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A concurrent system S is called derennir J- if for aii states s of S we have that whenever S can 
evolve from state s into states s’ and c” by doing an action 0, it mwl be the case that s* equals 

5”. It is well hnown that for deterministic concurrent systems. mat of the interleaved equivaknces 
(bisimulation-, failure-, trace-equivalencel coincidt. In this paper we prave in the setting of event 
structures that also most of the non-interleaved equivalences coincide iuG?h each other) on tbis 
domain. In the last section of the paper-x show that, as a consequence of our rejult, the r,l;sal 
structure of a deterministic concurrent system can be unravelled by obsencrs who are aprble 

of observing the beginning and termination of evects 

1; lntroductiox2 

A (discrete) concurrent system generates events as it evolves in time. At any 
moment a set of events will have occurred and ihese will be ordered “in time” or 
by “causal precedence”. This order may be partial. When modelling concurrent 
systems and reasoning about their behaviocr. it is often useful to consider different 
events as occurrences of the same actton. This may indicate that certain events are 
produced by the same physical resource or that they cannot be distinguished by an 
observer. The relation between events and actions can be expressed by a labetling 
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function I: E --f A that relates an action to each event. Different approaches to the 
modefling of concurrent systems can be classified by looking at the types of labelling 
functions they allow for. For instance, if one models a concurrent system with an 
elementary net system [24], then it can never be the case that in some behaviour 
two events with the same label are concurrent (i.e. not related by the ordering). If 
we consider the usual semantics for process algebra languages like CCS [17], TCSP 
[14], ACP [4] and MEUE [3], then it turns out that these languages are very liberal 
with respect to labellings of events: there is (aimost) no restriction at all. There 
exists a very rich theory of “comparative concurrency semanrics” relating the 
interleaved semantics for CCS-like languages, i.e. those semantics which do not 
tre& concurrency as a primitive notion. Now a well-known result says that almost 
all these equivalences (bisimulation equivalence, trace equivalence and everything 
in between) coincide for deterministic systems (see for instance [9]). A concurrent 
system S is caiied deterministic if for all states s of S we have that whenever S can 
evolve from state s into states s’ and s” by doing an action n, it must be the case 
that s’ equals s”. 

Recently, many equivalences have been proposed that do consider concurrency 
as a primitive notion. Besides the event structure equivalence and the step sequence 
equivalence that will be discussed in this paper, we have for instance occurrence 
net equivalence [IS], NMS equivalence [8], BS bisimulation [27], step failure 
semantics [26], step bisimulat;on semantics [19], pomset semantics [22], pomset 
bisimulation semantics 161, generalised pomset bisimulation and ST-bisimulation 
[Ill, split sequence equivalence which we present at the end of this paper, etc. 

Now one can ask the obvious question what happens with all these equivalences 
if we restrict ourselves to the domain of deterministic systems. The main result of 
this paper is that almost all non-in terirsved equivalences coincide (with each other) 
for deterministic systems. More specifically, we v/i!! show that step sequence 
equivalence and event structure isomorphism agree on this domain. Df the equivalen- 
ces mentioned above only occurrence net equivalence is not situated in between 
step sequence equivalence and event structure isomorphism. 

1.1. Event structures 

A natural domain for modelling concurrency is the ciass of ecenr s~~rures, which 
were introduced in [IS]. By now many different types of event structures have been 
defined. For an overview we refer to [28]. In our view , aii especially important class 
of event structures is the class of prime event structures. Prime event structures 
contain no junk: every event in the set of events of a piime event structure will 
occur in at least one behaviour. The event structures used in this paper are labelled 
prime event structures with binary conflict. Below we give a formal definition of 
this type of event structure, followed by some expianatory remarks. If one assumes 
binary conflict, then one can only express that IWO events exclude each other. Thus 
it is not possible to say that three or more events cannot occur in combination even 
though each proper subset can. For this one needs more general types of event 



structures. The assumption of binary conflict is not essential in the proif of the 
main theorem of this paper. Because most people will be more familiar with event 
structures with binary conflicts and because the main use we foresee of our theorim 
lies in the field of CCS-like languages (where conflict is always binary), we decided 
to present the theorem for the case with binary conflict only, and to ieave tk; 
generalisation to the case with arbitrary conflict as a (simple) exercise to the reader. 

1.2. Arbitrary interleaving versus True concurrency 

In the !ast section of the paper some consequences will be discussed of our result 
for the issue of arbitrary interleaving versus “True” concurrency. We introduce an 
operator which splits each event into a beginning and an cad and show that the 
causal structure of a deterministic concurrent system can be i;nra-Jelled by observers 
who are capabie of observing these beginnings and ends. 

1.3. Related work 

One can view the main theorem of this paper as a retrievability result: given the 
step sequences of a deterministic event structure, we can retrieve this event structure 
up to isomorphism. Within the theory of concurrency there are quite a number of 
other retrievability results. Best and Devillers [5] proye various retrievabiiiiy results 
for Petri nets. Kiehn [lS] describes how the partial language cf 2 pit nei can be 
recovered from the set of its step sequences. Shields 1251 considers a subclass of 
deterministic systems (behaviour systems with conservative Iabelling) abick m&es 
it possible to lift concurrexy up to a relation on labels, just as in Mazurkiewicz’s 
trace theory [ 161. In both cases the partial order structure of a system can be retrieved 
from firing sequences (or words) and the eoncurr-ncy relaGon. In [?;j, jJrl,e 
retrievability results are proved for “behhviour structures”. 

In this paper we investigate the elect of assuming determinism on the lattice of 
equivalences in between sequence/trace equivalence and event structure isomorph- 
ism. In the course of the discussion we wilt sketch parts of ihis lattice: we will define 
a number of equivalences and establish their mutual relationships. Hence our paper 
can be viewed as a contribution to the research area of comparative concurrency 
semantics. Related work on this topic has been reported in [21,11, I] 

2. Event structures 

Definitim 2.1. A (lobeNed? event structure (over on alphabet A) is a 4-tuple 
(E, s-, #, I), where 
?? E is a set of events; 
?? s c E x E is a partiaf order satisfying the principle of finite muses: 

{e’EEle’Se} is finite for ail eE E; 
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o #E E x E is an itreflexive, symmetric relation (the conflict relation) satisfying 
the principle of conJicr heredity: 

e, # e,se, * e\ # e,: 

s I: E + A is a !abrlling jiiunction. 
As~sualwewritee’<efore’~e~e’#e,~for~~’,and>for<~‘.Weuse-to 
denote the relation E X E - (C LJ Z ii,+). - is called the roncur~eney rektion. By 
definition <, =, >, # and - form a partition of E x F 

Remark 2.2. The components of an event structure E wi!l be denoted, respectively, 

by Es, sSl #n and i,. The derived relations will be denoted -E, <e. >e, me. For 
eoE,, pre,(e) denotes the set of events which precede e in the ordering (so 
pre,(e)={e’EEEIe’see}). 

In the graphical representation we either depict the events or their labels, depend- 
in: on what we want to illustrate. The partial order relation is indicated by arrows. 
The congict relation is denoted by means of dotted lines. If we draw no relation 
between events they are concurrent, unless, by means of the transitive and reflexive 
closure of the arrows, it can be deduced that they are ordered, or, by means of the 
principle of conflict heredity, it can be deduced that they are in conflict. 

Example 2.3. Let the event structure E be given by: 

&=Ie,, ez. e3, e4, 4, 

~E=f(e,,@l),(e,,e,),(ez,e;))u{(e,e)le~ En}, 

#5=!(~,e4)r(e4r~)I~Eje,;e,,e,}}, 

f,(ei) = a,. 

Graphically we can depict E as shown in Fig. 1. 

2.1, Operational meaning of event structwes 

The events in an event structure can be anything varying from a clock pulse in a 
computer, the printing of a file, my act of writing this article, your act of reading 
it, the next crash of Wall Street, etc. 

el . . . . . Cd 

i 
e2 

I 
e3 

e5 

Fig. 1. 



The partial order relation expresses that some events are causally related to other 
events or that for all observers the occurrence of certain events will be seen to 
precede the occur:er.ce of others. For instance, my act of writing this article will 
precede your act of reading it. On the other hand, your act of reading this article 
will probably not be causaliy reiated to the next crash of Wall Street. The question 
what, in general, constitutes a causal link, is a metaphysical one and difficult to 
answer. However, in a lot of practical situations it is perfectly clear what we mean 
with causality and reasoning about the behaviour of concurrent systems in terms 
of causality is useful. 

The principle of finite causes says that the systems we consider are discrete and 
tnat moreover we do not consider situations like those shown in Figs. 2 and 3. In 
Fig. 2 it is not clear that any of the ei can ever happen. In Fig. 2, e, can occur if 
execution of all events e, , e2, _ . . finishes after a finite amount of time. Because we 
do not make any assumptions about the time it takes to perform an event, it is 
possible that e, takes 1 s, e2 takes 2 s, etc. In that case e, will never take place. 

If two events are in conflict, then at most one of them can occur. As a consequence 
of the principle of conflict heredity we have that when an event occurs, all its 

“causes” mast have occurred before. So if two events e and e’ are related in rhe 
ordering, say e < e’, then occurrence of e is a prereqm_t_ ‘__ -=; p G+ the occurrence of e’. 
in general it is not the case that after occurrence of P *he occurrence of e’ is 
inevitabie. it would be possible to allow evcnr structures where one event has two 
causes, which are in conflict. Two interpretations of the event structure shown in 
Fig. 4 are possible: either one can say that c5 will never occur because it is impossible 
that all its causes occur (in that case one can just as well Zeave 4; out of the event 

. . . 

Fig. 2. 

Fig. 3. 

el . . . . . . . . . . . . .f2 

\/ 

e3 

Fig. 6. 



structure and adopt the principle of conflict heredity), or one can say that e, can 
occur if a maximal, conhict-free subset of its causes has occurred, so {z,} or {Q}. 

There are no fundamental reasons to adopt the principles of finite causes and 
conflict heredity. We have included them in our definition of event structures becanse 
this makes an elegant formulation of the main resuh of this paper possible. 

The operational intuitions presented in the discussion above, are defined formally 
below. 

Definition 2.4. Let E be an event structure and let X be a subset of Es. We say that 
X is lef-cfosed if 

X is conflict-free if X does not contain a pair of events which are in conflict, so if 
#kn (X x X) =1). E is conflict-free if #n=O. A conjiguration of E is a finite, 
left-closed, conflict-free subset of &. t,Note that Winskel [28J does not require that 
configurations are finite.) With Q(E) we denote the set of configurations of E. 

Example 2.5. Figure 5 depicts all configurations of the event structure of Example 
2.3. An arrow is drawn between two configurations if one can be obtained from the 
other by adding a single event. 

Fig. 5. 

Definition 2.6. For any alphabet 2, we use 2* to denote the set of finite sequences 
over alphabet P and I’ to denote the set of finite nonempty sequences over this 
aiphabet. We write A for the empty sequence and a for the sequence consisting of 
the single symbol a ~2. By CT * o’, sometimes abbreviated oo’, we denote the 
concatenation of sequences o and o’. On sequences we define a partial ordering s 
(the prefix ordering) by o s p iff, for some sequence o’, oo’ = p. If CT 6 p we say that 
cr is a prejx of p. 



Definition 2.7. Let E be an event structure and let X and Y be configurations of E. 
(i) Let a E A. We say that there is an a-rransitio:: from X to Y, notation X -g Y, 

if Y = X u {e} for some event es! X with I,(e) = a. 
(ii) An action a EA is enabled in X, notation X-E, if X --igX’ for some 

configuration X’. 
(iii) A sequence of actions o = o, * . ’ . * a, f A” is enabled in X, norarion X --$, 

if there exist configurations X0,. . . , X, such that X = X,> and for 1 s iC II: 
X,_! -2 X,. We say that X,, is obtained jrom X by the occurrence of v, notation 
X -g X,,. We also say that D is an (acrion) sequence of X. 

(iv) A seq lence of events a = e, * . . * e,, E Ez is enabled in X, notation X-g, 
if there exist configurations X0,. . , X,suchthatX=X,,andforl~i~n:e,~X~_, 
and X, = Xi-r LJ {e,}. We say that IY is an (enent) sequence of X. 

(v) With seq,(X) we denote the set of action sequences of X, so seq,(X) = 
{oEA*/X+}. 

Proposition 28 (no junk). Let E be an ewnt str~~cfure and let e E EE. Then there 
exists a conjiguration X of E with e E X. 

Proof. Take X = pm&e): Due to the principle of fmhe causes X is finite. From the 
fact that < -a is a partial order it follows that X is ieft-closed. X fs conflict-free due 
to the principle of conflict heredity. Hence X is a configuration. Clearly e f X. *K! 

3. Three basic equivalences on event structures 

We will now define three equivalences on event structures which make increasingly 
more identifications. 

Definition 3.1. An euent structure isomorphism between two even structures E and 
F is a bijective mapping f: E,+ El such that: 
??f(e) Srf(e’)ee Sk e’, 
?? f(e) #F_f(e’)ee RE e’, and 

* Mf(e)) = Me). 
E and F are isomorphic, notation E 3 F, if there exists an event structure isomorphism 
between hem. 

Definition 3.2. Let E, F be two event /I s ructures. A relation R s E(E) x l(F) is a 
bisimuhtion between E and F if: 
(I) OR& 
(2) If XR Y and X -+g X’ for some (I E A, then there exists a Y’E Z(F) such that 
Y-g Y’ and X’ R Y’; 
(3) As (2) but with the roles of X and Y reversed. 
E and F are Jisimilar, notation E c, F, if there exists a bisimulation between them. 
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Definition 3.3. Two event structures E and F are sequence equivalent, notation 
E zreq F, if: 

scqE[O) 7 se+(b). 

Remark 3.4. The semantical notion of sequexe equivalence, is usually called trace 
equivalence in the setting5 of process a&bra azd t race theory as in 1231. However, 
use of the word trace would be very confusing in a paper ou event structures, since 
event structures are closely related to a compietefy different type of traces, namely 
those which are studied in trace theory as in j16]. Therefore we have chosen ;o use 
the word “sequence” to denote a finite string of symbols recording the actions in 
which a process has engaged up to some moment in time. 

Propktion 3.5. s.0 and =req are equivalence relations and their relarions are 
Es C * C ssea. - 

Proof. Standard. II 

Example 3-6. The event structures in Fig. 6 show that -,t, and -_, are reaily 
different equivalences. !n the graphical representations we have depicted :he labels 
of the events and not the events themselves. 

‘l.. ....... g & 0 ......... (j 
,/i i - i i % // - 

6.. ... . c b c b ............ c 

Fig. 6. 

The following definition is central to this paper. 

Definition 3.7. Let E be an event structure. E is deterministic if for all coatigurarions 
X E V(E) we have that whenever X-z Y and X+ Y’ for some as A and 
Y, Y’E O(E), we have that Y = Y’. 

So an event structure is determiniuGc if it does not have a configuration with the 
property that two different events are enabled which have the same label. 

Definition 3.8. Let E be an event structure. Two events e, e’E E, are in immediare 
conflier, notation e #k e’, if they ar? in conflict aod furthermore: 
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Using the notion of im‘nediat: conflict we can give a “less operational” character& 
ation of deterministic event strlrctures. 

Pro@tion 3.9. Let E be an euenr st.rucfure. Then E is deterministic $J: 

e-E e’ or e #:: e’ =3 /E(e) f- I,(&). 

Proof. Easy. L3 

It is well known that the linear time-branching time spectrum c&apses for 
deterministic event structures. 

Proposition 3.10. Ler E, F be dereminislic mm stmrmres. 7Zen Efr3 F#E =_ F. 

Proof. * foliows from Proposition 3.5 In order to prove C= define a relation 
R c B(E) x V(F) by 

It k easy to show that R gives a bisimu!arisn bctweea E and F. Z 

Remark 3.11. In a dictionap [ZO] we found the foltoxing entr; for the word 
“determinism? 

(13 a doctrine ttat all phenomena are determined by preceding occurreocec; crp. 
the doctrine that all human acts, choices etc. arc eausa:ly determined and that free 
will is illusory; 

(2) a belief in predestination. 
One may think that the noticv: of determinism introduced in Definition 3.7 is in 
conflict with the above description. If one for instance considers the deterministic 
even: structure containing mu ?&ems labelled n and b which are in confiict, then 
one may argue that the choice between II a;ld j is oat causaI?y determined, that the 
event stroctore “has a fne will” and “may choose” whether IO perform .z or ix. 
Therefore one mav propn?e another definition of determinism for event structures 
which says t:lat an event structure is deterministic iff it is conflict-free. In Fact this 
de!%;ition occurs in [ $1. 

We however preFer our own definition because w like to view event structures 
as “reactive sysems”. An event structure model of a concuxznt system describes 
tow the system reacts to stimuli received from its environment. In the example of 
the event structure with actions LI and b, it is complcrefy determined how a system 
modelled by this event structure will react to external stimuli: the system has no 
choice. 



Now consider the event structure shown in Fig. 7. This event structure is conflict- 
free and hence deterministic in the sense of [l]. However, if the environment offers 
an a, then there is a choice between the “left” a and the “right” a. Depending on 
how this choice is resolved by the system, it can engage in b or in c afterwards. 
Hence one can argue that the event structure exhibits nondeterministic behaviour. 

a 

i I 
b c 

Fig. 7. 

4. Noninterleaved equivalences 

Many people think that bisimulation equivalence, and consequently also sequence 
equivalence, make too many identifications on event structttres to be of use in 
general. In bisimu!ation semantics concurrency is not preserved, i.e. for each event 
structure we can give a bisimilar event structure with an empty concurrency relation. 
We elaborate on this below. 

Definition 4.1. The sequentidisution of an event structure E, notation Y(E), is the 
event structure F defined by: 
o &={(IE(&)+10+:}; 
0 o Crp iff o is a prefix of p; 
. &=(ECxEF)-(+u +); 
0 &(a * e) = I&e). 

Proposition 4.2. Let E bt ?n euenf ‘.t-ucfure. Then: 
(i) rhe concurrency reiatiorr @.9(E) is empfy, 

(ii) Eo Y(P), 
(iii) 9(E) - 9(9’(E)). 

Proofa Easy. 0 

4.1. Sfep semantics 

Intuitively, one of the reasons why an event structure is in general different from 
its sequentialisation is that it sometimes has the possibility of doing a number of 
events simultaneously in one “step”. The notion of a “step” immediately suggests 
refinements of sequence equivalence and bisimulation equivalence which do not 
disregard concurrency. These rehnements will be called step seqruence equivalence 



and step bisimulation cquisaIezce, respec:iseiy. Step sequences have been d&ted 
in ;lG]. Siep bisimulations appear in [is]. In [ll] they are called “concurrent 
bisimu!ations”. Below we give the formal definition of step sequence equivalence. 

Definition 4.5. Let E be an event structure and let X and Y be configurations of E. 
(i) Let U be a finite subset of 4. We say that Y U-fo\/ows X, noktioo X[ U > Y, 

if X n U =Q, the elements of ZJ are pairwise concurrent (so Ve, e’~ U: e i e’=+ 
e-cc’) and Y=XuU. 

(ii) Let U G E,. We say that U is enabled in X ( U is a step from X-)% notation 
X[U >E, if X[ Lr >r X’ for some configuration X’ of E. 

(iii) A sequence (Y= U,*- . . * U”E (Pow(&))* is ennbled in X. notation 

X[a ‘E, if there exist configurations X0,. _ _, jr, such that X =Xi and for 
1 s is n: X,_,[ U, >e Xi. We say that X, is obtainedfrom X by the occwrence of a, 
notation X[a >n X,,. We also say that rr is an (euent) step seqwnce ofX. 

(iv) Let a = U, *. . . * U,, E (Pow<&))* such that X[o >e Y Let D be the 
sequence I,( U,) * . . . * ZE( U,) where Ze( U,) denotes the multiset of labels of events 
in Ui. We say that (T is em&led in X, notation X[rz >r_ We atso say that CT is an 
(octio-?) step sequence of X, and that Y is obtained from X by the occurrence qf o, 
notation X[o >c Y. 

(v) With s!epe(X) we denote the set o-action step sequences of X, so step&X) = 
{ae (Mul(A))“]X[u >E}. 

Definition 4.4. Two event structures E and F are step sequence eqiricalenr. notation 
E cstrp F, if: 

step,@) = step&V. 

Proposition 4.5. zstep is an equivalence reiotion. The following relations hold berween 
the equicalences presented thus fat: 

c c, 
n n 

"step c 'seq 

Proof. r,asy. ??

Examples 4.6. We give some examples which show that the diagram above gives 
all relations between the equivalences. Our first example (Fig. 8) shows that step 

a b 
I 

0 - 
=seq b Q 

Fig. 8. 



semantics (at least sometimes) takes coucurrency as a primitive notion. The two 
leftmost event structures in Fig. 6 are not iscnnorphic but they are step sequence 
equivalent. This follows from the observation that on the domain of event structures 
with empty concurrency relation, step sequence equivalence and sequence 
equivalence coincide. 

The two rightmost event structures in Fi:. 6 are not bisimilar, but they are step 
sequence equivalent. 

4.2. Partial order semantics 

An A-labelled partially ordered set is a triple (X, S, I) with X a set, =S a partial 
order on X, and l:X+A a labelling function. Two such sets (X,,, So. &) and 

(X,,G , , II) are isomorphic if there exists a bijective mapping f: X,+ XI such that 
f(x) S, f(y)ex +, y and I,(_f(x)) = b(x). A partially ordered mzdtiset (pomset) is 
an isomorphism class of labelled partially ordered sets. As usual, pomsets can be 
made setlike by requiring that the events in the partiai orders should be chosen 
from a given set. Below we wili view equivalence classes of conflict-free event 
structures as pomsets. 

Definition 4.7. The restriction of an event structure E to a set X c E, of events is 
the event structure E 1 X=(X, sE n (X xX), #En (X xX), I, 1 X). 

Definition 4.8. Let E be an event structure and let X be a configuration of E. The 
set of pomsets of X, notation porn,(X), is defined by: 

pomE(X)={(E](X’-X))/, jx’~ X’E V(E)!. 

Delinitioo4.9. Two event structures E and Fare pomset equivalent, notation E -,,_, F, 
if porn,(O) = pomr(0). 

The first systematic study of pomsets is in [i2], where they are called partial 
words. Pomset semantics is advocated in [22]. 

Proposirioo 4.10. zporn is an equivaience relation. it jits in our semantical lattice as 
follows: 

s c c, 
n n 

-porn c =steg = -req 

Examples 4.11. The two rightmost event structures in Fig. 6 provide an example of 
two event structures which are identified in pomset semantics, but distinguished in 
bisimulation semantics. The remaining examples distinguishing pomset equivalence 
and the other equivalences are displayed in Fig. 9. The example of Fig. 10 is 
interesting because it only contains conflict-free event structures, and aiso because 
it disproves Theorem 3.5 in [l]. Notice that all these examples contain nondeterminis- 
tic event structures. 



Fig. 9 

u a a u 
Fig. 10. 

5. Determinism -, (event stracture isomorphism = step sequence guivalewe) 

Proposition 3.10 stated that bisimulation equivalence and sequence equkxience 
coincide on the domain of deterministic event strxtures. Surprisingly, most of the 
noninterieaved semantics which have been proposed in the literature, also coincide 
on this domain. 

in the introduction of this paper we mentioned a large number of equivalences 
which are situated ia between event structure iso,norphism and step sequence 
equivalence. & a conseqnence of the CZz-7’.- tSrg result oii these equivalences (excep: 
for occurrence net equivalence) coincide with event structure isomorphism on the 
domain of deterministic event structnres. 

Proof. induction on the size of X. If X is the empty set, then Y mtist be empty 
too and we are done. Suppose X is nonempty. Let e be a maximal element of X 
and let X’= X -{e]. Now we use that there exists an event structure isomorphism 
f between E t X and E r Y: we have E r X’ - E r I” for Y’ = Y - {f( e)) and further- 
more X’ and Y’ are configurations. Applying the ind--ction hypothesis gives X’= Y‘. 
Let a = I,(e) = I&(e))_ We have that X’-2 X but also X’+z Y. Now use rhat E 
is deterministic to obtain that X = Y. •I 



Lemma 5.3. Let E and F be deterministic event structures. The,, E Ed,,,,, FeEzF. 

Proof. F is trivial, so the interesting direction is +. Define relation - E&X E, by 

e. - e, Qer E 1 prer(e,) = F I wd4. 

We claim that - gives a bijective mapping between EE and E,. Because E zpo,,, F, 
it is obvious that dom(-) = EE and range(-) = EF. Suppose that e,- e, and e,- e;. 
We show that e, = ei . By definition we have E r pre,( e,) ^-F r prer( e,) = F f pre,(e;). 
Application of the previous lemma gives preF(e,) = pre,(e:). Since both sets have a 
unique maximal element, these maximal elements must be identical: e, = e; In the 
same way we can prove that if e,- e, and eh- e,, this implies ea= e&. Hence - 
gives a bijection between E, and E r. It is routine to check that this bijection is in 
fact an event structure isomorphism. Cl 

Proof of Theorem 5.1. From the previous results ii follows that in order to prove 
Theorem 5.1 it is enough to sbow that for deterministic event structures E, F, 

E -step F + E-,,,F. 

By definition this is equivalent to 

step&01 = stepA * porn,(G) = porn,(O). 

We will prove a slightly stronger statement, namely, 

VX E V(E) V Y E V(F): step,(X) = step& Y) 3 porn,(X) = porn& Y). 

Let X E g(E), YE 9(F) with step,(X) = step,( Y). Let X’ be a configuration of E 
with XCX’. Let a~={e,}{eZ}...{e.} b e a sequence of singleton steps such that 
X[cu,>,X’andX’-X={e,,..., e,}. Let n, ={e;}{e;} . . _ {e:} be a step sequence 
such that Y[or >r and I,(ei) = &(ei) for 15 is n (due to the fact that X and Y 
have the same s?ep sequences, such a sequence will always exist). Let Y’- Y’u 
{e;, . . . , eb}. We claim that the function which maps e, to e; is an event structure 
isomorphism between E r (X’- X) and Ft (Y’- Y;. For reasons of symmetry we 
have proved the theorem if we have shown this. 

The proof goes by induction to n. The case with n = 0 is trivial. Now suppose 
n > 0. Due to the fact that X and Y have the same step sequences and due to the 
determinism of E and F, we have 

step&Xv {e,}) = step,( Y u {e;}), 

Xu{e,}[{e2). . .{e,J 3,X’ and Yu{e;}[{eG}. . .{e:} >E Y’, 

we can now apply th: induction hypothesis which gives 

Et(X’-(Xu{e,}))=Ft(Y’-(Yu{e:})). 
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In order to prove the induction step it is enough to show that for 2 G i 5 n, e, <r es ($ 
e; <r e;. If n = 1 we a.re done, so assume n ~2. Let for some i, e, be minima1 in 
{e2,. . . , en}. Then e: is minimal in {e;, . . . , ek}. We ciaim that e, cr e,ue; <r ei. 
Suppose e, ir e, but not e; <r e: I If we show that this leads to a contradiction we 
have proved the claim because the remaining case is symmetric. If it is not the case 
that e; <r ef then e; -F e:. Due to the minimality of e: we have that Y[{e;, ei) >r. 
Now we use that X and Y have the same step sequences and the fact that E is 
dete:ministic.There mustbe somefsuch that X[{e, ,f} >,and Ir(fj = Zr(ei) = &(e,). 
Because e, <e e,, j# ei. But now there is a contradiction since we can go from 
configuration X u {e,} with an Z&)-transition to X u {e, ,_fI as well as Xv {e, , e,). 

Now we have proved that for e,, which are minimal in ji”;l_. _ , em}, e, <r e,e 
e; <r ei. I,t order to prove this fact also for e, which are not minimal, we distinguish 
betweeo two cases. 

(1) For ali e, which are minimal in {ez, . . . ~ e, j, we have that e, cE e,. This implies 
that e, <r e, for 2~ I< c. Further we have that for ail e: which are minimal in 
{e;, . . _, e:}, e; <r el, Consequently e; <,e; for 2~ Is n. and we are done. 

(2j There is an e, which is minimal in {e2, . _ . , e.7 such that e, -r e,. This means 
that e; -r e;. We now have the following situation: 

x ‘” ie, )[{r,}. . . (ei-3}{e,T,f.. {e,j >E A.‘, 
Yv{e:}[{e;}. ..{e:_,]{ei+,} . ..{eh) >p Y”. 

Of course X u {e,} and Y v {ri} have the same step sequences. Application of the 
induction hypothesis gives 

E[{e,,e, ,..., e,_,,e,,, ,..., e,,l=lF~{e~,& ,... ,el,el_: ,.._, eb}. 

Consequently e, Cr e, G e: <r e; for 2 s I G n. D 

Observe that in the proof of Theorem 5.1 we only use that E and F have the same 
sequences of steps containing at most two events. 

The diagram below presents the relations be:ween the equivalences presented 
thus far when restticted to the domain of deterministic event structures. 

The example of Fig. 8 shows that even for deterministic systems there is a difference 
betw:en arbitrary interleaving and partiat order semantics. 

One can consider event structures up to step sequence equivalence as an inter- 
teaving semantics if one is willing to view a multiset of actions as an action again. 



In the process algebra languages MHJE and ACP this idea can bc implemented by 
working for instance wit!~ an action structure which is the product of a free 
commutative monoid and a free commutative group. Under this interpretation one 
can sry that for deterministic systems there is no difference between arbitrary 
inter!eaving and True concurrency. 

Now one can ask the question to what extent a multiset of more than one action 
can be considered as something which is observable. In a synchronous system like 
a systolic architecture there is certainly no problem. After each dock tick, one can 
just stop the system and examine which “cells” have performed an adion. The 
multiset (or set if the system is deterministic) of actions performed by the separate 
cells gives the step which is performed by the synchronous system. It is much harder 
to imagine how a “step” can be observed in an asynchronous system. The only 

. . 
thing I can come up with :s fn,. I ’ o+ WEX observer notices the beginning of one action 
before another action has been finished. In such a situation the observer cau conclude 
that the two actions occur concurrently. 

Below, this way of observing concurrent processes is formally implemented by 
means of an operator split on event structures that splits any event e into events e+ 
and e-, which are ordered. One may think of e+ as the beginning of e and of e- 
as the end of e. 

Definition 6.1. Let E be an event structxe over some alphabet A. Let A+ = {a’[ a E A} 
and A- = {a-l a E -4) be two disjoint copies of A. The event structure F = split(E) 
over alphabet A’v A- is given by 

&={e+,e-lee&}, 

~F=i(ex,S’)lx,y~I +,-I and e +f}u{(e+, e-)leE&}, 

#F={(e’,fg)I~,y~{+,-_)and e#&. 

Me’) = Me))+, 

I&e-) =(&(e)j-. 

split ( a c)= a+ -i 

i 
1 cl 

a- c- 
b _.__._____.__ d I 

1 
bt . . ..____.._ d’ 

b- 

I 
I- 

Fig. 11. 



Example 6.2. See Fig. 11. 

Definition 6.3. Two event structures E and F are split sequence equivalent, notation 
E zspliI F, if split(E) zreq split(F). 

Split sequence equivalence is closely related to ST-bisimulation semantics as 
presented in [ll] on the domain of Petri nets, but there are some differences. Besides 
the fact that split sequence equivalence does not respect branching time it is also 
not real time consistent in the sense of [ll]. The idea of splitting actions into a 
beginning and an end is, on a different and more restricted domain, also described 
in [13]. Our split-operator car. be viewed as a special case of action refinement as 
described in [7,2]. 

Lemma 6.4. Let E and F be two event structures. Ther: 

E -oam F * split(E) =pon split(F). 

Proof. The main idea of the proof has already occurred in [7]_ Let E and F be event 
structures with 3 - pom F. Choose a configuration X 1~ O(spIit(E)). We must show 
that there exists a configuranon Y-E g(split(F)) such that 

split(%) 1 X -split(F) 1 Y. 

By symmetry it follows that we are ready if we have proved this. Define the sets 
X’, X+ G EE by 

X*={egE,le+sX and e_EX}, 

X+={eEEele’EX and e_fX}. 

One can easily check that X’v Xt is a configuration of E. Since E sworn F, there 
is a configilration YE Z(F) and a bijection f: X’ tl X+ -, Y which gives an event 
&~ctlure isomorphism between El (X’v X’) and Fr Y Define yS”“c F&,:-;r:B: by 

rp’it=ICf(e))+,(f(e))-IeEX*}u{(f(e))+jeEXi). 

It is not hard to see that Spat . is a configuration of split(F). Now define a mapping 
f”“’ : X ~ Y&t by 

f”“‘(e+) = (f(e))+ for e+ E X, 

fp”‘(e-) =(_f(e))- for e_EX. 

We ciaim that f sD’i’ is an event structure isomorphism between split(E) r X and 
split(F) 1 Split. A simple argument gives tbat$@“. IS a bijection. Clearly_~P’i’preserves 
labels. Finally we have that if two evmts in X are ordered their images under f@” 
are also ordered, and if two events in X are concurrent their images underfP”’ are 
concurrent too, 0 
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Proposition 6.5. Let E and F be IWO event srrucfures. Then 

E =p”,” F =+ E -+, F. 

Proof. E =ro,,, F=%plit(E) zpOr, split(F)+split(E) -req split(F)*Z =S3,il F. 0 

Proposition 6-6. Let E and F be two event structures. 7?zen 

E sSpli, FJE -step F. 

Proof. Let E and F be two event structures with E -Spli, F. Let (r = A, . . . A,,, E 
(Mm(A))* with Ai ={a,, , . . , a,.,} an action step sequence of E. We must show 
that o is also an action step sequence of F. By symmetry we are ready if we have 
proved this. The following sequence p is an action sequence of split(E): 

+ + p=a,,a,*. . . a:,,a,a;2.. . a,,a& . ..a.,, . . a’,.,,a,, . . a,, ,,,. 

Since E -Split F, p is also an action sequence of split(F). Hence split(F) has some 
event sequence (Y with the property that, if we replace the events in (Y by their 
iabels, we obtain p. Let this (Y be 

u=e:,e&... e:.,f;f,Q...fl,,e& . ..e’., . ..e&.j’; ,... f;,.,. 

Note that in general e, may be different from Aj. However, we do have that 

ic,, , . . . , ~~1 equals {A,,. . . , &}. From the fact that (Y is an event sequence of 
split(F) it follows that F has the event step sequence 

(ell,...,e,,,}...{p,,,...~emn,}. 

Hence (r is an action step sequence of F. ??

As a consequence of Propositions 6.5 and 6.6, split sequence equivalence can be 
located in our semantical lattice as follows: 

G C +? 
r! n (*) 

-porn = =Splif = -Step = =Sq 

Examples 6.7. The examples shown in Figs. 12 and 13 show that all equivalences 
in (*) above are different. Due to Theorem 5.1 and the position of =5plir in the 
semantical lattice we have that for deterministic event structures, split bisimulation 
equivalence and event structure isomorphism coincide. 

Split 

Fig. 12. 



a c Qir b - a . . . c 

I 
- 
=&p /: 1 

b C a-b 

Fig. 13. 

Proposition 6.8. Let E, F be deterministic eLiem structures. Then E - FeE -sO,iC F. 

Thus the causal szructore of a detzzinistic concurrent system can be unrave!!ed 
by observers who are capable of observing the beginning and termination of events. 

The author would like to thank Rob van Glabbeek for many stimu!ating dis- 
cussions and careful proofreading, Henk Goeman for some useful comments on an 
earlier version, and Alex Rabinovich for pointing out that the assumption of binary 
con@ict is not essential for the results of this paper. 
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