
Theoretica! Computer Science 79 (1991) 275-294

North-Holland
275

Determinism +
(event structure isomorphism =
step sequence equivalence)

Frits W. Vaandrage?

Communicated by M. Nivat

Received May 1989

Vaandrager, F.W., Determinism-*(event structure ison,rrphism =step requencc equivalence).

Theoretical Computer Science 7; (1991) 275-294.

A concurrent system S is called derennir J- if for aii states s of S we have that whenever S can
evolve from state s into states s’ and c” by doing an action 0, it mwl be the case that s* equals

5”. It is well hnown that for deterministic concurrent systems. mat of the interleaved equivaknces
(bisimulation-, failure-, trace-equivalencel coincidt. In this paper we prave in the setting of event
structures that also most of the non-interleaved equivalences coincide iuG?h each other) on tbis
domain. In the last section of the paper-x show that, as a consequence of our rejult, the r,l;sal
structure of a deterministic concurrent system can be unravelled by obsencrs who are aprble

of observing the beginning and termination of evects

1; lntroductiox2

A (discrete) concurrent system generates events as it evolves in time. At any
moment a set of events will have occurred and ihese will be ordered “in time” or
by “causal precedence”. This order may be partial. When modelling concurrent
systems and reasoning about their behaviocr. it is often useful to consider different
events as occurrences of the same actton. This may indicate that certain events are
produced by the same physical resource or that they cannot be distinguished by an
observer. The relation between events and actions can be expressed by a labetling

* Partial support received from the European Communities under ESTRIT project no. 432. An
Integrated Formal Approach to Industrial Software Development (METEOR).

0304-3975/91/%03.50 @ 1991-Elsevier Science Publishers B.V. (North-IHolland)

function I: E --f A that relates an action to each event. Different approaches to the
modefling of concurrent systems can be classified by looking at the types of labelling
functions they allow for. For instance, if one models a concurrent system with an
elementary net system [24], then it can never be the case that in some behaviour
two events with the same label are concurrent (i.e. not related by the ordering). If
we consider the usual semantics for process algebra languages like CCS [17], TCSP
[14], ACP [4] and MEUE [3], then it turns out that these languages are very liberal
with respect to labellings of events: there is (aimost) no restriction at all. There
exists a very rich theory of “comparative concurrency semanrics” relating the
interleaved semantics for CCS-like languages, i.e. those semantics which do not
tre& concurrency as a primitive notion. Now a well-known result says that almost
all these equivalences (bisimulation equivalence, trace equivalence and everything
in between) coincide for deterministic systems (see for instance [9]). A concurrent
system S is caiied deterministic if for all states s of S we have that whenever S can
evolve from state s into states s’ and s” by doing an action n, it must be the case
that s’ equals s”.

Recently, many equivalences have been proposed that do consider concurrency
as a primitive notion. Besides the event structure equivalence and the step sequence
equivalence that will be discussed in this paper, we have for instance occurrence
net equivalence [IS], NMS equivalence [8], BS bisimulation [27], step failure
semantics [26], step bisimulat;on semantics [19], pomset semantics [22], pomset
bisimulation semantics 161, generalised pomset bisimulation and ST-bisimulation
[Ill, split sequence equivalence which we present at the end of this paper, etc.

Now one can ask the obvious question what happens with all these equivalences
if we restrict ourselves to the domain of deterministic systems. The main result of
this paper is that almost all non-in terirsved equivalences coincide (with each other)
for deterministic systems. More specifically, we v/i!! show that step sequence
equivalence and event structure isomorphism agree on this domain. Df the equivalen-
ces mentioned above only occurrence net equivalence is not situated in between
step sequence equivalence and event structure isomorphism.

1.1. Event structures

A natural domain for modelling concurrency is the ciass of ecenr s~~rures, which
were introduced in [IS]. By now many different types of event structures have been
defined. For an overview we refer to [28]. In our view , aii especially important class
of event structures is the class of prime event structures. Prime event structures
contain no junk: every event in the set of events of a piime event structure will
occur in at least one behaviour. The event structures used in this paper are labelled
prime event structures with binary conflict. Below we give a formal definition of
this type of event structure, followed by some expianatory remarks. If one assumes
binary conflict, then one can only express that IWO events exclude each other. Thus
it is not possible to say that three or more events cannot occur in combination even
though each proper subset can. For this one needs more general types of event

structures. The assumption of binary conflict is not essential in the proif of the
main theorem of this paper. Because most people will be more familiar with event
structures with binary conflicts and because the main use we foresee of our theorim
lies in the field of CCS-like languages (where conflict is always binary), we decided
to present the theorem for the case with binary conflict only, and to ieave tk;
generalisation to the case with arbitrary conflict as a (simple) exercise to the reader.

1.2. Arbitrary interleaving versus True concurrency

In the !ast section of the paper some consequences will be discussed of our result
for the issue of arbitrary interleaving versus “True” concurrency. We introduce an
operator which splits each event into a beginning and an cad and show that the
causal structure of a deterministic concurrent system can be i;nra-Jelled by observers
who are capabie of observing these beginnings and ends.

1.3. Related work

One can view the main theorem of this paper as a retrievability result: given the
step sequences of a deterministic event structure, we can retrieve this event structure
up to isomorphism. Within the theory of concurrency there are quite a number of
other retrievability results. Best and Devillers [5] proye various retrievabiiiiy results
for Petri nets. Kiehn [lS] describes how the partial language cf 2 pit nei can be
recovered from the set of its step sequences. Shields 1251 considers a subclass of
deterministic systems (behaviour systems with conservative Iabelling) abick m&es
it possible to lift concurrexy up to a relation on labels, just as in Mazurkiewicz’s
trace theory [161. In both cases the partial order structure of a system can be retrieved
from firing sequences (or words) and the eoncurr-ncy relaGon. In [?;j, jJrl,e
retrievability results are proved for “behhviour structures”.

In this paper we investigate the elect of assuming determinism on the lattice of
equivalences in between sequence/trace equivalence and event structure isomorph-
ism. In the course of the discussion we wilt sketch parts of ihis lattice: we will define
a number of equivalences and establish their mutual relationships. Hence our paper
can be viewed as a contribution to the research area of comparative concurrency
semantics. Related work on this topic has been reported in [21,11, I]

2. Event structures

Definitim 2.1. A (lobeNed? event structure (over on alphabet A) is a 4-tuple
(E, s-, #, I), where
?? E is a set of events;
?? s c E x E is a partiaf order satisfying the principle of finite muses:

{e’EEle’Se} is finite for ail eE E;

27x I? N! Vourrrllagcr

o #E E x E is an itreflexive, symmetric relation (the conflict relation) satisfying
the principle of conJicr heredity:

e, # e,se, * e\ # e,:

s I: E + A is a !abrlling jiiunction.
As~sualwewritee’<efore’~e~e’#e,~for~~’,and>for<~‘.Weuse-to
denote the relation E X E - (C LJ Z ii,+). - is called the roncur~eney rektion. By
definition <, =, >, # and - form a partition of E x F

Remark 2.2. The components of an event structure E wi!l be denoted, respectively,

by Es, sSl #n and i,. The derived relations will be denoted -E, <e. >e, me. For
eoE,, pre,(e) denotes the set of events which precede e in the ordering (so
pre,(e)={e’EEEIe’see}).

In the graphical representation we either depict the events or their labels, depend-
in: on what we want to illustrate. The partial order relation is indicated by arrows.
The congict relation is denoted by means of dotted lines. If we draw no relation
between events they are concurrent, unless, by means of the transitive and reflexive
closure of the arrows, it can be deduced that they are ordered, or, by means of the
principle of conflict heredity, it can be deduced that they are in conflict.

Example 2.3. Let the event structure E be given by:

&=Ie,, ez. e3, e4, 4,

~E=f(e,,@l),(e,,e,),(ez,e;))u{(e,e)le~ En},

#5=!(~,e4)r(e4r~)I~Eje,;e,,e,}},

f,(ei) = a,.

Graphically we can depict E as shown in Fig. 1.

2.1, Operational meaning of event structwes

The events in an event structure can be anything varying from a clock pulse in a
computer, the printing of a file, my act of writing this article, your act of reading
it, the next crash of Wall Street, etc.

el Cd

i
e2

I
e3

e5

Fig. 1.

The partial order relation expresses that some events are causally related to other
events or that for all observers the occurrence of certain events will be seen to
precede the occur:er.ce of others. For instance, my act of writing this article will
precede your act of reading it. On the other hand, your act of reading this article
will probably not be causaliy reiated to the next crash of Wall Street. The question
what, in general, constitutes a causal link, is a metaphysical one and difficult to
answer. However, in a lot of practical situations it is perfectly clear what we mean
with causality and reasoning about the behaviour of concurrent systems in terms
of causality is useful.

The principle of finite causes says that the systems we consider are discrete and
tnat moreover we do not consider situations like those shown in Figs. 2 and 3. In
Fig. 2 it is not clear that any of the ei can ever happen. In Fig. 2, e, can occur if
execution of all events e, , e2, _ . . finishes after a finite amount of time. Because we
do not make any assumptions about the time it takes to perform an event, it is
possible that e, takes 1 s, e2 takes 2 s, etc. In that case e, will never take place.

If two events are in conflict, then at most one of them can occur. As a consequence
of the principle of conflict heredity we have that when an event occurs, all its

“causes” mast have occurred before. So if two events e and e’ are related in rhe
ordering, say e < e’, then occurrence of e is a prereqm_t_ ‘__ -=; p G+ the occurrence of e’.
in general it is not the case that after occurrence of P *he occurrence of e’ is
inevitabie. it would be possible to allow evcnr structures where one event has two
causes, which are in conflict. Two interpretations of the event structure shown in
Fig. 4 are possible: either one can say that c5 will never occur because it is impossible
that all its causes occur (in that case one can just as well Zeave 4; out of the event

. . .

Fig. 2.

Fig. 3.

elf2

\/

e3

Fig. 6.

structure and adopt the principle of conflict heredity), or one can say that e, can
occur if a maximal, conhict-free subset of its causes has occurred, so {z,} or {Q}.

There are no fundamental reasons to adopt the principles of finite causes and
conflict heredity. We have included them in our definition of event structures becanse
this makes an elegant formulation of the main resuh of this paper possible.

The operational intuitions presented in the discussion above, are defined formally
below.

Definition 2.4. Let E be an event structure and let X be a subset of Es. We say that
X is lef-cfosed if

X is conflict-free if X does not contain a pair of events which are in conflict, so if
#kn (X x X) =1). E is conflict-free if #n=O. A conjiguration of E is a finite,
left-closed, conflict-free subset of &. t,Note that Winskel [28J does not require that
configurations are finite.) With Q(E) we denote the set of configurations of E.

Example 2.5. Figure 5 depicts all configurations of the event structure of Example
2.3. An arrow is drawn between two configurations if one can be obtained from the
other by adding a single event.

Fig. 5.

Definition 2.6. For any alphabet 2, we use 2* to denote the set of finite sequences
over alphabet P and I’ to denote the set of finite nonempty sequences over this
aiphabet. We write A for the empty sequence and a for the sequence consisting of
the single symbol a ~2. By CT * o’, sometimes abbreviated oo’, we denote the
concatenation of sequences o and o’. On sequences we define a partial ordering s
(the prefix ordering) by o s p iff, for some sequence o’, oo’ = p. If CT 6 p we say that
cr is a prejx of p.

Definition 2.7. Let E be an event structure and let X and Y be configurations of E.
(i) Let a E A. We say that there is an a-rransitio:: from X to Y, notation X -g Y,

if Y = X u {e} for some event es! X with I,(e) = a.
(ii) An action a EA is enabled in X, notation X-E, if X --igX’ for some

configuration X’.
(iii) A sequence of actions o = o, * . ’ . * a, f A” is enabled in X, norarion X --$,

if there exist configurations X0,. . . , X, such that X = X,> and for 1 s iC II:
X,_! -2 X,. We say that X,, is obtained jrom X by the occurrence of v, notation
X -g X,,. We also say that D is an (acrion) sequence of X.

(iv) A seq lence of events a = e, * . . * e,, E Ez is enabled in X, notation X-g,
if there exist configurations X0,. . , X,suchthatX=X,,andforl~i~n:e,~X~_,
and X, = Xi-r LJ {e,}. We say that IY is an (enent) sequence of X.

(v) With seq,(X) we denote the set of action sequences of X, so seq,(X) =
{oEA*/X+}.

Proposition 28 (no junk). Let E be an ewnt str~~cfure and let e E EE. Then there
exists a conjiguration X of E with e E X.

Proof. Take X = pm&e): Due to the principle of fmhe causes X is finite. From the
fact that < -a is a partial order it follows that X is ieft-closed. X fs conflict-free due
to the principle of conflict heredity. Hence X is a configuration. Clearly e f X. *K!

3. Three basic equivalences on event structures

We will now define three equivalences on event structures which make increasingly
more identifications.

Definition 3.1. An euent structure isomorphism between two even structures E and
F is a bijective mapping f: E,+ El such that:
??f(e) Srf(e’)ee Sk e’,
?? f(e) #F_f(e’)ee RE e’, and

* Mf(e)) = Me).
E and F are isomorphic, notation E 3 F, if there exists an event structure isomorphism
between hem.

Definition 3.2. Let E, F be two event /I s ructures. A relation R s E(E) x l(F) is a
bisimuhtion between E and F if:
(I) OR&
(2) If XR Y and X -+g X’ for some (I E A, then there exists a Y’E Z(F) such that
Y-g Y’ and X’ R Y’;
(3) As (2) but with the roles of X and Y reversed.
E and F are Jisimilar, notation E c, F, if there exists a bisimulation between them.

282 E W: Vaandmger

Definition 3.3. Two event structures E and F are sequence equivalent, notation
E zreq F, if:

scqE[O) 7 se+(b).

Remark 3.4. The semantical notion of sequexe equivalence, is usually called trace
equivalence in the setting5 of process a&bra azd t race theory as in 1231. However,
use of the word trace would be very confusing in a paper ou event structures, since
event structures are closely related to a compietefy different type of traces, namely
those which are studied in trace theory as in j16]. Therefore we have chosen ;o use
the word “sequence” to denote a finite string of symbols recording the actions in
which a process has engaged up to some moment in time.

Propktion 3.5. s.0 and =req are equivalence relations and their relarions are
Es C * C ssea. -

Proof. Standard. II

Example 3-6. The event structures in Fig. 6 show that -,t, and -_, are reaily
different equivalences. !n the graphical representations we have depicted :he labels
of the events and not the events themselves.

‘l.. g & 0 (j
,/i i - i i % // -

6.. c b c b c

Fig. 6.

The following definition is central to this paper.

Definition 3.7. Let E be an event structure. E is deterministic if for all coatigurarions
X E V(E) we have that whenever X-z Y and X+ Y’ for some as A and
Y, Y’E O(E), we have that Y = Y’.

So an event structure is determiniuGc if it does not have a configuration with the
property that two different events are enabled which have the same label.

Definition 3.8. Let E be an event structure. Two events e, e’E E, are in immediare
conflier, notation e #k e’, if they ar? in conflict aod furthermore:

Determinism + C euen~ srnrrrure isomorphism = JQ rcquence rquicuhnrr) 253

Using the notion of im‘nediat: conflict we can give a “less operational” character&
ation of deterministic event strlrctures.

Pro@tion 3.9. Let E be an euenr st.rucfure. Then E is deterministic $J:

e-E e’ or e #:: e’ =3 /E(e) f- I,(&).

Proof. Easy. L3

It is well known that the linear time-branching time spectrum c&apses for
deterministic event structures.

Proposition 3.10. Ler E, F be dereminislic mm stmrmres. 7Zen Efr3 F#E =_ F.

Proof. * foliows from Proposition 3.5 In order to prove C= define a relation
R c B(E) x V(F) by

It k easy to show that R gives a bisimu!arisn bctweea E and F. Z

Remark 3.11. In a dictionap [ZO] we found the foltoxing entr; for the word
“determinism?

(13 a doctrine ttat all phenomena are determined by preceding occurreocec; crp.
the doctrine that all human acts, choices etc. arc eausa:ly determined and that free
will is illusory;

(2) a belief in predestination.
One may think that the noticv: of determinism introduced in Definition 3.7 is in
conflict with the above description. If one for instance considers the deterministic
even: structure containing mu ?&ems labelled n and b which are in confiict, then
one may argue that the choice between II a;ld j is oat causaI?y determined, that the
event stroctore “has a fne will” and “may choose” whether IO perform .z or ix.
Therefore one mav propn?e another definition of determinism for event structures
which says t:lat an event structure is deterministic iff it is conflict-free. In Fact this
de!%;ition occurs in [$1.

We however preFer our own definition because w like to view event structures
as “reactive sysems”. An event structure model of a concuxznt system describes
tow the system reacts to stimuli received from its environment. In the example of
the event structure with actions LI and b, it is complcrefy determined how a system
modelled by this event structure will react to external stimuli: the system has no
choice.

Now consider the event structure shown in Fig. 7. This event structure is conflict-
free and hence deterministic in the sense of [l]. However, if the environment offers
an a, then there is a choice between the “left” a and the “right” a. Depending on
how this choice is resolved by the system, it can engage in b or in c afterwards.
Hence one can argue that the event structure exhibits nondeterministic behaviour.

a

i I
b c

Fig. 7.

4. Noninterleaved equivalences

Many people think that bisimulation equivalence, and consequently also sequence
equivalence, make too many identifications on event structttres to be of use in
general. In bisimu!ation semantics concurrency is not preserved, i.e. for each event
structure we can give a bisimilar event structure with an empty concurrency relation.
We elaborate on this below.

Definition 4.1. The sequentidisution of an event structure E, notation Y(E), is the
event structure F defined by:
o &={(IE(&)+10+:};
0 o Crp iff o is a prefix of p;
. &=(ECxEF)-(+u +);
0 &(a * e) = I&e).

Proposition 4.2. Let E bt ?n euenf ‘.t-ucfure. Then:
(i) rhe concurrency reiatiorr @.9(E) is empfy,

(ii) Eo Y(P),
(iii) 9(E) - 9(9’(E)).

Proofa Easy. 0

4.1. Sfep semantics

Intuitively, one of the reasons why an event structure is in general different from
its sequentialisation is that it sometimes has the possibility of doing a number of
events simultaneously in one “step”. The notion of a “step” immediately suggests
refinements of sequence equivalence and bisimulation equivalence which do not
disregard concurrency. These rehnements will be called step seqruence equivalence

and step bisimulation cquisaIezce, respec:iseiy. Step sequences have been d&ted
in ;lG]. Siep bisimulations appear in [is]. In [ll] they are called “concurrent
bisimu!ations”. Below we give the formal definition of step sequence equivalence.

Definition 4.5. Let E be an event structure and let X and Y be configurations of E.
(i) Let U be a finite subset of 4. We say that Y U-fo\/ows X, noktioo X[U > Y,

if X n U =Q, the elements of ZJ are pairwise concurrent (so Ve, e’~ U: e i e’=+
e-cc’) and Y=XuU.

(ii) Let U G E,. We say that U is enabled in X (U is a step from X-)% notation
X[U >E, if X[Lr >r X’ for some configuration X’ of E.

(iii) A sequence (Y= U,*- . . * U”E (Pow(&))* is ennbled in X. notation

X[a ‘E, if there exist configurations X0,. _ _, jr, such that X =Xi and for
1 s is n: X,_,[U, >e Xi. We say that X, is obtainedfrom X by the occwrence of a,
notation X[a >n X,,. We also say that rr is an (euent) step seqwnce ofX.

(iv) Let a = U, *. . . * U,, E (Pow<&))* such that X[o >e Y Let D be the
sequence I,(U,) * . . . * ZE(U,) where Ze(U,) denotes the multiset of labels of events
in Ui. We say that (T is em&led in X, notation X[rz >r_ We atso say that CT is an
(octio-?) step sequence of X, and that Y is obtained from X by the occurrence qf o,
notation X[o >c Y.

(v) With s!epe(X) we denote the set o-action step sequences of X, so step&X) =
{ae (Mul(A))“]X[u >E}.

Definition 4.4. Two event structures E and F are step sequence eqiricalenr. notation
E cstrp F, if:

step,@) = step&V.

Proposition 4.5. zstep is an equivalence reiotion. The following relations hold berween
the equicalences presented thus fat:

c c,
n n

"step c 'seq

Proof. r,asy. ??

Examples 4.6. We give some examples which show that the diagram above gives
all relations between the equivalences. Our first example (Fig. 8) shows that step

a b
I

0 -
=seq b Q

Fig. 8.

semantics (at least sometimes) takes coucurrency as a primitive notion. The two
leftmost event structures in Fig. 6 are not iscnnorphic but they are step sequence
equivalent. This follows from the observation that on the domain of event structures
with empty concurrency relation, step sequence equivalence and sequence
equivalence coincide.

The two rightmost event structures in Fi:. 6 are not bisimilar, but they are step
sequence equivalent.

4.2. Partial order semantics

An A-labelled partially ordered set is a triple (X, S, I) with X a set, =S a partial
order on X, and l:X+A a labelling function. Two such sets (X,,, So. &) and

(X,,G , , II) are isomorphic if there exists a bijective mapping f: X,+ XI such that
f(x) S, f(y)ex +, y and I,(_f(x)) = b(x). A partially ordered mzdtiset (pomset) is
an isomorphism class of labelled partially ordered sets. As usual, pomsets can be
made setlike by requiring that the events in the partiai orders should be chosen
from a given set. Below we wili view equivalence classes of conflict-free event
structures as pomsets.

Definition 4.7. The restriction of an event structure E to a set X c E, of events is
the event structure E 1 X=(X, sE n (X xX), #En (X xX), I, 1 X).

Definition 4.8. Let E be an event structure and let X be a configuration of E. The
set of pomsets of X, notation porn,(X), is defined by:

pomE(X)={(E](X’-X))/, jx’~ X’E V(E)!.

Delinitioo4.9. Two event structures E and Fare pomset equivalent, notation E -,,_, F,
if porn,(O) = pomr(0).

The first systematic study of pomsets is in [i2], where they are called partial
words. Pomset semantics is advocated in [22].

Proposirioo 4.10. zporn is an equivaience relation. it jits in our semantical lattice as
follows:

s c c,
n n

-porn c =steg = -req

Examples 4.11. The two rightmost event structures in Fig. 6 provide an example of
two event structures which are identified in pomset semantics, but distinguished in
bisimulation semantics. The remaining examples distinguishing pomset equivalence
and the other equivalences are displayed in Fig. 9. The example of Fig. 10 is
interesting because it only contains conflict-free event structures, and aiso because
it disproves Theorem 3.5 in [l]. Notice that all these examples contain nondeterminis-
tic event structures.

Fig. 9

u a a u
Fig. 10.

5. Determinism -, (event stracture isomorphism = step sequence guivalewe)

Proposition 3.10 stated that bisimulation equivalence and sequence equkxience
coincide on the domain of deterministic event strxtures. Surprisingly, most of the
noninterieaved semantics which have been proposed in the literature, also coincide
on this domain.

in the introduction of this paper we mentioned a large number of equivalences
which are situated ia between event structure iso,norphism and step sequence
equivalence. & a conseqnence of the CZz-7’.- tSrg result oii these equivalences (excep:
for occurrence net equivalence) coincide with event structure isomorphism on the
domain of deterministic event structnres.

Proof. induction on the size of X. If X is the empty set, then Y mtist be empty
too and we are done. Suppose X is nonempty. Let e be a maximal element of X
and let X’= X -{e]. Now we use that there exists an event structure isomorphism
f between E t X and E r Y: we have E r X’ - E r I” for Y’ = Y - {f(e)) and further-
more X’ and Y’ are configurations. Applying the ind--ction hypothesis gives X’= Y‘.
Let a = I,(e) = I&(e))_ We have that X’-2 X but also X’+z Y. Now use rhat E
is deterministic to obtain that X = Y. •I

Lemma 5.3. Let E and F be deterministic event structures. The,, E Ed,,,,, FeEzF.

Proof. F is trivial, so the interesting direction is +. Define relation - E&X E, by

e. - e, Qer E 1 prer(e,) = F I wd4.

We claim that - gives a bijective mapping between EE and E,. Because E zpo,,, F,
it is obvious that dom(-) = EE and range(-) = EF. Suppose that e,- e, and e,- e;.
We show that e, = ei . By definition we have E r pre,(e,) ^-F r prer(e,) = F f pre,(e;).
Application of the previous lemma gives preF(e,) = pre,(e:). Since both sets have a
unique maximal element, these maximal elements must be identical: e, = e; In the
same way we can prove that if e,- e, and eh- e,, this implies ea= e&. Hence -
gives a bijection between E, and E r. It is routine to check that this bijection is in
fact an event structure isomorphism. Cl

Proof of Theorem 5.1. From the previous results ii follows that in order to prove
Theorem 5.1 it is enough to sbow that for deterministic event structures E, F,

E -step F + E-,,,F.

By definition this is equivalent to

step&01 = stepA * porn,(G) = porn,(O).

We will prove a slightly stronger statement, namely,

VX E V(E) V Y E V(F): step,(X) = step& Y) 3 porn,(X) = porn& Y).

Let X E g(E), YE 9(F) with step,(X) = step,(Y). Let X’ be a configuration of E
with XCX’. Let a~={e,}{eZ}...{e.} b e a sequence of singleton steps such that
X[cu,>,X’andX’-X={e,,..., e,}. Let n, ={e;}{e;} . . _ {e:} be a step sequence
such that Y[or >r and I,(ei) = &(ei) for 15 is n (due to the fact that X and Y
have the same s?ep sequences, such a sequence will always exist). Let Y’- Y’u
{e;, . . . , eb}. We claim that the function which maps e, to e; is an event structure
isomorphism between E r (X’- X) and Ft (Y’- Y;. For reasons of symmetry we
have proved the theorem if we have shown this.

The proof goes by induction to n. The case with n = 0 is trivial. Now suppose
n > 0. Due to the fact that X and Y have the same step sequences and due to the
determinism of E and F, we have

step&Xv {e,}) = step,(Y u {e;}),

Xu{e,}[{e2). . .{e,J 3,X’ and Yu{e;}[{eG}. . .{e:} >E Y’,

we can now apply th: induction hypothesis which gives

Et(X’-(Xu{e,}))=Ft(Y’-(Yu{e:})).

Dewminim - (euenl ~bucr~r~ tomorphism = srep requence equiunlencei 289

In order to prove the induction step it is enough to show that for 2 G i 5 n, e, <r es ($
e; <r e;. If n = 1 we a.re done, so assume n ~2. Let for some i, e, be minima1 in
{e2,. . . , en}. Then e: is minimal in {e;, . . . , ek}. We ciaim that e, cr e,ue; <r ei.
Suppose e, ir e, but not e; <r e: I If we show that this leads to a contradiction we
have proved the claim because the remaining case is symmetric. If it is not the case
that e; <r ef then e; -F e:. Due to the minimality of e: we have that Y[{e;, ei) >r.
Now we use that X and Y have the same step sequences and the fact that E is
dete:ministic.There mustbe somefsuch that X[{e, ,f} >,and Ir(fj = Zr(ei) = &(e,).
Because e, <e e,, j# ei. But now there is a contradiction since we can go from
configuration X u {e,} with an Z&)-transition to X u {e, ,_fI as well as Xv {e, , e,).

Now we have proved that for e,, which are minimal in ji”;l_. _ , em}, e, <r e,e
e; <r ei. I,t order to prove this fact also for e, which are not minimal, we distinguish
betweeo two cases.

(1) For ali e, which are minimal in {ez, . . . ~ e, j, we have that e, cE e,. This implies
that e, <r e, for 2~ I< c. Further we have that for ail e: which are minimal in
{e;, . . _, e:}, e; <r el, Consequently e; <,e; for 2~ Is n. and we are done.

(2j There is an e, which is minimal in {e2, . _ . , e.7 such that e, -r e,. This means
that e; -r e;. We now have the following situation:

x ‘” ie,)[{r,}. . . (ei-3}{e,T,f.. {e,j >E A.‘,
Yv{e:}[{e;}. ..{e:_,]{ei+,} . ..{eh) >p Y”.

Of course X u {e,} and Y v {ri} have the same step sequences. Application of the
induction hypothesis gives

E[{e,,e, ,..., e,_,,e,,, ,..., e,,l=lF~{e~,& ,... ,el,el_: ,.._, eb}.

Consequently e, Cr e, G e: <r e; for 2 s I G n. D

Observe that in the proof of Theorem 5.1 we only use that E and F have the same
sequences of steps containing at most two events.

The diagram below presents the relations be:ween the equivalences presented
thus far when restticted to the domain of deterministic event structures.

The example of Fig. 8 shows that even for deterministic systems there is a difference
betw:en arbitrary interleaving and partiat order semantics.

One can consider event structures up to step sequence equivalence as an inter-
teaving semantics if one is willing to view a multiset of actions as an action again.

In the process algebra languages MHJE and ACP this idea can bc implemented by
working for instance wit!~ an action structure which is the product of a free
commutative monoid and a free commutative group. Under this interpretation one
can sry that for deterministic systems there is no difference between arbitrary
inter!eaving and True concurrency.

Now one can ask the question to what extent a multiset of more than one action
can be considered as something which is observable. In a synchronous system like
a systolic architecture there is certainly no problem. After each dock tick, one can
just stop the system and examine which “cells” have performed an adion. The
multiset (or set if the system is deterministic) of actions performed by the separate
cells gives the step which is performed by the synchronous system. It is much harder
to imagine how a “step” can be observed in an asynchronous system. The only

. .
thing I can come up with :s fn,. I ’ o+ WEX observer notices the beginning of one action
before another action has been finished. In such a situation the observer cau conclude
that the two actions occur concurrently.

Below, this way of observing concurrent processes is formally implemented by
means of an operator split on event structures that splits any event e into events e+
and e-, which are ordered. One may think of e+ as the beginning of e and of e-
as the end of e.

Definition 6.1. Let E be an event structxe over some alphabet A. Let A+ = {a’[a E A}
and A- = {a-l a E -4) be two disjoint copies of A. The event structure F = split(E)
over alphabet A’v A- is given by

&={e+,e-lee&},

~F=i(ex,S’)lx,y~I +,-I and e +f}u{(e+, e-)leE&},

#F={(e’,fg)I~,y~{+,-_)and e#&.

Me’) = Me))+,

I&e-) =(&(e)j-.

split (a c)= a+ -i

i
1 cl

a- c-
b _.__._____.__ d I

1
bt____.._ d’

b-

I
I-

Fig. 11.

Example 6.2. See Fig. 11.

Definition 6.3. Two event structures E and F are split sequence equivalent, notation
E zspliI F, if split(E) zreq split(F).

Split sequence equivalence is closely related to ST-bisimulation semantics as
presented in [ll] on the domain of Petri nets, but there are some differences. Besides
the fact that split sequence equivalence does not respect branching time it is also
not real time consistent in the sense of [ll]. The idea of splitting actions into a
beginning and an end is, on a different and more restricted domain, also described
in [13]. Our split-operator car. be viewed as a special case of action refinement as
described in [7,2].

Lemma 6.4. Let E and F be two event structures. Ther:

E -oam F * split(E) =pon split(F).

Proof. The main idea of the proof has already occurred in [7]_ Let E and F be event
structures with 3 - pom F. Choose a configuration X 1~ O(spIit(E)). We must show
that there exists a configuranon Y-E g(split(F)) such that

split(%) 1 X -split(F) 1 Y.

By symmetry it follows that we are ready if we have proved this. Define the sets
X’, X+ G EE by

X*={egE,le+sX and e_EX},

X+={eEEele’EX and e_fX}.

One can easily check that X’v Xt is a configuration of E. Since E sworn F, there
is a configilration YE Z(F) and a bijection f: X’ tl X+ -, Y which gives an event
&~ctlure isomorphism between El (X’v X’) and Fr Y Define yS”“c F&,:-;r:B: by

rp’it=ICf(e))+,(f(e))-IeEX*}u{(f(e))+jeEXi).

It is not hard to see that Spat . is a configuration of split(F). Now define a mapping
f”“’ : X ~ Y&t by

f”“‘(e+) = (f(e))+ for e+ E X,

fp”‘(e-) =(_f(e))- for e_EX.

We ciaim that f sD’i’ is an event structure isomorphism between split(E) r X and
split(F) 1 Split. A simple argument gives tbat$@“. IS a bijection. Clearly_~P’i’preserves
labels. Finally we have that if two evmts in X are ordered their images under f@”
are also ordered, and if two events in X are concurrent their images underfP”’ are
concurrent too, 0

292 E w! Vunndrrrge~

Proposition 6.5. Let E and F be IWO event srrucfures. Then

E =p”,” F =+ E -+, F.

Proof. E =ro,,, F=%plit(E) zpOr, split(F)+split(E) -req split(F)*Z =S3,il F. 0

Proposition 6-6. Let E and F be two event structures. 7?zen

E sSpli, FJE -step F.

Proof. Let E and F be two event structures with E -Spli, F. Let (r = A, . . . A,,, E
(Mm(A))* with Ai ={a,, , . . , a,.,} an action step sequence of E. We must show
that o is also an action step sequence of F. By symmetry we are ready if we have
proved this. The following sequence p is an action sequence of split(E):

+ + p=a,,a,*. . . a:,,a,a;2.. . a,,a& . ..a.,, . . a’,.,,a,, . . a,, ,,,.

Since E -Split F, p is also an action sequence of split(F). Hence split(F) has some
event sequence (Y with the property that, if we replace the events in (Y by their
iabels, we obtain p. Let this (Y be

u=e:,e&... e:.,f;f,Q...fl,,e& . ..e’., . ..e&.j’; ,... f;,.,.

Note that in general e, may be different from Aj. However, we do have that

ic,, , . . . , ~~1 equals {A,,. . . , &}. From the fact that (Y is an event sequence of
split(F) it follows that F has the event step sequence

(ell,...,e,,,}...{p,,,...~emn,}.

Hence (r is an action step sequence of F. ??

As a consequence of Propositions 6.5 and 6.6, split sequence equivalence can be
located in our semantical lattice as follows:

G C +?
r! n (*)

-porn = =Splif = -Step = =Sq

Examples 6.7. The examples shown in Figs. 12 and 13 show that all equivalences
in (*) above are different. Due to Theorem 5.1 and the position of =5plir in the
semantical lattice we have that for deterministic event structures, split bisimulation
equivalence and event structure isomorphism coincide.

Split

Fig. 12.

a c Qir b - a . . . c

I
-
=&p /: 1

b C a-b

Fig. 13.

Proposition 6.8. Let E, F be deterministic eLiem structures. Then E - FeE -sO,iC F.

Thus the causal szructore of a detzzinistic concurrent system can be unrave!!ed
by observers who are capable of observing the beginning and termination of events.

The author would like to thank Rob van Glabbeek for many stimu!ating dis-
cussions and careful proofreading, Henk Goeman for some useful comments on an
earlier version, and Alex Rabinovich for pointing out that the assumption of binary
con@ict is not essential for the results of this paper.

References

[11 1.. Aceto, R. De Nicola and A_ Fantechi, Terting equivalences for went st~ctwes, in: M. Ventmini
Zilli, ed., Proc. Advanced School on Mathemaricul &Jade11 for :he S?manrics o/ PamJfelism, 19%.
Lecture Notes in Computer Science 280 (Springer, Berlin. 1987) l-20.

[2] L. Aceto and M. Hennessy, Towards action-refinement in process algebras, in: Proc 4th Ann. SIW~.
on Logic in Cornpurer Science {LJCS), 1-:‘---- -l>II”III11., ._n ,‘-*I. L”‘.‘YYL” P* I’lzc= PI--.....- Scckq fiss, ,x,~~~~n$ton

1989) 138-145.

[3] D. Austry and G. Boudol, Alg&bre de processus et synchronisations, Theoret. Cornput. Sci. 38 (19841
91-131.

[4! J.A. Bergs&a and J.W. Klnp, Algebra of communicating proceaes wilh abstraction, Theorer. Cornput.
Sci. 37 (1985) 77-121.

[5] E. Best and R. Dwillen, Sequential and concurrent behavior in Petri na theory, Theoret. Compzr.
Sci. 55 (1987) 87-136.

[6] G. Boudol and 1. Castellani. Concurrency and atomicity, Theoret. Compur. Sri 59 (1588~ 25-34.
[7] L. Castellani, G. De Michelir and L. Pomello, Concurrency 1s in*erteaving: an instmctivr example,

Bull. M7CS 31 (1987) 12-15.

[S] P. Degano, R. De Nicola and U. Montanari, Observational equiulences for concurrency models,
in: M. Wirsing, ed., Formal Description of Programming concepts-HI. Proc 3rd IFIP 1% 2.2
Working Cons:, Ebberup 1986 !No&-Ho!land, Amaerdam, 1987) 105-129.

[9] J. Engelfriet, Determinacy+ (obserarion equivalence =fr.,ce equivalence), ‘fheortx Compur. Sci
36 (1985) 21-25.

[IO] H.J. Genrich and E. Stankiewin-Wiechno, A dictionary of some basic notions of Petri nets, in: W.
Brauer, ed., Aduanced Course 3” Genernl ?&I Theory of J’rocesses and Systws, Hamburg, 1979,

Lecture Notes in Computer Science 84 (Springer, Beriin. LBdDi.
[ll] R.J. van Glsbbeek and F.W. Vaandmger, Petri net models for algebraic rheories of concurrency,

in: J.W. de Bakker, A.J. Nijman and P.C. Treleaven, eds., Proc PARLE Con& Eindhouen, Vol. II
(Parallel Languages) Lecture Notes in Computer Science 259 (Springer. Bxiin, 1957) 224-242.

[12] J. Grabawski, On partial language;, Fund. Jn/orm. IV(Z) (1981) 427-495.

294 E W. Vaandrager

[I31 M. Hennessy Axiomatising finite cowurrent processes, SIAM J. Cmpat. 17(S) (1988) 997-1017.
[14] C.A.R. Hoare, Communicating Sequentilr/ Processes (Prentice Hall, En&wood Cliffs, NJ, 1985).
[15] A. Kiehn, On the interrelation hetwecn synchronized and non-synchronized hehaviour of Petri nets,

.i. fn/orm. Prxess. Cyberner. EIK 24(1/2j IlY88) j-iii.
[Xi] A. Mazurkiewicz, Trace theory, in: N. Braner, W. Roisig and G. Rozenberg, eds., Petri Nets:

Applicutions and Relorionships Iu Other Models of Concurrency, Aduances in Petri Netr 1986, Parr

II; Pror. Advanced Course, Bad Honnef, September 1986, Lecture Notes in Computer Science 255
(Springer, Berlin, 1987) 279-324.

[17] R. Milner, A Co/culus o/Communicating Systems, Lecture Notes in Computer Science 92 (Springer,
Berlin, 1980).

[IS] M. Nielsen, G.D. Plotkin and G. Winskel, Petri nets, event structures and domains, part I. Theoret
Comput. Sci. 13 (1981) 85-108.

[19] M. Nielsen and P.S. Thiagarajan. Degrees of non-determi.n.ism and concurrency: a Petri net view,
in: M. Joseph and R. Shyamasundar, eds., Pax. 5th ConJ on Fotmd. of So~nv. Z-c/m. and 7kor.
Crimp. Sci., Lecture Notes in Computer Science 181 (Springer, Be:lin, 1984) 89-118.

[ZO] Penguin, The New Penguin English Dictionary (Penguin Books, 1986).
[21] L. Pomello, Some equiwlence notions for concurrent systems. An overview, in: G. Rozenberg, ed.,

Advances in Petri Nets 1985, Lecture Notes in Computer Science 222 (Springer, Berlin. lP86) 381-400.
/22] V.R. Pratt, Modelling concurrency with partiai orders, iniwnui. L ~~wa&:.%g~ernniizg IS(:) (:386)

33-71.
[23] M. Rem, Trace theory and systolic computations, in: J.W. de Bakker, A.J. Nijman and PC. Treleaven,

eds.. Proc. PARLE Conf: Eindhown, Vol. I (Parallel Architectures) Lecture Notes in Computer
Science 258 (Springer, Berlin, 1987) 14-33.

[24] G. Rozenberg and P.S. Thizgarajan, Petri nets: basic notions, structure, behaviour, in: J.W. de
Bakker, W.-P. de Rower and G. Rozenberg, eds., Current Trends in Concurrency, Lecrure Notes in
Computer Science 224 (Springer, Berlin, 1986) 585-668.

1251 M.W. Shields, Non sequential behaviour: 1, Internal Report CSR-120-32, Department of Computer
Science, University of Edinburgh, 1982.

[26] D.A. Taubner and W. Vogler, The step f&ore semantics, in: F.J. Brandenburg, G. Vidal-Naquet
and M. Wirsing, eds., Pmt. STACS 87, Lecture Notes in Computer Science 247 (Springer, Berlin,
1987) 348-3.59.

[27] B.A. Trakhtenbrot, A. Rabinovich and I. Hirshfeld, Discerning causality in the behaviour of
automata, Technical Rcpolt 104/88, Tel Aviv University, 1988.

1281 G. Winskel, Event structures, in: W. Brauer, W. Reisig and G. Rozzsberg, eds., Perti New

App!ications and Relafionships 10 Other Models of Concwrency, Advances in Petri Nets 1986, Pm
II; Pmt. of on Aduonced Course, Bzd Honnef, September 1936, Lecture Notes in Computer Science
255 (Spnnger, Berlin, 198? e 325-392.

