Turning SOS Rules into Equations

Luca Aceto*

Bard Bloom!

Frits Vaandrager?

April 3. 1992

Abstract

Many process algebras are defined by struc-
tural operational semantics (SOS). Indeed, most
such definitions are nicely structured and fit the
GSOS format of [7]. We give a procedure for
converting any GSOS language definition to a fi-
nite complete equational axiom system (except
for possibly one infinitary induction principle)
which precisely characterizes strong bisimulation
of processes.

1 Introduction

One of the main insights of the last decade in se-
mantics was that operational semantics for pro-
gramming languages are best presented in terms
of a structural operational semantics (SOS). In
such a semantics, the behavior of a composite
program is given in terms of the behaviors of its
components. Some examples of languages speci-
fied by SOSses include [17, 18, 5, 14].

In SOS semantics, induction on terms and on
the proofs of transitions are viable proof meth-
ods. SOSses are thus a fruitful area for proving
properties of programming languages as a whole
[21], compilation techniques [20], hardware im-
plementations [5], and so forth.

However, it is often necessary to prove proper-
ties of individual programs. While it is in princi-
ple possible to work directly with the semantics

*Hewlett-Packard Labs, Pisa Science Center, Corso
Italia 115, 56125 Pisa, Italy; luca@pisa5.italy.hp.com

'Dept. of Computer Science, Cornell University,
Ithaca, New York, USA; bard@cs.cornell.edu.
ported by NSF grant (CCR-9003441).

!Ecole des Mines CMA, Sophia-Antipolis, 06565 Val-
bonne Cedex, France; frits@cma.cma. fr

Sup-

0-8186-2735-2/92 $3.00 © 1992 IEEE 113

of the language to verify a program. this can be
quite difficult. For example, to verify a concur-
rent program directly, one might have to effec-
tively calculate its entire transition graph. It is
thus helpful to have some more abstract reason-
ing principles.

One fairly successful method is to give
the specification as a (not necessarily imple-
mentable) process in the process algebra that the
program is written in. One then verifies the pro-
gram by showing that it is equivalent to (or a
suitable approximation of) the specification. In-
deed. one of the major schools of theoretical con-
currency, that of ACP [2, 4], takes the notion of
process equivalence as primary, and defines op-
erational semantics to fit their algebraic laws.

A logic of programs is complete (relative to
a programming language) if all true formulas of
the language are provable in the logic. As prop-
erties of interest are generally highly nonrecur-
sive, we arc often obliged to have infinitary or
other non-recursive rules in our logics to achieve
completeness.

1.1 Results

We give an algorithin which yields a finite com-
plete equational axiom system (with possibly one
conditional equation) for any language specified
by a fairly general form of structural operational
semantic rules. We present the algorithm for
strong bistimulation, the finest useful notion of
process equivalence in this setting.

We work in the setting of process algebras,
languages such as CC'S, CSP, ACP, and MEIE.
A process P is an entity capable of repeatedly
performing uninterpreted atomic actions a. The
basic operational notion in such languages is

P & P', indicating that P is capable of per-
forming the action a and thereafter behaving like
P’. In general, processes are nondeterministic; P
may have several different possible behaviors af-
ter performing an a.

Most such languages have some basic opera-
tions (described in detail in Section 2) which al-
low one to construct the stopped process 0, the
nondeterministic choice between two processes
P + @, and a process which does the action «
and thereafter behaves like P, aP.

A typical operation found in many such lan-
guages (e.g., [12]) is interleaving parallel compo-
sition without communication, which is defined
by the rules (one pair of rules for every action
a):

a g a
r — T Yy — 1
YV
v ey ey =y

This is an intuitively reasonable definition of
simple parallel composition, and the operational
rule is easy to explain. It is somewhat harder to
see how to describe it equationally. Some equa-
tions are clear enough - it is commutative and
associative, and the stopped process is the iden-
tity — but the first finite equational description
did not appear until [3]. This equational charac-
terization required an additional operation, “left
merge” IL.Y For each a, left merge has a rule:

Tz = .
zlly =2 ||y (2)

The equations for Il are:
(1 +z)lly = (21lly)+(22lly) (3)
(ex)ly = alx]ly) (4)
oly = o (5)
ally = (@@ly)+la) (6)

These equations for || and L, together with ap-
propriate axioms for +, a(+), and 0, form a finite
complete equational axiom system for bisimula-
tion of processes defined in terms of these oper-
ations.

![15] showed that additional operations. such aslL. are
indeed required.

114

In this paper, we give a procedure for extract-
ing from a GSOS specification of an arbitrary
process algebra a complete axiom system for
bisimulation equivalence (equational, except for
possibly one conditional equation). Our proce-
dure introduces new operations as needed. such
as L above. Our methods apply to almost all
SOSses for process algebras that have appeared
in the literature. and our axiomatizations com-
pare reasonably well with most axioms that have
been presented. In particular. they discover the
Il characterization of parallel composition. (‘om-
pleteness results for equational axiomatizations
are tedious and have become rather standard
in many cases. Our generalization of extant
completeness results shows that in principle this
burden can be completely removed if one gives
a GSOS description of a process algebra. Of
course, this does not mean that there is nothing
to do on specific process algebras. For instance,
sometimes it may be possible to eliminate some
of the auxiliary operations, or the infinitary con-
ditional equation.

1.2 Outline

Our algorithm generalizes the ||l construction in
several ways. Some operations — characterized in
Section 4 as “smooth and distinctive™ — can be
completely axiomatized by distributive laws like
(3). action laws like (4), and inaction laws like
(5).

Many operations — || is a canonical example -
that occur in practice are smooth but not distinc-
tive, and thus cannot be completely described
by equations like (3)-(5). In Section 4.5 we show
how to express an arbitrary smooth operation as
a sum of distinctive smooth operations, as in (6).

The smooth operations were introduced as a
technical convenience. They are a restricted
form of the (maximally general) class of GSOS
operations, forbidding some formms of process
copving. In Section 5 we show how to intro-
duce auxiliary smooth operations which do the
copving in the equation rather than in the oper-
ation. Tor example, if g(x) makes three copies
of . we introduce a ternary operation g'(x.y.)

such that g(z) = ¢'(x,2,2). These methods are
summarized in Figure 1.

Finally, in Section 6, we discuss completeness.
There are two cases: a common simple case, and
the fully general one. The equations so far allow

us to reduce all processes to head-normal form,
S a; P;. In a setting in which all processes termi-
nate, this (together with the standard axiomati-
zation of 4+ and a(-)) gives a complete proof sys-
tem between closed terms. In the more general
setting (e.g., GSOS languages with some form
of recursion), head normalization does not im-
ply general normalization and indeed no finite,
purely equational axiom system can be complete;
however, the Approzimation Induction Principle
of [2] is sound in our setting, can be expressed
in GSOS terms, and makes the equations of Sec-
tions 4 and 5 complete.

2 Preliminaries

We assume familiarity with the basic notation
of process algebra and structural operational se-
mantics; see e.g. [12, 10, 13, 2, 9. 7. 6] for more
details.

We use the standard notions of variable x and
stgnature &, We write T(Y) for the set of all
terms over ¥ and use P.Q,... to range over
terms. The symbol = denotes the relation of
svntactic equality on terms. We denote by T(X)
the set of closed terms over ¥, i.e., terms that
do not contain variables. An operation symbol f
of arity 0 will be often called a constant symbol,
and the term f() will be abbreviated as f. 2

A (closed) S-substitution is a function o from
variables to (closed) terms over the signature I.
For P a term, we write Po for the result of sub-
stituting o(a) for each @ occurring in P. A I-
context C[&] is a term in which at most the vari-
ables & appear. C[P]is C[Z] with z; replaced by
P; wherever it occurs. As there are no binding
operations, this simple definition suffices.

2Most actual process algebras have a notion of guard-
edly recursive process definition.
this in the obvious way, with an unwinding equation
rec[v <= P] = Plz := rec[z < P]]. We omit this from
this study, as it adds far more complexity than insight.

Our methods handle

Besides terms we have actions, elements of
some given finite, nonempty set Act, which is
ranged over by a.b,c.d. A positive transition
formula is a triple of two terms and an action,
written P = P'. A negative transition formula
is a pair of a term and an action, written P -,
In general, the terms in the transition formula
will contain variables.

Definition 2.1 Suppose ¥ is a signature. A
GSOS rule p over ¥ is a rule of the form:

i - Ay .
i=1 {M =yl £J < mi}
UUl~:1 {lrl' big 1<k < n,}

f(@1s..2) = ClE)

where all the variables are distinct, m;,n; > 0, f
is an operation symbol from S with arity [, and
C[Z, 9] is a Y-context with variables including at
most the x;’s and y;;'s. (It need not contain all
these variables.) Note that the a;;, by, and ¢ are
actions, and not. as for instance in [19]. vari-
ables ranging over actions.

It is uscful to name components of rules. The
operation symbol f is the principal operation of
the rule. and the term f(T) is the source. C'[T.}]
is the target: ¢ is the action; the formulas above
the line are the antecedents: and the formula be-
low the line is the consequent. If, for some I,
m; > 0 then we say that p tests its i-th argu-
ment positively. Similarly if n; > 0 then we say
that p tests its i-th argument negatively.

All rules in this paper (and almost all rules
appearing in the literature on process algebra)
are examples of GSOS rules.

The intent of a GSOS rule is as follows. Sup-
pose that we are wondering whether f(P)is ca-
pable of taking a c-step. We look at each rule
with principal operation f and action ¢ in turn.
We inspect each positive antecedent x; pa Yij-
checking if P; is capable of taking an «a;;-step
for each j and if so calling the a;;-children @Q;;.
We also check the negative antecedents; if P is
incapable of taking a b;r-step for each k. If so.
then the rule fires and f(P) = ([ﬁ (j}

115

Properties of f Equations

Smooth 4 distinctive

Distributive, action, and inaction equations.

Smooth + not distinctive

Introduce distinctive smooth operations f;, at most one per rule for
f, and the equation f(¥) =3, fi(&).

Not smooth

f does more copying than is possible for a smooth operation. Intro-
duce one smooth operation f’ with possibly more arguments than f,
such that f(¥)is equal to f’ applied to a vector of variables consisting
of the z;’s suitably repeated, e.g. f(x.y) = f'(x.2,2,y,y).

Figure 1: KNinds of equations

Definition 2.2 A GSOS system is a pair G =
(6. Rg) where S is a finite signature and Re;
is a finite set of GSOS rules over Y.

The GSOS discipline is advocated in [6. 7].
Briefly, GSOS rules seem to be a maximal class
of rules such that:

1. Every GSOS language has some basic san-
ity properties; e.g., the transition relation
defined informally above can be defined for-
mally; it always exists and is unique (nei-
ther of which should be taken for granted.
given negative antecedents), and indeed is
computable and finitely branching; and it
respects many of the stronger notions of pro-
cess equivalence, in particular bisimulation
and ready simulation.

2. Tt seems impossible to extend the format of
the rules in any systematic way which pre-
Unlike
1, this is informal; [6] gives a series of ex-
amples showing that the most natural ex-
tensions violate the basic sanity properties
of 1. There are other consistent rule for-
mats, such as the tyft/tyat format of [9] and
the ntyft/ntyet format of [8]. These two
formats respect strong bisimulation, but in-
duce transition systems that are in general
neither computable nor finitely branching.

serves the basic sanity properties.

Our study takes (strong) bisimulation as the
primitive notion. Briefly, two processes are
strongly bisimilar iff whenever one can perform
an action, the other can as well and the result-
ing processes are still strongly bisimilar; for a full
definition see [13]. We use the notation =, or

siimply =, for strong bisimulation of terms in the
GSOS system G.

Iinally. we say that the GSOS system G/ dis-
Jointly extends (. notation G C G”. if the signa-
ture and rules of G/ include those of &, and ¢’
introduces no new rules for operations of (+. In
this case, =¢ and —¢ coincide on terms of (7.

3 The Problem

For a GSOS system G, let Bisim(() denote
the quotient algebra of closed S¢-terms modulo
bisimulation. That is. for P,Q € T(Zg).

Bism(G)=P=0Q &

(V closed Sg-substitutions o : Po = Qo).

The main problem addressed in this paper is
to find a complete axiomatization of bisimulation
on closed terms — that is, equality in Bisim(() -
for an arbitrary GSOS svstem specification (.
That is. we want to find a finite (conditional)
equational theory T such that for all closed terms
P.Q € T(Zg).

THP=(<& BisimG)EP=@Q.

Moller [15] has shown that bisimulation congru-
ence over a subset of the usual CCS algebra
with the interleaving operation || cannot be com-
pletely characterized by any finite set of equa-
tional axioms over that language. Thus, our
program requires the addition of auxiliary op-
erations to G.

We first define FINTREE, a simple fragment
of C'CS suitable for expressing finite trees. (Most

16

process algebras already contain the FINTREL
operations, either directly or as derived opera-
tions.) FINTREE has a constant symbol 0 de-
noting the null process; unary symbols «a(-), one
for each action in Act, denoting action prefix-
ing; and a binary symbol + for nondeterministic
choice. The null process is incapable of taking
any action, and consequently has no rules. For
each action « there is a rule az = 2. The op-
erational semantics of P + @Q is defined by the
rules

a 7
y—y
Tty =y

23

(7)

rty—a

The following completeness result is well-
known [11, 13]:

Lemma 3.1 Let TpintReg e the theory con-
sisting of the equations

x4y = y+ua (8)
(x+y)+z = v+ (y+32) (9)
t4+zr = a (10}
r+0 = a (11)

Then TrINTREE @8 complete for equality in

Bisim(FINTREE).

As a typical example of the way in which the
above completeness result is used, consider the
GSOS system Gy, which extends FINTREE with
a family of operations [B, where B is a finite set
of actions, with rules

a
T =y

— B
TIB 2y ad

The process P | B behaves like P, except that it
cannot do any actions from B in its first move.
We use [to axiomatize negative premises.

Lemma 3.2 Let Ty be the theory that extends
TrINTREE with the equations

(x4+y)fB = 2/B+y[B (12)

ax B = ax fad B (13)

ax[B = 0 ifee B (14)

0/B = o0 (15)

Then Ty is complete for equality in Bisim(Gl).

117

Proof: (Sketch) Using (12)-(15), it is possible
to eliminate all occurrences of f’s from terms. By
Lemma 3.1, the axioms of FINTREE now suffice
to prove bisimulation of f-free terms. %

We like to generalize the idea of Lemma 3.2
to obtain complete axiomatizations of bisimu-
lation equivalence for arbitrary GSOS systems.
But first we have to discuss a subtlety. For the
rest of this paper, we are not so much inter-
ested in the fact that the axioms of TFINTREE
are valid in the ‘small’ algebra Bisim(FINTREE).
We would rather like to know that the axioms
are valid in any disjoint extension G of FIN-
TREE, because this will then allow us to use
the TFINTREE axioms to reason in the ‘large’ al-
gebra Bisim(('). In general it is not the case that
validity of equations is preserved by taking dis-
joint extensions. For instance. consider the triv-
ial GSOS system NIL consisting of the single con-
stant symbol 0 and with no rules. The law @ = y
is valid in Bisim(NIL), but clearly does not hold
in Bisim{FINTREE). even though FINTREE is
a disjoint extension of NIL.

Fortunately, the TrinTREE laws (and also all
the other laws that we will discuss in this paper)
are preserved by taking disjoint extensions. To
formalize this observation we introduce, for (¢ a
GSOS system, the class BISIM(G) of all algebras
Bisim(G’), for G’ a disjoint extension of G. Thus
we have, for P,Q € T(Zg),

BISIMG)EP=Q &
(VG':GC G = Bisim(G') = P =Q).

Almost without any additional difficulty we can
prove the following generalizations of the sound-

ness results for FINTREE and G'I:

Lemma 3.3 BISIM(FINTREE) |=
and BlSlM(G’I) =T

TFINTREE

4 Smooth Operations

In this section, we show how to axiomatize a sub-
stantial subclass of GSOS operations. Distribu-
tive laws, like (12), are essential for our complete-
ness result. However, in general we cannot hope

to get distributivity laws for arbitrary GSOS op-
erations. The situation is particularly hopeless
in the case of what we will call non-smooth op-
erations. In this section we give axioms for the
simpler smooth operations, using the still sim-
pler distinctive operations as a base case. Tull
GSOS operations are deferred to Section 5.

Our goal in this section is a head normal form
theorem for smooth systems. The distributivity,
action, and inaction laws for distinctive smooth
operations developed in Sections 4.1 - 4.3 suffice
for obtaining head normal forms for such opera-
tions. In Section 4.5 we extend this to all smooth
systems.

Definition 4.1 4 GSOS rule is smooth if it
takes the form

; biy . . .
{;1:1- 2 yilt €]}U {.r,- 2 e N,1<j< n,}

fla1y. . x) = C[7. 7]
(16)
where I, partition {L...,l}. and no r; wilh

i € I appears in C[T, 7). An operation from a
GSOS system G is smooth if all the rules for this
operalion are smooth. G is smooth if it contains
smooth rules only.

The format of smooth rules generalizes the for-
mat of De Simone [19, 9] since it allows restricted
forms of negative hypotheses and copying. We
will not motivate smoothness in this paper; it
is a technical condition chosen to get proofs to
work. (1), (2), and (7) are smooth rules. An
excellent example of a non-smooth operation is
the priority operation 6 of Baeten, Bergstra and
Klop [1]. Fix a partial-ordering relation > on
Act. For each « the operation 8 has a rule

a /

x—2a', L (for all b > a)

f(z) 2 8(a")

(17)

For nontrivial >, # is non-smooth since it tests
its argument with both positive and negative an-
tecedents.

4.1 Distributivity Laws

In general, smooth operations do not distribute
over + in all their arguments; for example, ||

defined by (1) is not distributive:
(a+b)|le+ (a+b)||d = (at+b) || (c+d)

as the left side must choose between ¢ and d
on its first action, while the right side may de-
lay that decision. Other smooth operations dis-
tribute over + in some arguments. and depend
parametrically on the remaining arguments.

Lemma 4.2 Let f be an [-ary smooth operation
of a GSOS system (¢ that disjointly extends FIN-
TREE, and suppose i is an argument of f for
which each rule for f has a positive antecedent.
Then f distributes over + in ils i-th argument,
p.e..

BISIM(G)

fleg oo i+ g 1)
Slerocooxico o oa)+ flege oy o)
The laws (3) and (12) are instances of

Lemma .2,

4.2 Action Laws

We now derive action laws, which tell when a
process can take an action. The a-rule for L fires
if @ can take an a-step. Phrased as an equation,
this reads:

(ax)ly = alz] y) (18)
Next consider an operation whose definition in-
volves negative hypotheses. For illustration. we
choose the (useless) operation %, defined by the
single rule:

a b
Y=,y

kY o+ Y

For any process @ such that Q - and Q LN
we know that PxQ = (P + Q). We code

this negative information into equations using
the | operation. Note that for any process 5.
(S [{a.b}) = and (5[{a.b}) . That is.
(y [{a,b}) ranges over all processes which can-
not take either a or b steps on their first move.
Hence the following law holds:

ex(y[f{a.0}) =cloe+ (y [{e,b})) (19)

1Y

The trick used to derive equations (18) and (19)
caunot be used for smooth operations in gen-
cral.

But it does work if we assume the addi-
tional technical condition of distinctiveness.

Definition 4.3 A smooth operation f from «
(:SOS system G is distinctive tf, for each argu-
ment i, either all rules for f test i positively or
none of them does, and moreover for each pair
of different rules for f there is an argument for
which both rules have a positive antecedent, but
with a different action.

For example, 0, a(-), /B, and L are distinc-
tive whereas + and || are not. The relabelling
and restriction operations from CCS are both
distinctive.

Lemma 4.4 Suppose f is a distinctive smooth
operation of a disjoint extension G of Gy, with a
rule

Q . bi . - .
{;1:,— = yli € I} U {1, 2 lie K,1<j5< n,}
A& = [z, 7

Let B; = {b;;|1 < j < n;} and

a;y; 1e]
P = x| B i€ KAN@ C B; G Act
v ; teE NANB; =0
0 i€ KA B; =Act
Then

BISIM(G) E f(P) =c.C[P,7] (20)

The laws (4), (13), and (19) are instances of
Lemma 4.4. The B; = Act and B; = @ cases are
formally unnecessary. However, they make the
resulting rules much simpler; e.g., we have terms
f(x,y,0) instead of f(x)] @,y [@.z [Act). In
our experience they are the most common cases
appearing in practice.

4.3 Inaction Laws

We also need to know when f(}]3) = 0. The
term f(P) is bisimilar to O iff it has no outgo-
ing transitions; that is, iff for each rule p there

119

is a reason why it cannot firc. The reason could
be an argument i such that either p requires P
to do some action that it can’t do, or p requires
P; not to do an action that it does. The follow-
ing lemma covers enough of these cases for our
purposes.

Lemma 4.5 Supposc f is an l-ary smooth oper-
ation of a GSOS system G that disjointly extends
FINTREE, and suppose that, for 1 <1 <. term
P; is of the form 0, x;, az; or ax; + y;. Suppose
further that for each rule for f of the form (16)
there is an index i such that either (1)i € I and
P; =0 or P, = ax; for some a # a;, or (2)1 € K
and P; = bjje; +y; for some 1 < j < n;. Then
BISIM(G) |= f(P)=0 (21)
The laws (5), (14) and (15) are instances of
Lemma 4.5.

4.4 Head Normal Forms

The purpose of distributivity, action and inac-
tion laws is to rewrite process expressions into
head normal forms. Head normalization is the
heart of the completeness proof in Section 6.

Definition 4.6 A term P over a signature ¥ 2
YFINTREE (s in head normal form if it is of the
form Y a; P;. A theory T over ¥ is head normal-
izing for P if there exists a S-term @ in head
normal form such that T+ P = Q.

The following theorem generalizes the elimi-
nation result in the proof of Lemma 3.2, and is
proved in much the same way.

Theorem 4.7 (Informal) The distributivity,
action, and inaction laws suffice to reduce any
closed term consisting of distinctive smooth op-
erations to head normal form.

4.5 General Smooth Operations

Many operations occurring in practice are
smooth but not distinctive. We show how to
axiomatize smooth operations via sums of dis-
tinctive smooth operations. Consider the true

“

;7. defined by the rules
(one pair of rules for each action «):

sequencing operation

a
x— 2 y

v 4 (forall b), y-y

o !
By —y

ey Sl
T3y — 23y

This operation is smooth but not distinctive.

Now consider the operations “;;™ and “;," that

one obtains by partitioning the rules for *;":
e b ! [}
T z = (forallb), y—y

- a ot
T2y —y

vy O
vy — a2y

If P;Q % S, then this transition must be en-
abled by one of the sequencing rules for «. Hence,
either P;; Q@ 2 Sor P;, @ = 5. That is, the fol-
lowing law is sound:

vy = (2ny)+ (v52y)
This trick generalizes to all smooth operations.

Lemma 4.8 Suppose GG is a GSOS systcm with
FINTREE C G, and suppose [is an l-ary
smooth operation of G. Then there crists a dis-
Joint extension G' of G with l-ary distinctive
smooth operations fy,..., f, such that. for all ¥
of length 1,

BISIM(G') | f(Z) = L&)+ -+ [ulT) (22)

Proof: (Sketch) Let Ry,..., R, be a partition-
ing of the set R of rules for f such that, for all 7, f
is distinctive in the GSOS system obtained from
G' by removing all the rules in R — R;. Such a
partition always exists because if one introduces
one set R; for each rule for f, the restriction of f
to the single rule in R; trivially yields a distinc-
tive operation. Define ¢ to be the signature
obtained by extending S¢ with fresh l-ary oper-
ation symbols fy,..., f,. Next define R, to be
the set of rules obtained by extending R¢. for
each ¢, with rules derived from the rules of R; by
repla,cAing the operation symbol in the source by

fio F
This lemma allows a clever (or exhaustive-

search) algorithm to produce only a small num-
ber of auxiliary operations, by choosing a small

partition. For example, one good partition for
: produces 31 and :. The singleton partition.
with each rule in a separate set. alwavs works:
for ;. this would produce operations ij, and :s,
for each «.

Lemma 4.9 Suppose GG is a GSOS system with
Gy C G Lt © C S — Ty be a collection of
smooth operations of . Then there erist

1. adisjoint extension G' of G with a finilc col-
lection T of distinctive smooth operations.
and

2. a finite equational theory T that extends 1.

such that BISIM(G") =T and T is head normal-
izing for all terms in T(T' UT U T).

FINTREE rather than GI suffices if G' has no

negative rules.

5 General GSOS operations

The results of the previous section give us head
normalization for all smooth operations. In this
section we show how to axiomatize non-smooth
operations. An operation can fail to he smooth
by using an argument in too many different ways:
having more than one positive rule concerning
an argument; having both positive and negative
rules concerning the same argument; or having
an antecedent r; — yi; and having z; appear in
the target. The following operation illustrates

all of these problems:
a b c
T— Y. T — Y2, T -+

gla) a4 Y1

In this case. we introduce an auxiliary smooth
operation with one argument for each distinct

kind of use of a:
. l . a . C
T — Y1, Ty — Ya. o -+~

g'(xo.ri.02) = 2o+ 1

The main use of ¢ is as a smoothed version of g,
by setting xg = vy = @y = 2. It is clear that. for
all z, we have:

9(z) = g'(2.2.2)

This trick generalizes to all GSOS operations.

120

Lemma 5.1 Suppose G is a GSOS system con-
taining « non-smooth operation f with arity L.
Then there exists a disjoint extension G' of G
with a smooth operation f' with arity ' (possi-
bly different from 1), and there exist vectors T
of | distinct variables, and © of I! variables in 7
(possibly repeated), such that

BISIM(G) = f(2) = f()

Theorem 5.2 Let G be a GSOS system. Then
there exist a disjoint extension G of G. and a fi-
nite cquational theory T', such that BISIM(G') E
T and T is head normalizing for all terms in
T(Eq).

(23)

5.1 Example: the Priority Operation

As an example of application of the strategy
presented in Sections 4-5, we will now present
an axiomatization of the priority operation ¢ of
Baeten, Bergstra and Klop defined in (17). We
do not have a distributivity law for 8. Tor in-
stance, if b > a, then clearly b = Oa+b)#
0(a) + 0(b) = « + b. Following Lemma 5.1, we
therefore define a smoothed version of 6 in the
form of a fresh binary operation A with rules
(one for each a € Act):

e =,y a (for all b > a)
YN

(24)

Note that A is a distinctive smooth operation.
The relationships between § and A are expressed
by the following instance of law (23):

f(z) VAN

The distinctive smooth operation A can be ax-
iomatized using the strategy of Theorem 4.7. Let
1, = {b € Act|b > a}. We then have:

(z+y)Ddz = zbz+ yAz
arly = a.b(z)
if @ is maximal
axNy [V) = ab(2)
if @ is not maximal
0Ax = O
arDNby+z) = 0 ifb>a

121

The axiomatization of the priority operation ob-
tained by applying our gemeral strategy com-
pares rather well with the one given in [1]. The
axiomatization given there also relies on the in-
troduction of an auxiliary operation, the unless
operation <. lgnoring termination issues, this
operation may be specified by the following rules
(one for each a):
Lo,

@ Y 2 (for all b > a)

a !

rdy—x

which are quite similar to {24).

6 Completeness

For any GSOS system G, the algorithm pre-
sented in Sections 4-5 allows us to generate a
disjoint GSOS extension @' with a finite head-
normalizing equational theory. In the case of
|| and L in Section 1, this equational theory is
strong enough to eliminate these operations from
all terms, so that we can use Lemma 3.1 to ob-
tain completeness.

However. this will not work in general, as head
normalization does not imply general normaliza-
tion. Consider. for example. a constant w with
rule w <& w. The instance of action law (20) for
this operation is

w a.w

and. obviously, the process of elimination of the
constant symbol w is not going to terminate.

In Section 6.1 we consider the case of termi-
nating processes: these terms can be reduced to
FINTREE terms and the completeness of FIN-
TREE applies. In Section 6.2 we consider the
general case: the reduction to FINTREE does
not apply, but a suitable infinitary rule gives
completeness.

6.1 Completeness for Well-Founded
GSOS Systems

Definition 6.1 Let G be @ GSOS system. A
term P € T(Sq) is well-founded iff there cx-
ists no infinite sequence Py, do, Py ay, Py, ... 0f

terms in T(Yg) and actions in Act with P = Py
and P; %4 Piyy foralli > 0. G is well-founded
iff all terms in T(Sg) are well-founded.

It is immediate to see that any GSOS sys-
tem which includes the constant w given above
is not well-founded. On the other hand, the
class of well-founded GSOS systems contains
the recursion-free finite-alphabet sublanguages
of most of the standard process algebras. and
is thus of some interest.

For well-founded GSOS systems (7. it is POs-
sible to iterate the reduction of terms to head
normal forms a finite number of times to elim-
inate all non-FINTREE operations. As in the
proof of Lemma 3.2, this reduces completeness
to head normalization.

Theorem 6.2 Suppose that G is a (:SOS SYs-
tem. Let G' and T denote the disjoint exten-
sion of G, and the finite head normalizing equa-
tional theory constructed by the methods of Sec-
tions {-5, respectively. Suppose P and Q are
well-founded terms in T(S¢r). Then

Bisim(G) e P=Q & T+PpP=0.

The definition of well-foundedness for a GSOS
system G given in Definition 6.1 relies upon
properties of the transition relation —g. In the
full paper, we will describe sufficient syntactic
conditions under which a GSOS svstem will he
well-founded.

6.2 Completeness for General GSOS
Systems

As bisimulation of finitely branching processes
is easily seen to be IT;-hard and provable equal-
ity from a finite set of equations is Yy-complete,
the extension of the completeness result given in
Theorem 6.2 to general GSOS systems requires
some reasoning principles beyond purely equa-
tional logic. However, it is possible to extend
our results to the whole class of GSOS systems
in a rather standard way. Bisimulation equiva-
lence over finitely branching labelled transition
systems supports a powerful induction principle.

122

known as the Approzimation Induction Principle
(AIP), see [2]. All GSOS processes are finitely
branching [6]. so the AIP applies.

We introduce a family of operations m,(-),n €
N. These operations are known as projection op-
erations in the literature on ACP [2]. Intuitively,
T, (P) allows P to perform n moves freely, and
then stops it. It is straightforward to define r,,(-)
with distinctive smooth rules. The Approxima-
tion Induction Principle is the following infini-
tary conditional equation;

Ta(2) =m,(y) (for all n)

€=y

Intuitively, AIP states a “continuity™ property
of bisimulation. namely that if two processes
are equivalent at any finite depth then they are
equivalent.

The projection operations themselves are
somewhat heavy-handed, as there are infinitely
many of them, and GSOS svstems are defined to
be finite. Fortunately, it is possible to mimic the
projection operations by means of a single bhinary
operation, denoted by -/-. Intuitively, P/H runs
the process P until the “hourglass™ process H
runs out and stops taking steps. That is. for all
actions a.b € Act. we have the following rule for
e
y >y
wfy =2y

(In particular. when I/ ~. then P/H -.) For
each n € N, 7,(P) = P/b", where

b.0

n-times

In this formulation, we may rephrase the Ap-
proximation Induction Principle as follows:

a/0" = y/b" (for all n)

.'l?:y

Note that -/-is smooth and distinctive. Applying
the strategy presented in Section 4, we automat-
ically derive the following equations for it:

(@+y)/z = a/s+y/: (2

[N
(w7

2f(y+z) = 2fyt+a/:z (26)
az/by = alz/y) (27)
0/y = 0 (28)

z/0 = 0 (29)

For any GSOS system G, G; will be used to de-
note the disjoint extension of G with the opera-
tion -/-.

Proposition 6.3 BISIM(FINTREE/> = ATP.

Theorem 5.2 shows that the equational rules pre-
sonted so far suffice to give the one-step he-
haviour of all closed terms, and hence their n-
step behaviour for all n € N. TFor any closed
term P and integer n, equations (25)-(29) for
the operation -/- can then be used to obtain
FINTREE-terms which exhibit the same n-step
behaviour as P.

Theorem 6.4 Suppose GG is a GSOS system.

Let G' and T denote the disjoint extension of

(¢ and the finite equational theory for it given
in Theorem 5.2, respectively. Then T and AIP
together are complete for equality in Bisim(G').

7 Further Research

Thus far the discussion of this paper took place
in a setting with strong bisimulation equiva-
lence. However, most of our results easily ex-
tend to other process equivalences as well. at
least in a setting without internal actions. We
have chosen bisimulation equivalence because it
is widely viewed to be the finest acceptable pro-
cess equivalence.®> Thus other process equiva-
lences will be coarser, and the corresponding pro-
cess algebras can be obtained as homomorphic
images of algebras based on strong bisimulation.
Since validity of equations is preserved by tak-
ing homomorphic images, this implies that the
soundness part of our method extends trivially;
completeness, of course, will require extra equa-

tions.

3In fact, at the price of some minor complications it is
possible to redo the work of this paper using the even finer
equivalence notion of synchronization tree isomorphism.

However, conditional equations are not in
general preserved by homomorphisms, and the
soundness (much less the completeness) of the
AIP is nontrivial. Furthermore, the auxiliary op-
erations we introduce may not respect all equiva-
lences weaker than bisimulation: e.g., L does not
respect weak failure equivalence. Thus extending

the results of this paper to weak process equiva-
lences is a delicate matter.

Of course. several variations are possible on
our method to obtain complete axiom systems
for GSOS languages. In the full paper we will
study one such variation, which is interesting be-
cause it does not use the [operations, and also
because of its nice term rewriting properties.

It would also be desirable to axiomatize bisim-
ilarity between open terms, proving for example
equations such as x| (y]|z) = (2]jy)||z. Methods
for proving such equations will appear in later
work.

Other forms of SOS specification remain to be
investigated. It is not clear how to handle SOS
methods which, like the tyxt/tyft rules of [9] and
infinitary GSOS rules, can produce infinitely-
branching processes.

References

[1] J.C.M. Baeten, J.A. Bergstra. and J.W.
Klop.
an interrupt mechanism in process algebra.
Fundamenta: Informaticae, 1X(2):127-168,
1986.

Syntax and defining equations for

J.C.M. Baeten and W.P. Weijland. Process
Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge Univer-
sity Press, 1990.

(3] J.A. Bergstra and J.W. Klop. Fixed point
semantics in process algebras. Report IW
206, Mathematisch Centrum, Amsterdam,
1982.

J.A. Bergstra and J.W. Klop. Process alge-
bra for synchronous communication. Infor-
mation and Computation, 60(1/3):109-137,
1984.

123

5]

(10]

(1]

G. Berry. A hardware implementation of
Pure Esterel. Rapport de Recherche 06/91.
Ecole des Mines, CMA, Sophia-Antipolis.
France, 1991.

B. Bloom. Ready Simulation. Bisimulation.
and the Semantics of CCS-like Languages.
PhD thesis, Department of Electrical Engi-
neering and Computer Science, Massachu-
setts Institute of Technology, August 1989.

B. Bloom, S. Istrail, and A.R. Mever. Bisim-
ulation can’t be traced: preliminary report.
In Conference Record of the 15" ACAT Sym-
posium on Principles of Programming Lan-
guages, San Diego, California, pages 229~
239, 1988. Full version available as Tech-
nical Report 90-1150, Department of C'om-
puter Science, Cornell University, Ithaca,
New York, August 1990.

R.N. Bol and J.F. Groote. The mean-
ing of negative premises in transition
system specifications (extended abstract).
In J. Leach Albert, B. Monien, and
M. Rodriguez, editors, Proceedings 18"
ICALP, Madrid, LNCS 510, pages 481194,
Springer-Verlag, 1991. Full version avail-
able as Report CS-R9054, C'WI. Amster-
dam, 1990.

J.F. Groote and F.W. Vaandrager. Struc-
tured operational semantics and bisimula-
tion as a congruence (extended abstract).
In G. Ausiello, M. Dezani-Ciancaglini. and
S. Ronchi Della Rocca, editors, Procecdings
16" ICALP, Stresa, LNCS 372, pages 423~
438. Springer-Verlag, 1989. Full version to
appear in Information and Computation.

M. Hennessy. Algebraic Theory of Pro-
cesses. MIT Press, Cambridge, Mas-
sachusetts, 1988.

M. Hennessy and R. Milner. Algebraic laws
for nondeterminism and concurrency. Jour-
nal of the ACM, 32(1):137-161, 1985.

124

(12]

[13]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

C.A.R. Hoare. Communicating Sequential
Processes. Prentice-Hall International. En-
glewood Cliffs, 1985.

R. Milner. Conmnunication and Concur-
rency. Prentice-Hall International. Engle-
wood Cliffs, 1989,

R. Milner. Functions as processes. In Pa-
terson [16]. pages 167-180.

I'. Moller. The importance of the left merge
operator in process algebras. In Paterson
[16]. pages T52-76-4.

M. Paterson. editor. Procecdings 171

ICALP. Warwick. LNCS 443. Springer-
Verlag. July 1990.

G.D. Plotkin. A structural approach to op-
erational semantics. Report DAIMI FN-
19, Computer Science Department. Aarhus
University, 1981.

G.D. Plotkin. An operational semantics
for CSP. In D. Bjorner. editor, Procecd-
ings IFIP TC2 Working Conference on For-
mal Description of Programming Concepts
— I1. Garmisch. pages 199-225. Amsterdam.

1983. North-Holland.

R. de Simone.
devices in MEUE-SCCS. Theorctical Com-
puter Science. 37:2-15-267. 1985.

Migher-level synchronising

5. Weber, B. Bloom, and G. Brown. Com-
piling Joy to silicon: A verified silicon com-
pilation scheme. To appear in the proceed-
ings of the Brown/MIT Conference on VLSI
and Parallel Systems, November 1991.

ALK, Wright and M. Felleisen. A syntac-
tic approach to type soundness. Technical
Report TR91-160. Rice University, 1991.

