array of n + 1 data blocks, indexed from 0 to n, initially arbitrary.Graph Integer ranging from 1 to 6 included, initially arbitrary.FailedDisk Set of disk indeces, initially empty.op Ranging over f read, write g, initially arbitrary.rec Boolean, initially False.pc Ranging over f ready, RchooseGraph, WchooseGraph,executeGraph, waiting, ackUser g, initially ready.Transitionsinput: Read(b1, b2)E�: For all i in f b1, ... , b2 g doUD[i] := Truepc := RchooseGraphop := readoutput: ReadExecuteg(D;F)Pre: pc = executeGraphg = Graphop = readD = UDF = FailedDiskE�: pc := waitinginput: ReadDoneg(V)E�: For all i, s.t. (UD[i] = True) doData[i] := V [i]pc := ackUserrec := False
input: Write(b, Value)E�: For all i inf b, ... , b+ Size(V alue)� 1 g doUD[i] := TrueData[i] := V alue[i � b]pc := WchooseGraphop := writeoutput: WriteExecuteg(D;V ;F)Pre: pc = executeGraphg = Graphop = writeD = UDV = DataF = FailedDiskE�: pc := waitinginput WriteDonegE�: pc := ackUserrec := FalseFigure 2-6: I/O Automaton for the Controller23

output: ReadBack(Value)Pre: pc = ackUserop = readV alue = Concat(UD;Data)E�: pc := readyFor all i in f 0, ... , n � 1 g doUD[i] := Falseinput: Fail(i)E�: FailedDisk := FailedDisk [figinternal: RChooseGraphPre: pc = RchooseGraphE�: If (FailedDisk = fg)_((FailedDisk 6= fg)^(n 62 FailedDisk)^(8i 2 FailedDisk;UD[i] = False))Then (Graph := 1)Else (Graph := 2)pc := executeGraph
output WriteOKPre: pc = ackUserop = writeE�: pc := readyFor all i in f 0, ... , n � 1 g doUD[i] := Falseinput: FailedGraphgE�: rec := TrueIf (op = read)Then pc := RchooseGraphElse pc := WchooseGraphinternal: WChooseGraphPre: pc = WchooseGraphE�: If ((FailedDisk= fg)^(Number(UD) � n=2))_((FailedDisk 6= fg)^(n 62 FailedDisk)^(8i 2 FailedDisk;UD[i] = False))Then (Graph := 3)ElseIf ((FailedDisk= fg)^(n=2 < Number(UD) < n)) _((FailedDisk 6= fg)^(n 62 FailedDisk)^(8i 2 FailedDisk;UD[i] = True))Then (Graph := 4)ElseIf (Number(UD) = n)Then (Graph := 5)ElseIf (FailedDisk= n)Then (Graph := 6)pc := executeGraphFigure 2-7: I/O Automaton for the Controller (Continued).

24

Graph1SignatureInput:ReadExecute1(D; F), RdBacki(v), RwFailiOutput:RDi, FailedGraph1 , ReadDone1 (V)StateUD Array of n booleans, indexed from 0 to n� 1, initially all False.ValueRead [n+ 1] Array of n+ 1 data blocks, indexed from 0 to n, initially arbitrary.RdDone[n+ 1] Array of n+ 1 booleans, indexed from 0 to n, initially all False.RdExecuted [n+ 1] Array of n+ 1 booleans, indexed from 0 to n, initially all False.executing Boolean, initially False.failureInExecution Boolean, initially False.Transitionsinput: ReadExecute1(D;F)E�: UD := Dexecuting := Trueoutput: RDiPre: executing = TrueRdExecuted [i] = FalseUD[i] = TrueE�: RdExecuted [i] = Trueinput: RdBacki(v)E�: ValueRead [i] := vRdDone[i] := Trueinput: RwFailiE�: failureInExecution := Trueexecuting := False
output: ReadDone1 (V)Pre: executing = True8i:(UD[i] = True), RdDone[i] = TruefailureInExecution = FalseV = ValueRead []E�: For all i s.t. (UD[i] = True) doRdDone[i] := FalseRdExecuted [i] := FalseFor all i in f 0, ... , n � 1 g doUD[i] := Falseexecuting := Falseoutput: FailedGraph1Pre: failureInExecution = TrueE�: For all i s.t. (UD[i] = True) doRdDone[i] := FalseRdExecuted [i] := FalseFor all i in f 0, ... , n � 1 g doUD[i] := FalsefailureInExecution := FalseFigure 2-8: I/O Automaton for Graph 1 - Simple Readsuccessfully, it outputs ReadDone(V) orWriteDone. Then the controller acknowledges theuser with the appropriate output action. If the graph fails in its execution because of a diskfailure, it outputs FailedGraph. This causes the controller to set rec to True and to chooseanother graph to complete the operation.Graph Automata Figures 2-8 through 2-16 show the I/O automata for the antecedencegraphs.The graph automata have the following state variables:25

Graph2SignatureInputs:ReadExecute2(D; F), RdBacki(v)Internals:XOROutputs:RDi, ReadDone2 (V)StateUD Array of n booleans, indexed from 0 to n � 1, initially all False.ValueRead [n+ 1] Array of n + 1 data blocks, indexed from 0 to n, initially arbitrary.RdExecuted [n+ 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.RdDone[n+ 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.XorDone Boolean, initially False.executing Boolean, initially False.failure in f �1, ... , n g, initially arbitrary.Transitionsinput ReadExecute2(D;F)E�: UD := Dfailure := Fexecuting := Trueoutput: RDiPre: executing = TrueRdExecuted [i] = Falsei 6= failureE�: RdExecuted [i] := Trueinput: RdBacki(v)E�: ValueRead [i] := vRdDone[i] := True
internal: XORPre: executing = True8i:((i 6= failure) ^ (0 � i � n))RdDone[i] = TrueXorDone = FalseE�: XorDone := TrueValueRead [failure] :=ValueRead [1]� : : :�ValueRead [failure� 1]�ValueRead [failure+ 1]� : : :�ValueRead [n]output ReadDone2 (V)Pre: executing := TrueXorDone = TrueV alue = ValueRead []E�: For all i s.t. i 6= failure doRdDone[i] := FalseRdExecuted [i] := FalseFor all i in f 0, ... , n � 1 g doUD[i] := FalseXorDone := Falseexecuting := FalseFigure 2-9: I/O Automaton for Graph 2 - Degraded Read.26

Graph3SignatureInputs:WriteExecute3(D;V ;F), RdBacki(v), WrOKi, RwFaili,Internals:XOROutputs:RDi, WRi(v), WriteDone3 , FailedGraph3StateUD Array of n booleans, indexed from 0 to n� 1, initially all False.Data Array of n+ 1 data blocks, indexed from 0 to n, initially arbitrary.ValueRead [n+ 1] Array of n+ 1 data blocks, indexed from 0 to n, initially arbitrary.RdDone[n+ 1] Array of n+ 1 booleans, indexed from 0 to n, initially all False.RdExecuted [n+ 1] Array of n+ 1 booleans, indexed from 0 to n, initially all False.WrDone[n+ 1] Array of n+ 1 booleans, indexed from 0 to n, initially all False.WrExecuted [n+ 1] Array of n+ 1 booleans, indexed from 0 to n, initially all False.XorDone Boolean, initially False.executing Boolean, initially False.failureInExecution Boolean, initially False.Transitionsinput: WriteExecute3(D;V ;F)E�: UD := DData := Vexecuting := Trueoutput: RDiPre: executing = TrueRdExecuted [i] = FalseUD[i] = TrueE�: RdExecuted [i] := Trueinput: RdBacki(v)E�: ValueRead [i] := vRdDone[i] := Trueinput: RwFailiE�: failureInExecution := Trueexecuting := False
output: WRi(v)Pre: executing = TrueIf (i 6= n)then RdDone[i] = TrueUD[i] = Trueelse XorDone = TrueWrExecuted [i] = Falsev = Data[i]E�: WrExecuted [i] = Trueinput: WrOKiE�: WrDone[i] := TrueFigure 2-10: I/O Automaton for Graph 3 - Small Write27

internal: XORPre: executing = TrueXorDone = False(8i((UD[i]=True)_(i=n))RdDone[i] = TrueE�: XorDone := TrueData[n] :=ComputeXOR(UD;Data;ValueRead [])output: WriteDone3Pre: executing = TruefailureInExecution = False(8i:(UD[i] = True)) ^ (i = n)WrDone[i] = TrueE�: XorDone := Falseexecuting := FalseFor all i s.t. (i = n)_((i 6= n) ^ (UD[i] = True))RdDone[i] := FalseWrDone[i] := FalseRdExecuted [i] := FalseWrExecuted [i] := FalseFor all i in f 0, ... , n � 1 g doUD[i] := False
FailedGraph3Pre: failureInExecution= TrueE�: XorDone := FalsefailureInExecution := FalseFor all i s.t. (i = n)_((i 6= n) ^ (UD[i] = True))RdDone[i] := FalseWrDone[i] := FalseRdExecuted [i] := FalseWrExecuted [i] := FalseFor all i in f 0, ... , n� 1 g doUD[i] := False

Figure 2-11: I/O Automaton for Graph 3 - Small Write (Continued)
28

Graph4SignatureInputs:WriteExecute4(D;V ;F), RdBacki(v), RwFaili, WrOKiInternals:XOROutputs:RDi, WRi(v), WriteDone4 , FailedGraph4StateUD Array of n booleans, indexed from 0 to n� 1, initially all False.Data Array of n + 1 data blocks, indexed from 0 to n, initially arbitrary.RdExecuted [n+ 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.RdDone[n+ 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.WrExecuted [n+ 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.WrDone[n+ 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.XorDone Boolean, initially False.executing Boolean, initially False.failure in f �1, ... , n g, initially arbitrary.failureInExecution Boolean, initially False.Transitionsinput: WriteExecute4(D;V ;F)E�: UD := DData := Vfailure := Fexecuting := Trueoutput: RDiPre: executing = TrueRdExecuted [i] = FalseUD[i] = FalseE�: RdExecuted [i] := Trueinput: RdBacki(v)E�: ValueRead [i] := vRdDone[i] := Trueinput: RwFailiE�: failureInExecution := Trueexecuting := False
output: WRi(v)Pre: executing = True(i 6= failure)(i 6= n) ^ (UD[i] = True)8i:(UD[i] = False)RdDone[i] = TrueWrExecuted [i] = Falsev = Data[i]E�: WrExecuted [i] := Trueinput: WrOKiE�: WrDone[i] := TrueFigure 2-12: I/O Automaton for Graph 4 - Reconstruct Write.29

internal: XORPre: executing = True8i:(UD[i] = False)RdDone[i] = TrueXorDone = FalseE�: XorDone := TrueData[n] :=ComputeXOR2(UD;Data;ValueRead [])output: WRn(v)Pre: executing = TrueXorDone = TrueWrExecuted [n] = Falsev = Data[n]E�: WrExecuted [n] := True
output WriteDone4Pre: executing = True8i:((UD[i] = True) ^ (i = n))WrDone[i] = TruefailureInExecution= FalseE�: For all i s.t. (UD[i] = False) doRdDone[i] := FalseRdExecuted [i] := FalseFor all i s.t. (i = n)_(UD[i] = True) doWrDone[i] := FalseWrExecuted [i] := FalseFor all i in f 0, ... , n � 1 g doUD[i] := FalseXorDone := Falseexecuting := Falseoutput: FailedGraph4Pre: failureInExecution= TrueE�: For all i s.t. (UD[i] = False) doRdDone[i] := FalseRdExecuted [i] := FalseFor all i s.t. (i = n)_(UD[i] = True) doWrDone[i] := FalseWrExecuted [i] := FalseFor all i in f 0, ... , n � 1 g doUD[i] := FalseXorDone := FalsefailureInExecution := FalseFigure 2-13: I/O Automaton for Graph 4 - Reconstruct Write. (Continued)

30

Graph5SignatureInputs:WriteExecute5(D;V ;F), WrOKi, RwFaili,Internals:XOROutputs:WriteDone5 , FailedGraph5StateUD Array of n booleans, indexed from 0 to n � 1, initially all False.Data Array of n + 1 data blocks, indexed from 0 to n, initially arbitrary.WrExecuted [n+ 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.WrDone[n+ 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.XorDone Boolean, initially False.executing Boolean, initially False.failureInExecution Boolean, initially False.Transitionsinput WriteExecute5(D;V ;F)E�: UD := DData := Vexecuting := Trueoutput: WRi(v)Pre: executing = TrueWrExecuted [i] = Falsev = Data[i]UD[i] = TrueE�: WrExecuted [i] := Trueinput WrOKiE�: WrDone[i] := Trueinput RwFailiE�: failureInExecution := Trueexecuting := False
output: WriteDone5Pre: executing = True8i(0�i�n);WrDone[i] = TruefailureInExecution = FalseE�: XorDone := Falseexecuting := FalseFor all i in f 0, ... , n g doWrDone[i] := FalseWrExecuted [i] := FalseFor all i in f 0, ... , n � 1 g doUD[i] := Falseoutput: FailedGraph5Pre: failureInExecution= TrueE�: XorDone := FalsefailureInExecution := FalseFor all i in f 0, ... , n g doWrDone[i] := FalseWrExecuted [i] := FalseFor all i in f 0, ... , n � 1 g doUD[i] := FalseFigure 2-14: I/O Automaton for Graph 5 - Large Write31

internal: XORPre: executing = TrueXorDone = FalseE�: XorDone := TrueData[n] :=Data[0]� : : :�Data[n � 1]output: WRn(v)Pre: executing = TrueXorDone = TrueWrExecuted [n] = Falsev = Data[n]E�: WrExecuted [n] := TrueFigure 2-15: I/O Automaton for Graph 5 - Large Write (Continued)Graph6SignatureInput:WriteExecute6(D;V ;F), WrOKiOutput:WRi(v), WriteDone6StateUD Array of n booleans, indexed from 0 to n � 1, initially all False.Data Array of n + 1 data blocks, indexed from 0 to n, initially arbitrary.WrExecuted [n+ 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.WrDone[n+ 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.executing Boolean, initially False.failureInExecution Boolean, initially False.Transitionsinput: WriteExecute6(D;V ;F)E�: UD := DData := Vexecuting := Trueoutput: WRi(v)Pre: executing = TrueUD[i] = TrueWrExecuted [i] = Falsev = Data[i]E�: WrExecuted [i] := True
input: WrOKiE�: WrDone[i] := Trueoutput: WriteDone6Pre: executing = True8i:(UD[i] = True)WrDone[i] = TrueE�: executing := FalseFor all i s.t. (UD[i] = True) doWrDone[i] := FalseWrExecuted [i] := FalseFor all i in f 0, ... , n � 1 g doUD[i] := FalseFigure 2-16: I/O Automaton for Graph 6 - Parity Failed32

� UD : Array of n booleans, indexed from 0 to n� 1.� Data : Array of n+ 1 data blocks, indexed from 0 to n.� ValueRead [n+ 1] : Array of n+ 1 data blocks, indexed from 0 to n.� RdDone[n+ 1] : Array of n+ 1 data blocks, indexed from 0 to n.� RdExecuted [n+ 1] : Array of n+ 1 data blocks, indexed from 0 to n.� WrDone[n + 1] : Array of n+ 1 data blocks, indexed from 0 to n.� WrExecuted [n+ 1] : Array of n + 1 data blocks, indexed from 0 to n.� XorDone : Boolean.� executing : Boolean.� failure : in f �1, ... , n g� failureInExecution : Boolean.The variable UD is used to keep track of which disks are to be written or read directly.Variables Data and ValueRead [] are temporary bu�ers used to keep data to be written andread respectively. The variable RdExecuted [i] (WrExecuted [i]) indicates whether a RDi(WRi(v)) action has executed. The variable RdDone[i] (WrDone[i]) indicates whether aRDi (WRi(v)) action has �nished executing. The variable XorDone indicates whether anXOR action has �nished executing. The variable executing is True if and only if the graphis currently running and failure indicates a failure in the disk array before the graph startedrunning. Finally failureInExecution is True when a failure occurred in the disk array whilethe graph was running.There are two auxiliary functions used in the de�nitions for XOR actions. One of themis ComputeXOR(UD;Data;ValueRead []). This function computes the exclusive Or of allthe values ValueRead [i] and Data[i] for which UD [i] = True with ValueRead [n]. The otherfunction is ComputeXOR2(UD ;Data;ValueRead []). This function computes the exclusiveor of all the values ValueRead [i] for which UD [i] = False with all the values Data[i] forwhich UD [i] = True. 33

DiskiSignatureInput:RDi, WRi(v), Fail(i), FailedGraphgOutput:RdBacki(v), WrOKi, RwFailiStateblock One block of Data, initially Block0i.failed Boolean, initially False.pc Ranges over f rd, wr, idle g, initially idle.Transitionsinput: RDiE�: (pc := rd)output: RdBacki(v)Pre: pc = rdfailed = Falsev = blockE�: pc := idleoutput: RwFailiPre: (pc = rd) _ (pc = wr)failed = TrueE�: pc := idle
input: WRi(v)E�: If :failedThen (block := v)pc := wroutput: WrOKiPre: pc = wrfailed = FalseE�: pc := idleinput: Fail(i)E�: failed := Trueinput: FailedGraphgE�: pc := idleFigure 2-17: I/O Automata for a DiskDisk Automata Figure 2-17 shows the I/O automaton for a disk.A disk automaton has the following state variables:� block : One block of data.� failed : Boolean.� pc : Ranges over f rd, wr, idle g.The variable block is used to hold the data stored in the disk. The variable failed is true ifthe disk has failed. Finally pc is used for the control of the automaton. When the automatonrecieves the input FailedGraphg it sets its pc to idle.Failer Automata Figure 2-18 shows the I/O automaton for the Failer module.34

FailerSignatureOutput:Fail(i) : i is in f 0, ... , n g.Statedone Boolean, initially False.Transitionsoutput: Fail(i)Pre: done = FalseE�: done = True Figure 2-18: I/O Automata the Failer moduleThe Failer has the following state variable:� done : Boolean.The variable done is set to True when the Failer produces a failure. This ensures that atmost one failure occurs in any execution of the system.

35

Chapter 3Proof of CorrectnessIn this chapter we prove that the composition consisting of the controller, graphs, disksautomata (D0 through Dn), and Failer implements Spec. We call this composition theRAID automaton.We use proof by simulation. The outline of this section is the following. Section 3.1presents some de�nitions. Then Section 3.2 describes some properties satis�ed by RAID.Finally Section 3.3 presents the proof of correctness.3.1 De�nitionsOur �rst two de�nitions concern the Virtual Block value of a disk, which is the value impliedby the system. We de�ne a predicate that determines whether the Virtual Block value of adisk is de�ned in a state s of RAID.De�nition 3.1.1 For all states s of RAID, s:De�nedVB(i) is a boolean such that:s:De�nedVB(i) = 8j(j 6=i):s:Dj:failed.We next de�ne the Virtual Block (VB) value.De�nition 3.1.2 For all states s of RAID, s:V B(i) is one block of data such that:s:V B(i) = L(j2f0;:::;i�1;i+1;:::;ng) s:Dj:block, provided that s:De�nedVB(i) = True. Other-36

wise s:V B(i) is unde�ned.To carry out the proof, we add a history variable to RAID that records old values of thedata blocks stored in the disks, at the time of completion of the previous operation. Weaugment each disk automaton Di with a new state variable hist which is initially equal toDi:block . We also add the following e�ect to the actions ReadDoneg(V) and FailedGraphgfor g 2 f1; 2g, and WriteDoneg for g 2 f3; :::;6g. For all disks Di, such that (0 � i � n),the actions do the following:If (:Di:failed)Then Di:hist := Di:blockElse Di:hist := s:V B(i).Note that ifDi:failed , then since the Failermodule produces at most one failure, s:De�nedVB(i) =True. So the second assignment above is valid.We also add an e�ect to the action FailedGraphg for g 2 f3; :::;6g. For all disks Di suchthat :Controller:UD[i], the action has the additional e�ect above.We add another history variable to each disk Di, init , that records the values stored on thedisks in the state when a Write graph starts executing. The di�erence between hist and initis that hist records old values of disks at the beginning of an operation, whereas init recordsold values at the beginning of the execution of a Write graph. For each disk Di, Di:inithas the initial value unde�ned. The action WriteExecuteg(D; V ; F) has additionally thefollowing e�ect: If (:Di:failed)Then Di:init := Di:blockElse Di:init := unde�ned.Our next two de�nitions concern the Virtual Init value of a disk. We de�ne a predicatethat determines whether s:V I(i) is de�ned in a state s of RAID.De�nition 3.1.3 For all states s of RAID, s:De�nedVI(i) is a boolean such that:s:De�nedVI(i) = 8j(j 6=i); s:Dj:init 6= unde�ned.37

We next de�ne the Virtual Init (VI) value of a disk.De�nition 3.1.4 For all states s of RAID, s:V I(i) is one block of data such that:s:V I(i) = L(j2f0;:::;i�1;i+1;:::;ng) s:Dj:init, provided that s:De�nedVI(i) = True. Otherwises:V I(i) is unde�ned.The following de�nes a predicate that determines whether a graph g is running in a stateof RAID.De�nition 3.1.5 Let s be a state of RAID. For all g, s:runningg is a boolean variable suchthat:s:runningg = s:Graphg:executing _ s:Graphg:failureInExecution.Finally, we add a boolean variable toBeWritten to all disk automata, that determineswhether a disk is to be written during the execution of a Write graph. For each disk Di, suchthat (0 � i < n), the variableDi:toBeWritten is initially False. ActionWriteExecuteg(D; V ; F)has additionally the following e�ect:For all i such that Controller:UD[i],Di:toBeWritten := True.Also action WriteDoneg has the additional e�ect:For all i, such that (0 � i < n),Di:toBeWritten := False.Note that when a Read graph is running, the variable toBeWritten is False for all disks.Also note that the above de�nition implies that a variable toBeWritten can only be set toTrue if a Write graph is running.3.2 RAID PropertiesIn this section, we present some properties satis�ed by RAID. These properties can beclassi�ed as follows: 38

� Basic Properties� Parity and antecedence correctness for Write graphs,� Read correctness for Read and Write graphs,� Write correctness for Write graphs,� Consistency,� Properties Used in Proof of Correctness of RAID.We describe each class of properties below.Basic PropertiesWe will �rst present some basic properties of RAID systems. Lemmas 3.2.1 and 3.2.2 presentproperties of the toBeWritten variables. The Simple Consistency property (Lemma 3.2.3)expresses a simple relation between block and hist variables. Lemmas 3.2.4, 3.2.5, 3.2.6 and3.2.7 concern the init variables. Finally Lemma 3.2.8 expresses antecedence relations thatexist in Graph4.Parity and Antecedence Correctness for Write GraphsThe next class of properties deals with writing the parity correctly and the antecedencesthat must be in a graph to achieve that. Lemmas 3.2.9, 3.2.10 and 3.2.11 express parityand antecedence correctness.Read Correctness for Read and Write GraphsThe third class of properties deals with reading the disk array correctly. Read graphs mustread the disk array correctly so that they can return the right value back to the controller.Lemmas 3.2.12 and 3.2.13 express read correctness for Read graphs.Write graphs need to read the disk array to compute the new parity. Lemma 3.2.14 expressesread correctness for Write graphs.Write Correctness for Write GraphsThe third class of properties deals with writing the disk array correctly. These propertiesare only concerned with writing data disks and not the parity. Lemma 3.2.15 expresseswrite correctness in the absence of failures. Invariant 5 of Lemma 3.2.16 expresses write39

correctness concerning the VB value. Lemma 3.2.16 contains four other properties dealingwith consistency. We have included the second write correctness invariant in this lemma tosimplify the proofs. These invariants are proved by induction and simultaneously.ConsistencyThe second requirement of Courtright and Gibson's error recovery method, is that eachDAG must preserve consistency, meaning that the execution of each DAG must not changethe values of disks that are not to be written. We call this property the General Consistencyproperty. General Consistency is a property concerning the V B values of disks and theirblock and hist values, in the states at the end of execution of DAGs1. In order to prove theGeneral Consistency property, we need some properties that are true in other states thanjust the end of execution of DAGs. For this purpose, we introduce the consistency propertywhich has two components. These components are described below.The �rst component of the consistency property is that the block value of every disk Dithat is not to be written and has not failed, must be equal to its hist value, in all states.This component essentially implies that DAGs must not write directly to disks that are notto be written.The second component of the consistency property is concerned with the Virtual Blockvalues of disks. The Virtual Block is the value inferred by the system for a disk. When thesystem is not currently running a graph, the Virtual Block value, if de�ned, of every diskDi that is not to be written2 must be consistent with the actual value of Di, which is itshist value. The second component ensures that if Di has failed, or will fail in some futurestate, then the system infers the right value for it. This is the core idea of the consistencyproperty.Note that if the Virtual Block is not de�ned for Di then this means that a failure hasoccurred at a disk di�erent from Di and the failure of Di will result in loss of data. This isnot a problem since the system is designed to tolerate only one fault.1The end of execution of a DAG is the state in which the action ReadDoneg(V) or WriteDoneg orFailedGraphg is enabled.2Note that when the system is idle, then all disks are not to be written.40

When the system is not currently running a graph, if Di is a disk that has not failed, isnot to be written, and for which the Virtual Block is de�ned, then the two componentsof consistency express an equality between the Virtual Block, the block value and the histvalue.The second component of the consistency property, namely the equality between the VirtualBlock and hist values, is not an invariant3, meaning that it does not hold in all reachablestates of the system. If a Write graph is executing then the disk array can be partiallyupdated. This means that if disk Di is not to be written and has a de�ned Virtual Blockvalue, its Virtual Block can be di�erent from its hist value. If Di fails at that point, thevalue inferred for it by the system is wrong, but that is not a problem since the executionof graphs cannot overlap and graphs are required to restore consistency at the end of theirexecution.Lemma 3.2.17 expresses the General Consistency property. Lemma 3.2.3 expresses the�rst component of the consistency property and is used in the proof of Lemma 3.2.17.Lemma 3.2.16 includes four invariants that express the second component of the consistencyproperty in di�erent states of RAID. These are also used in the proof of Lemma 3.2.17.Properties Used in Proof of Correctness of RAIDThe �nal class of properties are those that are used directly in the proof of correctnessof RAID. These lemmas do not add any new concept about the behavior of RAID, butgeneralize previous ones to make their application easier. These are Lemmas 3.2.17, 3.2.18and 3.2.19.There are no other auxiliary lemmas. However note that some very low-level propertieshave been omitted. These lemmas are proved easily by induction and have been omittedbecause they do not add to the understanding of the behavior of RAID. These include theproperty that graphs run one at a time, which is assumed throughout the following sectionsand is not mentioned. Other lemmas are mentioned each time they are used.3The �rst component of the consistency property is an invariant.41

3.2.1 Basic PropertiesIn this section we present the basic properties satis�ed by RAID. These will be used in theproofs of lemmas presented in subsequent sections.The �rst lemma indicates that if UD [i] is False in a state s of RAID, then this implies thats:Di:toBeWritten is also False.Lemma 3.2.1 For all states s of RAID, for all i such that (0 � i < n),(:s:Controller:UD[i]) =) (:s:Di:toBeWritten).Proof. We prove the invariant by induction. Let s0 be an initial state of RAID. Initially,for all i such that (0 � i < n), s0:Controller:UD[i] = False and s0:Di:toBeWritten = False.Therefore the invariant is satis�ed in any initial state of RAID.Let (s; �; s0) be a transition of RAID. We show that all actions � of RAID preserve theinvariant.Case: � = Read(b1, b2) or Write(b, Value)Let i be such that :s0:Controller:UD[i]. Since no write graphs are running in s0, we have:s0:Di:toBeWritten . Therefore action � preserves the invariant.Case: � = WriteExecuteg(D; V ; F), for g 2 f3; :::;6gAction � has the e�ect of setting the variable s:Di:toBeWritten to True for all i such thats:Controller:UD[i]. Thus � does not change the variables Di:toBeWritten for i such that:s:Controller:UD[i]. Therefore � preserves the invariant.All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.1.The next lemma expresses the fact that when a Write graph is running, then for all i, thetoBeWritten variable of disk Di has the same value as Controller:UD[i].Lemma 3.2.2 For all states s of RAID, if s:runningg = True for g 2 f3; :::;6g,then (s:Controller:UD[i])() (s:Di:toBeWritten).42

Proof. We prove the invariant by induction. In any initial state of RAID, s0, s0:runningg =False, for g 2 f3; :::;6g. Therefore the invariant is true vacuously in any initial state of RAID.Let (s; �; s0) be a transition of RAID. We show that all actions � of RAID preserve theinvariant.Case: � = WriteExecuteg(D; V ; F)For all i such that s:Controller:UD[i], action � sets s:Di:toBeWritten to True. It also doesnot change the variables s:Di:toBeWritten for i such that :s:Controller:UD[i]. Thereforeaction � preserves the invariant.All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.2.The following lemma is Simple Consistency and expresses the fact that if a disk has notfailed and is not to be written, then its block value is equal to its hist value. This lemmaexpresses the �rst component of the consistency property.Lemma 3.2.3 Simple ConsistencyFor all states s of RAID, for all i such that :s:Di:toBeWritten:If (:s:Di:failed) then s:Di:block = s:Di:hist.Proof. We prove the lemma by induction. In any initial state s0 of RAID, for all i,s0:Di:failed = False and s0:Di:block = s0:Di:hist . Therefore the invariant is true in anyinitial state of RAID.We now show that all actions of RAID preserve the invariant. Let (s; �; s0) be a transitionof RAID.Case: � = WRi(v)Assume that i is such that :s:Di:failed . This action assigns the value v to s:Di:blockand does not change any other block or hist variables. The precondition of this ac-tion in all graph automata includes: s:Controller:UD[i] = True. Thus by Lemma 3.2.2,s0:Di:toBeWritten = True, and the invariant is preserved trivially by action �.43

Case: � = ReadDoneg(V), or WriteDonegThese actions have the e�ect of assigning the block value to the hist value of each disk Di,such that :s:Di:failed . Therefore these actions preserve the invariant.Case: � = FailedGraphgIf g 2 f1; 2g, then this action has the e�ect of assigning the block value to the hist value ofeach disk Di for all i, if :s:Di:failed . Thus if g 2 f1; 2g action � preserves the invariant.If g 2 f3; :::;6g, then this action has the e�ect of assigning the block value to the histvalue of each disk Di, for all i such that :s:Controller:UD[i]. Thus for all i such that:s0:Di:toBeWritten , s0:Di:block = s0:Di:hist. Thus if g 2 f3; :::;6g, action � preserves theinvariant.All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.3.The next lemma expresses conditions under which the init variable is de�ned during theexecution of Graphs 3 and 4.Lemma 3.2.4 Conditions for the De�nition of the init VariableFor all states s of RAID, if s:runningg = True for g 2 f3; 4g,If i is such that (:s:Di:failed)_(s:Graphg:RdDone[i] = True) then (s:Di:init 6= unde�ned).Proof. We prove the invariant by induction. Let s0 be any initial state of RAID. We haves0:runningg = False for g 2 f3; 4g. Therefore the invariant is satis�ed vacuously in anyinitial state of RAID.Let (s; �; s0) be a transition of RAID. We show that all actions � of RAID preserve theinvariant.Case: � = WriteExecuteg(D; V ; F) for g 2 f3; 4gFirst assume that i is such that :s:Di:failed. In this case, action � assigns the value ofs:Di:block to s:Di:Init. Therefore s:Di:init 6= unde�ned. Thus the invariant is preserved inthis case.Next assume that i is such that s:Di:failed . A trivial proof by induction can be used to44

show that s:Graphg:RdDone[i] = False. Therefore the invariant is preserved vacuously inthis case.Case: � = Graphg:RdBacki(v), for g 2 f3; 4gThis action has the e�ect of setting s:Graphg:RdDone[i] to True. The precondition of thisaction (in Di) includes :s:Di:failed . Therefore by the inductive hypothesis, (s:Di:init 6=unde�ned). Therefore action � preserves the invariant.All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.4.The following lemma expresses the fact that if Graph 3 or 4 is running, then for all disksthat are not to be written and have a de�ned init variable, their init variable is equal totheir hist variable.Lemma 3.2.5 Equality between init and hist VariablesFor all states s of RAID, if s:runningg = True for g 2 f3; 4g,for all i such that (:s:Graphg:UD [i])^ (s:Di:init 6= unde�ned),s:Di:init = s:Di:hist.Proof. We prove the invariant by induction. In any initial state s0 of RAID, s:runningg =False for g 2 f3; 4g. Therefore the invariant is satis�ed vacuously in any initial state.Let (s; �; s0) be a transition of RAID. We show that all actions � of RAID preserve theinvariant.Case: � = WriteExecuteg(D; V ; F) for g 2 f3; 4gAssume that i is such that (:s:Graphg:UD [i]). Assume further that :s:Di:failed . In thiscase, action � assigns the value of s:Di:block to s:Di:init. We have :s:Di:toBeWritten , byLemma 3.2.1. This implies s:Di:block = s:Di:hist, by Lemma 3.2.3. Therefore s0:Di:init =s0:Di:hist . Therefore action � preserves the invariant in this case.Assume now that s:Di:failed . In this case, action � assigns the value unde�ned to s:Di:init.Thus s0:Di:init = unde�ned. Therefore action � preserves the invariant in this case as well.All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.5.45

The next lemma is a property concerning the init variable for Graph3. It expresses the factthat when a disk has not been read during the execution of Graph3, then its init value isequal to its block value, provided that init is not unde�ned.Lemma 3.2.6 Property Concerning init for Graph 3For all states s of RAID, if s:running3 = True,then for all i such that (0 � i � n),if (:s:Graph3:RdDone[i]) ^ (s:Di:init 6= unde�ned), then s:Di:init = s:Di:block.Proof. We prove the lemma by induction. Let s0 an initial state of RAID. We haves0:running3 = False. Thus the invariant is satis�ed vacuously in any initial state of RAID.Let (s; �; s0) a transition of RAID. We show that all actions of RAID preserve the invariant.Case: � = WriteExecute3(D; V ; F)We can show using a simple proof by induction that when this action is enabled in s, thenfor all i such that (0 � i � n), s:Graph3:RdDone[i] = False.This action has the e�ect of assigning the value of s:Di:block to s:Di:init, if :s:Di:failed.Otherwise it assigns the value unde�ned to s:Di:init. Therefore this action preserves theinvariant.Case: � = Graph3:WRi(v)If (i 6= n), then the precondition of this action includes:s:Graph3:RdDone[i] = True.Therefore this action preserves the invariant vacuously if (i 6= n).If (i = n), then the precondition of this action includes s:Graph3:XorDone = True. We canshow by a trivial proof by induction that this implies that s:Graphg:RdDone[n] = True.Therefore this action preserves the invariant as well.All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.6.The following lemma is a similar property, but concerning Graph4.46

Lemma 3.2.7 Property Concerning init for Graph 4For all states s of RAID, if s:running4 = True,then for all i such that (:s:Controller:UD[i])_ (s:Graph4:WrExecuted[i] = False),if (s:Di:init 6= unde�ned) then s:Di:init = s:Di:block.Proof. We prove the lemma by induction. In any initial state s0 of RAID, s0:running4 =False. Therefore the invariant is satis�ed vacuously in any initial state of RAID.Let (s; �; s0) be a transition of RAID. We show that all the actions of RAID preserve theinvariant.Case: � = WriteExecuteg(D; V ; F)This action has the e�ect of assigning the value of s:Di:block to s:Di:init for all i such that(0 � i � n) and :s:Di:failed. If s:Di:failed then this action assigns the value unde�ned tos:Di:init . Therefore this action preserves the invariant.All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.7.The next property expresses the fact that all RDi actions in Graph4 have precedence overall WRi(v) actions.Lemma 3.2.8 Antecedence Relations for Graph 4For all states s of RAID, if s:running4 = True and there exists i such that(:s:Graph4:UD [i])^ (:s:Graph4:RdDone[i]), then8j; s:Graph4:WrExecuted[j] = False.Proof. We prove this invariant by induction. In any initial state s0 of RAID,s0:running4 = False. Therefore the invariant is true in any initial state.For the step condition, let (s; �; s0) be a transition of RAID. We show that all actions � ofRAID preserve the invariant.The only action that sets Graph4:WrExecuted [i] to True is Graph4:WRi(v). The precon-47

dition of this action includes:8i(:s:Graph4 :UD[i])s:Graph4:RdDone[i] = True:So this action is not enabled in any state in which there exists i such that (:s:Graph4:UD [i])^(:s:Graph4:RdDone[i]).All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.8.3.2.2 Parity and Antecedence CorrectnessIn this section we present parity and antecedence correctness for Write graphs 3, 4 and5. Note that there is not a similar lemma for Write graph 6. This is because when thisgraph runs the parity has failed and therefore it is not updated. For the antecedences, theselemmas express the fact that all the relevant reads of the disk array must have been doneif the parity has been written.Lemma 3.2.9 Parity and Antecedence Correctness for Graph 3For all states s of RAID, if (s:running3 = True),(s:Graph3:WrExecuted[n] ^ (:s:Dn:failed)) =)s:Dn:block = (MUD[j](s:Graph3:ValueRead[j]� s:Graph3:Data[j]))�s:Graph3:ValueRead[n]and, 8j(j=n)_(s:Graph3:UD[j]); s:Graph3:RdDone[j] = True:Proof. We prove the invariant by induction. In any initial state of RAID,running3 = False. Therefore the invariant is true vacuously in any initial state of RAID.Let (s; �; s0) be a transition of RAID. We show that all actions � of RAID preserve theinvariant. 48

Case: Graph3:WRn(v)The precondition of this action includes (in Graph3): XorDone = True and v = Data[n].A trivial proof by induction can show that (where the only case to consider is the actionXOR) :For all states s of RAID, if s:Graph3:XorDone = True, thens:Graph3:Data[n] = ComputeXOR(s:Graph3:UD ; s:Graph3:Data; s:Graph3:ValueRead []);and 8j(j=n)_(s:Graph3:UD[j]); s:Graph3:RdDone[j] = True:So,s:Graph3:Data[n] = (MUD[j](s:Graph3:ValueRead [j]�s:Graph3:Data[j]))�s:Graph3:ValueRead [n]:The action Graph3:WRn(v) sets the value of Dn:block to v, if :Dn:failed . So we have,s0:Dn:block = (MUD[j](s0:Graph3:ValueRead [j]�s0:Graph3:Data[j]))�s0:Graph3:ValueRead [n]:Also this action sets Graph3:WrExecuted [n] to True.Since this action does not change the values of variables UD and RdDone[j] we have :8j(j=n)_(s0:Graph3 :UD[j]); s0:Graph3:RdDone[j] = True:Therefore this action preserves the invariant.All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.9.The following lemma expresses parity and antecedence correctness for Graph4.Lemma 3.2.10 Parity and Antecedence Correctness for Graph 4For all states s of RAID, if s:running4 = True,(s:Graph4:WrExecuted[n] ^ (:s:Dn:failed)) =)49

s:Dn:block = (MUD[j] s:Graph4:Data[j])�(M(:UD [j]) s:Graph4:ValueRead[j]);and, 8j(:s:Graph4:UD [j])s:Graph4:RdDone[j] = True:Proof. We prove the invariant by induction. In any initial state of RAID,running4 = False. Therefore the invariant is true vacuously in any initial state of RAID.Let (s; �; s0) be a transition of RAID. We show that all actions � of RAID preserve theinvariant.Case: Graph4:WRn(v)The precondition of this action includes (in Graph4): XorDone = True and v = Data[n].A trivial proof by induction can be used to show that (where the only case is the actionXOR) :For all states s of RAID, if s:Graph4:XorDone = True thens:Graph4:Data[n] = ComputeXOR2(UD ;Data;ValueRead []);and 8j(:s:Graph4:UD[j])s:Graph4:RdDone[j] = True:So, s:Graph4:Data[n] = (MUD[j] s:Graph4:Data[j])� (M(:UD[j]) s:Graph4:ValueRead [j]):The action Graph4:WRn(v) sets the value of Dn:block to v, if :Dn:failed . So we have,s:Dn:block = (MUD[j] s0:Graph4:Data[j])� (M(:UD [j]) s0:Graph4:ValueRead [j]):50

Also this action sets Graph4:WrExecuted [n] to True.Since this action does not change the values of variables UD and RdDone[j], we have:8j(:s0 :Graph4:UD [j]); s0:Graph4:RdDone[j] = True:Therefore this action preserves the invariant.All other actions preserve the action trivially. This completes the proof of Lemma 3.2.10.The next lemma expresses parity and antecedence correctness for Graph5.Lemma 3.2.11 Parity Correctness for Graph 5For all states s of RAID, if s:running5 = True,(s:Graph5:WrExecuted[n] ^ (:s:Dn:failed)) =)s:Dn:block = MUD [i] s:Graph5:Data[i]:Proof. We prove the invariant by induction. In any initial state of RAID,running5 = False. Therefore the invariant is true vacuously in any initial state of RAID.Let (s; �; s0) be a transition of RAID. We show that all actions � of RAID preserve theinvariant.Case: Graph5:WRn(v)The precondition of this action includes (in Graph5): XorDone = True and v = Data[n].A trivial proof by induction can be used to show that (where the only case is the actionXOR):For all states s of RAID, if s:Graph5:XorDone = True,then s:Graph5:Data[n] = MUD[i] s:Graph5:Data[i]:51

Note that all disks Di with index i 2 f0; :::;n-1g are such that UD [i] = True. The actionGraph5:WRn(v) sets the value of Dn:block to v, if :Dn:failed . So we have,s0:Dn:block = MUD [i] s0:Graph5:Data[i]:Also this action sets Graph5:WrExecuted [n] to True. Therefore this action preserves theinvariant.All other actions preserve the action trivially. This completes the proof of Lemma 3.2.11.3.2.3 Read Correctness for Read and Write GraphsIn this section, we present read correctness for Read and Write graphs. The followinglemma is read correctness for Read graphs 1 and 2. It expresses the fact that while thesegraphs are running, if a disk has been read then the hist value for that disk is stored in thecorresponding ValueRead [] variable.Lemma 3.2.12 Read Correctness for Read GraphsFor all states s of RAID, if s:runningg = True, for g 2 f1; 2g,then s:Graphg:RdDone[i] =) s:Di:hist = s:Graphg:ValueRead[i],Proof. We prove the Lemma by induction.In any initial state of RAID, s0, Graphg:executing = False. Therefore s0:runningg = Falseand the Lemma is true vacuously in any initial state.Let (s; �; s0) be a transition of RAID. We show that all actions � preserve the invariant.Case: � = Graphg:RdBacki(v), for g 2 f1; 2gIn this case s0:runningg = True for g 2 f1; 2g. The precondition of this action (in disk Di)includes: s:Di:failed = False and v = s:Di:block . We also have that s0:Di:failed = False.This action sets ValueRead [i] to v and RdDone[i] to True.52

This implies that:s0:Graphg:RdDone[i] =) s0:Di:block = s0:Graphg:ValueRead [i]:Since s0:Di:toBeWritten = False, s0:Di:block = s0:Di:hist , by Lemma 3.2.3. Therefore,s0:Graphg:RdDone[i] =) s0:Di:hist = s0:Graphg:ValueRead [i]:Thus this action preserves the invariant.All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.12.The following lemma is an additional read correctness condition for Graph 2. It expressesthe fact that when a disk has failed and the XOR operation has been performed duringthe execution of Graph 2, then the V B value of that disk is stored in the correspondingValueRead [] variable.Lemma 3.2.13 Additional Read Correctness for Read Graph 2For all states s of RAID, if (s:running2 = True) and (s:Graph2:XorDone)then for all i such that (0 � i < n),if :s:Di:failed, then s:Di:block = s:Graph2:ValueRead[i], andif s:Di:failed, then s:V B(i) = s:Graph2:ValueRead[i].Proof. We prove the Lemma by induction. In an initial state of RAID, s0,s0:running2 = False. Therefore the Lemma is true vacuously in any initial state of RAID.Let (s; �; s0) be a transition of RAID. We show that all actions � of RAID preserve theinvariant. All actions preserve the invariant trivially except XOR.Case: � = XORThe precondition of this action (in Graph2) includes:8i((i 6=failure)^(0�i�n));RdDone[i] = True 53

By Lemma 3.2.12, we have8i((i 6=failure)^(0�i�n)); s:Di:hist = s:Graph2:ValueRead [i]:By Lemma 3.2.3, for all i such that 0 � i < n, s:Di:block = s:Di:hist . Therefore:8i((i 6=failure)^(0�i<n)); s:Di:block = s:Graph2:ValueRead [i]:Note that the action does not change any of the above variables.This action changes the value of ValueRead [failure] as follows:s0:Graph2:ValueRead [failure] = M(i 6=failure) s:Graph2:ValueRead [i]= M(i 6=failure) s:Di:block= M(i 6=failure) s0:Di:block= s0:V B(failure)The action also sets the value of Graph2:XorDone to True.Therefore this action preserves the invariant. This completes the proof of Lemma 3.2.13.The third lemma is the read correctness condition for Write graphs 3 and 4. It expressesthe fact that when these graphs read a disk, they store the init value of that disk in theircorresponding ValueRead []variable.Lemma 3.2.14 Read Correctness for Write GraphsFor all states s of RAID, if s:runningg = True for g 2 f3; 4g,then for all i such that (0 � i � n),s:Graphg:RdDone[i] =) s:Graphg:ValueRead[i] = s:Di:init.Proof. We prove the invariant by induction. In any initial state s0 of RAID,s0:runningg = False for g 2 f3; 4g. Therefore the invariant is true vacuously in any stateof RAID. 54

Let (s; �; s0) be a transition of RAID. We show that all actions of RAID preserve theinvariant.Case: � = Graphg:RdBacki(v), for g 2 f3; 4gThis action sets s:Graphg:RdDone[i] to True. It also sets s:Graphg:ValueRead [i] to v, whichis equal to s:Di:block.SubCase: g = 3A trivial proof by induction can be used to show that in a state in which the actionRdBacki(v)occurs, s:Graphg:RdDone[i] = False. Therefore by Lemma 3.2.6, s:Di:block =s:Di:init . Thus s0:Graph3:ValueRead [i] = s0:Di:init. Therefore this action preserves theinvariant.SubCase: g = 4A proof by induction can be used to show that when the action RdBacki(v) is enabledand s:running4 = True, i is such that :s:Controller:UD[i]. The precondition of action� includes :s:Di:failed , which implies by Lemma 3.2.4 that s:Di:init 6= unde�ned. So byLemma 3.2.7, s:Di:init = s:Di:block . Thus s0:Graph4:ValueRead [i] = s0:Di:init . Thereforethis action preserves the invariant.All other actions preserves the invariant trivially. This completes the proof of Lemma 3.2.14.3.2.4 Write Correctness for Write GraphsIn this section, we present write correctness for Write graphs. The following lemma expresseswrite correctness for Write graphs in the absence of failures.Lemma 3.2.15 Write Correctness for Write Graphs - No FailuresFor all states s of RAID, if s:runningg = True for g 2 f3; :::;6g,if i is such that (s:Graphg:UD [i])^ (:s:Di:failed),then s:Graphg:WrExecuted[i] =) s:Di:block = s:Graphg:Data[i].Proof. We prove the Lemma by induction. In any initial state s0 of RAID, s:runningg =False. Therefore the Lemma is true vacuously in any initial state.55

Let (s; �; s0) be a transition of RAID. We argue that all actions � preserve the invariant.Case: � = WRi(v)The precondition of this action in all graphs g in f 3, ... , 6 g includes:s:Graphg:UD [i] = True and v = s:Graphg:Data[i].In Graphg, this action sets Graphg:WrExecuted [i] to True. In disk Di, this action sets thevariable Di:block to v, if :s:Di:failed .Therefore this action preserves the invariant.All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.15.The second property for the write correctness of Write graphs is presented in the followingsection as part of the lemma concerning consistency.3.2.5 Consistency InvariantsIn this section, we present four invariants that express formally the second component ofthe consistency property, in di�erent states of the system. Invariants 2, 3 and 4 are used inthe proof of the General Consistency property (Lemma 3.2.17). Invariant 1 is used in theproof of Invariants 3 and 4.The �fth invariant presented in this section is the second write correctness property. It hasbeen included in this section so that it can be proved simultaneously with the others.This section may be skipped at �rst reading, since none of these invariants is directly usedin the proof of correctness of RAID.We present all �ve invariants as di�erent components of one lemma to simplify their proofs.We prove them by induction and simultaneously.We now describe the �rst four invariants. These are concerned with the second componentof consistency, which is an equality between the Virtual Block value and the hist value ofa disk that is not to be written and for which the Virtual Block is de�ned. Each invariantcovers a di�erent set of states. 56

Invariant 1 expresses the second component of the consistency property for the initial statesof the execution of Write graphs 3 and 4. The property is captured by using the VirtualInit variable. Invariant 2 expresses the property for all states in which no Write graph isrunning. Invariant 3 expresses the property for states in which the action WriteDoneg isenabled for g 2 f3; :::;5g. Finally, Invariant 4 expresses the property for states in which theaction FailedGraphg is enabled for g 2 f3; :::;5g.Note that none of these invariants is concerned with Write graph 6. This is because, thisgraph runs only when the parity disk has failed. Therefore at the end of its execution,there are no disks for which the Virtual Block is de�ned and thus the second component ofconsistency is satis�ed vacuously.Lemma 3.2.16 InvariantsFor all states s of RAID, the following holds:1. If s:runningg = True, for g 2 f3; 4g, for all i such that :s:Di:toBeWritten,if s:De�nedVI(i) then s:V I(i) = s:Di:hist.2. If s:runningg = False for g 2 f3; :::;6g,for all i such that :s:Di:toBeWrittenif s:De�nedVB(i) then s:V B(i) = s:Di:hist.3. If s:runningg = True for g 2 f3; :::;5g,if i is such that (:s:Di:toBeWritten) ^ (s:De�nedVB(i))^(8j((j=n)_(s:Graphg:UD[j])); (s:Graphg:WrExecuted[j])then s:V B(i) = s:Di:hist.4. If the action FailedGraphg for g 2 f3; :::;6g, is enabled in s, then:if i is such that (:s:Di:toBeWritten) ^ (s:De�nedVB(i)) then:s:V B(i) = s:Di:hist.If s:runningg = True for g 2 f3; :::;5g,if i is such that (s:Graphg:UD [i])^ s:De�nedVB(i)then 8j(j=n)_(s:Graphg:UD [j]^(j 6=i)); (s:Graphg:WrExecuted[j] = True) =)s:V B(i) = s:Graphg:Data[i]:57

Proof. We prove the invariant by induction. Let s be an initial state of RAID. We havethat s:runningg = False for all g. Therefore Invariants 1, 3 and 4 are satis�ed vacuously inany initial state of RAID.We have that for all i, :s:Di:failed and Li s:Di:block = 0. Therefore for all i, it is truethat s:De�nedVB(i). Furthermore s:V B(i) = s:Di:block = s:Di:hist . Therefore Invariant 2is satis�ed as well in any initial state of RAID.Let (s; �; s0) be a transition of RAID. We prove that all transitions of RAID preserve theinvariant.Case : � = WriteExecuteg(D; V ; F), g 2 f3; 4gInvariants 2, 3, 4 and 5 are preserved trivially with this action. We show that Invariant 1is preserved as well.Assume that i is such that :s0:Di:toBeWritten and s0:De�nedVI(i). For all j 6= i, action� has the e�ect of assigning the value of s:Dj:block to s:Dj:init, if :s:Dj :failed. Since forall j, j 6= i, s0:Dj:init 6= unde�ned, then for all j 6= i, :s:Dj:failed . Therefore for all j 6= i,:s0:Dj:failed and thus s0:De�nedVB(i).We have that s:runningg = False for g 2 f3; :::;6g. Therefore by Invariant 2, s:V B(i) =s:Di:hist .Thus s0:V B(i) = s0:Di:hist . And since s0:V I(i) = s0:V B(i), s0:V I(i) = s0:Di:hist .Therefore action � preserves Invariant 1 and the entire invariant.Case: � = ReadDoneg(V), or FailedGraphg for g 2 f1; 2gInvariants 1, 3, 4 and 5 are preserved trivially by action �. We prove that � also preservesInvariant 2.Let i be such that :s:Di:toBeWritten and s:De�nedVB(i).First assume that :s:Di:failed . In this case, action � has the e�ect of assigning thevalue of s:Di:block to s:Di:hist. By Lemma 3.2.3, s:Di:block = s:Di:hist . Therefores0:Di:hist = s:Di:hist . Since the value of s:V B(i) does not change with action �, ands:V B(i) = s:Di:hist , by the inductive hypothesis, we have: s0:V B(i) = s0:Di:hist .Now assume that s:Di:failed . In this case, action � does not assign any value to s:Di:hist.Therefore s0:V B(i) = s0:Di:hist. 58

Thus � preserves the invariant.Case : � = WriteDonegInvariants 1, 3, 4 and 5 are preserved trivially by action �. We prove that � also preservesInvariant 2.If g = 6, then s0:Dn:failed and s0:De�nedVB(i) = False for all i such that i 6= n. ThereforeInvariant 2 is preserved vacuously in this case.Now we consider the case where g 2 f3; :::;5g. Action WriteDoneg has the e�ect of settings:Di:toBeWritten to False, for all i such that (0 � i < n).First assume that i is such that :s:Controller:UD[i], s:De�nedVB(i) and :s:Di:failed.This implies that :s:Di:toBeWritten , by Lemma 3.2.1. The precondition of WriteDonegincludes: 8i(i=n)_(UD[i]); s:Graphg:WrDone[i] = True;which implies by a trivial proof by induction that:8i(i=n)_(UD[i]); s:Graphg:WrExecuted [i] = True:This implies, by Invariant 3, that s:V B(i) = s:Di:hist .The action WriteDoneg has the e�ect of assigning the value of s:Di:block to s:Di:hist.Since :s:Di:toBeWritten , s:Di:block = s:Di:hist , by Lemma 3.2.3. Therefore, s0:V B(i) =s0:Di:hist . Thus Invariant 2 is preserved in this case.Now assume that i is such that s:Controller:UD[i], s:De�nedVB(i), and :s:Di:failed . Ac-tion WriteDoneg has the e�ect of writing the value of s:Di:Block to s:Di:Hist. Again wehave that: 8i(i=n)_(UD[i]); s:Graphg:WrExecuted [i] = True:Thus by Invariant 5, s:V B(i) = s:Graphg:Data[i]. By Lemma 3.2.15, we have s:Di:block =s:Graphg:Data[i]. Therefore s:V B(i) = s:Di:block . So s0:V B(i) = s0:Di:hist. Thus action� preserves Invariant 2 in this case as well.Finally, assume that i is such that s:De�nedVB(i), and s:Di:failed . In this case, action �assigns the value of s:V B(i) to s:Di:hist. Therefore s0:V B(i) = s0:Di:hist. Thus action �59

preserves Invariant 2 in this case as well.Case: � = FailedGraphg for g 2 f3; :::;6gAction � preserves Invariants 1, 3, 4 and 5 trivially. We show that it also preserves Invariant2.If g = 5, then there does not exist an i such that :s:Controller:UD[i]. Therefore theredoes not exist an i such that :s:Di:toBeWritten. Thus there does not exist an i such that:s0:Di:toBeWritten . Therefore Invariant 2 is preserved vacously in this case.If g = 6, then s0:Dn:failed and s0:De�nedVB(i) = False for all i such that i 6= n. ThereforeInvariant 2 is preserved vacuously in this case as well.If g 2 f3; 4g, assume that i is such that :s:Di:toBeWritten and s:De�nedVB(i).Assume further that :s:Di:failed . By invariant 4, s:V B(i) = s:Di:hist. This action hasthe e�ect of assigning the value of s:Di:block to s:Di:hist. By Lemma 3.2.3, s:Di:block =s:Di:hist . Therefore, since s:V B(i) = s0:V B(i), we have s0:V B(i) = s0:Di:hist . ThusInvariant 2 is preserved in this case.Assume now that s:Di:failed . In this case, action � assigns the value of s:V B(i) to s:Di:hist.Therefore s0:V B(i) = s0:Di:hist . Thus action � preserves Invariant 2 in this case as well.Therefore action � preserves the entire invariant.Case : � = Graph3:WRj(v)Action � preserves Invariants 1, 2 and 4 trivially. We �rst show that it also preservesInvariant 3 and then show that it also preserves Invariant 5.Assume that there exists an i such that (:s:Di:toBeWritten) ^ (s:De�nedVB(i)). Thisimplies that for all j such that j 6= i, :s:Dj :failed .Assume further that this action causes the following to be true:8j((j=n)_(s:Graph3:UD [j])); (s0:Graph3:WrExecuted [j] = True):Then by Lemma 3.2.15,8j(s:Graph3:UD[j]); s0:Dj:block = s0:Graph3:Data[j]:60

Also by Lemma 3.2.3,8j(:s:Graph3:UD [j])^(j 6=i); s0:Dj:block = s0:Dj:hist :By Lemma 3.2.9,s0:Dn:block = (MUD[j](s0:Graph3:ValueRead [j]�s0:Graph3:Data[j]))�s0:Graph3:ValueRead [n]and, 8j(j=n)_(s0:Graph3:UD [j]); s0:Graph3:RdDone[j] = TrueThe above equation together with Lemma 3.2.14 imply that:8j(j=n)_(s0:Graph3 :UD[j]); s0:Graph3:ValueRead [j] = s0:Dj:init:We have: s0:V B(i) = M(j 6=i) s0:Dj:block= MUD[j] s0:Dj:block� M(j 6=i)^(:UD [j]) s0:Dj:block�s0:Dn:block= MUD[j] s0:Graph3:Data[j]� M(j 6=i)^(:UD [j]) s0:Dj:histMUD[j] s0:Graph3:ValueRead [j]� MUD[j] s0:Graph3:Data[j]�s0:Graph3:ValueRead [n]= M(j 6=i)^(:UD [j]) s0:Dj:hist61

MUD[j] s0:Dj:init�s0:Dn:init= M(j 6=i)^(:UD [j]) s0:Dj:initMUD[j] s0:Dj:init�s0:Dn:initSince for all j such that j 6= i, :s0:Dj:failed, we have by Lemma 3.2.4, s0:Dj:init 6= unde�ned.Using this fact we derive the last equality above using Lemma 3.2.5.Since s:De�nedVI(i), we have s0:V I(i) = s0:Di:hist , by Invariant 1. So s0:V B(i) = s0:Di:hist.Therefore this action preserves Invariant 3. We now show that action � also presevesInvariant 5.Assume that there exists an i such that (s:Graph3:UD [i])^s:De�nedVB(i). Assume furtherthat this action causes the following to be true:8j((j=n)_(s:Graph3:UD[j]^(j 6=i))); (s0:Graph3:WrExecuted [j] = True):Then by Lemma 3.2.15,8j(UD [j]^(j 6=i)); s0:Dj:block = s0:Graph3:Data[j]:Also by Lemma 3.2.3, 8j(:UD [j]); s0:Dj:block = s0:Dj:hist :By Lemma 3.2.9,s0:Dn:block = (MUD[j](s0:Graph3:ValueRead [j]�s0:Graph3:Data[j]))�s0:Graph3:ValueRead [n]and, 8j(j=n)_(s0:Graph3:UD [j]); s0:Graph3:RdDone[j] = True62

The above equation together with Lemma 3.2.14 imply that:8j(j=n)_(s0:Graph3:UD [j]); s0:Graph3:ValueRead [j] = s0:Di:init:We have: s0:V B(i) = M(j 6=i) s0:Dj:block= M(j 6=i)^UD[j] s0:Dj:block� M(:UD[j]) s0:Dj:block�s0:Dn:block= M(j 6=i)^UD[j] s0:Graph3:Data[j]� M(:UD[j]) s0:Dj:hist� MUD[j] s0:Graph3:ValueRead [j]� MUD[j] s0:Graph3:Data[j]�s0:Graph3:ValueRead [n]= s0:Graph3:Data[i]� MUD[j] s0:Dj:init� M(:UD[j]) s0:Dj:hist�s0:Dn:init= s0:Graph3:Data[i]� MUD[j] s0:Dj:init� M(:UD[j]) s0:Dj:init�s0:Dn:init63

Note for all j 6= i, :s0:Dj:failed . Therefore by Lemma 3.2.4, s0:Dj:init 6= unde�ned. Usingthis fact and Lemma 3.2.5, we derived the last equality above. Also s0:Graph3:RdDone[i] =True. Therefore s0:Di:init 6= unde�ned.Let j be such that :s0:Graph3:UD [j]. So by Lemma 3.2.1, we have :s0:Dj:toBeWritten.We have that s0:De�nedVI(j) = True. Thus by Invariant 1, s0:V I(j) = s0:Dj:hist . ByLemma 3.2.5, s0:Dj:hist = s0:Dj:init . So s0:V I(j) = s0:Dj:init .Thus (LUD[j] s0:Dj:init)� (L(:UD [j]) s0:Dj:init)� s0:Dn:init = 0. Therefore we have:s0:V B(i) = s:Graph3:Data[i]:Thus this action preserves Invariant 5 and the entire invariant.Case: � = Graph4:WRj(v)Action � preserves Invariants 1, 2 and 4 trivially. We �rst show that it also preservesInvariant 3, and then show that it also preserves Invariant 5.Assume that there exists an i such that (:s:Di:toBeWritten) ^ (s:De�nedVB(i)). Thisimplies that for all j such that j 6= i, :s:Dj :failed . Assume further that this action causesthe following to be true:8j((j=n)_(s:Graph4:UD [j])); (s0:Graph4:WrExecuted [j] = True):Then by Lemma 3.2.15,8j(s:Graph4:UD[j]); s0:Dj:block = s0:Graph4:Data[j]:By Lemma 3.2.10,s0:Dn:block = (MUD[j] s0:Graph4:Data[j])� (M(:UD[j]) s0:Graph4:ValueRead [j]);and, 8j(:UD [j])s0:Graph4:RdDone[j] = True:64

The above equation together with Lemma 3.2.14 imply,8j(:UD [j])s0:Graph4:ValueRead [j] = s0:Dj:init :And by Lemma 3.2.3, 8j(:UD [j])^(j 6=i)s0:Dj:hist = s0:Dj:block:We use the above equations in the equalities below:s0:V B(i) = M(j 6=i) s0:Dj:block= MUD [j] s0:Dj:block� M(j 6=i)^(:UD [j]) s0:Dj:block�s0:Dn:block= MUD [j] s0:Graph4:Data[i]� M(j 6=i)^(:UD [j]) s0:Dj:hist� MUD [j] s0:Graph4:Data[j]� M(:UD [j]) s0:Graph4:ValueRead [j]= M(j 6=i)^(:UD [j]) s0:Dj:hist� M(:UD [j]) s0:Dj:initSince for all j such that :UD [j], s0:Graph4:RdDone[j] = True, then s0:Dj:init 6= unde�ned,by Lemma 3.2.4. Therefore for all j such that :UD [j], s0:Dj:init = s0:Dj:hist , by Lemma 3.2.5.Therefore s0:V B(i) = s0:Di:hist . Thus this action preserves Invariant 3. We now show thatit also preserves Invariant 5.Assume that there exists an i such that (s:Graph4:UD [i])^s:De�nedVB(i). Assume further65

that this action causes the following to be true:8j((j=n)_(s:Graph4:UD[j]^(j 6=i))); (s0:Graph4:WrExecuted [j] = True):Then by Lemma 3.2.15,8j(s:Graph4 :UD[j]^(j 6=i)); s0:Dj:block = s0:Graph4:Data[j]:By Lemma 3.2.10,s0:Dn:block = (MUD[j] s0:Graph4:Data[j])� (M(:UD[j]) s0:Graph4:ValueRead [j]);and, 8j(:s0 :Graph4:UD [j])s0:Graph4:RdDone[j] = True:The above equation together with Lemma 3.2.14 imply,8j(:UD [j])s0:Graph4:ValueRead [j] = s0:Dj:init :And by Lemma 3.2.3, 8j(:UD [j])s0:Dj:hist = s0:Dj:block :We use the above equations in the equalities below:s0:V B(i) = M(j 6=i) s0:Dj:block= M(j 6=i)^UD [j] s0:Dj:block� M(:UD [j]) s0:Dj:block�s0:Dn:block= M(j 6=i)^UD [j] s0:Graph4:Data[j]� M(:UD [j]) s0:Dj:blockM(UD [j]) s0:Graph4:Data[j]66

� M(:UD [j]) s0:Graph4:ValueRead [j]= s0:Graph4:Data[i]� M(:UD [j]) s0:Dj:hist� M(:UD [j]) s0:Dj:init= s0:Graph4:Data[i]� M(:UD [j]) s0:Dj:init� M(:UD [j]) s0:Dj:init= s0:Graph4:Data[i]The second two last equality is derived using Lemmas 3.2.4 and 3.2.5. Therefore this actionpreserves Invariant 5 and the entire invariant.Case: � = Graph5:WRj(v)Action � preserves Invariants 1, 2, 3 and 4 trivially. We show that it also preserves Invariant5.Assume that there exists an i such that (s:Graph5:UD [i]) ^ (s:De�nedVB(i)). Assumefurther that this action causes the following to be true:8j((j=n)_(s:Graph5:UD[j]^(j 6=i))); (s0:Graph5:WrExecuted [j] = True):Then by Lemma 3.2.15,8j(s:Graph5 :UD[j]^(j 6=i)); s0:Dj:block = s0:Graph5:Data[j]:By Lemma 3.2.11, s0:Dn:block = MUD[j] s0:Graph5:Data[j]:We have s0:V B(i) = M(j 6=i) s0:Dj:block67

= M(j 6=i)^UD [j] s0:Dj:block�s0:Dn:block= M(j 6=i)^UD [j] s0:Dj:block� MUD[j] s0:Graph5:Data[j]= M(j 6=i)^UD [j] s0:Graph5:Data[j]� MUD[j] s0:Graph5:Data[j]= s0:Graph5:Data[i]:Therefore this action preserves Invariant 5 and the entire invariant.Case: � = Graph3:RwFailiAction � preserves Invariants 1, 2, 3 and 5 trivially. We show that it also preserves Invari-ant 4.This action sets the variable Graph3:failureInExecution to True. Thus the action FailedGraph3is enabled in s0. It can be shown that when the action Graph3:RwFaili occurs, i is suchthat (UD [i] or i = n) and s0:Di:failed . Therefore for all j such that (:s0:Graph3:UD [j]) wehave (:s:De�nedVB(j)). Thus the invariant holds vacuously in s0 and � preserves Invariant4.Case: � = Graph4:RwFailiAction � preserves Invariants 1, 2, 3 and 5 trivially. We show that it also preserves Invari-ant 4.This action sets the variable Graph4:failureInExecution to True. Thus FailedGraph4is enabled in s0. If i is such that s0:Graph4:UD [i] or i = n, then for all j such that:s0:Graph4:UD [j] we have :s:De�nedVB(j). Therefore Invariant 4 is preserved vacuouslyin this case.If i is such that :s0:Graph4:UD [i], then it can be shown that s0:Graph4:RdDone[i] =False. Also we have by Lemma 3.2.1, that :s0:Di:toBeWritten . Thus by Lemma 3.2.8,8j; s0:Graph4:WrExecuted [j] = False.Since s0:Di:failed , we have that 8j(j 6=i);:s0:Dj:failed .68

Thus by Lemma 3.2.4, 8j(j 6=i); s0:Dj:init 6= unde�ned.Therefore by Lemma 3.2.7, 8j(j 6=i); s0:Dj:init = s0:Dj:block .So s0:V B(i) = s0:V I(i). Thus by Invariant 1, s0:V B(i) = s0:Di:hist. Therefore action �preserves Invariant 4 and the entire invariant.Case: � = Graph5:RwFailiAction � preserves Invariants 1, 2, 3 and 5 trivially. We show that it also preserves Invari-ant 4.We have s:running5 = True. Thus, there does not exist an i such that (:s0:Graph5:UD [i]).Therefore this action preserves Invariant 4 and the entire invariant.Case: � = Graph6:RwFailiAction � preserves Invariants 1, 2, 3 and 5 trivially. We show that it also preserves Invari-ant 4.We have s:running6 = True. Thus, there does not exist an i such that (i 6= n) ands0:De�nedVB(i). Therefore this action preserves Invariant 4 and the entire invariant.All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.16.3.2.6 Properties Used in the Proof of Correctness of RAIDIn this section, we present the properties used directly in the proof of correctness of RAID.The �rst property is the General Consistency property. It expresses the fact that at theend of the successful or unsuccessful execution of a graph, the block value of a non-faileddisk that is not to be written is equal to its hist value, and that the V B value of a disk notto be written is equal to its hist value, if the VB value is de�ned.Lemma 3.2.17 General ConsistencyFor all states s of RAID, if the action ReadDoneg(V), WriteDoneg or FailedGraphg isenabled in s, then:For all i such that :s:Di:toBeWritten:1. If (:s:Di:failed) then s:Di:block = s:Di:hist.2. If s:De�nedVB(i) then s:V B(i) = s:Di:hist.69

Proof. Let s a state of RAID. Assume that the action ReadDoneg(V), WriteDoneg orFailedGraphg is enabled in s. Then by Lemma 3.2.3,for all i such that :s:Di:toBeWritten :if (:s:Di:failed) then s:Di:block = s:Di:hist .If the action ReadDoneg(V) is enabled in s, s:runningg = True, for g 2 f1; 2g. Thens:runningg = False for g 2 f3; :::;6g. And by Invariant 2 of Lemma 3.2.16,for all i such that :s:Di:toBeWrittenif s:De�nedVB(i) then s:V B(i) = s:Di:hist.Now assume that the action WriteDoneg is enabled in s, for g 2 f3; 4g. Then s:runningg =True for g 2 f3; 4g. The precondition of both actions includes:8i(i=n)_(s:Graphg:UD [i]); s:Graphg:WrDone[i] = True:A trivial proof by induction can be used to show that8i(i=n)_(s:Graphg:UD [i]); s:Graphg:WrExecuted [i] = True:For all i such that (:s:Di:toBeWritten), we have that, by Invariant 3 of Lemma 3.2.16:if (s:De�nedVB(i)) then s:V B(i) = s:Di:hist .Assume that the actionWriteDone5 is enabled in s. In this case for all i such that (0 � i <n), s:Graph5:UD [i] = True. Thus there does not exist an i such that (:s:Di:toBeWritten).Therefore the invariant is satis�ed vacuously for this action.Assume that the action WriteDone6 is enabled in s. Graph6 executes when Dn:failed.Therefore there does not exist an i such that s:De�nedVB(i). Thus the invariant is satis�edtrivially for this action.Assume the action FailedGraphg is enabled in s, for g 2 f1; 2g. By Invariant 2 ofLemma 3.2.16, for all i such that (:s:Di:toBeWritten),if (s:De�nedVB(i)) then s:V B(i) = s:Di:hist . Therefore this action preserves the invariant.70

Finally assume that FailedGraphg is enabled in s, for g 2 f3; :::;6g. By Invariant 4 ofLemma 3.2.16, for all i such that (:s:Di:toBeWritten),if (s:De�nedVB(i)) then s:V B(i) = s:Di:hist .Therefore this action preserves the invariant.This completes the proof of Lemma 3.2.17.The next lemma expresses the general read correctness condition for read graphs. It phrasesLemmas 3.2.12 and 3.2.13 in a way that makes these properties easy to use in the proof ofcorrectness of RAID.Lemma 3.2.18 General Read Correctness for Read GraphsFor all states s of RAID, if the action ReadDoneg(V) for g 2 f1; 2g is enabled in s, then:8is:Controller:UD [i]; s:Di:hist = s:Graphg:ValueRead[i].Proof. Let s a state of RAID. Assume that the action ReadDoneg(V) is enabled in s forg 2 f1; 2g. Then s:runningg = True. The precondition of action ReadDone1 (V) includes:8is:Graph1:UD [i]; s:Graph1:RdDone[i] = True:Then by Lemma 3.2.12:s:Di:hist = s:Graph1:ValueRead [i].The precondition of ReadDone2 (V) includes: s:Graph2:XorDone = True. Assume i is suchthat (s:Controller:UD[i])^ (:s:Di:failed). Then by Lemma 3.2.13,s:Di:block = s:Graph2:ValueRead [i]. Since :s:Di:toBeWritten , s:Di:block = s:Di:hist , byLemma 3.2.3. Thus s:Di:hist = s:Graph2:ValueRead [i].Now assume i is such that (s:Controller:UD[i]) ^ (s:Di:failed). Then by Lemma 3.2.13,s:V B(i) = s:Graph2:ValueRead [i]. Since :s:Di:toBeWritten and s:De�nedVB(i), Invariant2 of Lemma 3.2.16 implies:s:V B(i) = s:Di:hist .Thus s:Di:hist = s:Graph2:ValueRead [i].This completes the proof of Lemma 3.2.18. 71

Finally, the next lemma expresses the general write correctness condition for Write graphs.It phrases Lemma 3.2.15 and Invariant 5 of Lemma 3.2.16 in a way that makes theseproperties easy to use in the proof of correctness of RAID.Lemma 3.2.19 General Write Correctness for Write GraphsFor all states s of RAID, if the action WriteDoneg for g 2 f3; :::;6g is enabled in s, then:For all i such that s:Controller:UD[i],if :s:Di:failed, then s:Graphg:Data[i] = s:Di:blockelse s:Graphg:Data[i] = s:V B(i).Proof. Let s be a state of RAID. Assume that the action WriteDoneg is enabled in s.Then s:runningg = True. Assume i is such that (s:Controller:UD[i])^ (:s:Di:failed).The precondition of action WriteDoneg includes:8i(s:Controller:UD [i]); s:Graphg:WrDone[i] = True:A trivial proof by induction can be used to show that this implies the following:8i(s:Controller:UD [i]); s:Graphg:WrExecuted [i] = True:Thus by Lemma 3.2.15,8i(s:Controller:UD [i]); s:Di:block = s:Graphg:Data[i]:Now assume that i is such that (s:Controller:UD[i]) ^ (s:Di:failed). In s the actionWriteDone6 cannot be enabled because Graph6 executes only when disk Dn has failed.Thus we consider only graphs 3 through 5 in this case.The precondition of action WriteDoneg for g 2 f3; :::;5g includes:8j(j=n)_(s:Graphg :UD[j]^(j 6=i)); s:Graphg:WrDone[j] = True;which implies: 8j(j=n)_(s:Graphg :UD[j]^(j 6=i)); s:Graphg:WrExecuted [j] = True:72

Therefore by Invariant 5 of Lemma 3.2.16,s:V B(i) = s:Graphg:Data[i]:This completes the proof of Lemma 3.2.19.3.3 Correctness ProofWe show that RAID implements Spec by proving that there exists an abstraction functionfrom the states of RAID to the states of Spec.Simulation Function Let s and u be reachable states of RAID and Spec respectivelyand let f be the following function.f(s; u) ,8i(0�i<n); s:Di:hist = u:Register[i]^(s:Controller:UD = u:UD)^(s:Controller:Data = u:Data)Theorem 3.3.1 f is a simulation function.Proof. Let s0 be a start state of RAID. The variable s0:UD is initialized to an array ofFalse. All initial states of Spec u0 are such that u0:UD is an array of False. Since theRegister variable of Spec can range over all of its possible values (the same holds for thevariable Data of Spec), there exists a start state u0 of Spec such that:8i(0�i<n); s0:Di:hist = u0:Register[i]; ands0:UD = u0:UD ; ands0:Data = u0:DataTherefore f(s0; u0) = True.Let s a state of RAID and let u a state of Spec such that f(s; u) = True. Let (s; �; s0) be atransition of RAID. We consider cases based on the type of actions performed by RAID.73

Case : � = Read(b1, b2)Let the corresponding execution fragment of Spec be Read(b1, b2). Let u0 the state of Specsuch that (u;Read(b1, b2); u0) is a transition of Spec . By the code it is immediate thats0:Controller:UD = u0:UD .The two actions do not change the value of variables Data in both automata. Therefores0:Controller:Data = u0:Data.f(s; u) implies that 8i(0�i<n); s:Di:hist = u:Register[i]:Action � does not change the variables hist and Register. Therefore,8i(0�i<n); s0:Di:hist = u0:Register[i]:Thus f(s0; u0) = True.Case : � = Write(b, Value)Let the corresponding execution fragment of Spec be Write(b, Value). Let u0 the state suchthat (u;Write(b, Value); u0) is a transition of Spec . A similar argument as above can beused to show that f(s0; u0) = True.Case : � = ReadDoneg(V)Let the corresponding execution fragment be Read. Let u0 the state such that (u;Read; u0)is a transition of Spec.ReadDoneg(V) does not change s:Controller:UD. Sos:Controller:UD = s0:Controller:UD:Similarly, u:UD = u0:UD :Since f(s; u) = True, s0:Controller:UD = u0:UD .74

We now show that s0:Controller:Data = u0:Data. f(s; u) = True implies that:8i(0�i<n); s:Di:hist = u:Register[i]: (3.1)Since action ReadDoneg(V) is enabled in s, we have by Lemma 3.2.18:8is:Controller:UD [i]; s:Di:hist = s:Graphg:ValueRead [i]:Since 8i0�i�; s:Graphg:ValueRead [i] = V [i], we have (by the e�ect of ReadDoneg(V) in theController automaton): 8is:controller:UD [i]; s:Di:hist = V [i]:Therefore by Equation 3.1:8is:Controller:UD [i]; V [i] = u:Register[i]:Thus by the code of actions ReadDoneg(V) and Read in Spec:8is0:Controller:UD [i]; s0:Controller:Data[i] = u0:Data[i]:We also have that 8i:s:Controller:UD [i], s0:Controller:Data[i] = u0:Data[i], since these valuesdo not change with the transitions ReadDoneg(V) and Read.Thus: 8i(0�i<n); s0:Controller:Data[i] = u0:Data[i]:We now prove that 8i(0�i<n)s0:Di:hist = u0:Register[i]. If i is such that :s:Di:failed , thenthe action ReadDoneg(V) assigns the value of s:Di:block to s:Di:hist. Since s:runningg forg 2 f1; 2g, we have that 8j; s:Dj:toBeWritten = False. Thus by Lemma 3.2.17, s:Di:block =s:Di:hist .Therefore by Equation 3.1, s0:Di:hist = u0:Register[i].If i is such that s:Di:failed , then s:De�nedVB(i) = True and action ReadDoneg(V) assignsthe value of s:V B(i) to s:Di:hist . Also by Lemma 3.2.17 s:V B(i) = s:Di:hist. Therefore75

by Equation 3.1, s0:Di:hist = u0:Register[i]. Thus8i(0�i<n)s0:Di:hist = u0:Register[i]:Therefore f(s0; u0) = True.Case : � = WriteDonegLet the corresponding execution of Spec be Write. Let u0 the state such that (u;Write; u0)is a transition of Spec. WriteDoneg does not change s:Controller:UD or s:Controller:Data.So s0:Controller:UD = s:Controller:UDand s0:Controller:Data = s:Controller:Data:Similarly, u0:UD = u:UDand u0:Data = u:Data:Since f(s; u) = True, s0:Controller:UD = u0:UDand s0:Controller:Data = u0:Data:We now show that 8i(0�i<n); s0:Di:hist = u0:Register [i].Assume i is such that :s:Controller:UD[i]. Then :s:Di:toBeWritten. Assume further that:s:Di:failed . Then by Lemma 3.2.17, s:Di:block = s:Di:hist . Since the action WriteDoneghas the e�ect of assigning s:Di:block to s:Di:hist , and s:Di:hist = u:Register[i] (by theinductive hypothesis):s0:Di:hist = u0:Register[i].Assume now that i is as above such that :s:Controller:UD[i], but that s:Di:failed . Againwe have :s:Di:toBeWritten . And since the Failer module produces at most one failure,76

we have s:De�nedVB(i). Then by Lemma 3.2.17, s:V B(i) = s:Di:hist. Since the actionWriteDoneg has the e�ect of assigning s:V B(i) to s:Di:hist, and s:Di:hist = u:Register[i](by the inductive hypothesis), we have:s0:Di:hist = u0:Register[i].Next assume that i is such that s:Controller:UD[i] and that:s:Di:failed . Then by Lemma 3.2.19,s:Graphg:Data[i] = s:Di:block .Thus s0:Di:block = u0:Register[i].Since the action WriteDoneg has the e�ect of assigning s:Di:block to s:Di:hist , we have:s0:Di:hist = u0:Register[i].Finally assume that i is such that s:Controller:UD[i], but that s:Di:failed. Then byLemma 3.2.19,s:Graphg:Data[i] = s:V B(i).Thus s0:V B(i) = u0:Register[i].Since the action WriteDoneg has the e�ect of assigning s:V B(i) to s:Di:hist , we have:s0:Di:hist = u0:Register[i].Therefore 8i(0�i<n); s0:Di:hist = u0:Register[i]. Thus f(s0; u0) = True.Case : � = FailedGraphgLet the corresponding execution fragment of Spec be no action. FailedGraphg does notchange s:Controller:UD or s:Controller:Data. Thus s0:Controller:UD = u:UDand s0:Controller:Data = u:Data.We now show that 8i(0�i<n)s0:Di:hist = u0:Register[i].Assume that i is such that s:Controller:UD[i] and :s:Di:failed. If g 2 f1; 2g, then thisaction has the e�ect of assigning s:Di:block to s:Di:hist . By Lemma 3.2.17 s:Di:block =s:Di:hist and s:Di:hist = u:Register[i]. Therefore, s0:Di:hist = u:Register[i].If g 62 f1; 2g, then action � has no e�ect on s:Di:hist . Therefore s0:Di:hist = u:Register[i].Next assume that i is such that s:Controller:UD[i] but that s:Di:failed . Then by Lemma 3.2.17,s:V B(i) = s:Di:hist . If g 2 f1; 2g, this action has the e�ect of assigning s:V B(i) to s:Di:hist,and since s:Di:hist = u:Register[i], we have :s0:Di:hist = u:Register [i]. Again, if g 62 f1; 2g, then action � has no e�ect on s:Di:hist.77

Next assume that i is such that :s:Controller:UD[i] and :s:Di:failed . Then by Lemma 3.2.17,s:Di:hist = s:Di:block . Since this action has the e�ect of assigning s:Di:block to s:Di:histand s:Di:hist = u:Register[i], we have:s0:Di:hist = u:Register [i].Finally, assume that i is such that :s:Controller:UD[i] but that s:Di:failed . Then byLemma 3.2.17, s:V B(i) = s:Di:hist .Since this action has the e�ect of assigning s:V B(i) to s:Di:hist, and s:Di:hist = u:Register[i],we have :s0:Di:hist = u:Register [i].Therefore 8i(0�i<0); s0:Di:hist = u:Register [i]. So f(s0; u) = True.Case : � = ReadBack(Value)Let the corresponding action of Spec be ReadBack(Value). Let u0 the state such that(u;ReadBack(Value); u0) is a transition of Spec. f(s; u) = True implies thats:Controller:Data = u:Data and s:Controller:UD = u:UD .So the two ReadBack(Value) actions output the same value. The two actions also leave thevariable Data unchanged and change UD in the same way. So f(s0; u0) = True.Case : � = WriteOKLet the corresponding action be WriteOK . Let u0 the state such that (u;WriteOK ; u0) is atransition of Spec. Both actions leave the variable Data unchanged and change the variableUD in the same way. So f(s0; u0) = True.All other actions preserve the simulation relation trivially. This completes the proof ofTheorem 3.3.1.
78

Chapter 4ExtensionsIn this chapter we consider some extensions to the algorithm studied in the previous sections.The �rst section presents an algorithm in which each disk has more than one block. Thisallows us to consider the RAID Level 5 architecture in its entirety. The second sectiondescribes an algorithm for another RAID architecture, the RAID Level 6, and shows howwe used our consistency property to �nd an error in this algorithm.4.1 Disks with More than One BlockIn the algorithm we considered in the previous sections, we modeled each disk as havingonly one block of data. Since the disk array is composed of n data disks, this implies that�les have a maximum length of n. One natural extension of the algorithm is to allow disksto have an unbounded number m of blocks.This extension allows us to represent the RAID Level 5 architecture in its entirety. TheRAID Level 5 architecture is block-interleaved with distributed parity. A �le is divided intoblocks that are placed on several disks and parity blocks are distributed in a left-symmetricfashion, meaning that they are located on a diagonal as shown in Figure 4-1. In this �gure,P0 is the parity covering blocks 0, 1 and 2; P1 is the parity block covering 3, 4 and 5, etc...In an architecture where there is a single parity disk, the parity disk is accessed every time79

0 1 2 P0

3 4 P1 5

6 P2 7 8

P3 9 10 11

DisksFigure 4-1: RAID Level 5 Architectureit needs to be updated. Distributing the parity relieves the load on that disk and also makesn+ 1 disks available for data. So this scheme improves the overall performance.We can represent the extension of having m blocks per disk in the following way. Weintroduce a new automaton HLController for High Level Controller that interfaces with theuser. For each parity group we instantiate a Controller and a set of graphs identical to theones we introduced before. Note that a parity group is a set of n data blocks together withthe parity block that covers them.The role ofHLController is to �nd out what parity groups are going to be used and determinewhat disks are in the UsedDisk set for each parity group. Then HLController passes thisinformation to each relevant Controller, along with the data to be written if any, and anindication of which disk has failed. Since the controllers do not share any data, they can runconcurrently. When the controllers �nish reading/writing their parity groups, they returnto HLController, that in turn gets back to the user.Note that this extension also allows us to have a system with more than one �le. In thiscase HLController must maintain information about where the blocks of a �le are, and dealwith issues of allocation.We can model HLController as an I/O Automaton. The algorithm is represented by thecomposition of this automaton with the controllers, graphs and disks automata. The proof of80

correctness for this algorithm is similar to the one we carried out before. Since the controllersdo not share any data, this new composition does not require any special consideration.4.2 Verifying Controller Algorithms for other RAID Archi-tecturesIn this section, we turn our attention to another RAID architecture: the RAID Level 6system [Gibson95], which is two-fault tolerant. The general controller algorithm is identicalto the one for RAID Level 5, i.e. after receiving and operation from the user, the controllerchooses a graph to execute based on the state of the disk array; if that graph fails then thecontroller discards that graph and chooses another one to complete the operation.The algorithm for the controller of the RAID Level 6 architecture di�ers from the algorithmwe considered previously in the set of graphs available, and the logic for choosing them. Wecan model the RAID Level 6 algorithm using I/O Automata. The disk automaton will beidentical to the one we used before, assuming we consider one block per disk again.One essential property of graphs of controller algorithms that use Courtright and Gibson'serror recovery method, is that they must satisfy General Consistency (Lemma 3.2.17). Thisproperty states that at the end of execution of a graph, all the disks Di that are not to bewritten, satisfy two conditions:1. If the disk has not failed, Di:block = Di:hist , and2. If V B(i) is de�ned, V B(i) = Di:hist .This property can be used for the RAID Level 6 architecture if we rede�ne the VB value.This value basically captures the architecture and the expression of the General Consistencyproperty is the same for all systems.
81

D1 D2 D3 D4 P QFigure 4-2: RAID Level 6 Architecture4.2.1 RAID Level 6: Architecture DetailsThe RAID Level 5 system has a parity block for every n blocks. This allows the system totolerate one disk failure. The RAID Level 6 system is an extension of RAID Level 5. It hastwo parity blocks per parity group and tolerates two failures. The �rst parity block (P) isidentical to the parity in RAID Level 5. It is computed by performing the XOR of all theblocks in that parity group. The second parity (Q) is computed using Reed-Solomon codes.Figure 4-2 presents the RAID Level 6 architecture.The graphs for RAID Level 6 are similar to the graphs for RAID Level 5. The controller canperform the Small Write and Reconstruct Write. In this case the graph must also updatethe second parity.4.2.2 RAID Level 6: New De�nition for V BFirst we must de�ne what it means for the V B value to be de�ned in this architecture. TheV B value of a disk Di is de�ned, i.e. De�nedVB = True, if and only if there is at most onefailure among all disks other than Di.For this system, the VB value of a disk is computed as follows. If no other disks have failed,we compute V B using P. If another data disk has failed, VB is computed using both P andQ. If P has failed we compute V B using Q. Finally, if Q has failed, we compute it using P.Note that, in the above explanation, we only present what data is needed to compute VBand we omit how to compute it. But this is enough for the purposes of applying the GeneralConsistency property. 82

XOR WR n

RD ud

RD ud

WR ud

WR ud

RD n

RD q Q WR qFigure 4-3: Small Write for RAID Level 6 - Non-recoverable Graph4.2.3 Error Found in a RAID Level 6 DAGWe found an error in the Small-Write graph for RAID Level 6, that appears in [Gibson95].This graph did not satisfy General Consistency and our property helped in �nding a coun-terexample. The graph is shown in Figure 4-3. It consists of reading the disks to be written,reading the old P and Q values, computing the new parities and writing the new data andparities.This graph does not satisfy the second condition of General Consistency. Consider the diskarray shown in Figure 4-2. Assume that disks D1 and D2 are in the UsedDisk set and thusare the disks to be written. Assume that the graph reads and writes disk D1. Then assumethat D2 fails before having been read. At this point the graph cannot complete successfullyand the disk array has been partially updated. Now if D4 fails, its V B value is di�erentfrom its hist value, since the block value of D1 has changed, but the block values of P andQ have not. Disk D4 is not to be written and its V B is di�erent from its hist at the end ofthe execution of the graph. Therefore this graph does not satisfy General Consistency.The Small Write graph appears in [Gibson95]. It seems to be the case that there does notexist a DAG that performs the Small Write operation, while satisfying the General Con-sistency property, using Courtright and Gibson's error recovery method. In a recent workGibson et al. have used a di�erent controller algorithm for the RAID Level 6 that does nothave this problem. This controller algorithm uses roll-away error recovery [Courtright96],rather than Courtright and Gibson's method [Courtright94].83

Chapter 5ConclusionsSummaryWe proved the correctness of a controller algorithm for the RAID Level 5 system. Weexpressed the algorithm and its speci�cation using I/O Automata and proved that thealgorithm satis�es its speci�cation by using the proof by simulation technique.We then presented two extensions of this study. The �rst one is having more than oneblock per disk. This extension allows us to represent the RAID Level 5 architecture in itsentirety. We did not show the proof of correctness for this extended algorithm, but it issimilar to the one we presented.The second extension is considering a controller algorithm for the RAID Level 6 system. Weused the formalization of our General Consistency property, to �nd an error in the SmallWrite DAG of a RAID Level 6 algorithm.Formal Methods and PracticeIt is useful to employ formal methods to validate RAID controller algorithms because thesealgorithms are di�cult to test and to reason about. When applied in early stages of design,formal methods can unveil errors that would be expensive to correct if they were propagated84

to implementation stages. However, practitioners generally do not use formal methods,because these are considered to be expensive. The time and e�ort required by hand-proofsor by proofs done with semi-automatic theorem provers, are considered to be prohibitivelyexpensive.Researchers have proposed that practitioners would use formal methods, if fully automatictools were available. These tools would have to be easy to learn and to use. One example isthe success of model checking in the hardware domain [Clarke94]. A model checker takes, asinput, the description of a system and a property to verify. Then it generates the state-spaceof the system and checks it exhaustively. It outputs true if the system satis�es the property,and false otherwise. In the latter case, the model checker also outputs a counterexample.Model checkers cannot be used directly in the software domain, because software systemsare not �nite state machines, and model checkers can only verify �nite state machines. Thisis the reason why researchers have been considering methods to combine theorem provingand model checking. However theorem provers augmented with model checking capabilitiesare semi-automatic tools that require the user to participate in the proof of correctness.Therefore, these tools would be considered expensive to use by practitioners.On the one hand, practitioners would rather have fully automatic tools, and on the other,theoreticians see the bene�ts of semi-automatic ones. In these tools, the designer is involvedin the proof of correctness, and can learn essential information about why the algorithmis correct. This information is very useful to the designer, for future design. The tradeo�for how much automation there should be in a veri�cation tool for software systems is notclear.A solution to this problem is to have \little" software veri�cation tools. From the pointof view of veri�cation, hardware systems can be seen as a subdomain of software systems,namely a hardware system is a software system that has only booleans as data structuresand that is �nite state. Just as model checking is suitable for the hardware domain, we coulddevelop fully automatic veri�cation tools for other restricted domains of software. Thesetools would be developed by restricting a software domain, and proving the correctness ofalgorithms in that domain. These proofs would reveal essential information about why thesealgorithms are correct and a veri�cation tool could be built based on it. This tool would be85

fully automatic and available to practitioners who would use the information without havingto perform the proofs again. Instead of having one general-purpose software veri�cation tool,designers would have many special purpose tools.Future WorkBased on the previous discussion, we plan to build a veri�cation tool for RAID controlleralgorithms that use Courtright and Gibson's error recovery method. This tool would takeas input a de�nition for the VB value of a disk and a DAG, and would determine if theDAG satis�es consistency. By proving correctness of the RAID Level 5 algorithm, we foundout why the algorithm is correct and formalized this information in the General Consistencyproperty. A fully automatic veri�cation tool for this property would allow designers to usethis information without having to perform the proof again.

86

Bibliography[Bitton88] D. Bitton and J. Gray, \Disk Shadowing," Proceedings of the 14th Conferenceon Very Large Data Bases, 1988, pp. 331{338.[Cao93] P. Cao, S. B. Lim, S. Venkataraman, and J. Wilkes, \The TickerTAIP parallelRAID architecture," Proceedings of the International Symposium on Computer Archi-tecture, 1993, pp. 52{63.[Clarke94] Clarke, E., Grumberg, O., and Long, D. \Model Checking". Proceedings of theInternational Summer School on Deductive Program Design. Marktoberdorf, Germany,July 26 - August 27 1994.[Courtright94] W. V. Courtright II and G. A. Gibson. \Backward error recovery in redun-dant disk arrays." Proceedings of the 20th International Conference for the ResourceManagement and Performance Evaluation of Enterprise Computing Systems (CMG).December 4{9 1994, pp. 63{74.[Courtright96] William V. Courtright II, "A Transactional Approach to Redundant DiskArray Implementation." Computer Science Technical Report, 1996, Carnegie MellonUniversity, 5000 Forbes Ave., Pittsburgh, PA 15213.[Gibson90] Garth Gibson. \Redundant Disk Arrays: Reliable, Parallel Secondary Storage".PhD thesis, University of California at Berkeley, 1990. Report UCB/CSD 91/613.[Gibson93] G. A. Gibson and D. A. Patterson, \Designing disk arrays for high data relia-bility", Journal of Parallel and Distributed Computing. 17(1-2), 1993, 4-27.87

[Gibson95] G. Gibson, W. Courtright II, M. Holland, and J. Zelenka, \RAIDframe: Rapidprototyping for disk arrays," Computer Science Technical Report CMU-CS-95-200,Carnegie Mellon University, 1995.[Gray90] G. Gray, B. Horst, and M. Walker, \Parity Striping of Disc Arrays: Low-CostReliable Storage with Acceptable Throughput," Proceedings of the Conference on VeryLarge Scale Data Bases, 1990, pp. 148{160.[Reddy89] A. L. Narasimha Reddy and Prithviraj Banerjee, \An evaluation of multiple-diskI/O systems." IEEE Transactions on Computers, Vol. 38, No. 12, December 1989, pp.1680{1690.[Kim86] M. Kim. \Synchronized Disk Interleaving". IEEE Transactions on Computers35(11), November 1986, pp 978-988.[Lamport83] Leslie Lamport. Specifying concurrent program modules. ACM Transactionson Programming Languages and Systems, 5(2):190{222, April 1983.[Lawlor81] F. D. Lawlor. \E�cient Mass Storage Parity Recovery Mechanism", IBM Tech-nical Disclosure Bulletin 24(2):986-987, July 1981.[Lynch87] N. Lynch and M. Tuttle. \Hierarchical correctness proofs for distributed algo-rithms." Technical report MIT/LCS/TR-387, MIT Laboratory for Computer Science,Cambridge, MA, April 1987.[Lynch89] N. Lynch and M. Tuttle. An Introduction to Input/Output Automata. CWI-Quaterly, 2(3): 219-246, September 1989. Centrum voor Wiskunde en Informatica,Amsterdam, The Netherlands.[Lynch95] Nancy Lynch and Frits Vaandrager. \Forward and Backward Simulations { PartI: Untimed Systems". Information and Computation, 121(2), pages 214-233, September1995.[Lynch96] Nancy A. Lynch, \Distributed Algorithms", Morgan Kaufmann Publishers, SanMateo, CA, 1996. 88

[Patterson88] David A. Patterson, Garth A. Gibson, and Randy Katz. \A Case for Re-dundant Arrays of Inexpensive Disks (RAID)". Proceedings SIGMOD InternationalConference on Data Management, 1988, pp. 109-116.[Patterson89] David A. Patterson, Peter Chen, Garth Gibson and Randy Katz. Introduc-tion to Redundant Arrays of Inexpensive Disks (RAID). Spring COMPCON'89 SanFransisco, CA, pp 112-17. IEEE, March 1989.[Park86] Arvin Park and K. Balasubramanian. \Providing Fault Tolerance in Parallel Sec-ondary Storage Systems". Technical Report CS-TR-057-86. Department of ComputerScience, Princeton University, November 1986.[Salem86] K. Salem and H. Garcia-Molina. \Disk Striping". Proceedings of the 2nd Inter-national Conference on Data Engineering, 1986, pp. 336{342.

89

