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Abstract

In the network synchronization model, each node

maintains a local pulse counter such that the advance

of the pulse numbers simulates the advance of a clock

in a synchronous network. In this paper we present a

tame optimai sel&stabilizing scheme for network syn-

chronization. Our construction has two parts. First,

we give a simple rule by which each node can com-

pute its pulse number as a function of its neighbors’

pulse numbers. This rule stabilizes in time bounded

by t?te diameter of the network, it does not revoke

global operations, and does not require any additional

memory space. However, this rule works correctly

only if the pulse numbers may grow unfoundedly. The

second part of the construction (whzch is of indepen-

dent interest in its own right) takes care of this prob-

lem. Specifically, we present the jirst self-stabilizing

reset procedure that stabilizes in tzme proportional to

the diameter of the network. This procedure can be

combined with unbounded-register protocols to yield

bounded-register algorithms.
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1 Introduction

The quinteaaential problem of virtually every dis-

tributed computation is how to remove uncertainty

that might effect the task at hand. The nature of clis-

tributed systems is such that the tasks may be influ-

enced by many factors; to mention just a few, we need

to confront difficulties such as physically dispersed

inputs, asynchrony of computation and communi-

cation, dynamically changing networks, and many

more. It is highly desirable to have some kind of an

automatic transformer that allows a protocol designer

not to lose generality while assuming a ‘(friendlier”

model than the given real-world environment. De-

spite its desired generality, such a transformer must

be cheap, in the sense that its overhead should be

kept small so that it is still practical.

In this paper we present a transformer algorithm

for reactive protocols that eliminates two of the prob-

lematic uncertainties. Specifically, we implement a

distributed pulse counter at the nodes that simulates

(in some precise sense defined below) the advance of

a clock in a true synchronous system. Our algorithm

has the important feature that it starts operating cor-

rectly regardless of its initial state (algorithms of this

kind are called “self-stabilizing” ). In practice, this

means that the algorithm adjusts itself automatically

to any change in the network or any unpredictable

fault of its components, so long as the faults stop for

some sufficiently long period. Our algorithm is sim-

ple and easy to implement. The algorithm stabilizes

in time proportional to the diameter of the network,

and hence it is optimal in that respect.

Problem Stat ement. We are given an asyn-

chronous message passing network, and our objec-

tive is to implement a dwtributed pulse service at the

nodes. The service must provide the node at all time

with a pulse number, subject to the following condi-

tions.

Synchronization: Any message sent at local pulse i is
received at the other endpoint before local pulse i+ 1.
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Progress: There exist parameters A and p (that may

depend on the network topology), such that for any

time interval of length t > A, the number of consecu-

tive pulses generated at every node is at least p(f–A).

The parameter A is called network slack and p is the

progress rate.

A self stabilizing protocol is required to satisfy these

conditions only after a certain stabilization time has

elapsed. More intuition and elaborate description of

the desired properties from such a service are given

in Section 2 below.

Previous Work. Synchronizers were the target of

considerable research, following the work of Awer-

buch [Awe85]. For example, see [AS88, PU89, AP90,

APPS92]. The concept of self-stabilization was in-

troduced by Dijkstra [Dij74]. A few general “stabi-

lizer” schemes that upgrade non-stabilizing protocols

to be self-stabilizing have been proposed since. These

are typically based on a reset procedure that can im-

pose an acceptable state on the system. Such schemes

can be combined with the aforementioned synchroniz-

ers to obtain a self-stabilizing synchronizer. We refer

below to the known stabilizers and their complexity

bounds. In [AG90], a pre-specified bound on the di-

ameter of the network is required, and the protocol

stabilizes in time quadratic in that bound. We re-

mark that in a dynamic system, such a bound is typ-

ically significantly larger than the actual diameter. In

[AKY90], a self-stabilizing spanning tree construction

is given, that can be used as the basis to a stabilizing

reset procedure. The stabilization time of that proto-

col is O(n2), where n is the actual number of nodes in

the system. In [DIM9 1], a randomized spanning tree

protocol is implicitly given. That protocol stabilizes

in expected time O(d log n), where d is the actual di-

ameter of the network. In [APV91, Var92] a general

self-stabilizing reset protocol is presented, whose sta-

bilization time is O(n). In [AV9 1], a self-stabilizing

synchronizer is presented. This protocol stabilizes in

time linear in a pre-specified bound on the diameter

of the network.

It is worth mentioning the important work of

Spinelli and Gallager [SG89] on topological update

in dynamic networks. This algorithm has many at-

tractive features (in addition to its simplicity). The

main property of the algorithm is that it stabilizes

in time proportional to the diameter. Although not

stated as such, it is easy to verify that the algorithm

is self-stabilizing. The drawbacks of the algorithm

are its large space requirement (which is inherent for
the topology update problem), its message complex-

ity (that might be exponential), and the assumption

that the node identifiers are in the range 1 . . . n.

Our Results. The contribution of this paper is

twofold. First, we present a simple new rule for self-

stabilizing synchronization of networks, with network

slack d (the diameter of the network), and progress

rate 1. “ Our rule does not invoke global operations,

stabilizes in time linear in the actual diameter of the

network without any prior knowledge, and does not

require any additional memory space (other than for

the pulse counter). In the course of development of

this rule, we obtain some interesting results regarding

common synchronization rules, with applications to

clock synchronization schemes. We believe that the

analysis of the new rule captures some of the inherent

properties of synchronization. However, this rule suf-

fers from a serious disadvantage, namely it requires

unbounded pulse numbers to ensure correctness. We

fix this flaw in our second major result. Specifically,

we give the first time-optimal self-stabilizing reset

procedure, i.e., a reset protocol that stabilizes in time
proportional to the actual diameter of the network.

This result is of independent interest in its own right,

being the first time-optimal stabilizer. The heart of

the reset procedure is a novel self-stabilizing spanning

tree algorithm that in diameter time produces a tree

with diameter height, The bounded protocol needs

unique identifiers of the nodes, and a pre-specified

bound on the diameter of the network; the complexity

of the space requirement and messages size depends

logarithmically on the bound.

Notations and Model of Computation. We

model the processor network as a fixed undirected

graph G = (V, E). For u, v E V we denote

by dist(u, v) the length of the shortest path be-

tween u and v. We follow the notational conven-

tion that n = [Vi, and that d = diameter(G) =

mah,uev {dist(u, v)}. For each node v c V, we de-

note Af(v) = {u : did(u, v) = 1}. In this abstract we

assume the model of unit capacity data links, in which

there is at most one outstanding message in transit

on every channel at any given time. (This model

was defined and justified [APV91, Var92] as a realis-

tic model for any message passing system with some

bound on the capacity of the channels.) The message

delivery time can be arbitrary, but for the purpose

of time analysis we assume that each message is de-

livered in one time unit. We use the method of !o-

cal detection [AKY90, APV91, Var92], in which each

node constantly sends its state to all its neighbors.

This enables us to present our protocol in a compact

formulation of local rules. These rules are functions
that take the state of the neighborhood (made avail-

able by the underlying local detection mechanism),

and output a new state for the node.

653



Paper Organization. This paper is organized as

follows. In Section 2 we develop the requirements

from a desirable synchronization scheme, by exploring
the disadvantages of some of popular schemes. In

Section 3 we specify the new synchronization rule and

analyze its complexity. In Section 4 we develop an

optimal self-stabilizing reset procedure and explain

how to apply it to the synchronization rule to obtain

a protocol that works with bounded registers.

2 Requirements and Examples

In this section we consider a few preliminary ideas
for synchronization rules. By studying their proper-

ties, we develop a set of requirements from a desirable

scheme.

Synchronization. The synchronization requirement

can be defined as follows (cf. problem statement in

Section 1).

Definition 1 Let G = (V, E) be a graph, and let P :

V -+ N be a pulse assignment. We say that the con-

figuration (G, P) is legal for node v, denoted legal(v),

if for al/u e JV(v) we have [P(u) –P(v)l < 1. We say

that the configuration (G, P) is legal if for all v ~ V,

legal(v) holds.

The idea behind Definition 1 is as follows. In the

synchronous setting, all messages sent at pulse i are

received by pulse i + 1. When we simulate execu-

tions of synchronous protocols on an asynchronous

network, we do not have a global pulse-producing

clock. Rather, we want to maintain the validity of

the messages sent. This can be done by ensuring the

a node sends pulse i + 1 messages only after it has

received all the pulse i messages from its neighbors.

Since message delivery is not simultaneous, there can

be a skew of the pulse counters at neighbors, but this

skew is allowed to be at most one: if the pulse num-

bers at two adj scent nodes differ by more than 1, then

necessarily the node with the higher pulse number

has advanced without receiving all messages of prior

pulses. This notion of legal configuration gives rise
to the following simple synchronization rule, which is

implicit in the a synchronizer of [Awe85].

Rule 1 (’Min Plus One)

P(v) + rnrnvl {P(u) +1}

The idea is that whenever the pulse number is

changed, the node sends out all the messages of pre-

vious rounds which haven’t been sent yet.

Stabilization. As is well known, Rule 1 is stable,

i.e., if the configuration is legal (as in Definition 1),

then applying the rule arbitrarily can yield only legal

configuration. Notice however, that if the state is not

legal, then applying Rule 1 may cause pulse numbers

to drop. This is something to worry about, since the

regular course of the algorithm requires pulse num-

bers only to grow. Thus it is conceivable that actions

taken in legal neighborhoods interfere with the ac-

tions taken in illegal neighborhoods. This intuition is

captured by the following theorem.

Theorem 1 Rule 1 M not self-stabilizing.

Proofi By a counter example. Consider the pulse

configuration of a 10-processor ring depicted in Fig-

ure 1 (a). Clearly, the vertical edges indicate illegal

state. Consider now the execution described in Fig-

ure 1 (a-i), obtained by repeated application of Rule

1. It is readily seen that the last configuration (i) is

basically identical to configuration (a), with all the

pulse numbers incremented by one, and rotated one

step counter-clockwise. Repeating this schedule re-

sults in an infinite execution in which each processor

takes infinitely many steps, but none of the configu-

rations is legal. I

Let us make a make a short digression here. The-

orem 1 has an interesting corollary for clock synchro-

nization: one of the popular schemes for clock syn-

chronization [LL84] is “repeated averaging”. Roughly

speaking, in the repeated averaging rule each node

sets its value to be the average value of its neigh-

bors, while advancing the clock if this average is close

enough to its own value.

Corollary 1 Repeated averaging does not stabilize.

Proof Sketch: The scenario in the proof of Theo-

rem 1 shows that averaging with rounding down does

not work. A similar scenario can be constructed for

averaging with rounding up. B

Tzme Complexity. One idea that can pop into mind

to try to repair the above flaw is to never let pulse

numbers go down. Formally, the rule is the following.

Rule 2 (Monotone Mm Plus One)

Rule 2 can be proven to be self-stabilizing. However,
it suffers from a serious drawback regarding its st abi-

lization time. Consider the configuration depicted in

Figure 2.
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An execution using Rule 1. The node that rnovedin each step in

A quick thought should suffice to convince the

reader that the stabilization time for this configura-

tion using Rule 2 is in the order of 1000000 time units,

which seems to be unsatisfactory for such a small net-

work. This example demonstrates an important prop-

erty that we shall require from any self-stabilizing

protocol: the stabdization time must not depend on

the initial state; rather, it should be bounded by a

function of the network topology. A clear lower bound

on the stabilization time is the diameter of the net-

work (e.g., if n — 1 nodes must change their pulse

number). In the example above, and using Rule 2,

the stabilization time depends linearly on the value of

the pulses, thus implying that the stabilization time

can be arbitrarily large.

Truly Distributed Model. The next idea is to have

a combination of rules: certainly, if the neighborhood

is legal, then the problem specification requires that

Rule 1 is applied. But if the neighborhood is not
legal, another rule can be used. The first idea we

consider is the following.

Rule 3 (Maximum)

P(v) -
{

mi~~~t.) {P(u)+l} , if legai(v)

ma~c~t.) {P(u), P(v)} , otherwise

It is straightforward to show that if an atomic ac-

tion consists of reading one’s neighbors and setting

its own value (in particular, no neighbor changes its

value in the meanwhile), then Rule 3 above indeed

Figure 2: A pulse assignment for Rule 2.

marked.

converges to a legal configuration. Unfortunately,
this m;del, traditi&ally c;lled central demon model

[Dij74, BP89], is not adequate for a truly distributed
system, which is based on loosely coordinated asyn-

chronous processes. And as one might suspect, Rule

3 does not work in a truly distributed system, as we

demonstrate in the following theorem.

Theorem 2 Rule 3 is not self-stabilizing in an asyn-

chronous system.

Proofi By a counter example. Consider the execu-

tion of a line of 3 processor depicted in Figure 3.

(a) (b) (c)

@@+@+-@@@+

(d) (e)

@@@@@-@l

Figure 3: An execution using Ruie 3 in a truly dis-

tributed system. The nodes that send or receive are

marked.

Since the estimate of the middle processor of the

value of the left processor in configuration (c) is 2, it

applies the correcting part of Rule 3, resulting in yet

another illegal configuration (d). Since configuration

(e) is equivalent to configuration (a) with pulse num-

bers incremented by 2, we conclude that repeating

this schedule results in an execution with infinitely

many illegal states. ~

Locality and Simplicity. Finally, we would like to
address two properties which are somewhat harder to

capture formally. It seems, however, that these prop-

erties are of the highest importance in practice. The
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first such property is locahly. By locality we mean

that it is much preferable that a processor will be

able operate while introducing only the minimal pos-

sible interference with other nodes in the network. In

other words, invoking a global operation is consid-

ered costly, and we would like to avoid it as much

as possible. One way to capture this intuition ap-

proximately in our case is to require that the only

state information at the nodes is the pulse number,

and that protocols should operate by applying local

rules as above. The problem with the conventional

theoretical approach here is that it neglects to con-

sider the frequent cases, by focusing on the worst case

scenario. As an illustrative exercise, contrast this ap-

proach with the following solution: whenever an ille-

gal state is detected, reset the whole system. This

solution, although it may be unavoidable in some

rare cases in practice, does not seem particularly ap-

pealing as a routinely activated procedure. Consider,

for example, the common situation in which a new

node joins the system (perhaps it was down for some

while). We would like the protocols to feature grace-

ful joining in this case, i.e., that other nodes would

be effected only if necessary (e.g., the neighbors).

The last property we require from distributed pro-

tocols is even harder to define precisely. Essentially,

we would like to have the protocols conceptually sim-

ple. This will make the protocols easy to understand,

and therefore, easy to maintain. This requirement

is one of the main obstacles for many sophisticated

protocols that are not implemented in practice.

3 Optimal Self-Stabilizing Rule

In this section we give a simple, self-stabilizing} opti-

mal rule of synchronization, and analyze its st abiliza-

tion time. Specifically, our synchronization scheme is

based on the following rule.

Rule 4 (Max Minus One)

{

mi~~~(VJ {P(u)+l} , if legal(v)

‘(v) + ma~c~(v) {P(u)–1, P(v)}, otherwise

In words, Rule 4 says to apply a “minimum plus

one” rule (Rule 1) when the neighborhood seems to

be in a legal configuration, and if the neighborhood

seems to be illegal, to apply a “maximum minus one”

rule (but never decrease the pulse number). The sim-

ilarit y to the “maximum” rule (Rule 3) is obvious.

The intuition behind the modification is that if nodes

change their pulse numbers to be the mazimum of

their neighbors, then “race condition” might evolve,

where nodes with high pulses can “run away” from

nodes with low pulses. If the correction action takes

the pulse number to be one less than the maximum,

then the high nodes are “locked”, in the sense that

they cannot increment their pulse counters until all

their neighborhood have reached their pulse number.

This “locking” spreads automatically in all the “in-

fected” ‘area of the network. Formally, the way Rule

4 corrects any initial state is analyzed in detail in the

proof of Theorem 3 below. We remark that the anal-

ysis presented here is simplified (the case analysis of

the interleaving due to asynchrony is omitted). This

is done to improve exposition of the central ideas.

Theorem 3 Let G = (V, E) be a graph with diameter

d, and let P : V ~ N be a pulse assignment. Then

applying Rule ~ above results in a legal configuration

in d time units.

In order to prove Theorem 3, we shall need some

tools to analyze the behavior of the synchronization

scheme. The basic concept that we use is a certain po-

tential value we associate with every node, described

in the following definition.

Definition 2 Let v be a node in the graph. The po-

tential of v is denoted by #(v) and is dejined by

+(v) = y~;{P(u) - P(v) - dist(u, v)} .

Intuitively, ~(v) is a measure of how much is v not

synchronized, or alternatively the size of the largest

distance-adjusted skew in the synchronization of v.

Pictorially, one can think that every node u is a point

on a plane where the ~-coordinate represents the dis-

tance of u from v, and the y coordinate represents the

pulse numbers (see Figure 4 for an example). In this

representation, v is the only node on the y-axis, and

#(v) is the maximal vertical distance of any point

(i.e., node) above the 45-degree line going through

(O, P(V)).

Let us start with some properties of+, whose (triv-

ial) proofs are omitted.

Lemma 2 For all nodei v E V, ~(v) >0.

Lemma 3 A configuration of the system is legal if

and only if for all v c V, #(v) = O.

We now show the key property of Rule 4, namely

that the potential of the nodes never increases when

Rule 4 is applied.

Lemma 4 Let P be any pu[se assignment, and sup-

pose that some node u changes its pulse number by

applying Ru~e 4- Denote the new Wse number of
u by Pt(u), and the potential of the nodes in the

new configuration by qi). Then for all nodes v E V,

d’(v) s 4(V).
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Figure 4: On the lefl is an example of a graph with pulse assignment (i). Geometrical representations of this

configuration are shown in (at) and (iii). The plane corresponding to node c is in the middle (ii), and the plane

corresponding to node b is on the right (iii). As can be readily seen, ~(c) = 1, and ~(b) = 4. Also, l?(c) = 1, and

O(b) = 1 (see Definition 3).

Proof Sketch: The first easy case to consider is the

potential of u itself. Since P’(u) > P(u), we have

~’(u) = ~~.{P(wI) - P’(u) – dist(w, u)}

~ rr.a, {P(w) – P(u) – dist(w., u)} (1)

= ~(u) .

(Note, for later reference, that the inequality in (1)

is strict if ~(u) > O.) Now consider w # u. The only

value that was changed in the set

{P(vJ) - P(v) - dist(w, v) I W G V}

is P(u) — P(v) — dist(u, v). There are two cases to

examine. If u changed its pulse by applying the “rein

plus one” part of the rule, then there must be a node

w which is a neighbor of u, and is closer to v, i.e.,

dist (u, TJ) = dist (w, v) + 1.Also, since “rein PIUS one”

was applied,

P’(u) –

<

=

we have P’(u) < P(w) + 1. Now,
.

P(v) – dist(u, v)

(P(w) +1) - P(TJ) - (dist(w, v) + 1)

P(w) – P(v) – dist(w, v)

and hence the q5(v) does not increase in this case.

The second case to consider is when u has changed
its value by applying the “max minus one” part of

the rule. The reasoning is dual to the first case: let

w be a neighbor of u with P(w) = P’(u) + 1. clearly,

dist (w, v) s dist(u, v) + 1. This implies that

P’(u) – P(v) – dist(u, v)

~ (P(w) – 1) – P(v) – (dist(w, v) – 1)

= P(w) – P(w) – dist(w, v)

and we are done. I

As noted above, the inequality in (1) is strict if

~(u) >0. In other words, each time a node with pos-

itive potential changes its pulse number, its potential

decreases. This fact, when combined with Lemmas

2 and 3, immediately implies eventual stabilization.

However, this argument leads to a proof that the sta-

bilization time is bounded by the total potential of

the configuration, which in turn depends on the ini-

tial pulse assignment. We need a stronger argument

in order to prove a bound on the stabilization time

that depends only on the topology, as asserted in the

statement of Theorem 3. Toward this end, we define

the notion of “wavefront”.

Definition 3 Let v be any node, The wavefront ofv,

denoted O(v), is defined by

O(v) = ::; {dist(u, v) I P(u) –P(v)–dist(u, v)=~(v)} .

In the graphical representation, the wavefront of a
node is simply the distance to the closest node of on

the “potential line” (see Figure 4 for an example).

Intuitively, one can think of O(V) as the distance to
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the “closest largest trouble” of v. The importance of

the wavefront becomes apparent in Lemma 6 below,

but let us first state an immediate property it has.

Lemma 5 Let v ● V. Then ~(v) = O if and only if

#(v) = o.

Lemma 6 Let v be any node with O(v) >0, and let

W(v) be the wavefront ofv after one time unit. Then

o’(v) < @(v) – 1.

Proof: Suppose @(v) = f >0 at some state. Let u

be any node such that P(u) –P(v)– dist(u, v) = ~(v),

and dist(u, v) = f. Consider a neighbor w of u which

is closer to v, i.e., dist(w, v) = f – 1 (it may be the

case the w = v). From the definition of Q(v), it

follows that P(w) < P(u) – 1. Now consider the

next time in which w applies Rule 4. If at that time

Q(v) < ~, we are done. Otherwise, w must assign

P(w) - P(u) – 1. No greater value can be assigned,

or otherwise Lemma 4 would be violated. At this

time, P(w) – P(v) – dist(w, v) = q5(v) also, and hence

@( V)< f–l. H

The next corollary follows from Lemmas 5 and 6.

Corollary 7 Let v be any node. Then after O(v)

time units, ~(v) = O.

We can now prove Theorem .3. We first re-state it.

Theorem 3 Let G = (V, E) be a graph with diameter

d, and let P : V ~ N be a pu!se assignment. Apply-

ing Rule ~ above results in a legal configuration in d

time units.

Proof: By Lemma 3, it suffices to show that after d

time units, q$(v) = O for all v G V. From Corollary

7 above, we actually know that a slightly stronger

fact holds: for all node v c V, after Q(v) time units,

4(v) = O. The theorem follows from the facts that for

all v G V, @(v) s d, and by the fact that ~(v) never

increases, by Lemma 4. 1

4 Stabilization with Bounded

Registers

In this section we propose a general scheme for sta-

bilizing unbounded-values algorithm that are imple-

mented with realistic (and therefore, bounded-size)

registers. Our scheme is based on the following idea,
which is described in detail in [APV92]. First, we let

the registers be of size large enough so as to accom-

modate normal operation when initialized at some

default value. The crucial part of the scheme is that

whenever some processor hits the bound of values

which the register is capable of storing, it invokes a

reset protocol. Roughly speaking, the effect of this

procedure is to eventually supply all the nodes in the

system with a ‘(signal”, such that these signals consti-

tute a consistent reference point in time, in which the

nodes can reset their local state and start the compu-

tation anew. The justification for the usage of such a

costly global operation is that it is invoked rarely.

The best implementation of a self-stabilizing reset

protocol to date is given in [APV91]. The stabiliza-

tion time of this procedure can be bounded only by
the length of the longest simple path in the network,

i.e., O(n) for general networks. In this section we

give the first implementation of a reset procedure that

works in diameter time.

The idea is to construct a subgraph whose longest

simple path has length O(d). Then, when the reset

procedure of [APV91] is applied only on the links of

that sqbgraph, we get a reset protocol that stabilizes

in O(d) time. Thus, the problem is reduced to the

construct ion of such a sub graph. In the remainder

of this section we develop a simple algorithm that

produces a shortest paths tree rooted at some node in

the network. Since the longest simple pat h in such a

tree consists of no more than 2d links, in this we will

complete our construct ion.

4.1 Basic Protocols

It is fairly safe to say that one of the first distributed

self-stabilizing algorithms (although it was never in-

troduced as such) is the Bellman-Ford algorithm for

shortest paths [Be158]. In the shortest paths problem,

there is a designated source node s, and each node v

has a variable d., called the distance estimate of v.

The goal of the algorithm is that dv will hold the ac-

tual distance of v froms. We shall consider here only

the simple case of unweighed edges. The algorithm

can be expressed in our formulation by the following

rule.

Rule 5 (Be[!man-Ford)

{
d. ~ 0’

ifv=s

1+ min{du : u ~ ~(v)} , otherwise

Rule 5 can be extended easily to produce, at each

node, a pointer to the neighbor on the shortest path

to s, thus constructing a shortest paths spanning tree.

(The extension only involves introducing at each node

a consistent tie breaker among its incident edges.) It

is straightforward to verify, by induction on dist ante,

that if all nodes start with distance estimate which

is not smaller than their true dist ante from v, then
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their estimate stabilizes on the true value in time pro-

portional the diameter of the graph. It is slightly less

obvious, but nevertheless true, that this holds also

for initial estimates which are smaller than the true

distance. Informally, the reason for this is that the

nodes keep verifying that their distance estimate has

some neighbor wit h an estimate that “supports” it,

and therefore if a node v # s has dv < d. for all

u G ~(v), its distance estimate will increase, until
it reaches the true estimate which is supported by a

solid ‘{flow” of values from s.

It is important to notice that assuming the exis-

tence of a designated source in a distributed system

is painful. More formally, this means that we assume

that leader election can be done; unfortunately, leader

election in the context of dynamically changing net-

works is an equivalently difficult task. The common

solution for this problem is to assume that each node

has a unique ID (this is a more reasonable assump-

tion to accomplish in practice, and it is actually the

industry standard). The idea now is to construct the

shortest paths tree rooted at the node with the mint-

mal ID in the network. This is done by labeling each

distance estimate with its alleged source, and letting

smaller IDs always take precedence over larger ID,

Technically, the implementation is as follows. Each

node v maintains a pair (T-V,dO), where rv denotes the

minimal ID seen so far (the “alleged root”), and d. is

the distance estimate to rv. We assume that there is

a distinct ID “hardwired)) in every node v. The nodes

repeatedly apply the following rule.

Rule 6 (Bellman-Ford with IDs)

First, a node v computes rv e min {IDV, r.}, where

u E N(V). Then v computes d. by setting d. +-

1 + min{d. : u E ~(v) and rv = ru} ifrv # IDV, or

d. ~0 ifrv =IDV.

Let us remark first that Rule 6 above is the first

rule throughout this discussion that violates the local-

ity condition in that it has an extra state component,

namely r.. But Rule 6 has more serious problems.

The fact that a small ID overrides all other IDs makes

this rule vulnerable to bad initial assignments. Con-

sider, for example, the case in which the system is

initialized in a way such that at some node v there

is an alleged root rw = r*, where r* is not the ID

of any node. Assume further that r“ is smaller than

all the actual IDs in the system. In this case, apply-

ing Rule 6 must eventually results in a state in which

r. = r“ for all v G V. Notice, however, that there-

after the distance estimates at the nodes will grow
unfoundedly, since unlike the case of Rule 5, there is

no true source to halt the increase of the du variables.

(Another way to see this is by noticing that the true

distance from any node to r* is infinity.) We call such

a bad case ghost root. Let us remark here that the

ghost root phenomenon is fairly frequent: it happens

whenever the node with the minimal ID crashes.

A common fix to this widely used rule [MRR80,

AG90], is to parametrize the protocol with some

hardwired bound on the maximal distance estimate.

The nodes simply do not consider any estimate that

may cause them to break the bound. More precisely,

denote the pre-specified bound by D. D is called the

bound parameter of the protocol. The modified rule

is as follows.

Rule 7 (Bellman-Ford with IDs and Bound Param-

eter D)

First, a node v computes r. ~ min {IDU, r~} where

u E ~(v) and d. < D. Then v computes dv by

setting dti + 1 + min {du : u ~N(v) and ru = ru} if

ru #IDu, ordv hO ifru =IDU.

It is not difficult to show that the effect of ghost

roots cannot last more then D time units, and there-

fore Rule 7 stabilizes in O(D) time (see Lemma 8

below). Therefore, if the bound parameter D is close

to the actual diameter d, Rule 7 is close to optimal.

But unfortunately, having such a estimate of the di-

ameter is an unrealistic assumption in a world of dy-

namically changing networks, which is our ultimate

goal. Typically, D is at least n, the number of nodes

in the network, and it might be significantly larger.

Notice that we must have some bound on the num-

ber of nodes: otherwise, unique IDs would have been

impossible to get. Also, coming up with some bound

is pretty easy: 264 is a good bound on the diameter

of all networks in the foreseeable future. However,

the maximal dependence on such huge bounds we are

willing to tolerate is polylogarithmic (e.g., the size of

the registers allocated to hold node IDs).

4.2 The New Protocol

We are now ready to present the new protocol for

self-stabilizing spanning tree. The stabilization time

of the tree is O(d) time units, provided that a bound

D on the diameter is known in advance. We re-

mark that the size of the messages in this algorithm

is O(k log D), where k is the size of the IDs.

The idea is as follows. Assume that we are given

some bound D on the diameter of the network whose

true diameter is d, which maybe significantly smaller.

As argued above, such a bound is easy to get. To

stabilize in time proportional to d, we run log D + 1
independent ‘(versions)’ of Rule 7 in parallel, where in

version i, O ~ i ~ log D, we set the bound parameter

to be 2i. Before we proceed to explain how we use the
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results of these independent versions, let us consider

theexecutions of each version separately.

First, consider the versions whose bound parameter

is larger than the true diameter d. For these versions,

as mentioned above, we have the following property.

Lemma 8 If 2i ~ d, then version i stabilizes in

O(2i) time units.

Now consider versions number i such that their

bound parameter 2i is smaller than d. Perhaps sur-

prisingly, these versions do not necessarily stabilize

in time proportional to their bound parameter, and

not even in time proportional to the true diameter.

Their stabilization time can be as high as E)(n). To

see this, consider the graph with initial parent assign-

ment depicted in Figure 5 (a).

(a) (b)

Figure 5: An initial state for version i = O (a). The

numbers in the nodes indicate their ID, and the ar-

rows indicate their parent pointer. The stable jinai

configuration is depicted in (b).

Notice that with the given IDs assignment, the sta-

ble configuration is the one depicted in Figure 5 (b).

But since the center of this graph is “occupied” by

a small ID, the information must propagate on the

perimeter. It is straightforward to generalize this ex-

ample to arbitrarily large n while keeping the diam-

eter 4, and thus obtain a lower bound of Q(n) time

on the stabilization time. (The O(n) upper bound
follows from the fact that the sum of the heights of

trees in any forest subgraph is O(n).)

The crucial insight needed here is that actually we

do not need lower versions to stabiiize. All we really

need is that lower versions will “know” that they do

not yield a tree that covers all the network. And this

can be done fairly easily, using the following obser-

vation: if a version number i satisfies 2i < d, then

for any tree of version i, at all times, there is at least

one node which is in the fringe of the tree, i.e., has

a neighbor with a different alleged root. These fringe

nodes can therefore detect that their tree does not

cover the whole network. Hence, the only thing we

need now is to let all other nodes of this tree know

that version i is actually void. This can be done using

the standard technique of broadcast on trees. More

specifically, each node v maintains two bits, which we

call d.coverv and u-coverV. Informally, the u-cover

bit is used to propagate information up the tree, by

taking repeated logical and of the u.cover bits of the

children of the node, and the d-cover bit is used to

propagate information down the tree, by copying the

d-cover bit of the parent. Below, we give the formal

rules for the d-cover and u-cover bits. We denote the

the parent of v by parent., and the set of children of

v by childu.

Rule 8

11,
if childv = 0 and

b’u E N(v), ru = rV

u.coverv e

1

A

if child. # O and
u.coveru

Vu E N(v), r. = r.
uc chtldV

( o, otherwise

d-.coveru *
{

d-cove rpar.ntw, ifrw #v

u-coverv 1 ifrv =V

For Rule 8 we have the following lemmas.

Lemma 9 If 2i < d, then afier O(2i) time units, at

all nodes v, d-coverv = O for version i.

Lemma 10 If 2i ~ d, then afier 0(2i) time units,

at all nodes v, d-coverw = 1 for version i.

We can now specify the complete protocol. We run

log D + 1 versions in parallel. Version i, O < i ~
logD, executes Rule 7 with bound parameter 27, and

executes also Rule 8. Every version thus maintains its

d-cover bit. A node v selects its output by finding

the minimal i such that d-cover-v = 1 for version i.

The tree edges of that version are the output of the

combined protocol.

The combination of Lemmas 8, 9, and 10 gives the

following theorem.

Theorem 4 In O(d) time units, the algorithm pro-

duces a shortest paths tree rooted at the min~mal ID

node in the network.

As a final remark, let us point out again an interest-

ing property of the algorithm. Although the output

of the algorithm stabilizes after O(d) time units, the

state of the algorithm does not. In particular, for the

low versions (with 2’ < d), full stabilization is guar-

anteed to occur only after O(n) time; and for the high

versions, the stabilization may take as long as O(D)

time. But almost magically, the reievant portion of

the system stabilizes in O(d) time.
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