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Abstract

A RAID system is composed of two components: a disk array and a disk array controller.
The disk array is a collection of magnetic disks that can be accessed in parallel. The
controller’s function is to receive an operation from the user of the disk array, and to
carry out that operation by performing a set of actions on specific disks. The user has no
knowledge about the existence of a disk array and sees it as one large, logical disk with high
performance.

RAID systems have two main advantages over traditional secondary storage systems. First,
data on the disks can be accessed in parallel, which improves the I/O performance. Secondly,
disk arrays contain some form of redundancy which allows fault tolerance.

Many algorithms have been devised for the controller. These algorithms allow fine inter-
leavings between actions on the disks. As a consequence, their implementations are difficult
to test. This is the reason why it is useful to apply formal methods to validate these
algorithms.

An algorithm for the RAID Level 5 controller is considered. The algorithm and its spec-
ification are described using I/O automata and the simulation proof technique is used to
show that the algorithm implements its specification. The proof is written in such a way
that its main structure and invariants can be reused for the proof of correctness of controller
algorithms for other RAID architectures.

Thesis Supervisor: Nancy A. Lynch

Title: Cecil H. Green Professor of Computer Science and Engineering
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Chapter 1

Introduction

Improvements in semiconductor technology make possible faster microprocessors and larger
primary memory systems, making secondary storage systems the bottleneck of overall sys-
tem performance. As microprocessors get faster, the overall system improvement will not

be significant unless there is also an improvement in secondary storage systems.

The emergence of new applications such as video, hypertext and multimedia has also in-
creased the need for larger secondary storage systems with higher performance. RAID
or Redundant Arrays of Inexpensive Disks were developed in the 1980°s to address this
need. They were first described at the beginning of the decade [Lawlor81, Park86], and

popularized by the work of a group at UC Berkeley [Patterson88, Patterson89).

Abstractly, we can think of a RAID system as being composed of two components:

e A disk array, and

e A disk array controller.

The disk array is a collection of magnetic disks that can be accessed in parallel. The
controller’s function is to receive an operation from the user of the disk array, and to
carry out that operation by performing a set of actions on specific disks. The user has no
knowledge about the existence of a disk array and sees it as one large, logical disk with high

performance.



RAID systems have two main advantages over traditional secondary storage systems. First,
the data on the disks can be accessed in parallel which improves the I/O performance.
Each file that is stored in the array is decomposed into blocks and placed on several disks.
This scheme improves the response time when the user accesses that file [Kim86, Reddy89,
Salem86]. The controller can also carry out several operations at the same time if the
set of disks involved in these operations are non-conflicting. This scheme improves the

throughput.

Secondly, when the number of disks increases in a disk array, the availability of data and the
reliability of the disk array, may decrease dramatically [Gibson93]. To overcome this prob-
lem, RAID systems are designed to be fault-tolerant by storing redundant data [Gibson90].
RAID systems are usually 1 or 2 fault tolerant. The redundancy can be an identical copy
of each data unit, also known as disk mirroring [Bitton88, Gray90]. In this case if the
disk containing one copy fails, the controller can use the other copy which is on a separate
disk. Having two copies of each data unit also has the advantage that if the disk containing
one copy is busy with a different operation, the other disk can be used instead, improving
throughput. In this form of redundancy, lost or damaged data can be recovered by using

the backup copy.

Another form of redundancy is having a parity block for every group of n blocks, inde-
pendently stored [Patterson88]. The parity block is computed by performing an exclusive
or operation on the blocks it covers. Given any set of » — 1 blocks, the nth block can be

recovered by performing an exclusive or operation on the n — 1 blocks.

There are several RAID architectures that are classified as five “levels” [Patterson88]. RAID
Level 1 employs disk mirroring and thus uses twice as many disks as a non-redundant disk
array for the same amount of data. RAID Level 2 provides redundancy by using Hamming
codes. Levels 3, 4 and 5 all use parity. RAID Level 3 is bit-interleaved meaning that data
is interleaved bit-wise over the data disks. RAID Level 4 is block-interleaved. RAID Level
5 is also block-interleaved, but distributes parity among all the disks in the array. All the
architectures mentioned above tolerate a single fault. Recently, two other levels have been
introduced. The first one is RAID Level 6 which is a two fault-tolerant architecture. It

employs two parities, one of which is computed using Reed-Solomon codes. The second one



is just a non-redundant disk array, RAID Level 0, which is not fault-tolerant.

When the disk array controller receives an operation from the user, it chooses a local
algorithm to carry out that operation given the state of the disk array. If a disk is needed
during an operation but that disk has failed, then the controller is responsible for recovering
the data needed, transparently to the user. If a disk fails during the execution of an
operation, then the controller must complete the operation by operating in a degraded

mode.

Traditional controller algorithms employ forward error-recovery, which consists of transi-
tioning from an erroneous state' directly to completion. This method requires knowing
about the context in which an error occurred and thus involves enumerating a large num-
ber of erroneous states. Courtright and Gibson propose a form of backward error-recovery
method [Courtright94] to allow context-free recovery. Traditional backward error-recovery
methods consist of undoing operations and returning the disk array to an error-free state.
The disadvantage of these methods is that they are expensive. However, Courtright and
Gibson’s method is based on retry. When an error is encountered, the state of the system is

modified to note which disk has failed, and the operation is retried based on the new state.

In this approach, operations are represented as Directed Acyclic Graphs (DAGs), which is an
expansion on the representation used in TickerTAIP [Ca093], a distributed implementation
of RAID Level 5. Fach node in a DAG is an action to be performed on a disk or an action
that computes data. DAGs provide a visualization of operations which simplifies reasoning

about the ordering of actions.

Courtright and Gibson’s method to error-recovery [Courtright94] has two requirements.
First, actions must be idempotent. When a DAG fails, some actions may have been executed
and some may have not. The controller then retries the operation with a similar DAG and
actions that have already been performed will be performed again. So idempotency ensures
that an action that is executed several times has the same effect as if it is executed only
once. Secondly, the execution of each DAG must not result in the modification of data
residing on disks that are not to be written. If a DAG changes the value of a disk and fails,

then a following DAG will not be able to restore that value, because DAGs are selected

! An erroneous state is one in which a disk failure occurred in the middle of the execution of an operation.
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independently from the context in which an error occurs. This requirement seems trivial
to satisfy: DAGs must not directly write to disks that are not to be written. However, the
matter gets more complicated in the presence of failures. When a disk has failed, its value
is inferred by the disk array. This inferred value can be changed by a DAG that does not
update the redundant data correctly. In this case, the second requirement implies that the
inferred value of a disk not to be written, must not be changed with the execution of each

DAG. A DAG satisfying the second requirement is said to preserve consistency.

Although many RAID controller algorithms perform actions that are idempotent, there
exists some algorithms for which this is not the case [Courtright96]. Also for some archi-
tectures, it is impossible to build DAGs that preserves consistency for all operations. In
order to provide a context-free error recovery method that would be general enough for all
algorithms, Gibson et al. have devised roll-away recovery, which is a hybrid between Cour-
tright and Gibson’s method described above and more traditional backward error-recovery

approaches [Courtright96].

In this thesis, we are concerned with controller algorithms that use Courtright and Gibson’s
error-recovery method [Courtright94] described previously?. Although these algorithms
employ context-free® error recovery, the logics used to select a new DAG are nonetheless
complicated. Also these algorithms allow fine interleavings between actions on the disks.
As a consequence, these algorithms are difficult to test and to reason about. This is why

formal methods are useful for proving the correctness of these algorithms.

The topic of this thesis is to prove the correctness of a controller algorithm for the RAID
Level 5 System [Gibson95], that uses Courtright and Gibson’s error recovery method, with

the objective of formalizing the general notion of consistency.

We describe the algorithm and its specification using the I/O Automaton model [Lynch89].
This model is suitable for specifying components of asynchronous concurrent systems. Al-
though the algorithm we consider is essentially sequential, the concurrency due to disk
failures and actions on the disks, make the I/O Automaton model a suitable model to use.

We prove that the algorithm is correct by showing that it implements its specification, using

2This method is different from the roll-away error recovery method described in the previous paragraph.
SContext-free means independent from the context in which an error occurs.

11



the proof by simulation technique [Lamport83, Lynch87, Lynch95, Lynch96].

In the course of this proof, we formalize the general notion of consistency, in a way that it can
be applied to DAGs of other similar RAID controller algorithms. We used our consistency
property to find an error in a DAG for the RAID Level 6 architecture, which appears in
[Gibson95].

The outline of the thesis is the following. Chapter 2 presents the RAID Level 5 algorithm
and its specification. Chapter 3 presents the proof of correctness. We show extensions of

the algorithm in Chapter 4. Finally, Chapter 5 presents a summary of our conclusions.

12



Chapter 2

Algorithm

2.1 Informal Description

We now describe a controller algorithm for the RAID level 5 system [Gibson95], that uses
Courtright and Gibson’s error recovery method [Courtright96]. When the controller receives
an operation, it chooses a local algorithm based on the state of the disk array and starts
executing it. Local algorithms are represented as antecedence graphs. Fach node in a graph
is a Read or a Write action to a particular disk or an Xor action. If action A precedes action
B in a graph, then the controller performs A before B. When a failure occurs in the middle
of the execution of a graph, the graph stops executing and the controller then changes the
state of the disk array and chooses a new graph to complete the initial operation. Figure

2-1 is a high-level representation of the algorithm.

Antecedence Graphs When the controller first receives an operation from the user, it
determines which disks are directly involved in the operation. These are the disks that
contain the data to be read, or the disks that must be written. We call the set of such disks
UsedDisks. Note that the parity disk is not included in the UsedDisks set. The antecedence
graphs are represented in Figure 2-2. We assume that the RAID system contains a single
file that can be read and written by the user. The unit of data storage is a block. We also

assume that the RAID system is composed of n+ 1 disks, indexed from 0 to n where the nth

13



disk is the parity disk and each disk holds one block of data. The latter assumptions seems
to be an over-simplification at first sight, since the RAID Level 5 has distributed parity
that cannot be modeled with only one block per disk. However, we prove the correctness of
a sub-controller that deals with only one parity group. Any number of these sub-controllers
can be composed together and run concurrently. Since sub-controllers do not share any

data, proving that their composition is correct does not require any special consideration.

Blocks are numbered from 0 to n — 1. The initial value stored at disk D; is Block0;. We

also have the condition that:

Block0, @ ... D Block0,, = 0.

In the figures the notation “RD;” means read from disk 7 and other node labels have similar
meanings. The notation “ud” refers to a disk that belongs to UsedDisks and “nud” refers

to one that does not.

¢ Fault Free Read The Fault-Free Read graph is used when there is no failure among

the disks in UsedDisks. It consists of reading each disk directly.

¢ Degraded Read The Degraded Read is used when one of the disks to be read has
failed. It consists of reading the entire array and reconstructing the missing data using

the parity block.

¢ Small Write The Small Write operation is used in the absence of failures, when less
than half of the array is to be written. In the presence of a failure in a disk that is
not in UsedDisks, the Small Write is also used regardless of the number of disks to be
written. It consists of reading the old data on the disks to be written and the parity,

computing the new parity and writing the new parity and the new data.

e Large Write The Large Write is used when all the disks are to be written, in the
absence of failures. In this case, the controller computes the new parity directly and

writes to all the disks.

¢ Reconstruct Write The Reconstruct Write graph is used in the absence of failures,

when more than half of the array is to be written. In the presence of a failure of a

14
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Figure 2-1: Algorithm

disk that is in UsedDisks, the Reconstruct Write is used regardless of the number of
disks being written. It consists of reading the data from the disks that are not to
be written, computing the parity from the data read and the data to be written and

writing the new parity and data.

¢ Parity Failed The Parity Failed graph is used when the parity disk has failed. It

consists of writing the disks directly without updating the parity disk.

2.2 Specification and Algorithm Automata

In this section, we describe the algorithm and its specification formally using I/O automata.

2.2.1 Conventions

In the following sections, we follow the conventions shown below:

e b, b, and b, are block numbers that arein {0, ... , n — 1 }.
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Value is an array of data blocks of variable length, indexed starting at 0.
e V is an array of data blocks of length n + 1, indexed from 0 to n.

v is one block of data.

e D is an array of n booleans, indexed from 0 to n — 1.

g is a graph index. It is an integer from 1 through 6. The corresponding graphs are

shown in Figure 2-2.

i is a disk index in { 0, ... , n }.

F is a set of disk indeces.

We also use the following functions:
o Size(Value), where Value is an array of data blocks, gives the length of Value in
blocks.

o Concat(UD, Data), where UD is an array of booleans of size n, indexed from 0 to
n — 1, and Data is an array of data blocks of size n + 1, indexed from 0 to n, returns
an array of data blocks of variable size that is the concatenation of all the blocks in

Data with index ¢, such that UD[i] is True.

o Number(UD), where UD is the same as above, returns the number of indeces 7 for

which UD[i] is True.

2.2.2 Specification

Figure 2-3 shows the overall system architecture. The user interacts with the RAID system

with the following set of actions:

o Read( by, by) : Read portion of file between block number b, and b,, both endpoints

included.

17



Read(b1,b2) Write(b, Value)

ReadBagk(Value)

Figure 2-3: Overall System Architecture

o Write( b, Value) : Write portion of file starting at block number b with the data
contained in Value, where Value is an array of data blocks with a length [ such that

[ <n-0.

The RAID system responds to the user’s actions with the following:

o ReadBack(Value) : Data contained in the array Value has been read from the disk

array, where the length [ of Value is such that [ < n.

o WriteOK : The disk array has been written successfully.

We describe the specification of the algorithm as an I/O automaton (Figure 2-4).

The specification automaton, which we call Spec, has the following state variables. The
variable Registeris an array of n data blocks. The variable Data is used to store data to be

written to the Register or to be read from it and UD is used to indicate which disks are to

18



Spec
Signature
Inputs:

Read( b1, b2)
Write( b, Value)

The length ! of Value is such that [ < n —b.

Fail(i)
Internals:

Read

Write
Outputs:

ReadBack(Value)  Value is an array of data blocks of size ! such that

0<Ii<n—1.

WriteOK
State
Reguster Array of n data blocks, indexed from 0 to » — 1, initially arbitrary values.
pc Ranges over { idle, read, write, readAck, writeAck }, initially idle.
UbD Array of n booleans, indexed from 0 to n — 1, initially all False.
Data Array of n data blocks, indexed from 0 to » — 1, initially arbitrary values.
Transitions

input: Read( b1, b2)
Eff: pc := read
For all 4, 1 € {b1,...,b2} do
UD[i] := True

internal: Read
Pre: pc = read
Eff: For all 4, s.t. (UD[i] = True) do
Datd[i] := Register[i]
pc = read Ack

output: ReadBack(Value)
Pre: pc = readAck
Value = Concat(UD, Data)
Eff: pc:=idle
For all 4, 1 € {0,...,n-1} do
UD[i] := Fulse

input: Write( b, Value)
Eff: pc := write
For all ¢, 1 € {b, ...,b+ Size(Value) - 1} do
UD[i] :=True
Datd[i] :=Value[i — b]

internal: Write
Pre: pc= write
Eff: For all 1, (UD[i] = True) do
Register[i] := Datali]
pc = write Ack

output: WriteOK
Pre: pc = write Ack
Eff: pc:= idle
For all ¢, 1 € {0,...,n-1} do
UD[i] := Fulse

Figure 2-4: 1/O Automaton for the Specification
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be written or read. Finally, pc is used for the control of the automaton.

When Spec receives the input Read( by, by ), it reads the corresponding elements of Register.

Similarly, when it receives the input Write( b, Value), it writes to the elements of Register.

2.2.3 RAID

Figure 2-5 shows the organization of the RAID system. The controller, antecedence graphs,
disks, and Failer module are modeled as separate I/O automata. The figure also shows the
interfaces between the automata. The controller communicates with the graphs with the

following actions:
o ReadEzecute, (D, F): Signals Read graph ¢ to start executing; D is a UsedDisks set,
F a FailedDisk set, that may be empty.
o WriteExecute,(D,V, F) : Signals Write graph ¢ to start executing. D and F have
the same meaning as above, V contains the data to be written.
Graphs communicate with the controller using the following actions:
o ReadDone,(V) : Read graph ¢ has completed execution successfully and is returning
data in array V.
o WriteDone, : Write graph ¢ has completed execution successfully,
o FailedGraph, : Graph g has stopped executing because of a disk failure in the middle

of execution.

Graphs also communicate with the disks using the following actions, the index ¢ is the index

of the graph:

o RD;: Read data from disk .

o WR;(v): Write data v to disk 1.

Disks respond to graph using the actions:

20
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Figure 2-5: System Architecture
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o RdBack;(v): Data v has been read from disk 1.
o WrOK;: Data has been written successfully to disk :.

o RwFail;: Reading or writing disk ¢ has failed.

Finally, the Failer module communicates with the disks and the controller with the following

action.

o Fuail(i): Causes disk D; to fail.

Informally, the system works as follows. Upon receiving an operation from the user, the
controller chooses a graph based on the state of the disk array and sends an appropriate
message to it. The graph then executes by sending messages to individual disks. When the
graph finishes executing or fails because of a disk failure, it sends a message back to the
controller. The controller then either acknowledges the user or chooses another graph to

execute.

We now describe each 1/O automaton in more detail.

Controller Automaton Figure 2-6 shows the I/O automaton for the controller. The
controller automaton has the following state variables. The variable UD is an array of
n booleans and indicates which disks are going to be read or written directly during the
operation. The variable Data is an array of » + 1 data blocks and is used as a temporary
buffer. The variable Graph indicates the graph number that is currently executing. The
variable FailedDisk is a set of disks that indicates which disks have currently failed, and
op is used to indicate whether the system is currently performing a read or a write. The
variable recis a boolean that indicates whether the system is recovering from a failed graph
or not, i.e. whether it is running a second graph to complete the operation. Finally pc is

used for the control of the automaton.

When the controller receives an operation from the user, it first determines which disks are
used in the operation. Then it chooses a graph to execute based on the state of the disk

array and performs an appropriate output action to start its execution. If the graph finishes

22



Controller

Signature

Inputs:

Read( by, bz ), Write( b, Value), Fail(i), ReadDoney(V'), Write Doney, FailedGraph,

Internals:
RChooseGraph, WChooseGraph
Outputs:

ReadBack(Value), WriteOK, Read Executey(D, F), Write Executey(D,V, F)

State

UbD Array of n booleans, indexed from 0 to n — 1, initially all False.

Data Array of n 4+ 1 data blocks, indexed from 0 to n, initially arbitrary.

Graph Integer ranging from 1 to 6 included, initially arbitrary.

FailedDisk Set of disk indeces, initially empty.

op Ranging over { read, write }, initially arbitrary.

rec Boolean, initially False.

pc Ranging over { ready, RchooseGraph, WchooseGraph,
executeGraph, waiting, ackUser }, initially ready.

Transitions

input: Read( b1, b2)
Eff: Foralliin { b1, ..., b2 } do
UD[i] := True
pc := RchooseGraph
op := read

output: ReadEzecutey(D, F)
Pre: pc = executeGraph

g = Graph
op = read
D=1UD

F = FaiedDisk
Eff: pc:= wasting

input: ReadDoney(V)
Eff: For all ¢, s.t. (UD[i] = True) do
Datd[1] := VTi]
pc = ackUser
rec := False

input: Write( b, Value)
Eff: For all 7 in
{b,...,b+Size(Value)—1 } do
UD[i] := True
Datd[t] := Value[i — b]
pc := WchooseGraph
op := write

output: Write Ezecutey(D,V, F)
Pre: pc = executeGraph

g = Graph
op = write
D=UD

V = Data

F = FaiedDisk
Eff: pc := waiting

input Write Done,
Eff: pc:= ackUser

rec := False

Figure 2-6: 1/O Automaton for the Controller
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output: ReadBack(Value)
Pre: pc = ackUser
op = read
Value = Concat(UD, Data)
Eff: pc:= ready
Forall:in {0,... ,n—1 } do
UD[i] := Fulse

input: Fail(i)
Eff: FasiledDisk := FailedDisk U{:}

internal: RChooseGraph

Pre: pc = RchooseGraph

Eff: If (FailedDisk = {})Vv
((FailedDisk # {})
A(n & FailedDisk)
A(Vi € FailedDisk, UD[i] = False))
Then (Graph :=1)
Else (Graph := 2)

pc := executeGraph

output WriteOK
Pre: pc = ackUser
op = write
Eff: pc:= ready
Forall4in {0,...,n—1} do
UD[i] := Fulse

input: FailedGraph,
Eff: rec := True
If (op = read)
Then pc := RchooseGraph
Else pc := WchooseGraph

internal: WChooseGraph
Pre: pc = WchooseGraph
Eff: If ((FailedDisk = {})
A(Number(UD) < n/2))V
((FailedDisk # {})
A(n & FailedDisk)
A(Vi € FailedDisk, UD[i] = False))
Then (Graph := 3)
Elself ((FailedDisk = {})
A(n/2 < Number(UD) < n)) V
((FailedDisk # {})
A(n & FailedDisk)
A(Vi € FailedDisk, UD[1] = True))
Then (Graph := 4)
Elself (Number(UD) = n)
Then (Graph :=5)
Elself (FailedDisk = n)
Then (Graph := 6)
pc = executeGraph

Figure 2-7: I/O Automaton for the Controller (Continued).
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Graphl

Signature
Input:
ReadEzecutey (D, F), RdBack;(v), Rwlail;
Output:
RD;, FailedGraphy, ReadDone; (V')
State
UbD Array of n booleans, indexed from 0 to n — 1, initially all False.
ValueRead[n + 1] Array of n + 1 data blocks, indexed from 0 to n, initially arbitrary.
RdDone[n + 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.
RdEzecuted[n + 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.
executing Boolean, initially False.
failureInExecution Boolean, initially False.
Transitions
input: ReadEzecute (D, F) output: ReadDone;(V)
Eff: UD:=D Pre: executing = True
executing := True Vi.(UD[i] = True), RdDone[i] = True
failureInFxecution = False
output: RD, V = ValueRead([]
Pre: executing = True Eff: For all 1 s.t. (UD[Z] = True) do
RdFEzecuted[i] = False RdDone[i] := False
UD[:] = True RdEzecuted[i] := Fualse
Eff: RdFEzecuted[i] = True Forall1in {0,... ,n—1 } do
UD[i] := Fulse
input: RdBack;(v) executing := False
Eff: ValueRead[i] := v
RdDone[z] = True output: FailedGraph1

Pre: failureinFxecution = True

input: RwFail; Eff: For all ¢ s.t. (UD[i] = True) do

Eff: failurelnFEzecution := True RdDoneli] := Fulse
executing := False RdEzecuted[i] := Fualse
Forall1in {0,... ,n—1 } do

UD[i] := Fulse

failureInExzecution := Fualse

Figure 2-8: 1/O Automaton for Graph 1 - Simple Read

successfully, it outputs ReadDone(V') or Write Done. Then the controller acknowledges the
user with the appropriate output action. If the graph fails in its execution because of a disk
failure, it outputs FailedGraph. This causes the controller to set rec to True and to choose

another graph to complete the operation.

Graph Automata Figures 2-8 through 2-16 show the I/O automata for the antecedence

graphs.

The graph automata have the following state variables:
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Graph?2

Signature

Inputs:

ReadEzecutex(D, F'), RdBack;(v)

Internals:
XOR
Outputs:
RD;, ReadDoney(V)

State

UD

ValueRead[n + 1]
RdEzecuted[n + 1]
RdDone[n + 1]
XorDone
executing

fazlure

Transitions

input ReadEzecutez(D, F)
Eff: UD:=D
faiure := F

executing := True

output: RD,

Array of n booleans, indexed from 0 to n — 1, initially all False.
Array of n 4+ 1 data blocks, indexed from 0 to n, initially arbitrary.
Array of n 4+ 1 booleans, indexed from 0 to n, initially all False.
Array of n 4+ 1 booleans, indexed from 0 to n, initially all False.
Boolean, initially False.

Boolean, initially False.

in { —1, ..., n }, initially arbitrary.

internal: XOR
Pre: executing = True
Vi.((¢ # failure) A (0 < 1 < n))
RdDone[i] = True
XorDone = False
Eff: XorDone := True

Pre: executing = True Value Read[failure] :=
RdFEzecuted[i] = False ValueRead[1]& . . .
i # failure @ Value Read[failure — 1]
Eff: RdEzecuted[i] := True @ Value Read[failure + 1]

input: RdBack;(v)
Eff: ValueRead[i] := v
RdDone[i] := True

@ ... D ValueRead[n]

output ReadDones(V)
Pre: executing := True
XorDone = True
Value = ValueRead|]
Eff: For all ¢ s.t. ¢ # failure do
RdDone[i] := False
RdEzecuted[i] := Fualse
Forall1in {0,... ,n—1 } do
UD[i] := Fulse
XorDone := False

executing := Fualse

Figure 2-9: 1/O Automaton for Graph 2 - Degraded Read.
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Graph3

Signature
Inputs:
Write Executes(D,V, F), RdBack;(v), WrOK;, RwFail;,
Internals:
XOR
Outputs:
RD;, WR;(v), WriteDones, FailedGraphs
State
UbD Array of n booleans, indexed from 0 to n — 1, initially all False.
Data Array of n + 1 data blocks, indexed from 0 to n, initially arbitrary.
ValueRead[n + 1] Array of n + 1 data blocks, indexed from 0 to n, initially arbitrary.
RdDone[n + 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.
RdEzecuted[n + 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.
WrDone[n + 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.
WrEzecuted[n + 1] Array of n + 1 booleans, indexed from 0 to n, initially all False.
XorDone Boolean, initially False.
executing Boolean, initially False.
failureInExecution Boolean, initially False.
Transitions
input: Write Executes(D,V, F) output: WR;(v)
Eff: UD:=D Pre: executing = True
Data =V If (¢ # n)
executing := True then RdDone[i] = True
UD[i] = True
output: RD, else XorDone = True
Pre; executing = True WrExecuted[i] = False
RdFEzecuted[i] = False v = Datdi]
UD[i] = True
Eff: RdEzecuted[i] := True Eff: WrEzecuted[i] = True
input: RdBack;(v) input: WrOK;
Eff: ValueRead[i] := v Eff: WrDoneli] := True

RdDone[i] := True

input: RwFasl;
Eft:  failureInEzecution:= True
executing := Fualse

Figure 2-10: 1/O Automaton for Graph 3 - Small Write
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internal: XOR
Pre: executing = True
XorDone = False
(Yi((UD[i]= True)v(i=n))
RdDone[i] = True
Eff: XorDone := True
Data[n] :=
Compute XOR(UD, Data, Value Read]])

output: Write Dones
Pre: executing = True
failureInFxecution = Fualse
(Vi.(UD[i] = True)) A (i = n)
WrDone[i] = True

Eff: XorDone := False

executing := Fualse

For all i s.t. (1 =n)V

((1 # n) A(UD[i] = True))
RdDone[i] := False
WrDonel[i] := False
RdFEzecuted[i] := Fualse
WrEzecuted[i] := False

Forall1in {0,... ,n—1 } do
UD[i] := Fulse

FailedGraphs
Pre: failureInExecution = True
Eff: XorDone := False
failureInExzecution := Fualse
For all i s.t. (1 = n)V
((1 #£ n) A (UD[3] = True))
RdDone[i] := False
WrDonel[i] := False
RdEzecuted[i] := Fualse
WrEzecuted[i] := False
Forall1in {0,... ,n—1 } do
UD[i] := Fulse

Figure 2-11: I/O Automaton for Graph 3 - Small Write (Continued)
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Graph/
Signature

Inputs:

Write BEzecutes(D,V, '), RdBack;(v), RwFail;, WrOK;

Internals:
XOR
Outputs:

RD;, WR;(v), WriteDone,, FailedGraph,

State

UD

Data
RdEzecuted[n + 1]
RdDone[n + 1]
WrEzecuted[n + 1]
WrDone[n + 1]
XorDone
executing

fazlure
failureInExecution

Transitions

input: Write Executes(D,V, F)
Eff: UD:=D
Data .=V
faiure := F

executing := True

output: RD;
Pre: executing = True
RdFEzecuted[i] = False
UDI[i] = False
Eff: RdEzecuted[i] := True
input: RdBack;(v)
Eff: ValueRead[i] := v
RdDone[i] := True

input: RwFasl;
Eft:  failureInEzecution := True
executing := Fualse

Array of n booleans, indexed from 0 to n — 1, initially all False.

Array of n + 1 data blocks, indexed from 0 to n, initially arbitrary.

Array of n + 1 booleans,
Array of n + 1 booleans,
Array of n + 1 booleans,
Array of n + 1 booleans,
Boolean, initially False.
Boolean, initially False.

all False.
all False.
all False.
all False.

indexed from 0 to n, initially
indexed from 0 to n, initially
indexed from 0 to n, initially
indexed from 0 to n, initially

in { —1, ..., »n }, initially arbitrary.

Boolean, initially False.

output: WR;(v)
Pre: executing = True

EAf:

(¢ # failure)
(1 # n) A(UD[] = True)
Vi.(UD[i] = False)

RdDone[i] = True
WrEzecuted[i] = Fualse
v = Datd[i]
WrEzecuted[t] := True

input: WrOK;
Eff: WrDoneli] := True

Figure 2-12: I/O Automaton for Graph 4 - Reconstruct Write.
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internal: XOR output Write Done,

Pre: executing = True Pre: executing = True
Vi.(UD[i] = False) Vi.((UD[i] = True) A (i = n))
RdDone[i] = True WrDone[t] = True
XorDone = False failureInFxecution = False
Eff: XorDone := True Eff: For all ¢ s.t. (UD[¢] = False) do
Data[n] := RdDone[i] := False
Compute XOR,(UD, Data, ValueRead()) RdEzecuted[i] := Fualse
For all i s.t. (1 =n)V
output: WR,(v) (UD[i] = True) do
Pre: executing = True WrDone[i] := False
XorDone = True WrEzecuted[i] :== False
WrEzecuted[n] = False Forall1in {0,... ,n—1 } do
v = Data[n] UD[i] := False
Eff: WrEzecuted[n] := True XorDone := False
executing := False

output: FailedGraph,
Pre: failurelnFxecution= True
Eff: For all ¢ s.t. (UD[¢] = False) do
RdDone[i] := False
RdEzecuted[i] := Fualse
For all i s.t. (1 =n)V
(UD[i] = True) do
WrDonel[i] := False
WrEzecuted[i] := False
Forall1in {0,... ,n—1 } do
UD[i] := Fulse
XorDone := False

failureInExzecution := Fualse

Figure 2-13: I/O Automaton for Graph 4 - Reconstruct Write. (Continued)
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Graphb

Signature

Inputs:

Write Ezecutes(D,V, F), WrOK,,

Internals:
XOR
Outputs:
Write Dones, FailedGraphs

State

UD

Data
WrEzecuted[n + 1]
WrDone[n + 1]
XorDone
executing
failureInExecution

Transitions

input Write Executes (D, V, F)

Eff: UD:=D
Data .=V
executing := True

output: WR,(v)
Pre: executing = True
WrEzecuted[i] = False
v = Data[i]
UD[i] = True
Eff: WrEzecuted[i] := True

input WrOK,
Eff: WrDone[i] := True

input RwFasl;
Eft:  failureInEzecution := True
executing := Fualse

RwFail;,

Array of n booleans, indexed from 0 to n — 1, initially all False.
Array of n 4+ 1 data blocks, indexed from 0 to n, initially arbitrary.
Array of n 4+ 1 booleans, indexed from 0 to n, initially all False.
Array of n 4+ 1 booleans, indexed from 0 to n, initially all False.
Boolean, initially False.

Boolean, initially False.

Boolean, initially False.

output: Write Dones
Pre: executing = True
Yito<i<n), WrDone[i] = True
failureInFxecution = False
Eff: XorDone := Fulse
executing := Fualse
Forall4in {0, ... ,n } do
WrDonel[i] := False
WrEzecuted[i] := False
Forall1in {0,... ,n—1 } do
UD[i] := Fulse

output: FailedGraphs
Pre: failurelnFxecution = True
Eff: XorDone := Fulse
failureInExzecution := Fualse
Forall4in {0, ... ,n } do
WrDonel[i] := False
WrEzecuted[i] := False
Forall1in {0,... ,n—1 } do
UD[i] := Fulse

Figure 2-14: 1/0 Automaton for Graph 5 - Large Write
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internal: XOR
Pre: executing = True
XorDone = False
Eff: XorDone := True
Datd[n] :
Datd0] ® ... ® Data[n — 1]

output: WR,(v)

Pre: executing = True
XorDone = True
WrEzecuted[n] = False
v = Data[n]

Eff: WrEzecuted[n] := True

Figure 2-15: I/O Automaton for Graph 5 - Large Write (Continued)

Graph6

Signature
Input:

Write Ezecutes(D,V, F), WrOK;
Output:

WR;(v), WriteDones

State

UD

Data
WrEzecuted[n + 1]
WrDone[n + 1]
executing
failureInExecution

Transitions

input: Write Executes(D,V, F)

Eff: UD:=D
Data .=V
executing := True

output: WR,(v)

Pre: executing = True
UD[i] = True
WrEzecuted[i] = False
v = Data[i]

Eff: WrEzecuted[i] := True

Array of n booleans, indexed from 0 to n — 1, initially all False.
Array of n 4+ 1 data blocks, indexed from 0 to n, initially arbitrary.
Array of n 4+ 1 booleans, indexed from 0 to n, initially all False.
Array of n 4+ 1 booleans, indexed from 0 to n, initially all False.
Boolean, initially False.

Boolean, initially False.

input: WrOK,
Eff: WrDoneli] := True

output: Write Doneg
Pre: executing = True

Vi.(UD[i] = True)
WrDone[t] = True

executing := Fualse

For all i s.t. (UD[i] = True) do
WrDonel[i] := False
WrEzecuted[i] := False

Forall1in {0,... ,n—1 } do
UD[i] := Fulse

EAf:

Figure 2-16: 1/0

Automaton for Graph 6 - Parity Failed
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o UD : Array of n booleans, indexed from 0 to n — 1.

o Data : Array of n + 1 data blocks, indexed from 0 to n.

o ValueRead[n + 1] : Array of n + 1 data blocks, indexed from 0 to n.
e RdDone[n + 1] : Array of n + 1 data blocks, indexed from 0 to n.

e RdFEzecuted[n + 1] : Array of n+ 1 data blocks, indexed from 0 to n.
e WrDone[n 4 1] : Array of n + 1 data blocks, indexed from 0 to n.

o WrEzecuted[n + 1] : Array of n + 1 data blocks, indexed from 0 to n.
e XorDone : Boolean.

e czecuting : Boolean.

failure : in { =1, ... , n}

o failureInFxecution : Boolean.

The variable UD is used to keep track of which disks are to be written or read directly.
Variables Data and ValueRead[] are temporary buffers used to keep data to be written and
read respectively. The variable RdEzecuted[i] ( WrEzecuted[i]) indicates whether a RD;,
(WR;(v)) action has executed. The variable RdDone[i] (WrDone[i]) indicates whether a
RD; (WR;(v)) action has finished executing. The variable XorDone indicates whether an
XOR action has finished executing. The variable ezecuting is True if and only if the graph
is currently running and failure indicates a failure in the disk array before the graph started
running. Finally failureInFxecution is True when a failure occurred in the disk array while

the graph was running.

There are two auxiliary functions used in the definitions for XOR actions. One of them
is ComputeXOR(UD, Data, ValueRead[]). This function computes the exclusive Or of all
the values ValueRead[i] and Datali] for which UD[i] = True with ValueRead[n]. The other
function is ComputeX O Ro( UD, Data, Value Read[]). This function computes the exclusive
or of all the values ValueRead[i] for which UDJi] = False with all the values Data[i] for
which UD[i] = True.
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D’LSk‘Z
Signature
Input:
RD;, WR;(v), Fail(i), FailedGraph,
Output:
RdBack;(v), WrOK;, Rwlail;
State
block One block of Data, initially Block0;.
fazled Boolean, initially False.
pc Ranges over { rd, wr, idle }, initially idle.
Transitions
input: RD; input: WR,;(v)
Eff: (pc:=rd) Eff: If —failed
Then (block := v)
output: RdBack;(v) pe = wr
Pre: pc = rd
failed = False output: WrOK;
v = block Pre: pc = wr
Eff: pc:=idle failed = Fualse
Eff: pc:=wdle
output: RwFaul,
Pre: (pc=rd) V (pc = wr) input: Fasl(i)
failed = True Eff: failed := True
Eff: pc:=idle
input: FailedGraph,
Eff: pc:=wdle

Figure 2-17: I/O Automata for a Disk

Disk Automata Figure 2-17 shows the I/O automaton for a disk.

A disk automaton has the following state variables:

o block : One block of data.
e failed : Boolean.

e pc: Ranges over { rd, wr, idle }.

The variable block is used to hold the data stored in the disk. The variable failed is true if

the disk has failed. Finally pcis used for the control of the automaton. When the automaton

recieves the input FailedGraph, it sets its pc to idle.

Failer Automata Figure 2-18 shows the I/O automaton for the Failer module.
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Failer

Signature
Output:
Fail(i): iisin {0, ... , n }.

State

done Boolean, initially False.

Transitions

output: Fail(i)
Pre: done = False
Eff: done = True

Figure 2-18: I/O Automata the Failer module

The Failer has the following state variable:

o done : Boolean.

The variable done is set to True when the Failer produces a failure. This ensures that at

most one failure occurs in any execution of the system.
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Chapter 3

Proof of Correctness

In this chapter we prove that the composition consisting of the controller, graphs, disks
automata (Dy through D,), and Failer implements Spec. We call this composition the
RAID automaton.

We use proof by simulation. The outline of this section is the following. Section 3.1
presents some definitions. Then Section 3.2 describes some properties satisfied by RAID.

Finally Section 3.3 presents the proof of correctness.

3.1 Definitions

Our first two definitions concern the Virtual Block value of a disk, which is the value implied
by the system. We define a predicate that determines whether the Virtual Block value of a
disk is defined in a state s of RAID.

Definition 3.1.1 For all states s of RAID, s.DefinedVB(t) is a boolean such that:
5. DefinedVB(i) = Vjjzi—s.D;.failed.

We next define the Virtual Block (VB) value.

Definition 3.1.2 For all states s of RAID, s.V B(i) is one block of data such that:
s.VB(i) = @jeqo

..........
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wise s.V B(1) is undefined.

To carry out the proof, we add a history variable to RAID that records old values of the
data blocks stored in the disks, at the time of completion of the previous operation. We
augment each disk automaton D; with a new state variable hist which is initially equal to
D;.block. We also add the following effect to the actions ReadDone (V') and FailedGraph,
for g € {1,2}, and WriteDone, for g € {3,...,6}. For all disks D;, such that (0 < i < n),

the actions do the following:

If (=D;.failed)
Then D,.hist := D;.block
Else D;.hist := s.V B(1).

Note that if D;.failed, then since the Failer module produces at most one failure, s. Defined VB(i) =

True. So the second assignment above is valid.

We also add an effect to the action FailedGraph, for g € {3,...,6}. For all disks D, such

that =Controller.UD[t], the action has the additional effect above.

We add another history variable to each disk D;, init, that records the values stored on the
disks in the state when a Write graph starts executing. The difference between hist and init
is that hist records old values of disks at the beginning of an operation, whereas init records
old values at the beginning of the execution of a Write graph. For each disk D;, D;.init
has the initial value undefined. The action WriteEzecute,(D,V, F) has additionally the

following effect:

If (=D;.failed)
Then D;.init := D,.block
Else D;.init := undefined.

Our next two definitions concern the Virtual Init value of a disk. We define a predicate

that determines whether 5.V I(7) is defined in a state s of RAID.

Definition 3.1.3 For all states s of RAID, s.DefinedVIi) is a boolean such that:
5. DefinedVIi) = Vjz),s.Dj.init # undefined.
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We next define the Virtual Init ( V1) value of a disk.

Definition 3.1.4 For all states s of RAID, s.VI(i) is one block of data such that:

..........

s.V1(1) is undefined.

The following defines a predicate that determines whether a graph ¢ is running in a state

of RAID.

Definition 3.1.5 Let s be a state of RAID. For all g, s.running, is a boolean variable such
that:

s.running, = s.Graphg,.evecuting V s.Graph,.failureln Execution.

Finally, we add a boolean variable toBeWritten to all disk automata, that determines
whether a disk is to be written during the execution of a Write graph. For each disk D;, such
that (0 <7 < n), the variable D;.toBe Written is initially False. Action Write Execute,(D,V, F)

has additionally the following effect:

For all ¢ such that Controller. UD[i],
D;.toBe Written := True.

Also action WriteDone, has the additional effect:

For all ¢, such that (0 <1 < n),
D;.toBe Written := Fualse.

Note that when a Read graph is running, the variable toBeWritten is False for all disks.
Also note that the above definition implies that a variable toBe Written can only be set to

True if a Write graph is running.

3.2 RAID Properties

In this section, we present some properties satisfied by RAID. These properties can be

classified as follows:
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Basic Properties

Parity and antecedence correctness for Write graphs,

Read correctness for Read and Write graphs,

Write correctness for Write graphs,

e Consistency,

Properties Used in Proof of Correctness of RAID.

We describe each class of properties below.

Basic Properties

We will first present some basic properties of RAID systems. Lemmas 3.2.1 and 3.2.2 present
properties of the toBe Written variables. The Simple Consistency property (Lemma 3.2.3)
expresses a simple relation between block and hist variables. Lemmas 3.2.4, 3.2.5, 3.2.6 and
3.2.7 concern the init variables. Finally Lemma 3.2.8 expresses antecedence relations that

exist in Graphy.

Parity and Antecedence Correctness for Write Graphs
The next class of properties deals with writing the parity correctly and the antecedences
that must be in a graph to achieve that. Lemmas 3.2.9, 3.2.10 and 3.2.11 express parity

and antecedence correctness.

Read Correctness for Read and Write Graphs
The third class of properties deals with reading the disk array correctly. Read graphs must
read the disk array correctly so that they can return the right value back to the controller.

Lemmas 3.2.12 and 3.2.13 express read correctness for Read graphs.

Write graphs need to read the disk array to compute the new parity. Lemma 3.2.14 expresses

read correctness for Write graphs.

Write Correctness for Write Graphs
The third class of properties deals with writing the disk array correctly. These properties
are only concerned with writing data disks and not the parity. Lemma 3.2.15 expresses

write correctness in the absence of failures. Invariant 5 of Lemma 3.2.16 expresses write
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correctness concerning the V B value. Lemma 3.2.16 contains four other properties dealing
with consistency. We have included the second write correctness invariant in this lemma to

simplify the proofs. These invariants are proved by induction and simultaneously.

Consistency

The second requirement of Courtright and Gibson’s error recovery method, is that each
DAG must preserve consistency, meaning that the execution of each DAG must not change
the values of disks that are not to be written. We call this property the General Consistency
property. General Consistency is a property concerning the V' B values of disks and their
block and hist values, in the states at the end of execution of DAGs'. In order to prove the
General Consistency property, we need some properties that are true in other states than
just the end of execution of DAGs. For this purpose, we introduce the consistency property

which has two components. These components are described below.

The first component of the consistency property is that the block value of every disk D;
that is not to be written and has not failed, must be equal to its hist value, in all states.
This component essentially implies that DAGs must not write directly to disks that are not

to be written.

The second component of the consistency property is concerned with the Virtual Block
values of disks. The Virtual Block is the value inferred by the system for a disk. When the
system is not currently running a graph, the Virtual Block value, if defined, of every disk
D; that is not to be written? must be consistent with the actual value of D;, which is its
hist value. The second component ensures that if D; has failed, or will fail in some future

state, then the system infers the right value for it. This is the core idea of the consistency

property.

Note that if the Virtual Block is not defined for D; then this means that a failure has
occurred at a disk different from D, and the failure of D; will result in loss of data. This is

not a problem since the system is designed to tolerate only one fault.

!The end of execution of a DAG is the state in which the action ReadDoney(V) or Write Done,y or
FailedGraphg, is enabled.

2Note that when the system is idle, then all disks are not to be written.
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When the system is not currently running a graph, if D; is a disk that has not failed, is
not to be written, and for which the Virtual Block is defined, then the two components
of consistency express an equality between the Virtual Block, the block value and the hist

value.

The second component of the consistency property, namely the equality between the Virtual
Block and hist values, is not an invariant®, meaning that it does not hold in all reachable
states of the system. If a Write graph is executing then the disk array can be partially
updated. This means that if disk D; is not to be written and has a defined Virtual Block
value, its Virtual Block can be different from its hist value. If D; fails at that point, the
value inferred for it by the system is wrong, but that is not a problem since the execution
of graphs cannot overlap and graphs are required to restore consistency at the end of their

execution.

Lemma 3.2.17 expresses the General Consistency property. Lemma 3.2.3 expresses the
first component of the consistency property and is used in the proof of Lemma 3.2.17.
Lemma 3.2.16 includes four invariants that express the second component of the consistency

property in different states of RAID. These are also used in the proof of Lemma 3.2.17.

Properties Used in Proof of Correctness of RAID

The final class of properties are those that are used directly in the proof of correctness
of RAID. These lemmas do not add any new concept about the behavior of RAID, but
generalize previous ones to make their application easier. These are Lemmas 3.2.17, 3.2.18

and 3.2.19.

There are no other auxiliary lemmas. However note that some very low-level properties
have been omitted. These lemmas are proved easily by induction and have been omitted
because they do not add to the understanding of the behavior of RAID. These include the
property that graphs run one at a time, which is assumed throughout the following sections

and is not mentioned. Other lemmas are mentioned each time they are used.

3The first component of the consistency property is an invariant.
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3.2.1 Basic Properties

In this section we present the basic properties satisfied by RAID. These will be used in the

proofs of lemmas presented in subsequent sections.

The first lemma indicates that if UDJ[i]is Falsein a state s of RAID, then this implies that

s.D;.toBeWritten is also False.

Lemma 3.2.1 For all states s of RAID, for all i such that (0 <i < n),
(ms.Controller.UD[i]) = (—s.D;.toBe Written).

Proof. We prove the invariant by induction. Let s, be an initial state of RAID. Initially,
for all ¢ such that (0 < ¢ < n), sg.Controller. UD[i] = False and sq.D;.toBe Written = False.

Therefore the invariant is satisfied in any initial state of RAID.

Let (s,7,5") be a transition of RAID. We show that all actions m of RAID preserve the

invariant.

Case: 71 = Read( by, bs) or Write( b, Value)
Let ¢ be such that —s'.Controller. UD[i]. Since no write graphs are running in s, we have

5" D;. toBeWritten. Therefore action m preserves the invariant.

Case: 71 = Writelzecute,(D,V,F), for g € {3,...,6}
Action 7 has the effect of setting the variable s.D;.toBe Written to True for all ¢ such that
s.Controller.UD[i]. Thus m does not change the variables D;.toBe Written for ¢ such that

=s.Controller.UD[i]. Therefore 1 preserves the invariant.

All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.1.

The next lemma expresses the fact that when a Write graph is running, then for all 7, the

toBe Written variable of disk D; has the same value as Controller. UD[i].

Lemma 3.2.2 For all states s of RAID, if s.running, = True for g € {3, ...,6},
then (s.Controller. UD[i]) <= (s.D;.toBe Written).
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Proof. We prove the invariant by induction. In any initial state of RAID, sq, sq.running, =

False, for g € {3,...,6}. Therefore the invariant is true vacuously in any initial state of RAID.

Let (s,7,5") be a transition of RAID. We show that all actions m of RAID preserve the

invariant.

Case: 1= WriteLzecute,(D,V,F)
For all 7 such that s.C'ontroller. UD[i], action 7 sets s.D;.toBe Written to True. It also does
not change the variables s.D;.toBe Written for ¢ such that =s.Controller. UD[i]. Therefore

action 7 preserves the invariant.

All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.2.

The following lemma is Simple Consistency and expresses the fact that if a disk has not
failed and is not to be written, then its block value is equal to its hist value. This lemma

expresses the first component of the consistency property.

Lemma 3.2.3 Simple Consistency
For all states s of RAID, for all t such that —s.D;.toBe Written:
If (=s.D;.failed) then s.D;.block = s.D;.hist.

Proof. We prove the lemma by induction. In any initial state s, of RAID, for all i,
sg.D;.failed = False and sq.D;.block = sy.D;.hist. Therefore the invariant is true in any

initial state of RAID.

We now show that all actions of RAID preserve the invariant. Let (s, 7, s’) be a transition

of RAID.

Case: 7 = WR;(v)

Assume that ¢ is such that —s.D;. failed. This action assigns the value v to s.D;.block
and does not change any other block or hist variables. The precondition of this ac-
tion in all graph automata includes: s.Controller.UD[i] = True. Thus by Lemma 3.2.2,

s'.D;.toBeWritten = True, and the invariant is preserved trivially by action =.
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Case: T = ReadDone,(V'), or WriteDone,
These actions have the effect of assigning the block value to the hist value of each disk D;,

such that —s.D;.failed. Therefore these actions preserve the invariant.

Case: © = FailedGraph,
If g € {1,2}, then this action has the effect of assigning the block value to the hist value of

each disk D; for all ¢, if —s.D;.failed. Thus if g € {1,2} action 7 preserves the invariant.

If g € {3,...,6}, then this action has the effect of assigning the block value to the hist
value of each disk D;, for all 7 such that —s.Controller.UD[i]. Thus for all ¢ such that
=s'.D;.toBe Written, s'.D;.block = s'.D;.hist. Thus if g € {3,...,6}, action 7 preserves the

invariant.

All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.3.

The next lemma expresses conditions under which the init variable is defined during the

execution of Graphs 3 and 4.

Lemma 3.2.4 Conditions for the Definition of the init Variable
For all states s of RAID, if s.running, = True for g € {3,4},
If i is such that (=s.D;.failed)V (s.Graph,. RdDone [t] = True) then (s.D;.init # undefined).

Proof. We prove the invariant by induction. Let sq be any initial state of RAID. We have
sg.running, = False for g € {3,4}. Therefore the invariant is satisfied vacuously in any

initial state of RAID.

Let (s,7,5") be a transition of RAID. We show that all actions m of RAID preserve the

invariant.

Case: 1= Writelzecute,(D,V,F) for g € {3,4}
First assume that ¢ is such that —s.D;.failed. In this case, action 7 assigns the value of
s.D;.block to s.D;. Init. Therefore s.D;.init # undefined. Thus the invariant is preserved in

this case.
Next assume that ¢ is such that s.D;.failed. A trivial proof by induction can be used to
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show that s.G'raph,.RdDone[i] = Fualse. Therefore the invariant is preserved vacuously in

this case.

Case: w = Graph,.RdBack;(v), for g € {3,4}
This action has the effect of setting s.G'raph,.RdDone[t] to True. The precondition of this
action (in D;) includes —s.D;.failed. Therefore by the inductive hypothesis, (s.D;.init #

undefined). Therefore action © preserves the invariant.

All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.4.

The following lemma expresses the fact that if Graph 3 or 4 is running, then for all disks
that are not to be written and have a defined init variable, their init variable is equal to

their hist variable.

Lemma 3.2.5 Equality between init and hist Variables
For all states s of RAID, if s.running, = True for g € {3,4},
for all © such that (—s.Graph,. UDIi]) A (s.D;.init # undefined),
s.D;.init = s.D; hist.

Proof. We prove the invariant by induction. In any initial state s, of RAID, s.running, =

False for g € {3,4}. Therefore the invariant is satisfied vacuously in any initial state.

Let (s,7,5") be a transition of RAID. We show that all actions m of RAID preserve the

invariant.

Case: 7 = WriteEzecute,(D,V,F) for g € {3,4}

Assume that ¢ is such that (-s.G'raph,.UD[i]). Assume further that —s.D;.failed. In this
case, action 7 assigns the value of s.D;.block to s.D;.init. We have —s.D;.toBe Written, by
Lemma 3.2.1. This implies s.D;.block = s.D;.hist, by Lemma 3.2.3. Therefore s'.D;.init =

s'.D;.hist. Therefore action 7 preserves the invariant in this case.

Assume now that s.D;.failed. In this case, action 7 assigns the value undefined to s.D;.init.

Thus ¢'.D;.init = undefined. Therefore action © preserves the invariant in this case as well.
All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.5.
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The next lemma is a property concerning the init variable for Graphs. It expresses the fact
that when a disk has not been read during the execution of G'raphs, then its init value is

equal to its block value, provided that init is not undefined.

Lemma 3.2.6 Property Concerning init for Graph 3

For all states s of RAID, if s.runnings = True,

then for all i such that (0 < ¢ < n),

if (—s.G'raphs.RdDone [i]) A (s.D;.init # undefined), then s.D;.init = s.D;.block.

Proof. We prove the lemma by induction. Let s, an initial state of RAID. We have

sg.runnings = False. Thus the invariant is satisfied vacuously in any initial state of RAID.
Let (s,7,s’) a transition of RAID. We show that all actions of RAID preserve the invariant.

Case: T = Writezecutes(D,V, I)

We can show using a simple proof by induction that when this action is enabled in s, then
for all ¢ such that (0 < ¢ < n), s.Graphs.RdDone[i] = False.

This action has the effect of assigning the value of s.D;.block to s.D;.init, if —s.D;.failed.
Otherwise it assigns the value undefined to s.D;.init. Therefore this action preserves the

invariant.

Case: m = Graphs. W R;(v)
If (¢ # n), then the precondition of this action includes:
s.Graphs.RdDone[t] = True.

Therefore this action preserves the invariant vacuously if (¢ # n).

If (i = n), then the precondition of this action includes s.G'raphs.XorDone = True. We can
show by a trivial proof by induction that this implies that s.Graph,.RdDone[n] = True.

Therefore this action preserves the invariant as well.

All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.6.

The following lemma is a similar property, but concerning Graph,.
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Lemma 3.2.7 Property Concerning init for Graph 4

For all states s of RAID, if s.running, = True,

then for all i such that (—~s.Controller. UD[t]) V (s.Graphy. WrEzecuted [i] = False),
if (s.D;.init # undefined) then s.D;.init = s.D;.block.

Proof. We prove the lemma by induction. In any initial state sq of RAID, sq.running, =

False. Therefore the invariant is satisfied vacuously in any initial state of RAID.

Let (s,7,s’) be a transition of RAID. We show that all the actions of RAID preserve the

invariant.

Case: 1= WriteLzecute,(D,V,F)
This action has the effect of assigning the value of s.D;.block to s.D;.init for all 7 such that
(0 <i<n)and =s.D;.failed. If s.D;.failed then this action assigns the value undefined to

s.D;.init. Therefore this action preserves the invariant.

All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.7.

The next property expresses the fact that all RD; actions in G'raph, have precedence over

all WR;(v) actions.

Lemma 3.2.8 Antecedence Relations for Graph 4

For all states s of RAID, if s.runningy = True and there exists i such that
(=s.Graphy. UD[i]) A (—s.Graphy.RdDone[i]), then

Vi, s.Graph, WrEzecuted [j] = False.

Proof. We prove this invariant by induction. In any initial state s, of RAID,
sg.running, = False. Therefore the invariant is true in any initial state.

For the step condition, let (s, 7,s") be a transition of RAID. We show that all actions 7 of

RAID preserve the invariant.

The only action that sets Graphs. WrEzecuted[i] to True is Graph, W R;(v). The precon-
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dition of this action includes:
Vi(as.Grapha. vp[i))S-Graphs. RdDoneli] = True.

So this action is not enabled in any state in which there exists ¢ such that (=s.Graphy. UD[i])A
(—=s.Graphy. RdDonelt)).

All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.8.

3.2.2 Parity and Antecedence Correctness

In this section we present parity and antecedence correctness for Write graphs 3, 4 and
5. Note that there is not a similar lemma for Write graph 6. This is because when this
graph runs the parity has failed and therefore it is not updated. For the antecedences, these
lemmas express the fact that all the relevant reads of the disk array must have been done

if the parity has been written.

Lemma 3.2.9 Parity and Antecedence Correctness for Graph 3
For all states s of RAID, if (s.runnings = True),
(s.G'raphs. WrEzecuted [n] A\ (=s.D, . failed)) =

s.D,.block = ( @ (s.G'raphs. ValueRead [j] & s.Graphs.Datalj]))
UDlj]

®s.Graphs. ValueRead [n]

and,

VJj(j=n)v(s.Graphs.UD[])> S-GTaphs. RdDone[j] = True.
Proof. We prove the invariant by induction. In any initial state of RAID,
runnings = False. Therefore the invariant is true vacuously in any initial state of RAID.

Let (s,7,5") be a transition of RAID. We show that all actions m of RAID preserve the

invariant.
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Case: Graphs.WR,(v)
The precondition of this action includes (in Graphs): XorDone = True and v = Data[n].

A trivial proof by induction can show that (where the only case to consider is the action
XOR) :
For all states s of RAID, if s.Graphs.XorDone = True, then

s.Graphs.Dataln] = Compute X O R(s.Graphs. UD, s.Graphs.Data, s.G'raphs. Value Read]]),

and

VJj(j=n)v(s.Graphs.uD[])s S-GTaphs. RdDone[j] = True.

So,

s.Graphs.Data[n] = ( @ (s.Graphs. ValueRead[j)®s.Graphs. Data[j]))®s.Graphs. Value Read[n).

UDJj]

The action Graphs.W R, (v) sets the value of D, .block to v, if =D,,.failed. So we have,

§'.D,.block = ( @ (s'.Graphs. ValueRead[j1Ds" .Graphs. Data[j]))D s’ .Graphs. Value Read[n).

UD[j]
Also this action sets Graphs. WrEzecuted[n] to True.

Since this action does not change the values of variables UD and RdDone[j] we have :
Vi =n)v(s'.Graphs.uD[j])» S -Graphs. RdDone[j] = True.

Therefore this action preserves the invariant.

All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.9.

The following lemma expresses parity and antecedence correctness for G'raph,.

Lemma 3.2.10 Parity and Antecedence Correctness for Graph 4
For all states s of RAID, if s.running, = True,
(s.Graphy. WrEzecuted [n] A\ (=s.D, . failed)) =
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s.D,.block = (@ s.G'raphy.Data[j])
UDlj]
B( @ s.Graphy. ValueRead [j]),
(~UD[D

and,
VJ(as.Graphs. un)s-Graphy. RdDone[j] = True.
Proof. We prove the invariant by induction. In any initial state of RAID,

runningy = False. Therefore the invariant is true vacuously in any initial state of RAID.

Let (s,7,5") be a transition of RAID. We show that all actions m of RAID preserve the

invariant.

Case: Graphs WR,(v)

The precondition of this action includes (in Graphy): XorDone = True and v = Data[n].

A trivial proof by induction can be used to show that (where the only case is the action
XOR) :
For all states s of RAID, if s.G'raphy. XorDone = True then

s.Graphy.Dataln] = Compute X O R( UD, Data, Value Read(]),

and

VJ(as.Graphs. vnj)s-Graphy. RdDonelj] = True.

So,

s.Graphy.Dataln] = ( @ s.Graphy.Data[j]) & ( @ s.Graphy. ValueRead[j]).

UD[j] (~UDGD

The action Graphs.W R,(v) sets the value of D, .block to v, if =D,,.failed. So we have,

s.D,,.block = ( @ s'.Graphy.Dataj]) & ( @ s'.G'raphy. Value Read[j]).

UD[j] (=UD[j])
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Also this action sets Graphy. WrEzecuted[n] to True.

Since this action does not change the values of variables UD and RdDone[j], we have:
V(s Graphe. vpp])» S -Graphs. RdDone[j] = True.

Therefore this action preserves the invariant.
All other actions preserve the action trivially. This completes the proof of Lemma 3.2.10. m

The next lemma expresses parity and antecedence correctness for Graphs.

Lemma 3.2.11 Parity Correctness for Graph 5
For all states s of RAID, if srunnings = True,
(s.Graphs. WrEzecuted [n] A (—s.D,,.failed)) =

s.D,.block = @ s.Graphs.Datali].
UD[i]
Proof. We prove the invariant by induction. In any initial state of RAID,

runnings = False. Therefore the invariant is true vacuously in any initial state of RAID.

Let (s,7,5") be a transition of RAID. We show that all actions m of RAID preserve the

invariant.

Case: Graphs. WR,(v)

The precondition of this action includes (in Graphs): XorDone = True and v = Data[n].

A trivial proof by induction can be used to show that (where the only case is the action
XOR):
For all states s of RAID, if s.Graphs.XorDone = True,
then
s.Graphs.Data[n] = @ s.Graphs. Datali].

UD[4]
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Note that all disks D; with index ¢ € {0,...,n-1} are such that UD[i] = True. The action
Graphs. W R, (v) sets the value of D, .block to v, if =D,,.failed. So we have,

s'.Dy,.block = @ s .Graphs.Data[t].
UD[i]
Also this action sets Graphs. WrEzecuted[n] to True. Therefore this action preserves the

invariant.

All other actions preserve the action trivially. This completes the proof of Lemma 3.2.11. m

3.2.3 Read Correctness for Read and Write Graphs

In this section, we present read correctness for Read and Write graphs. The following
lemma is read correctness for Read graphs 1 and 2. It expresses the fact that while these
graphs are running, if a disk has been read then the hist value for that disk is stored in the

corresponding ValueRead]] variable.

Lemma 3.2.12 Read Correctness for Read Graphs
For all states s of RAID, if s.running, = True, for g € {1,2},
then s.G'raph,.RdDone[i] => s.D;.hist = s.G'raph,. Value Read [i],

Proof. We prove the Lemma by induction.
In any initial state of RAID, so, Graph,.executing = False. Therefore sy.running, = False

and the Lemma is true vacuously in any initial state.
Let (s,m,s") be a transition of RAID. We show that all actions 7 preserve the invariant.

Case: m = Graph,.RdBack;(v), for g € {1,2}

In this case s'.running, = True for g € {1,2}. The precondition of this action (in disk D,)
includes: s.D;.failed = Fualse and v = s.D;.block. We also have that s'.D;.failed = False.
This action sets ValueRead[i] to v and RdDoneli] to True.
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This implies that:

s".Graph,.RdDoneli]| = s'.D;.block = s'.G'raph,. Value Read]].

Since s'.D;.toBe Written = False, s'.D;.block = s'.D;.hist, by Lemma 3.2.3. Therefore,

s".Graph,.RdDone[i] = s'.D,.hist = s'.Graph,. ValueRead]i].

Thus this action preserves the invariant.

All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.12.

The following lemma is an additional read correctness condition for Graph 2. It expresses
the fact that when a disk has failed and the XOR operation has been performed during
the execution of Graph 2, then the V B value of that disk is stored in the corresponding
Value Read([] variable.

Lemma 3.2.13 Additional Read Correctness for Read Graph 2
For all states s of RAID, if (s.running, = True) and (s.G'raphs.XorDone )
then for all i such that (0 <i < n),

if ms.D;.failed, then s.D;.block = s.Graph,. ValueRead [i], and

if s.D;.failed, then s.V B(1) = s.Graphs. ValueRead [t].

Proof. We prove the Lemma by induction. In an initial state of RAID, s,,

sg.runnings = False. Therefore the Lemma is true vacuously in any initial state of RAID.

Let (s,7,5") be a transition of RAID. We show that all actions m of RAID preserve the

invariant. All actions preserve the invariant trivially except XOR.

Case: 7 = XOR
The precondition of this action (in Graph,) includes:

Vi((i#failure)n(o<i<n))» RdDoneli] = True
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By Lemma 3.2.12, we have

Vi((i#faitureyn(o<i<n)) $-Dj.hist = s.Graph,. Value Read([t].

By Lemma 3.2.3, for all ¢ such that 0 < ¢ < n, s.D;.block = s.D;.hist. Therefore:

Vi((i#faiture)n(o<i<n))» $-Dj.block = s.G'raphs. Value Read 1],

Note that the action does not change any of the above variables.

This action changes the value of ValueRead|failure] as follows:

s .Graphy. ValueRead[ failure] = @ s.Graphsy. Value Read|i]
(i#fatlure)
= @ s.D;. block

(i#failure)

= @ s'.D;.block
(i#failure)

= §.VB(failure)

The action also sets the value of Graphs.XorDone to True.

Therefore this action preserves the invariant. This completes the proof of Lemma 3.2.13. m

The third lemma is the read correctness condition for Write graphs 3 and 4. It expresses
the fact that when these graphs read a disk, they store the init value of that disk in their

corresponding ValueRead] |variable.

Lemma 3.2.14 Read Correctness for Write Graphs
For all states s of RAID, if s.running, = True for g € {3,4},
then for all i such that (0 < ¢ < n),

s.Graph,.RdDone[i] = s.Graph,. ValueRead [i] = s.D;.init.

Proof. We prove the invariant by induction. In any initial state sq of RAID,

sg.running, = False for g € {3,4}. Therefore the invariant is true vacuously in any state

of RAID.
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Let (s,m,s’) be a transition of RAID. We show that all actions of RAID preserve the

invariant.

Case: 7 = Graph,.RdBack;(v), for g € {3,4}

This action sets s.Graph,.RdDone[t] to True. It also sets s.Graph,. ValueRead[t] to v, which
is equal to s.D;.block.

SubCase: g =23

A trivial proof by induction can be used to show that in a state in which the action
RdBack;(v)occurs, s.Graph,.RdDone[i] = False. Therefore by Lemma 3.2.6, s.D;.block =
s.D;.init. Thus ¢ .Graphs. ValueRead[i] = s'.D;.init. Therefore this action preserves the

invariant.

SubCase: ¢g=4

A proof by induction can be used to show that when the action RdBack;(v) is enabled
and s.running, = True, i is such that —s.Controller.UD[i]. The precondition of action
7 includes —s.D;.failed, which implies by Lemma 3.2.4 that s.D;.init # undefined. So by
Lemma 3.2.7, s.D;.init = s.D;.block. Thus s'.Graph,.ValueRead[i] = s'.D;.init. Therefore

this action preserves the invariant.

All other actions preserves the invariant trivially. This completes the proof of Lemma 3.2.14.

3.2.4 Write Correctness for Write Graphs

In this section, we present write correctness for Write graphs. The following lemma expresses

write correctness for Write graphs in the absence of failures.

Lemma 3.2.15 Write Correctness for Write Graphs - No Failures
For all states s of RAID, if s.running, = True for g € {3, ...,6},

if ¢ is such that (s.G'raph,.UD[i]) A (ns.D;.failed),

then s.G'raph,. WrEzecuted [i] = s.D;.block = s.G'raph,.Data[1].

Proof. We prove the Lemma by induction. In any initial state sy of RAID, s.running, =

False. Therefore the Lemma is true vacuously in any initial state.
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Let (s,m,s") be a transition of RAID. We argue that all actions 7 preserve the invariant.

Case: 7 = WR;(v)

The precondition of this action in all graphs g in { 3, ... , 6 } includes:

s.Graph,. UD[i] = True and v = s.Graph,.Data[?].

In Graph,, this action sets G'raph,. WrEzecuted[i] to True. In disk D;, this action sets the
variable D;.block to v, if —s.D;.failed.

Therefore this action preserves the invariant.

All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.15.

The second property for the write correctness of Write graphs is presented in the following

section as part of the lemma concerning consistency.

3.2.5 Consistency Invariants

In this section, we present four invariants that express formally the second component of
the consistency property, in different states of the system. Invariants 2, 3 and 4 are used in
the proof of the General Consistency property (Lemma 3.2.17). Invariant 1 is used in the

proof of Invariants 3 and 4.

The fifth invariant presented in this section is the second write correctness property. It has

been included in this section so that it can be proved simultaneously with the others.

This section may be skipped at first reading, since none of these invariants is directly used

in the proof of correctness of RAID.

We present all five invariants as different components of one lemma to simplify their proofs.

We prove them by induction and simultaneously.

We now describe the first four invariants. These are concerned with the second component
of consistency, which is an equality between the Virtual Block value and the hist value of
a disk that is not to be written and for which the Virtual Block is defined. Each invariant

covers a different set of states.
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Invariant 1 expresses the second component of the consistency property for the initial states
of the execution of Write graphs 3 and 4. The property is captured by using the Virtual
Init variable. Invariant 2 expresses the property for all states in which no Write graph is
running. Invariant 3 expresses the property for states in which the action WriteDone, is
enabled for g € {3,...,5}. Finally, Invariant 4 expresses the property for states in which the
action FailedGraph, is enabled for g € {3,...,5}.

Note that none of these invariants is concerned with Write graph 6. This is because, this
graph runs only when the parity disk has failed. Therefore at the end of its execution,
there are no disks for which the Virtual Block is defined and thus the second component of

consistency is satisfied vacuously.

Lemma 3.2.16 Invariants

For all states s of RAID, the following holds:

1. If s.orunning, = True, for g € {3,4}, for all v such that —s.D;.toBe Written,
if s.DefinedVI(i) then s.VI(t) = s.D;.hist.

2. If s.running, = False for g € {3,...,6},
for all v such that —s.D;.toBe Written
if s.Defined VB(t) then s.V B(t) = s.D;.hist.

3. If s.orunning, = True for g € {3,...,5},
if ¢ is such that (—s.D;.toBe Written) A (s.Defined VB(1))

NG =n)v(s.Graphy. unp]) s (8-GTaphy. WrEzecuted [5))
then s.V B(i) = s.D;.hist.

4. If the action FailedGraph, for g € {3,...,6}, is enabled in s, then:
if ¢ is such that (—s.D;.toBe Written) A (s.DefinedVB(7)) then:
s.VB(t) = s.D;.hist.

If s.running, = True for g € {3,...,5},
if ¢ is such that (s.G'raph,.UD[i]) A s.Defined VB(t)

then Vi =nyvis.Graph,. Un[jai i) (8- Graphy,. WrEzecuted [j] = True) =

s.VB(i) = s.Graph,.Data[?].
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Proof. We prove the invariant by induction. Let s be an initial state of RAID. We have
that s.running, = False for all g. Therefore Invariants 1, 3 and 4 are satisfied vacuously in
any initial state of RAID.

We have that for all 7, =s.D;.failed and €, s.D;.block = 0. Therefore for all 7, it is true
that s.DefinedVB(7). Furthermore s.V B(i) = s.D;.block = s.D;.hist. Therefore Invariant 2

is satisfied as well in any initial state of RAID.

Let (s,7,s’) be a transition of RAID. We prove that all transitions of RAID preserve the

invariant.

Case : 7 = WriteExecute,(D,V,F), g € {3,4}

Invariants 2, 3, 4 and 5 are preserved trivially with this action. We show that Invariant 1
is preserved as well.

Assume that 7 is such that —s'.D;.toBe Written and s'.DefinedVI(7). For all j # i, action
7 has the effect of assigning the value of s.D;.block to s.D;.init, if ~s.D;.failed. Since for
all 7, 7 # 14, s'.D;.init # undefined, then for all j # ¢, —~s.D;.failed. Therefore for all j # 1,
=s'.D;.failed and thus s'.Defined VB(7).

We have that s.running, = False for g € {3,...,6}. Therefore by Invariant 2, s.V B(¢) =
s.D; . hist.
Thus sV B(i) = &'.D;.hist. And since s'.VI(i) = .V B(¢), s.VI(i) = s'.D;.hist.

Therefore action 7 preserves Invariant 1 and the entire invariant.

Case: 71 = ReadDoney,(V), or FailedGraph, for g € {1,2}

Invariants 1, 3, 4 and 5 are preserved trivially by action 7. We prove that 7 also preserves
Invariant 2.

Let 7 be such that —s.D;.toBe Written and s.Defined VB(i).

First assume that —s.D;.failed. 1In this case, action 7 has the effect of assigning the
value of s.D;.block to s.D;.hist. By Lemma 3.2.3, s.D;.block = s.D;.hist. Therefore
s'.D;.hist = s.D;.hist. Since the value of 5.V B(7) does not change with action 7, and
s.V B(i) = s.D;.hist, by the inductive hypothesis, we have: .V B(i) = s'.D;.hist.

Now assume that s.D;.failed. In this case, action © does not assign any value to s.D;.hist.

Therefore s’V B(i) = s'.D;.hist.
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Thus & preserves the invariant.

Case : 7 = WriteDone,

Invariants 1, 3, 4 and 5 are preserved trivially by action 7. We prove that 7 also preserves
Invariant 2.

If ¢ = 6, then §'.D,.failed and s'.DefinedVB(i) = False for all i such that ¢ # n. Therefore

Invariant 2 is preserved vacuously in this case.

Now we consider the case where ¢ € {3,...,5}. Action WriteDone, has the effect of setting
s.D;.toBeWritten to Fulse, for all ¢ such that (0 < i < n).

First assume that ¢ is such that —s.Controller.UD[i], s.DefinedVB(i) and —s.D;.failed.
This implies that —s.D;.toBe Written, by Lemma 3.2.1. The precondition of WriteDone,
includes:

Yitizn)v(unp))» s-Graphy,. WrDone[i] = True,

which implies by a trivial proof by induction that:

Yitizn)v(uppi))» S-Graphy,. WrEzecuted[t] = True.

This implies, by Invariant 3, that s.V B(¢) = s.D;.hist.
The action WriteDone, has the effect of assigning the value of s.D;.block to s.D;.hist.
Since —s.D;.toBe Written, s.D;.block = s.D;.hist, by Lemma 3.2.3. Therefore, s’V B(i) =

s'.D;.hist. Thus Invariant 2 is preserved in this case.

Now assume that ¢ is such that s.Controller.UD[i], s.DefinedVB(i), and —s.D;.failed. Ac-
tion WriteDone, has the effect of writing the value of s.D;.Block to s.D;.Hist. Again we
have that:

Yitizn)v(uppi))» S-Graphy,. WrEzecuted[t] = True.

Thus by Invariant 5, s.V B(¢) = s.Graph,.Data[t]. By Lemma 3.2.15, we have s.D;.block =
s.G'raph,.Datali]. Therefore s.V B(i) = s.D;.block. So sV B(i) = §'.D;.hist. Thus action

7 preserves Invariant 2 in this case as well.

Finally, assume that ¢ is such that s.DefinedVB(i), and s.D;.failed. In this case, action 7
assigns the value of s.V B(i) to s.D;.hist. Therefore s'.V B(i) = s'.D;.hist. Thus action «
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preserves Invariant 2 in this case as well.

Case: 1 = FuailedGraph, for g € {3,....6}

Action 7 preserves Invariants 1, 3, 4 and 5 trivially. We show that it also preserves Invariant
2.

If ¢ = 5, then there does not exist an ¢ such that —s.Controller. UD[i]. Therefore there
does not exist an ¢ such that —s.D,;.toBe Written. Thus there does not exist an ¢ such that

5" D;. toBeWritten. Therefore Invariant 2 is preserved vacously in this case.

If ¢ = 6, then §'.D,.failed and s'.DefinedVB(i) = False for all i such that ¢ # n. Therefore

Invariant 2 is preserved vacuously in this case as well.

If g € {3,4}, assume that 7 is such that —s.D;.toBe Written and s.Defined VB(1).

Assume further that —s.D;.failed. By invariant 4, s.V B(i) = s.D;.hist. This action has
the effect of assigning the value of s.D;.block to s.D;.hist. By Lemma 3.2.3, s.D;.block =
s.D;.hist. Therefore, since s.VB(i¢) = s'.VB(i), we have s'.VB(i) = s'.D;.hist. Thus

Invariant 2 is preserved in this case.

Assume now that s.D;.failed. In this case, action 7 assigns the value of 5.V B(¢) to s.D;.hist.
Therefore s'.V B(t) = &'.D;.hist. Thus action © preserves Invariant 2 in this case as well.

Therefore action 7 preserves the entire invariant.

Case : ™ = Graphs. WR;(v)

Action 7 preserves Invariants 1, 2 and 4 trivially. We first show that it also preserves
Invariant 3 and then show that it also preserves Invariant 5.

Assume that there exists an ¢ such that (-s.D;.toBeWritten) A (s.DefinedVB(t)). This
implies that for all j such that j # ¢, =s.D; . failed.

Assume further that this action causes the following to be true:

VJi(G=n)v(s.Graphs. UD[ ) > (8 GTaphs. WrEzecuted[j] = True).

Then by Lemma 3.2.15,

Viis.Graphs.vpj))» S -Dj.block = s'.G'raphs. Data[j].
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Also by Lemma 3.2.3,

vj(—'s.Graphg. UD[DA(#1)9 Sl.D]' .block = 8/.D]' hist.

By Lemma 3.2.9,

§'.D,.block = ( @ (s'.Graphs. ValueRead[j)® s .Graphs.Data[j])) D s’ .Graphs. Value Read[n]

Dl
and,
Vi =n)v(s'.Graphs.UD[])» S -Graphs. RdDone[j] = True

The above equation together with Lemma 3.2.14 imply that:

Vi =n)v(s'.Graphs.vD[])» S -Graphs. ValueRead[j] = s'.D; .init.

We have:

s VB(i) = & .D;.block
(7#1)

= P ¢.D;.block
Dl

o @ s'.D;.block
(GAOA(=UD[]

@s'.D,, . block

= @ s .Graphs.Datalj]
UDj]

o @ s'.D;.hist
(GAOA(=UD[]

@ s .G'raphs. Value Read[]]

Dl

b @ s .Graphs.Data[j]
UDIj]

@s'.Graphs. Value Read[n]

= @ §'.D; . hist

(G#DA(=UDL])
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P ¢'.D;.init

Dl
®s'.D,,.init

= P  Djinit

(G#DA(=UDL])

P ¢.D;.init

UD[j]
®s'.D,,.init

Since for all j such that j # ¢, ~s'.D; failed, we have by Lemma 3.2.4, s'.D;.init # undefined.
Using this fact we derive the last equality above using Lemma 3.2.5.

Since s.DefinedVI(7), we have s'.VI(i) = s'.D;.hist, by Invariant 1. So s".V B(i) = &'.D;.hist.
Therefore this action preserves Invariant 3. We now show that action 7 also preseves

Invariant 5.
Assume that there exists an ¢ such that (s.G'raphs. UD[i]) A s. Defined VB(7). Assume further

that this action causes the following to be true:
VJi(G=n)v(s.Graphs. UD[IAG #0)))» (8 -GTaphs. WrEzecuted[j] = True).
Then by Lemma 3.2.15,
Yicunping#in, S -Dj.block = s'.Graphs.Datalj].

Also by Lemma 3.2.3,
Vi~uvppy, s -Dj.block = s'.D; . hist.

By Lemma 3.2.9,

§'.D,.block = ( @ (s'.Graphs. ValueRead[j)® s .Graphs.Data[j])) D s’ .Graphs. Value Read[n]

UD[j]

and,

Vi =n)v(s'.Graphs.UD[])» S -Graphs. RdDone[j] = True
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The above equation together with Lemma 3.2.14 imply that:

Vi =n)v(s'.Graphs.UDl])» S -GTaphs. ValueRead[j] = s'.D;.init.

We have:

s".VB(1) P ¢.D;.block

(J#1)

= @ s'.D;.block
(j#i)AUD[j]
P @ s'.D;.block
(=UD[])
@s'.D,, . block

= @ s .Graphs.Data[j]

(#)A UD[]

o @ s'.D;.hist
(~UD[D

b @ s .Graphs. Value Read([ 7]
UD[j]

b @ s .Graphs.Data[j]
Dl

@s'.Graphs. Value Read[n]

= §.Graphs.Data[i]
& P ¢.D;.init
UD[j]
o @ s'.D;.hist
(~UD[D
®s'.D,,.init

= $.Graphs.Datali]

& P ¢.D;.init
UD[j)

& P ¢.D;.init
(~UDL))

®s'.D,,.init
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Note for all j # ¢, =s'.D;.failed. Therefore by Lemma 3.2.4, s'.D;.init # undefined. Using
this fact and Lemma 3.2.5, we derived the last equality above. Also s'.Graphs. RdDone[i] =
True. Therefore s'.D;.init # undefined.

Let j be such that —s".G'raphs.UD[j]. So by Lemma 3.2.1, we have —s'.D;.toBe Written.
We have that s'.DefinedVI(j) = True. Thus by Invariant 1, s'.VI(j) = s'.D;.hist. By
Lemma 3.2.5, s'.D;.hist = §'.D;.init. So ' VI(j)= s.D;.init.

Thus (B ypp) 8- Dj-init) & (B vppy) §'-D;-init) & s'.D,,.init = 0. Therefore we have:

s VB(i) = s.Graphs.Data[t].

Thus this action preserves Invariant 5 and the entire invariant.

Case: ™ = Graphy WR;(v)

Action 7 preserves Invariants 1, 2 and 4 trivially. We first show that it also preserves
Invariant 3, and then show that it also preserves Invariant 5.

Assume that there exists an ¢ such that (-s.D;.toBeWritten) A (s.DefinedVB(t)). This
implies that for all j such that j # ¢, =s.D;.failed. Assume further that this action causes

the following to be true:
VJiG=n)v(s.Grapha. UD[Y) > (8 GTaphy. WrEzecuted[j] = True).
Then by Lemma 3.2.15,
Viis.Graphe.vnj))» S -Dj.block = s'.G'raphy. Data[j].
By Lemma 3.2.10,

s'.Dy.block = ( @ s'.Graphs.Data[j]) & ( @ s .Graphy. Value Read[7]),

UD[j] (~UDGD

and,

Vi upps' .Graphy. RdDone[j] = True.
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The above equation together with Lemma 3.2.14 imply,
Vi~uvpp)s -Graphy. ValueRead[j] = s'.D; . init.
And by Lemma 3.2.3,
Vimupppagzis -Dj.hist = s'.D; . block.
We use the above equations in the equalities below:

s VB(i) = @5’.Dj.block
(J#1)
= @sl.Dj.block
UD[j]
o @ s'.D;.block
(G#DA = UDI)
®s'.D,,.block

= @ s .Graphy. Data[t]
UDj]
o @ s'.D;.hist
(G#DA(=UDL])

b @ s .Graphy.Data[j]
vDlj]

b @ s .Graph,. Value Read[]]
(~UD[D

= @ s'.D;.hist

(j#i)A(= UD[])
& P .Dj.nit
(~UDL))

Since for all j such that =UD[j], s'.Graphy.RdDone[j] = True, then s'.D;.init # undefined,
by Lemma 3.2.4. Therefore for all j such that = UD[j], s'.D;.init = s'.D;.hist, by Lemma 3.2.5.

Therefore s'.V B(¢) = s'.D;.hist. Thus this action preserves Invariant 3. We now show that

it also preserves Invariant 5.

Assume that there exists an ¢ such that (s.G'raphy. UD[i]) A s. Defined VB(7). Assume further
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that this action causes the following to be true:
VJi(G=n)v(s.Graphs. UD[IAG #i)))» (8 -GTaphs. WrEzecuted[j] = True).
Then by Lemma 3.2.15,
VJis.Graphe. UD[In( 2i))» S -Dj.block = s .G'raphs. Data[j].
By Lemma 3.2.10,

s'.Dy.block = ( @ s'.Graphs.Data[j]) & ( @ s .Graphy. Value Read[7]),

UD[j] (=UD[])

and,

V(s Graphe. vpp))s -Graphs. RdDone[j] = True.

The above equation together with Lemma 3.2.14 imply,
Vi~uvpp)s -Graphy. ValueRead[j] = s'.D; . init.

And by Lemma 3.2.3,
Viupyps'-Dj.hist = s'.D; . block.

We use the above equations in the equalities below:

s VB(i) = & ¢.D;.block
(J#1)
= @ s'.D;.block
(j#$)AUD(j]
o @ s'.D;.block
(=UD[j])
®s'.D,,.block

= @ s .Graphy.Datalj]
(j#)A UD]
o @ s'.D;.block
(~UD[D
@ s .Graphy.Data[j]
(UD[D
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b @ s .Graph,. Value Read[]]
(~UD[D

= §.Graphy.Data[i]

o @ s'.D;.hist
(~UD[D

& P .Dj.nit
(~UD[D

= §.Graphy.Data[i]

& P ¢.D;.init
(=UD[D)

& P ¢.D;.init
(=UD[D)

= s".Graphy.Datali]

The second two last equality is derived using Lemmas 3.2.4 and 3.2.5. Therefore this action

preserves Invariant 5 and the entire invariant.

Case: ™ = Graphs.WR;(v)

Action 7 preserves Invariants 1, 2, 3 and 4 trivially. We show that it also preserves Invariant
5.

Assume that there exists an ¢ such that (s.Graphs.UD[i]) A (s.DefinedVB(i)). Assume

further that this action causes the following to be true:
VJ((=n)v(s.Graphs. UD[IAG #i)))» (8" -Graphs. WrEzecuted[j] = True).
Then by Lemma 3.2.15,
VJis.Graphs. UD[In( 2i))» S - Dj.block = s' .G'raphs. Data[j].

By Lemma 3.2.11,
§'.D,.block = @ ¢ .Graphs.Data[j].

UD[j]

We have

s VB(i) = & .D;.block
(7#1)
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= @ s'.D;.block
(#)AUD[]
®s'.D,,.block

= @ s'.D;.block
(7#)AUD[)]
b @ s'.Graphs.Data[j]

UDJj]

= @ s'.Graphs.Data[j]
(7#)AUD[)]

b @ s .G'raphs.Data[j]
UDj]
= $'.Graphs.Data[i].

Therefore this action preserves Invariant 5 and the entire invariant.

Case: 7 = Graphs.RwFail;

Action 7 preserves Invariants 1, 2, 3 and 5 trivially. We show that it also preserves Invari-
ant 4.

This action sets the variable Graphs.failureIn Frecutionto True. Thus the action FailedGraphs
is enabled in s’. It can be shown that when the action Graphs.RwFail; occurs, 1 is such
that (UD[¢] or ¢ = n) and §'.D;.failed. Therefore for all j such that (=s'.Graphs. UD[j]) we
have (—s.Defined VB(j)). Thus the invariant holds vacuously in s’ and 7 preserves Invariant

4.

Case: 7 = Graph,.RwFail;

Action 7 preserves Invariants 1, 2, 3 and 5 trivially. We show that it also preserves Invari-
ant 4.

This action sets the variable Graphy.failurelnEzecution to True. Thus FailedGraph,
is enabled in s'. If ¢ is such that s’.Graph,.UDJ[i] or i = n, then for all j such that
=5 .Graphy. UD[j] we have —s.DefinedVB(j). Therefore Invariant 4 is preserved vacuously

in this case.

If ¢ is such that —s'.G'raphy.UD[i], then it can be shown that s'.G'raphy.RdDone[i] =
False. Also we have by Lemma 3.2.1, that —s'.D;.toBeWritten. Thus by Lemma 3.2.8,
Vi, s .Graphy. WrEzecuted[j] = False.

Since s'.D;.failed, we have that Vjg;;, 8. D;.failed.
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Thus by Lemma 3.2.4, Vj(; 4, s'.D;.init # undefined.
Therefore by Lemma 3.2.7, Vj(;4;), 8. D;.init = s'.D;.block.
So §'.VB(i) = §.VI(i). Thus by Invariant 1, sV B(¢) = s'.D;.hist. Therefore action «

preserves Invariant 4 and the entire invariant.

Case: 7 = Graphs.RwFail;

Action 7 preserves Invariants 1, 2, 3 and 5 trivially. We show that it also preserves Invari-
ant 4.

We have s.runnings = True. Thus, there does not exist an ¢ such that (—=s'.Graphs. UD[i]).

Therefore this action preserves Invariant 4 and the entire invariant.

Case: 7 = Graphs.RwFail;

Action 7 preserves Invariants 1, 2, 3 and 5 trivially. We show that it also preserves Invari-
ant 4.

We have s.runnings = True. Thus, there does not exist an ¢ such that (i # n) and

s'.DefinedVB(i). Therefore this action preserves Invariant 4 and the entire invariant.

All other actions preserve the invariant trivially. This completes the proof of Lemma 3.2.16.

3.2.6 Properties Used in the Proof of Correctness of RAID

In this section, we present the properties used directly in the proof of correctness of RAID.
The first property is the General Consistency property. It expresses the fact that at the
end of the successful or unsuccessful execution of a graph, the block value of a non-failed
disk that is not to be written is equal to its hist value, and that the V' B value of a disk not

to be written is equal to its hist value, if the V B value is defined.

Lemma 3.2.17 General Consistency

For all states s of RAID, if the action ReadDone,(V'), WriteDone, or FailedGraph, is
enabled in s, then:

For all i such that —s.D;.toBe Written:

1. If (=s.D;.failed) then s.D;.block = s.D;.hist.

2. If s.DefinedVB(i) then s.V B(i) = s.D;.hist.
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Proof. Let s a state of RAID. Assume that the action ReadDone,(V'), WriteDone, or
FailedGraph, is enabled in s. Then by Lemma 3.2.3,

for all ¢ such that —s.D;.toBe Written:

if (=s.D;.failed) then s.D;.block = s.D;.hist.

If the action ReadDone,(V) is enabled in s, s.running, = True, for ¢ € {1,2}. Then
s.running, = False for g € {3,...,6}. And by Invariant 2 of Lemma 3.2.16,

for all ¢ such that —s.D;.toBe Written

if s.DefinedVB(7) then s.V B(i) = s.D;.hist.

Now assume that the action WriteDone, is enabled in s, for ¢ € {3,4}. Then s.running, =

True for g € {3,4}. The precondition of both actions includes:

Yi(i=n)v(s.Graph,. uD[i])> S-Graphy. WrDoneli] = True.

A trivial proof by induction can be used to show that

Yi(izn)v(s.Graph,. uD[i])> S-Graphy. WrEzecuted[i] = True.

For all ¢ such that (—s.D;.toBe Written), we have that, by Invariant 3 of Lemma 3.2.16:
if (s.DefinedVB(7)) then s.VB(i) = s.D;.hist.

Assume that the action Write Dones is enabled in s. In this case for all i such that (0 <1 <
n), s.Graphs. UD[i] = True. Thus there does not exist an ¢ such that (—s.D;.toBe Written).

Therefore the invariant is satisfied vacuously for this action.

Assume that the action WriteDone, is enabled in s. Graphg executes when D, .failed.
Therefore there does not exist an 7 such that s. Defined VB(i). Thus the invariant is satisfied

trivially for this action.

Assume the action FailedGraph, is enabled in s, for ¢ € {1,2}. By Invariant 2 of
Lemma 3.2.16, for all ¢ such that (—s.D;.toBe Written),
if (s.DefinedVB(i)) then s.V B(i) = s.D;.hist. Therefore this action preserves the invariant.
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Finally assume that FailedGraph, is enabled in s, for ¢ € {3,...,6}. By Invariant 4 of
Lemma 3.2.16, for all ¢ such that (—s.D;.toBe Written),
if (s.DefinedVB(7)) then s.VB(i) = s.D;.hist.

Therefore this action preserves the invariant.
This completes the proof of Lemma 3.2.17. [ |

The next lemma expresses the general read correctness condition for read graphs. It phrases
Lemmas 3.2.12 and 3.2.13 in a way that makes these properties easy to use in the proof of

correctness of RAID.

Lemma 3.2.18 General Read Correctness for Read Graphs
For all states s of RAID, if the action ReadDone,(V') for g € {1,2} is enabled in s, then:
Vis controtter. unpi]s 8- D;.hist = s.G'raph,. Value Read [i].

Proof. Let s a state of RAID. Assume that the action ReadDone, (V) is enabled in s for

g € {1,2}. Then s.running, = True. The precondition of action ReadDone,;(V') includes:

Vis Graph,.opp]s 8-Graph,. RdDone[i] = True.

Then by Lemma 3.2.12:
s.D;.hist = s.Graph,. ValueRead|i].

The precondition of ReadDone,(V) includes: s.Graphy. XorDone = True. Assume 7 is such
that (s.Controller.UD[t]) A (—s.D;.failed). Then by Lemma 3.2.13,

s.D;.block = s.Graph,. ValueRead[i]. Since —s.D;.toBe Written, s.D;.block = s.D;.hist, by
Lemma 3.2.3. Thus s.D;.hist = s.Graphs. Value Read|1].

Now assume 17 is such that (s.Controller.UD[i]) A (s.D;.failed). Then by Lemma 3.2.13,
5.V B(t) = s.Graphs. ValueRead[i]. Since =s.D;.toBe Written and s.Defined VB(1), Invariant
2 of Lemma 3.2.16 implies:

5.V B(t) = s.D;.hist.

Thus s.D;.hist = s.Graphs. Value Read|t].

This completes the proof of Lemma 3.2.18. [ |
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Finally, the next lemma expresses the general write correctness condition for Write graphs.
It phrases Lemma 3.2.15 and Invariant 5 of Lemma 3.2.16 in a way that makes these

properties easy to use in the proof of correctness of RAID.

Lemma 3.2.19 General Write Correctness for Write Graphs

For all states s of RAID, if the action WriteDone, for g € {3,...,6} is enabled in s, then:
For all @ such that s.Controller. UDJi],

if —s.D; failed, then s.G'raph,.Data[i] = s.D;.block

else s.G'raph,.Datali] = s.V B(1).

Proof. Let s be a state of RAID. Assume that the action WriteDone, is enabled in s.
Then s.running, = True. Assume ¢ is such that (s.Controller. UD[i]) A (ns.D;.failed).

The precondition of action WriteDone, includes:
Vi(s Controtter. up[i])» -GTaphy. WrDone[i] = True.
A trivial proof by induction can be used to show that this implies the following:
Yi(s Controtter. up[i])» 8-GTaphy. WrEzecuted[i] = True.
Thus by Lemma 3.2.15,
Yi(s Controtier.up[i])s 5-Di.block = s.G'raph,. Datals].

Now assume that ¢ is such that (s.Controller.UD[i]) A (s.D;.failed). In s the action
WriteDones cannot be enabled because Graphs executes only when disk D, has failed.
Thus we consider only graphs 3 through 5 in this case.

The precondition of action WriteDone, for g € {3,...,5} includes:
VJj(j=n)v(s.Graph,. UDLING £i))s S-GTaphy. WrDone[j] = True,
which implies:
Vi(j=n)v(s.Graph, UD[ING £i))» S-GTraphy,. WrEzecuted[j] = True.
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Therefore by Invariant 5 of Lemma 3.2.16,
5.V B(t) = s.Graph,.Data[t].

This completes the proof of Lemma 3.2.19. [ |

3.3 Correctness Proof

We show that RAID implements Spec by proving that there exists an abstraction function
from the states of RAID to the states of Spec.

Simulation Function Let s and u be reachable states of RAID and Spec respectively

and let f be the following function.

fls,u) &
Vito<icn), 5. Dj.hist = u.Register]i]
A(s.Controller.UD = u.UD)

A(s.Controller.Data = u.Data)

Theorem 3.3.1 [ is a simulation function.

Proof. Let sy be a start state of RAID. The variable sy,.UD is initialized to an array of
False. All initial states of Spec uy are such that wg.UD is an array of Fulse. Since the
Register variable of Spec can range over all of its possible values (the same holds for the

variable Data of Spec), there exists a start state ug of Spec such that:

Yito<icn) So-Dj.hist = ugy.Register[i], and
s0.UD = wo.UD,and

sog.Data = wg.Data

Therefore f(sg,uo) = True.

Let s a state of RAID and let u a state of Spec such that f(s,u) = True. Let (s,7,s’) be a

transition of RAID. We consider cases based on the type of actions performed by RAID.
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Case : m = Read( by, by)

Let the corresponding execution fragment of Spec be Read( by, b3). Let u’ the state of Spec
such that (u, Read( by, bs),u’) is a transition of Spec . By the code it is immediate that
s".Controller.UD = u'.UD.

The two actions do not change the value of variables Data in both automata. Therefore

s'.Controller. Data = u'. Data.

f(s,u) implies that

Vito<icn), 5. Dj.hist = u.Register][i].

Action 7 does not change the variables hist and Register. Therefore,

Vito<i<n), 8" -Dj.hist = u'.Register[i].

Thus f(s',u') = True.

Case : m = Write( b, Value)
Let the corresponding execution fragment of Spec be Write( b, Value). Let u' the state such
that (u, Write( b, Value),u') is a transition of Spec . A similar argument as above can be

used to show that f(s',u') = True.

Case : m = ReadDone (V)
Let the corresponding execution fragment be Read. Let u’ the state such that (u, Read, u)

is a transition of Spec.

ReadDone, (V') does not change s.Controller.UD. So

s.Controller.UD = s'.Controller.UD.

Similarly,

w.UD = u'.UD.

Since f(s,u)= True, s'.Controller.UD = u'.UD.
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We now show that s’.C'ontroller.Data = v'.Data. f(s,u) = True implies that:

Vito<icn), 5. Dj.hist = u.Register][i]. (3.1)

Since action ReadDone (V') is enabled in s, we have by Lemma 3.2.18:

Vis controtter. unpi], $-Di-hist = s.Graph,. Value Read[i].

Since Vig<i<, s.Graph,. ValueRead[i] = V[i], we have (by the effect of ReadDone, (V) in the
Controller automaton):

Vis.controller. UD[:]» SDthSt = V[l]

Therefore by Equation 3.1:

Vis.Controller. UDIJi]» V[l] = uRegzster[l]

Thus by the code of actions ReadDone (V') and Read in Spec:

Visr Controtter. unpi]s 8 -Controller. Datd[i] = u'. Data[t].

We also have that Vi, controer. unp, §".Controller.Datai] = w'.Data[i], since these values
do not change with the transitions ReadDone,(V') and Read.
Thus:

Vi(o<i<n)s 8" .Controller. Datali] = u'. Datal3].

We now prove that Vig<icn)s'.D;.hist = u'.Register[i]. If i is such that —s.D;.failed, then
the action ReadDone (V') assigns the value of s.D;.block to s.D;.hist. Since s.running, for
g € {1,2}, we have that Vj, s.D;.toBe Written = False. Thus by Lemma 3.2.17, s.D,.block =
s.D; . hist.

Therefore by Equation 3.1, ¢'.D;.hist = u'.Register|i].

If ¢ is such that s.D;.failed, then s.DefinedVB(i) = True and action ReadDone (V') assigns
the value of s.V B(i) to s.D;.hist. Also by Lemma 3.2.17 s.V B(i) = s.D;.hist. Therefore
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by Equation 3.1, s'.D;.hist = u'.Register[i]. Thus

Vi(o<icn)s'-Dj.hist = u'.Register|i].

Therefore f(s',u') = True.

Case : m = WriteDone,
Let the corresponding execution of Spec be Write. Let w’ the state such that (u, Write,v')
is a transition of Spec. Write Done, does not change s.C'ontroller.UD or s.C'ontroller. Data.
So

s'.Controller.UD = s.Controller.UD

and
s".Controller.Data = s.C'ontroller. Data.
Similarly,
. UD =u.UD
and

' .Data = u.Data.

Since f(s,u)= True,

s'.Controller.UD = u'.UD

and

s'.Controller. Data = u'. Data.

We now show that Yi(o<;<n), s".D;.hist = u'. Register[i].

Assume ¢ is such that —s.Controller. UD[i]. Then —s.D;.toBe Written. Assume further that
—s.D;.failed. Then by Lemma 3.2.17, s.D;.block = s.D;.hist. Since the action WriteDone,
has the effect of assigning s.D;.block to s.D;.hist, and s.D;.hist = u.Register[i] (by the
inductive hypothesis):

§'.D;.hist = u'.Register][i].

Assume now that 7 is as above such that =s.Controller.UD[i], but that s.D;.failed. Again

we have —s.D;.toBeWritten. And since the Failer module produces at most one failure,
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we have s.DefinedVB(t). Then by Lemma 3.2.17, s.V B(¢) = s.D;.hist. Since the action
WriteDone, has the effect of assigning s.V B(¢) to s.D;.hist, and s.D;.hist = u.Register]i]
(by the inductive hypothesis), we have:

§'.D;.hist = u'.Register][i].

Next assume that i is such that s.C'ontroller. UD[i] and that —s.D;.failed. Then by Lemma 3.2.19,
s.G'raphy.Datali] = s.D;.block.

Thus s'.D;.block = u'.Register][i].

Since the action Write Done, has the effect of assigning s.D;.block to s.D;.hist, we have:

§'.D;.hist = u'.Register][i].

Finally assume that ¢ is such that s.Controller.UD[i], but that s.D;.failed. Then by
Lemma 3.2.19,

s.G'raph,.Datali] = 5.V B(1).

Thus s’V B(i) = u'.Register][i].

Since the action WriteDone, has the effect of assigning s.V B(¢) to s.D;.hist, we have:
§'.D;.hist = u'.Register][i].

Therefore Vijg<icp), 8. D;.hist = w'.Register[i]. Thus f(s',u') = True.

Case : 7™ = FailedGraph,
Let the corresponding execution fragment of Spec be no action. FailedGraph, does not
change s.C'ontroller.UD or s.C'ontroller.Data. Thus s'.C'ontroller.UD = u.UD

and s'.C'ontroller.Data = w.Data.

We now show that Yi(y<;<n)s’.D;.hist = u'. Register[i].

Assume that ¢ is such that s.Controller.UD[i] and —s.D;.failed. If g € {1,2}, then this
action has the effect of assigning s.D;.block to s.D;.hist. By Lemma 3.2.17 s.D;.block =
s.D;.hist and s.D;.hist = u.Register[i]. Therefore, s'.D;.hist = u.Register[i].

If g ¢ {1,2}, then action 7 has no effect on s.D;.hist. Therefore s'.D;.hist = u.Register[i].

Next assume that 7 is such that s.C'ontroller. UD[i] but that s.D;.failed. Then by Lemma 3.2.17,
s.VB(t) = s.D;.hist. If g € {1,2}, this action has the effect of assigning s.V B(¢) to s.D;.hist,
and since s.D;.hist = u.Register[i], we have :

§'.Dj.hist = u.Register(t]. Again, if ¢ ¢ {1,2}, then action 7 has no effect on s.D;.hist.
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Next assume that i is such that —s.C'ontroller. UD[i] and —s.D;.failed. Then by Lemma 3.2.17,
s.D;.hist = s.D;.block. Since this action has the effect of assigning s.D;.block to s.D;. hist
and s.D;.hist = u.Register[i], we have:

§'.D;.hist = u.Register[i].

Finally, assume that i is such that —s.Controller.UD[i] but that s.D;.failed. Then by
Lemma 3.2.17, s.V B(¢) = s.D;.hist.

Since this action has the effect of assigning s.V B(7) to s.D;.hist, and s.D;.hist = u.Register[i],
we have :

s'.D;.hist = u.Register[i].
Therefore Vijy<icoy, s'.D;.hist = u.Register[i]. So f(s',u) = True.

Case : m = ReadBack(Value)

Let the corresponding action of Spec be ReadBack(Value). Let u' the state such that
(u, ReadBack(Value), v') is a transition of Spec. f(s,u) = True implies that
s.Controller.Data = u.Data and s.C'ontroller.UD = u.UD.

So the two ReadBack(Value) actions output the same value. The two actions also leave the

variable Data unchanged and change UD in the same way. So f(s',u') = True.

Case : m = WriteOK
Let the corresponding action be WriteOK. Let u' the state such that (u, WriteOK,u') is a
transition of Spec. Both actions leave the variable Data unchanged and change the variable

UD in the same way. So f(s',u') = True.

All other actions preserve the simulation relation trivially. This completes the proof of

Theorem 3.3.1. [ ]
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Chapter 4

Extensions

In this chapter we consider some extensions to the algorithm studied in the previous sections.
The first section presents an algorithm in which each disk has more than one block. This
allows us to consider the RAID Level 5 architecture in its entirety. The second section
describes an algorithm for another RAID architecture, the RAID Level 6, and shows how

we used our consistency property to find an error in this algorithm.

4.1 Disks with More than One Block

In the algorithm we considered in the previous sections, we modeled each disk as having
only one block of data. Since the disk array is composed of n data disks, this implies that
files have a maximum length of n. One natural extension of the algorithm is to allow disks

to have an unbounded number m of blocks.

This extension allows us to represent the RAID Level 5 architecture in its entirety. The
RAID Level 5 architecture is block-interleaved with distributed parity. A file is divided into
blocks that are placed on several disks and parity blocks are distributed in a left-symmetric
fashion, meaning that they are located on a diagonal as shown in Figure 4-1. In this figure,

PO is the parity covering blocks 0, 1 and 2; P1 is the parity block covering 3, 4 and 5, etc...

In an architecture where there is a single parity disk, the parity disk is accessed every time
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Figure 4-1: RAID Level 5 Architecture

it needs to be updated. Distributing the parity relieves the load on that disk and also makes

n + 1 disks available for data. So this scheme improves the overall performance.

We can represent the extension of having m blocks per disk in the following way. We
introduce a new automaton HILControllerfor High Level Controller that interfaces with the
user. For each parity group we instantiate a C'ontroller and a set of graphs identical to the
ones we introduced before. Note that a parity group is a set of n data blocks together with

the parity block that covers them.

The role of HL Controlleris to find out what parity groups are going to be used and determine
what disks are in the UsedDisk set for each parity group. Then HIL Controller passes this
information to each relevant Controller, along with the data to be written if any, and an
indication of which disk has failed. Since the controllers do not share any data, they can run
concurrently. When the controllers finish reading/writing their parity groups, they return

to HLController, that in turn gets back to the user.

Note that this extension also allows us to have a system with more than one file. In this
case HLController must maintain information about where the blocks of a file are, and deal

with issues of allocation.

We can model HLController as an 1/O Automaton. The algorithm is represented by the

composition of this automaton with the controllers, graphs and disks automata. The proof of
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correctness for this algorithm is similar to the one we carried out before. Since the controllers

do not share any data, this new composition does not require any special consideration.

4.2 Verifying Controller Algorithms for other RAID Archi-

tectures

In this section, we turn our attention to another RAID architecture: the RAID Level 6
system [Gibson95], which is two-fault tolerant. The general controller algorithm is identical
to the one for RAID Level 5, i.e. after receiving and operation from the user, the controller
chooses a graph to execute based on the state of the disk array; if that graph fails then the

controller discards that graph and chooses another one to complete the operation.

The algorithm for the controller of the RAID Level 6 architecture differs from the algorithm
we considered previously in the set of graphs available, and the logic for choosing them. We
can model the RAID Level 6 algorithm using I/O Automata. The disk automaton will be

identical to the one we used before, assuming we consider one block per disk again.

One essential property of graphs of controller algorithms that use Courtright and Gibson’s
error recovery method, is that they must satisfy General Consistency (Lemma 3.2.17). This
property states that at the end of execution of a graph, all the disks D; that are not to be

written, satisfy two conditions:
1. If the disk has not failed, D;.block = D;.hist, and
2. If VB(q) is defined, V B(¢) = D;.hist.

This property can be used for the RAID Level 6 architecture if we redefine the V B value.
This value basically captures the architecture and the expression of the General Consistency

property is the same for all systems.
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Figure 4-2: RAID Level 6 Architecture

4.2.1 RAID Level 6: Architecture Details

The RAID Level 5 system has a parity block for every n blocks. This allows the system to
tolerate one disk failure. The RAID Level 6 system is an extension of RAID Level 5. It has
two parity blocks per parity group and tolerates two failures. The first parity block (P) is
identical to the parity in RAID Level 5. It is computed by performing the XOR of all the
blocks in that parity group. The second parity (Q) is computed using Reed-Solomon codes.
Figure 4-2 presents the RAID Level 6 architecture.

The graphs for RAID Level 6 are similar to the graphs for RAID Level 5. The controller can
perform the Small Write and Reconstruct Write. In this case the graph must also update

the second parity.

4.2.2 RAID Level 6: New Definition for VB

First we must define what it means for the V' B value to be defined in this architecture. The
V' B value of a disk D; is defined, i.e. DefinedVB = True, if and only if there is at most one

failure among all disks other than D;.

For this system, the V B value of a disk is computed as follows. If no other disks have failed,
we compute V' B using P. If another data disk has failed, V B is computed using both P and
Q. If P has failed we compute V B using Q. Finally, if Q has failed, we compute it using P.

Note that, in the above explanation, we only present what data is needed to compute V B
and we omit how to compute it. But this is enough for the purposes of applying the General

Consistency property.
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Figure 4-3: Small Write for RAID Level 6 - Non-recoverable Graph

4.2.3 Error Found in a RAID Level 6 DAG

We found an error in the Small-Write graph for RAID Level 6, that appears in [Gibson95].
This graph did not satisfy General Consistency and our property helped in finding a coun-
terexample. The graph is shown in Figure 4-3. It consists of reading the disks to be written,
reading the old P and Q values, computing the new parities and writing the new data and

parities.

This graph does not satisfy the second condition of General Consistency. Consider the disk
array shown in Figure 4-2. Assume that disks D; and D, are in the UsedDisk set and thus
are the disks to be written. Assume that the graph reads and writes disk ;. Then assume
that D, fails before having been read. At this point the graph cannot complete successfully
and the disk array has been partially updated. Now if D, fails, its V B value is different
from its hist value, since the block value of D has changed, but the block values of P and
() have not. Disk D, is not to be written and its V' B is different from its hist at the end of

the execution of the graph. Therefore this graph does not satisfy General Consistency.

The Small Write graph appears in [Gibson95]. It seems to be the case that there does not
exist a DAG that performs the Small Write operation, while satisfying the General Con-
sistency property, using Courtright and Gibson’s error recovery method. In a recent work
Gibson et al. have used a different controller algorithm for the RAID Level 6 that does not
have this problem. This controller algorithm uses roll-away error recovery [Courtright96],

rather than Courtright and Gibson’s method [Courtright94].
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Chapter 5

Conclusions

Summary

We proved the correctness of a controller algorithm for the RAID Level 5 system. We
expressed the algorithm and its specification using I/O Automata and proved that the

algorithm satisfies its specification by using the proof by simulation technique.

We then presented two extensions of this study. The first one is having more than one
block per disk. This extension allows us to represent the RAID Level 5 architecture in its
entirety. We did not show the proof of correctness for this extended algorithm, but it is

similar to the one we presented.

The second extension is considering a controller algorithm for the RAID Level 6 system. We
used the formalization of our General Consistency property, to find an error in the Small

Write DAG of a RAID Level 6 algorithm.

Formal Methods and Practice

It is useful to employ formal methods to validate RAID controller algorithms because these
algorithms are difficult to test and to reason about. When applied in early stages of design,

formal methods can unveil errors that would be expensive to correct if they were propagated
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to implementation stages. However, practitioners generally do not use formal methods,
because these are considered to be expensive. The time and effort required by hand-proofs
or by proofs done with semi-automatic theorem provers, are considered to be prohibitively

expensive.

Researchers have proposed that practitioners would use formal methods, if fully automatic
tools were available. These tools would have to be easy to learn and to use. One example is
the success of model checking in the hardware domain [Clarke94]. A model checker takes, as
input, the description of a system and a property to verify. Then it generates the state-space
of the system and checks it exhaustively. It outputs true if the system satisfies the property,
and false otherwise. In the latter case, the model checker also outputs a counterexample.
Model checkers cannot be used directly in the software domain, because software systems
are not finite state machines, and model checkers can only verify finite state machines. This
is the reason why researchers have been considering methods to combine theorem proving
and model checking. However theorem provers augmented with model checking capabilities
are semi-automatic tools that require the user to participate in the proof of correctness.

Therefore, these tools would be considered expensive to use by practitioners.

On the one hand, practitioners would rather have fully automatic tools, and on the other,
theoreticians see the benefits of semi-automatic ones. In these tools, the designer is involved
in the proof of correctness, and can learn essential information about why the algorithm
is correct. This information is very useful to the designer, for future design. The tradeofl
for how much automation there should be in a verification tool for software systems is not

clear.

A solution to this problem is to have “little” software verification tools. From the point
of view of verification, hardware systems can be seen as a subdomain of software systems,
namely a hardware system is a software system that has only booleans as data structures
and that is finite state. Just as model checking is suitable for the hardware domain, we could
develop fully automatic verification tools for other restricted domains of software. These
tools would be developed by restricting a software domain, and proving the correctness of
algorithms in that domain. These proofs would reveal essential information about why these

algorithms are correct and a verification tool could be built based on it. This tool would be
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fully automatic and available to practitioners who would use the information without having
to perform the proofs again. Instead of having one general-purpose software verification tool,

designers would have many special purpose tools.

Future Work

Based on the previous discussion, we plan to build a verification tool for RAID controller
algorithms that use Courtright and Gibson’s error recovery method. This tool would take
as input a definition for the V B value of a disk and a DAG, and would determine if the
DAG satisfies consistency. By proving correctness of the RAID Level 5 algorithm, we found
out why the algorithm is correct and formalized this information in the General Consistency
property. A fully automatic verification tool for this property would allow designers to use

this information without having to perform the proof again.
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