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Abstract  
A temporal logic based on actions rather than on states is presented and interpreted over 

labelled transition systems. It is proved that it has essentially the same power as CTL *, a 

temporal logic interpreted over Kripke structures. The relationship between the two logics 

is established by introducing two mappings from Kripke structures to labelled transition 

systems and viceversa and two tran,~formation functions between the two logics which 

preserve truth. A branching time version of the action based logic is also introduced. This 

new logic for  transition systems can play an important role as an intermediate between 

Hennessy-Milner Logic and the modal It-calculus. It is sufficiently expressive to describe 

safety and liveness properties but permits model checking in linear time. 

1. Introduction 

Labelled Transition Systems (LTS's) and Kripke Structures (KS's) are two types of structures which 

have proven to be basic for many applications in computer science, especially for modelling reactive and 

concurrent systems. On one hand, LTS's have been more widely used to interpret process algebra 

languages like CCS and other languages for the description of communicating systems. On the other hand, 

KS's form the common model for interpreting many temporal and modal logics which are used as tools for 

specifying properties of communicating systems. The two types of structures are very similar and both can 

be seen as generalizations of state automata: in LTS's transitions are labelled to describe the actions which 

cause a state change while in KS's states are labelled to describe how they are modified by the transitions. 

In spite of their similarity and, we might say, their complementarity, the two models have mostly been 

considered as alternative to each other and there are strong advocates standing on each side. For example, 
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due to the "experienced" easiness in formulating properties of systems in terms of their states, Lamport 

"...decide(d) to base an axiomatic system for describing concurrent programs upon states rather than 

operations." [Lam83]. Actually, very interesting logics like CTL and CTL* interpreted over KS's  have 

been put forward [EH83, ES89] and have been thoroughly investigated [BCG88]; also, sophisticated and 

efficient tools have been developed for them [CES86]. For LTS's, on the other hand, Hennessy an Milner 

which were more interested in properly describing the actual behaviour of communicating systems, did 

define a new logic, now known as HML [HM85]. More recently, due to the success of process algebras, 

other, more expressive, logics interpreted over LTS's have been proposed (see e.g. [Lar88, Sti89, DV90]) 

and tools have been developed to support reasoning with them [CPS90]. 

Still, one might say that modal and temporal logics for computer science and the associated complexity 

issue have been more thoroughly investigated in the setting of Kripke structures and that combinators for 

transition systems and the issue of behavioural equivalence, as the basis for defining process algebras, have 

received more attention in the setting of Labelled Transition Systems. 

The point we want to make with this paper is that there is really no need for taking a definite standing 

between LTS's and KS's as semantic models. For example, our results will enable one to use ones favorite 

process algebra to describe system behaviour as an LTS and to use CTL* to specify the requirement the 

system has to comply with. The model checker for CTL* or (better) for its branching time subset CTL can 

then be used to check whether a given process satisfies the required properties. 

We will introduce an action based version of CTL* interpreted over LTS's  (we will call it ACTL*) 

which is the natural analogue of CTL* in a setting where lransitions are labelled. The new logics contains 

relativized modalities (e.g. Xa~ p - to be read "the next transition is labelled with an action a and the 

subsequent path satisfies ~p"-) as demanded by the interpretation model and is more expressive than HML. 

Together with the new logic, we will introduce two transformation functions from KS's  to LTS's  and 

viceversa which preserve essential properties of systems. In correspondence of the two transformation 

functions, we will define two mappings between the logics, one from CTL* to ACTL* and the other in the 

opposite direction, which, in combination with the functions on the models, preserve truth. We will prove 

that, i f A  is an LTS, K is a KS,  the k s ' s  and the ll;s 's are the transformation functions, and the two I='s 

are the satisfaction relation, we have: 

• A ,  p l= ~ iff k s  (A),  k s  (p) ~= ks  (~) 

and 

• K,  p I= q~ iff I t s (K) ,  l t s (p)  ]-~lts(cp). 

Thus, one might say that the two logics are essentially equivalent. 

Like it has been done for CTL*, we will introduce a branching time subset of ACTL* which we will 

call ACTL. Moreover, we will present a linear time translation from ACTL to CTL. This permits linear 

model checking for ACTL via reduction to CTL model checking. Also ACTL appears to be rather 

expressive and we argue that it can be used to express various interesting properties of concurrent systems. 

We will conclude the paper with a brief discussion on the discriminative power of ACTL without next time 

operators, be them relativized or not. We will argue that this restricted logic induces on transition systems 

the same equivalence as the divergence sensitive version of the branching bisimulation equivalence of 

[GW89] as presented in [DV90]. 

As mentioned above, our results about ACTL permit equipping verification tools for process algebras 

with a model checker which is linear in the size of the formula being checked; at the best of our knowledge 



409 

ahnost all existing tools rely on model checking variants of  the g-calculus and the algorithm for this is 

exponential in the size of  formulae. A type of work similar to ours in this respect is presented in [JKIO0]. 

These authors do stick to CTL as a logic for LTS's  but substantially change its satisfaction relation; in a 

sense they have a relativized satisfaction relation (<a, s> t= cp) instead of  our relativized modatity (X a q0). 

The expressive power of the two languages seems similar, but our satisfaction relation is more immediate. 

It is also worth mentioning that our transformation from LTS's  to KS ' s  is linear while theirs is quadratic. 

Besides, they do not consider invisible actions and we have not been able to generalize their approach to 

systems with silent steps in a way that would preserve some behavioural equivalence. 

We think that our new logic for transition systems can play an important role as an intermediate 

between HML and the modal g-calculus. It is well known that HML is not expressive enough and that 

model checking for the modal g-calculus requires exponential time. ACTL is sufficiently expressive to 

describe safety and liveness properties but pemaits model checking in linear time. 

2. ACTL*: A logic for Labelled Transition Systems 

In this section, we introduce our action based logic and elaborate upon its expressivity. Firstly, we provide 

the necessary definitions about labelled transition systems and their runs. Then, we describe the logic and 

introduce auxiliary modalities which will be useful in the sequel. 

Definit ion 2.1. (Labelled Transition Systems) 

A labelled transition system (or LTS) is a structure A = (S, A, --)) where: 

• S is a set of states; 

• A is a finite, non-empty set of actions; the silent action ~ is not in A; 

• --) _c S x (Au{x})  x S is the transition relation; an element (r,~x,s)e ~ is called a transition, and is 

usually written as r-ct---)s. 

We let A,c = Au{'c}; Ae = Au{e} ,  e ~ Ax. Moreover, we let r, s . . . .  range over states; a, b . . . .  over A; c¢, 

I], .-. over A. c and k .. . .  over  A E. , 

Remark  2.2. (Finiteness assumptions are not essential) 

The assumption that the set A of actions is finite and non-empty is made for technical reasons. The results 

of  this paper can be generalized to arbitrary sets of  actions if  either one is willing to use infinitary 

disjunctions in the logics or to restrict attention to those LTS 's  for which the set of labels which actually 

occur in transitions is finite. , 

Definit ion 2.3. (Notation for  strings) 

Let K be any set. K* stands for the set of finite sequences of elements of  K; K c0 denotes the set of infinite 

sequences of  elements of  K; K °° stands for KCOuK*. Concatenation of  sequences is denoted by 

juxtaposition; Z denotes the empty sequence; lrcl denotes the length of  a sequence ~. . 

Definition 2.4. (Paths and runs over LTS's) 
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Let ,,1. = (S, A, ~ )  be a LTS. 

• A sequence (s0,a0,Sl)  (S l ,a l ,S2) . . .  E ---W' is called apath from so; i f  a path cannot be extended 

anymore because it is either infinite or ends in a state without outgoing transitions, it is called afullpath. 

• a run from s e S is a pair p = (s,r0, where ~ is a path from s; we write first(p) = s and path(p) = rq 

moreover, i f  r~ is finite then last(p) denotes the last state o f  ~; a maximal run is a run whose second 

element is a fullpath; 

- with p < 0 and p < 0 we indicate that run 0 is a proper suffix, respectively a suffix, of  run p; 

° concatenation of  runs is denoted by juxtaposition; concatenation is a partial operation: p0 is only defined 

if p is a finite mn and tast(p)=first(0). 

• we write runA(s) ,  or just run(s), for the set of runs from s and grunj t(s) ,  or just Nun(s),  for the set of 

maximal runs from s; 

• we write mn~, l and gmn~l, for the set of runs resp. maximal runs in A .  

We let n . . . .  range over paths and p, (y . . . .  over runs. # 

Definition 2.5. (ACTL *: an Action based Computation Tree Logic) 

The syntax of  the logic ACTL* (Action based CTL*) is defined by the following grammar where we let 9, 

q0', ... range over ACTL*-formulas: 

q0 ::= T I -,cp I q0^q0' I 3cp I q0Uq0' I Xcp I Xa¢ p. • 

Definition 2.6. (Satisfaction relations for ACTL*) 

Let ~ .  = (S, A, ""0 be a LTS. Satisfaction of an ACTL*-formula q~ by a run p, notation A , p  I= q0 or just p 

I= % is defined inductively by: 

. p l = T  

- p I=-%0 

• p I= CpACp' 

- p  1=3q~ 

• p i=cpUcp' 

• p l=X(p 

• p I=Xaq0 

always; 

iff p Is cp; 

iff p I= ¢p and p I= ¢p'; 

iff  there exists a run 0 e I.trun(first(p)) such that 0 I= cp; 

iff there exists a 0 with p < 0 such that 0 I= ¢p' and for all p < ~1<0: r 1 I= cp; 

iff  there exist s, a ,  s', 0 such that p = (s,(s,o~,s'))O and 0 t= cp; 

iff there exist s, s', 0 such that p = (s,(s,a,s'))O and 0 I= ¢p. 

F o r s ~  S a n d r e  L w e d e f i n e  s l= ~p iff (s, )0 l=cp. 

Notat ion 2.7. (Auxiliary notation for ACTL*) 

We write 

• F for ~T ,  

• cp v cp' for -,(,cp ^ -,cp'), 

• V {q0 i I i e  {il,..,in} } for q~il v .. v (Pin 

• q) ~ qo' for --,cpvqo', 

• Vqo for -~3--,qo, 

• Fqo for T U q~, 

• Gqo for ~F--,qo, 

• X x qo 

(by convention v {cPi I ie  ~ }  = F), 

for Xq~ ̂  -~(V {X a q~ I aeA}).  
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In order to define more powerful modalities which wilt significantly shorten our notation, we introduce a 

tiny auxiliary logic of actions. 

Definition 2.8. (Action formulas) 
The collection Afor of action formulas over A is defined by the following grammar where we let Z, ~', 

range over action formulas: 

Z : :=  a e A  1 ~Z I Z^Z '. 

We write T for --,(a0^--,a0) where a 0 is some arbitrarily chosen action. Also, we use the abbreviations F, 

cpvqf, etc. that were introduced for ACTL*. , 

Definition 2.9. (Satisfaction relations for Afor) 
Satisfaction of an action formula Z by an action a, notation a I= Z, is defined inductively by: 

° a l = b  iff a = b ;  

• a l = ~ z  i f f  a l ~ z ;  

• a 1= ~AZ' iff a 1= Z and a 1= 7(- 

Definition 2.10. (Derived modalities) 
By using the notion of action formulas we can introduce a number of very useful modalities. We will write 

.x 9 
• 9 z U  z, qo' 

• qo ;¢U 9' 

• qo < a >  9 '  

• q~ < e > 9 '  

• < k >  qo 

" [ k ] 9  

for v { X  a 9 1 a~ A and a 1= )~1, 

for (q0^(XzT v XzT)) U (9 ^ X~, 9') ,  

for (q~^(XxT v X~ T)) U 9', 

for 3(9 FUa cp'), 

for 3(9  ~U q~'), 

for T <k> % 

for --1 <k>~% 

Intuitively, a path satisfies XZ q0 if it starts with a visible action that satisfies Z and moreover the remainder 

of the path satisfies ~p. A path satisfies tp )~U x, cp' if eventually it contains a visible transition whose label 

satisfies )( with a remainder satisfying qo', whereas at any moment before this event 9 holds and all visible 

labels satisfy )~. A path satisfies 9 ;~U 9' if some suffix satisfies 9' and at any moment before 9 holds and 

all visible actions satisfy Z. Please, note that 9 T U 9' is equivalent to 9 U 9'- The logic ACTL* is more 

expressive than the Hennessy-Milner logic with until operators that was introduced in [DV90]; these 

modalities are just the modalities 9 <a> 9' and 9 <e>9' as defined above. The formula 9 <a> 9' holds in a 

state if it is possible to do some x-transitions followed by an a-step such that after the a-step 9' holds and at 

any moment before cp holds. The formula 9 <~>9' is valid if after zero or more x-steps 9' holds and at any 

moment before q0 holds. Our diamond operator <a>q0 is slightly different from the diamond operator in the 

standard Hennessy-Milner Logic (HML) of [HM85]. Our modality requires that there exists a path 

consisting of a number of x's followed by an a-transition such that 9 holds immediately after the a-step, 

whereas in standard HML it is allowed to have an additional number of x-steps between the a-step and the 

cp-state. The diamond operator <a>cp of standard HML is rendered by our <a><e> 9. Finally, we introduce 

the modality [k] 9, which is the dual of<k> 9- 
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Example  2.11. (Expressivity of ACTL *) 

ACTL* allows us to express in a concise way interesting properties of reactive systems. For instance, a one 

bit buffer will satisfy the following property 

VG([in0] (V (T ~(in0 v inl v outl)Uout0 T))) 

which expresses that always after a 0 is placed in the buffer eventually the buffer will release it; moreover, 

as long as this event has not yet occurred, no bit will be accepted "by the buffer and also no 1 will be 

released. * 

3. CTL*: a logic for Kripke Structures 

Those readers who are familiar with the logic CTL* will have realized that the logic ACTL* resembles it 

very closely. In this section, we will recall the definitions of  CTL* and of  the Kripke structures which 

serve as models for it; this will allow us to investigate, later on in the paper, the relationships between the 

two logics more closely. 

Definit ion 3.1. (Kripke structures) 

A Kripke structure (or KS) is a 4-tuple K = (S, AP, L ,  ~ )  where: 

• S is a set of states; 

• AP is a finite, nonempty set of atomic proposition names ranged over by p, q . . . .  ; 

• L: S ---) 2 AP is the proposition labelling; 
• ---) ~ S × S is the transition relation; an element (r,s) ~ ---) is called a transition and is usually written as 

r --) s. 

The notations for runs that were introduced for LTS's  carry over to Kripke structures in the obvious way. 

The only difference is that transitions are now no longer triples but pairs. * 

Defini t ion 3.2. (CTL*) 
The syntax the logic CTL* is defined by the following grammar where we let % cp', ... range over CTL* 

formulas and p over atomic proposition names: 

q0 : :=p I -%0 I q0Aq)' I 3(p I q0Uq0' I Xq0. 

We write T for ~(p0A~P0) where P0 is some arbitrarily chosen atomic proposition name. Also, we use the 

abbreviations F, q0vq0', etc. that were introduced for the logic ACTL*. * 

Definition 3.3. (Satisfaction relation for CTL *) 
Let K = (S, AP, L ,  ---)) be a Kripke structure. Satisfaction of a CTL* formula q) by a run p, notation K ,  p 

l= cp or just p 1= % is defined inductively by: 

• p 1= p iff  p E L(first(p)); 

• p1=-%0 iff pls(p;  
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• p 1= (pA~' 

• p 1=3cp 

• p 1= ~pUq~' 

• p t=Xtp 

iff p I= tp and p 1= q~'; 

iff there exists a run 0 ~ ~trun(first(p)) such that 0 I= q); 

iff there exists a 0 with p ~ 0 such that 0 1= q)' and for all p < rl<0: "q I= cp; 

iff there exist s, s', 0 such that p = (s,(s,s'))0 and 0 I= cp. 

For s E S and ~p ~ CTL* we define s I= ~p iff (s, ;L) I= % 

For the sake of clarity, please notice that the above relation, which is the standard satisfaction relation for 

CTL* (see e.g. [ES89]), was called satisfaction with respect to maximalpaths in [DV90] and it was there 

written as p l=tx ~p. 

4. Actions vs States: relating ACTL* and CTL* 

To relate the two logics presented in the previous sections, we will need some preliminary work which 

allows us to relate the different structures on which they are interpreted, namely Kripke structures and 

Labelled Transition Systems. We will make use of two (slightly modified) transformation functions 

introduced in [DV90b]. For both constructions, the generated system has almost the same structure as that 

of the original one. The first construction builds a Kripke structure from a labelled transition system by 

splitting transitions labelled by visible actions and creating a new states for each of them, labelled with the 

label of the original transition. The second construction builds a transition system from a Kripke structure 

by labellling the original transitions with the set of  atomic propositions labelling their target state and by 

splitting all the original states to avoid that atomic propositions associated to states without incoming 

transitions be lost. Together with the two tranformation functions on the modelling structures we will 

present two transformation functions for the two logics and will then prove that truth of logical formula is 

preserved by them. 

Definit ion 4.1. (From LTS's to KS's) 

Let A = (S, A,--->) be a LTS and _L be fresh symbol not in A. The KS, k s  (A),  is defined as 

(S', AP,  L ,  ---)') where 

• S ' =  S u {(r,a,s) I a~A and r - a - - )  s}; 

• A P = A u  {_L}; 

• ---¢= {(r,s) I r-%--+ s} to {(r,(r,a,s)) I r -a - -~  s} to {((r,a,s),s) I r-a---~ s}; 

• For r, s ~ S and a ~ A: L(s) = {1} and L((r,a,s)) = {a}. 

The mapping can be adapted in the obvious way to runs; it is sufficient to replace each transition (r,a,s) by 

the pair of transitions (r,(r,a,s)) ((r,a,s),s). , 

Mapping ks  is nothing more than the composition of the mappings t r  2 and KS as presented in [DV90b]. 

Essentially, what k s  does is to introduce an intermediate state for each visible transition in the LTS, and to 

label the fresh states with the label of the transition and the old ones with {_L} while forgetting the label of 

the transitions. 
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In correspondence of the mapping from LTS's  to KS's, we have a mapping from ACTL* formulae to 

CTL* formulae which preserves truth. 

D e f i n i t i o n  4.2.  (From ACTL* to CTL*) 

The mapping k s :  ACTL*---~CTL* is inductively defined by: 

• f ~  (T) = T, 

• k s  ( ~ p )  = ~ k s  (~p), 

• ks(cp^q¢) = ks(q~)Aks(~p'), 

• kS ( 3 , )  = 3 k S  (q)), 

• ks  ((pU(p') = (± ~ k s  ((p)) U (± ^ ks  ((p')), 

• k s  (X(p) = X((_L ̂  k s  (q))) v v {(a ^ X(ks (~p))) I ae A}), 

• k s  (X a ~p) = X(aAX(ks (~p))). 

Theorem 4,3. (ks '  s preserve truth) 
Let A be a LTS, let p be a run o f ^  and let (p be an ACIL*-formula, then: 

A , p  I= q) iff k s  (A) ,ks  (p) I= k s  (cp). 

The translation k s  is linear in the size of the formulas, except for the case of the X-modatity which can 

cause an exponential blowup. Note however that by replacing in ACrL*  the X-modality by the relativized 

modality X x, which would mean no loss in expressivity since X can be defined in terms of the modalities 

X z and X a, it becomes easy to give a linear version of k s  by defining: 

k s  (X~ ~0) = X(_L ̂  k s  (~)). 

Somewhat arbitrarily, we have decided to use X in ACTL* instead of X x because otherwise the reverse 

translation l ~ :  CTL*--->ACTL* which we present below would not be linear anymore. 

D e f i n i t i o n  4.4. (From KS's to LTS's) 

Let K = (S, AP, L,  ---)) be a Kripke structure. The LTS I t s ( K )  is defined as (S', A',--)') where 

- S ' = S u { s l s ~ S } ;  

• A' = 2 AP u {.1.} (we assume .L is a fresh symbol); 

• ~ ' =  {(s,.l. ,s) I s ~ S) u 

{(~, L(s), s) I s E S} u 

{(i", % s ) I r,s ~ S, r --> s and L(r) = L(s)} u 

{(r, L(s), s ) I r,s ~ S, r --> s and L(r) # L(s)}. 

The mapping can be easily adapted to runs by defining: 

I ts(s0,  (s0,sl)(sl,s2) ...) = (sO, (s0,Ll,sl)  (sl,L2,s2).. .) 

whereLn+l  =def if L ( s n + l ) = L ( s n )  then "c else L(sn+l ) .  

The above transformation l t s  is the result of  a minor modification of the transformation L T S o t r  of 

[DV90b]. We could not directly use transformation t r  here because in general it does not preserve all the 

essential information in a Kripke structure. The modification that we presented above uses an idea which 

was also exploited in the definition of transformation ks  : just like k s  splits each (visible) transition into 



415 

two consecutive transitions, the transformation i~ts splits each state into two adjacent states. 

We now present the translation function I t s  from CFL* to our new logm ACTL . It is the identity 

function for all operators but for atomic propositions. 

Defini t ion 4.5. (From CTL * to ACTL *) 

The mapping l t s :  CTL*-->ACTL* is inductively defined by: 

• Its(p) = <_L> (v  {<c~> T 1 P e ct _c AP}), 

• l ts(-~9) = ~ I t s (9) ,  

• I t s ( 9 ^ 9 ' )  = I t s ( ~ )  ^ l t s ( 9 ' ) ,  

• lts(3q~) = 3 lts(q~), 

• lts(cpUq~') = lts((p) u lts(q~'), 

• Its(X~) = X lts(~). 

We recall from Definition 2.10, that <.L>(p means that there exists a path containing any number of silent 

moves and then a transition labelled by .1_ which leads to a state satisfying q~, formally we have: <.l.>q~ - 3 

((XzT) U (X±~o). 

Theo rem 4.6. ( l t s"  s preserve truth) 

L e t K  be a Kripke structure, let p be a run of K and let q) be a C I ~  -formula, then: 

K ,p  I= q~ iff l t s (K) , l t s (p )  I= lts(cp). 

The huge disjunction which we need in Definition 4.5 in order to deal with atomic proposition names 

results from a kind of mismatch between LTS's and Kripke structures: transitions in LTS's  are labelled just 

by actions, whereas states in KS's  are labelled with sets of atomic proposition names. Had we used a 

slightly different type of LTS's  which allowed sets of actions to occur as label rather than single actions, it 

would have been natural to equip the logic ACTL* with modatities Xp for p an element of a transition label. 

In that case the translation I t s  could have been simplified even further by defining: 

I ts(p)  = <.L> <p> T. 

The translation k s  would not be more complicated in this approach. In this paper we have chosen not to 

label transitions with sets of actions, but just with actions, in order to preserve more closely the connection 

with the LTS's  semantics of a wide variety of process description languages. 

Now we have defined a translation k s  from LTS's  to KS's  and another translation I t s  from KS's  to 

LTS's, a natural question to ask is what are the relationships between a LTS )l.  and the LTS I t s ( k s  (A)),  

or between a KS K and the KS k s  (I ts(K)) .  It is not hard to see that, for instance, A and l t s ( k s  (A))  are 

not directly related via some behavioural equivalence like trace equivalence or bisimulation equivalence. 

Although we still think that there exist interesting behavioural relationships, we have decided not to adress 

these issues in the present paper. 



416 

5. ACTL: a new branching time logic for LTS's 

In the previous sections we have introduced the logic ACTL* and shown that it is a very expressive logic 

which is eqmvalent to CFL m the sense that model checking for ACTL can be reduced to model checking 

for C I L  and vice versa. However, since model checking for CTL is in PSPAC~ [EL87], and because of 

our polynomial reduction of model checking for CTL* to model checking for ACTL*, this means that 

model checking for ACTL* is in PSPACE. 

The branching time logic CTL is a subset of CTL* which has an efficient model checking algorithm 

with complexity O((ISI + I-->1) x Icpl) [CES86]. Moreover an efficient implementation exists in the Extended 

Model Checker (EMC), developed at CMU. Therefore it becomes interesting to look for subsets of ACTL* 

which can be translated effieciently to CTL. Of course one should aim at having this subsets as large as 

possible in order not to loose too much of the expressive power of ACTL*. In this section we present the 

logic ACTL which is essentially a subset of ACTL* and which has the desired properties mentioned above. 

However, before we come to ACI~ ,  we will first define the logic Cq~ to which it is closely related. 

Defini t ion 5.1. (CTL) 
The set of formulas CTL is defined as the smallest set of state formulas such that: 

• if p ~ AP, then p is a state formula; 

o if cp and q)' are state formulas, then ~q) and (p^q)' are state formulas; 

• if r~ is a path formula, then 3r~ is a state formula; 

• if cp and cp' are state formulas, then X~p and cpUcp' are path formulas; 

• if rc is a path formula, then so is --,r~. 

We let ¢p,... range over CTL state formulas and n,. . .  over CTL path formulas. 

Clearly, CTL is just a subset of CTL*. Thus the definition of the satisfaction relation for CTL* carries over 

to CTL. Now here comes our proposal for ACTL: 

Definition 5.2. (ACTL) 
The set of formulas ACTL is defined as the smallest set of state formulas such that: 

• T is a state formula; 

• if q9 and tp' are state formulas, then ~q~ and cp^qY are state formulas; 

• if n is a path formula, then 3r~ is a state formula; 

• if cp and ¢p' are state formulas and Z and Z' are action formulas, then XZ% Xz~p, cp %U Z, cp' and q~ zU ~p' 

are path fomlulas; 

• if r~ is a path formula, then so is ~rc. 

Again, we let cp .... range over state formulas and rc .... over path formulas. ¢ 

The modalities Xx¢ p, cp zUz,  cp' and q) zU  ¢p' used above can be seen as compact notation for ACTL* 

formulae, thus ACTL is a proper subset of ACTL* and it inherits the satisfaction relation from ACTL*. 

For translating ACqT.~ to CTL we cannot just use the mapping ks  : ACTL*-->CTL*, restricted to ACTL 

and with the understanding that modalities like Xzq~ are expanded to ACTL*. For instance, consider the 
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ACTL fommla of the form X Z q); if we expand notation, we obtain an ACTL* fonrmla of the form v {X a 9 

I ae A and a I= Z}. Mapping ks  will translate this to a CrL* formula v{X(aAX(ks (9))) I a~ A and a I= Z} 

which is not a CTL formula; indeed, in CTL no conjunction or disjuntion of X-modal±ties is allowed. Thus 

we have to modify the mapping ks .  The reader may check that the mapping k s '  which is defined below 

does yield CTL formulas. 

Definition 5.3. (From ACTL to CTL) 

The mapping ks '  : AC-q~--~CTL is inductively defined by: 

• k s ' ( T )  = T ,  

• k s ' ( ~ 9 )  = --1 k s  ' ( 9 ) ,  

• k s ' ( 9 A ~ ' )  = k s ' ( 9 )  A k s ' ( 9 ' ) ,  

• k s ' ( 3 ~ )  = 3 ks ' (~) ,  

"ks (9 zUz ' 93 = ((± ̂  ks'(9)) v (-,± ̂  Z)) U (~_L ̂  3((-,I ̂  Z') U (± ̂  ks ' (9 ' ) ) ) ) ,  

• kS  '((p z U  9 ' )  = ( (1  A k s  '(9)) V ('-T J_ A X)) U (.]- A kS  '((p')), 

• k s ' ( x z g )  = x(~]_ ,, z ^ 3x(ks ' (9)) ) ,  

• k s ' ( x ~ 9 )  = x ( ±  ^ f ~ . s ' ( 9 ) ) ,  

• k s ' ( - , ~ )  = ~ k s ' ( 7 0 .  

The key result about ks '  is that it preserves truth. An interesting propery is that the size of ks ' (9)  is linear 

in the size of 9. 

Theorem 5.4. ( k s  and ks" together preserve truth) 

Let A be a LTS, let s be a state of A and let 9 be an ACTL-formula. Then: 

A,s l=  9 iff f ~ ( A ) , s l = k s ' ( 9 ) .  

As a corollary of the above theorem, we have that there exists a model checking algorithm for ACTL with 

time complexity O((ISI+t--->I) × kp0. Indeed, if we let A be a finite LTS, s be a state of A and 9 be an 

ACTL-formula, Theorem 5.4 says that in order to determine whether A ,  s I= 9 it suffices to check whether 

k s ( A ) ,  s I= k s ' ( 9  ). We can easily compute k s ( A )  in O(ISl+l--~l)-time and the number of states and 

transitions of ks (A) will be of order ISI+I->I. The formula ks ' (9)  can be computed in O(191)-time and its 

size will be of order 191. Next, we can apply the model checking algorithm for CTL of [CES86] which will 

terminate in O((ISI+I--->I) x 191)-time. 

ACTL is still a rather expressive logic in which safety and liveness properties can be fommlated. The 

formula of Example 2.11 for instance is an ACrL formula. Also the next proposition shows that, given our 

design objective to find a subset of ACTL* which can be translated into CTL, we have still managed to - I  
prese~e expressiveness: in combination with Theorem 4.6 and Theorem 5.4, the proposition says that 

ACTL is just as expressive as CTL in the setting with transformations l t s  and k s  between KS's and 

LTS's. 

Proposition 5.5. (ACTL has the same expressive power of CTL) 

Let 9 be a CTL formula. Then lts(cp) is an AC'q~ formula. 
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An interesting feature of the mapping ks '  is that it maps all formulae without the relativized next time 

operators into formulae of CTL which do not cointain the next operator. This fact allows us to conclude this 

section and the paper with a few remarks about the relationships between the equivalence induced on LTS's 

by our new logics and the (divergence sensitive version of the) branching bisimulation equivalence of 

[GW89]. 

In fact, by exploiting the results of [DV90] about the correspondence between the equivalence induced 

by CTL- X and branching bisimulation equivalence and by relying on Theorem 5.4 above, we can deduce 

that ACTL-{Xx, Xx} induces on finite LTS's the same identifications as divergence sensitive branching 

bisimulation equivalence. Due to the way the transformation function ks from ACTL* to CTL* is defined, 

we cannot use the same chain of reasoning to prove that ',dso the equivalence induced by ACTL*- {X, Xa} 

coincides with branching bisimulation. It is, however, possible to define, in the same vein of ks ' ,  a new 

mapping ks" to CTL*-X from ACTL* without next operators but with the relativized until modalities 

zUz,; and this would enable us to conclude that also the richer logics is in full agreement with divergence 

sensitive branching bisimulation equivalence. 
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