On the Relationship Between Process Algebra
and Input/Output Automata*

Frits W. Vaandrager
MIT Laboratory for Computer Science
Cambridge, MA 02139, USA
frits@theory.lcs.mit.edu

Abstract

The relation between process algebra and I/O au-
tomata models is investigated in a general setting
of structured operational semantics (SOS). For a se-
ries of (approximations of) key properties of I/O au-
tomata, syntactic constraints on inference rules are
proposed which guarantee these properties. A first
result is that, in a setting without assumptions about
actions, the well-known trace and failure preorders
are substitutive for any set of rules in a format due
to De Simone. Next additional constraints are im-
posed which capture the notion of internal actions
and guarantee substitutivity of the testing preorders
of De Nicola and Hennessy, and also of a preorder re-
lated to the failure semantics with fair abstraction of
unstable divergence of Bergstra, Klop and Olderog.
Subsequent constraints guarantee that input actions
are always enabled and oufput actions cannot be
blocked, two key features of input/output automata.
The main result is that for any I/0 calculus, i.e. a
De Simone calculus which combines the constraints
for internal, input and output actions, the quiescent
trace preorder and the fair trace preorder are substi-
tutive. A simple I/O calculus is presented which is
sufficiently expressive to specify all finitely branching
I/O automata over a given, finite action signature.

*This work was supported by ONR contract N00014-85-K-
0168,

CH3025-4/91/0000/0387$01.00 © 1991 IEEE

387

1 Introduction

This paper studies the relationship between the alge-
braic theory of processes as described in [2, 14, 15, 21]
and the input/output automata models of [16, 17, 19,
20, 26]. Apparently, these two formalisms for concur-
rent/reactive systems, process algebra and I/0 mod-
els for short, have been developed on different plan-
ets. The notion of fairness plays an important role in
I/0O models but despite several attempts [9, 22] there
has been no satisfactory treatment in process alge-
bra thus far. Process algebra on the one hand, offers
an abundance of operators, a rich algebraic structure
and a well-developed fixed point theory. In the I/O
models on the other hand, there are at most three
operators (composition, hiding and action renaming)
and verification takes place primarily on the level of
the model using assertional proof techniques.

The most fundamental difference between I/O
models and process algebra, and the main topic of this
paper, is the distinction between input and output ac-
tions, which is crucial in I/O models but absent (on
the semantical level) in process algebra. In 1I/O mod-
els internal and output actions are under the control
of an automaton itself and input actions are under the
control of the environment. Because the environment
decides to provide the automaton with input, the au-
tomaton should be willing to receive every possible
input in every possible state. Of course the automa-
ton is free to decide what to do with these inputs and
may discard them immediately. Reversely, since the
automaton is under control of its internal and output
actions, the environment is not allowed to prevent
these actions from occurring. So I/O models rule out
actions which are under control of both a process and
its environment. Some proponents of I/O models ar-
gue that this is not a restriction at all because, as
they say, such actions do not exist “in reality”. But
their argument is not convincing. Typical examples
of actions which are controlled both by a process and

its environment are the ¢?z and cle actions in lan-
guages like CSP [15]. If one takes a closer look at how
this kind of actions are implemented on physical ma-
chines, then one discovers that indeed this is done by
means of some handshaking protocol which involves
actions that are either under control of an agent or
its environment. However, this does not invalidate
the observation that on a higher level of abstraction
actions occur which are controlled by both a process
and its environment, and that many people find it
useful to reason about concurrent systems in terms of
these actions. In process algebras like CSP [15], CCS
[21], ACP [2] and MELIE {25] the concept of actions
in which more than one agent participates is carried
to its extreme: besides internal actions, which do not
communicate, all actions are under control of both
the agent and its environment. Apparently there is
room for a formalism that combines the different no-
tions of actions present in 1/O models and CSP like
models. In this paper I will not attempt to develop
such a formalism, but modestly try to understand the
notions of input and output actions first.

A major advantage of having just input and out-
put actions seems to be that there is a compositional
linear (trace) semantics which is compatible with the
operational model, and that, unlike in algebraic pro-
cess theory, there is no need for more sophisticated
notions of equivalence like bisimulation or failure con-
gruence. Another major advantage associated to the
1/O postulate is that it becomes much easier to state
and prove liveness properties. In calculi like CSP
it is somehow problematic to say that “a process p
will eventually do an action a” since the environment
may prevent the occurrence of a or some other ac-
tion which p needs to do before the a. Although in
theory it is still possible to state liveness properties,
the formulations of these properties tend to become
complex and incomprehensible in practice. Because
in I/O models processes are in charge of their own ac-
tions, liveness properties (and fairness properties in
particular) are much easier to handle.

Disadvantages of the I/O discipline are that cer-
tain transition systems (the ones that are not input
enabled) are not considered anymore, and that a large
number of operators (the ones that either do not pre-
serve input enabling or block output actions) can no
longer be used. When confronted with the postu-
late of input enabling, adherents of algebraic process
theory protest “Why am I no longer allowed to con-
sider a 1-datum buffer which simply does not accept
a new datum when it is full?”” and “What is wrong
with operations like action prefixing, which play such
a crucial role in axiomatizing process equivalences?”
and “Should I really be happy with an approach that

388

offers no possibility to build automata from scratch
and has basically no algebra?” And indeed, because
prefixing operators play such an essential role in al-
gebraic process theory, the question arises whether in
their absence it is still possible to have a nice alge-
bra of I/O automata. This paper provides a positive
answer to this question.

Before presenting a particular algebra of I/O au-
tomata, a whole class of operations on I/O automata
will be identified in a setting of Structured Opera-
tional Semantics (SOS) in the style of Plotkin [24].
The traditional approach to SOS is to start from a
particular calculus (i.e. a language together with a
set of inference rules) and next derive the properties
of the operational semantics induced by this calculus
[14, 21]. Recent work [6, 7, 13, 27] however shows
that very strong results can be obtained if one takes
the opposite approach which starts from a desired
property, and then looks for the weakest syntactic
constraints on calculi which guarantee this property.
A specific calculus that does not satisfy the syntac-
tic constraints still may have the property; however,
counterexamples show that it is not obvious how to
relax the syntactic constraints any further. In this
paper, I look for the weakest syntactic constraints on
calculi which guarantee that the resulting automaton
is input enabled, and that moreover the semantics in-
duced by taking fair (infinite) traces is compositional.
Once these constraints have been found, it is not so
difficult to come up with an interesting algebra for
I/O automata.

Because the property of having input enabling and
compositionality for fair traces is rather complex, I
first study syntactic constraints induced by a num-
ber of simpler properties. This approach also has
the advantage that it leads to several new and very
general results about process algebras. After a pre-
liminary section, Section 3 deals with substitutivity
of the preorder induced by taking finite traces in a
setting without special types of actions. The result-
ing format of rules turns out to be essentially a for-
mat introduced by De Simone in [25]. Section 3 also
establishes that for any calculus in this format, the
well-known failure preorder is a substitutive. These
results generalize and somehow explain similar results
that have been obtained previously for a large num-
ber of individual calculi in De Simone’s format (see
for instance [10, 4]).

Section 4 studies certain trace and failure preorders
in the presence of internal actions. The main results
of this section are that the testing preorders of [11,
14] and also a preorder that is related to the failure
semantics with fair abstraction of unstable divergence
of [3] are substitutive for any De Simone calculus that

satisfies certain additional constraints. These simple
constraints explain very nicely why certain preorders
are compositional for the operators of CSP, but not
for all of the operators of CCS and ACP.

Section 5 starts with two simple constraints on De
Simone calculi which together guarantee input en-
abling. Next the notion of a (finite) quiescent trace
is introduced and it is shown that the corresponding
preorder is substitutive for any I/O calculus, i.e. a
De Simone calculus which satisfies the constraints for
internal actions and input enabling, together with a
constraint which essentially says that output actions
cannot be blocked. It turns out that also the preorder
induced by taking (infinite) fair traces is substitutive
for 1/O calculi. Finally, Section 5 presents a simple
I/0O calculus which is sufficiently expressive to spec-
ify all finitely branching I/O automata over a given,
finite action signature.

Sections 6 contains some concluding remarks.

Acknowledgements

Many thanks to Martin Abadi, Nancy Lynch, Albert
Meyer, Boris Trakhtenbrot and Mark Tuttle for in-
spiring discussions and useful comments.

2 Preliminaries

Definition 2.1 (Notation for sequences). Let K
be any set. The sets of finite and infinite sequences
of elements of K are denoted by K* resp. K¥. K*
denotes the union of K* and K*. Concatenation of a
finite sequence with a finite or infinite sequence is de-
noted by juxtaposition; A denotes the empty sequence
and the sequence containing one element a € K is de-
noted a. If & is a sequence over K and L C K, then
o[L denotes the sequence obtained by projecting o
to L. If S is a set of sequences, S[L is defined as
{o[L |0 €S}

Definition 2.2 (Signatures and terms). To start
with, there is a countably infinite set V of variables
with typical elements z,y,.... A signature element is
a pair (f, n) consisting of a function symbol f ¢ V and
an arityn € N. In a signature element (¢, 0), the c is
often referred to as a constant symbol. A signature is
a set of signature elements. We write T(X) for the set
of (open) terms over signature X with variables from
V. T(X) is the set of closed terms over £, i.e. terms in
T(X) that do not contain variables. With var(t) the
set of variables occurring in a term ¢ is denoted. A
substitution { is a mapping from V to T(EX). Term ¢[(]
is the result of the simultaneous substitution, for all z

389

in t, of z by ((z). The expression t[t1/x1,...,tn/Zn)
denotes the term obtained from ¢ by simultaneous
substitution of ¢, for z,, t; for za, etc.

Definition 2.3 (Contexts). Let X be a signature.
A context of n holes C over X is simply a term in
T(X) in which n variables occur, each variable only
once. Ifty,..., 1, are terms over &, then Clty, ..., tn]
denotes the term obtained by substituting t; for the
first variable occurring in C, t; for the second vari-
able, etc. Thus, if z;,...,2, are all different vari-
ables, C[z1,..., 2], denotes a context of n holes in
which z; is the i-th variable that occurs. A preorder
(i-e. a transitive and reflexive relation) C on T(X)
is substitutive if for all contexts C[z]: ¢ C t' implies

Clt) c C[t').

The intersection of substitutive preorders is again
substitutive. In particular, if a preorder C is sub-
stitutive, then its kernel (the equivalence relation de-
fined by t = u iff t C u and u C t) is substitutive, and
hence, by definition, a congruence.

Definition 2.4 (Calculi). Let A be a given set of
labels and let T be a signature. The set Tr(Z, A)
of transitions consists of all expressions of the form
t -2+ ¢’ with¢,¢’ € T(X) and a € A. The set Cf(X, A)
of inference rules or conditional formulas over ¥ and
A consists of all expressions

1/)17 RS ¢n
¢)

where ¥1,...,%n, ¥ in Tr(Z, A). The transitions 9;
are called the premises and 9 is called the conclusion
of the rule. If no confusion can arise, a rule - is also
written 1. The notions “substitution” and “closed”
extend to transitions and rules in the obvious way.
A transition system specification or calculus is a triple
P = (%, A, R) with T a signature, A a set of labels
and R C Cf(X, A) a set of inference rules.

Definition 2.5 (Proof trees). Let P = (X,4,R)
be a calculus. A proof tree from P for a transition
% is a finite tree whose edges are ordered and whose
vertices are labeled by transitions in Tr(X, A), such
that:

e the root is labeled with %,

o if ¢ is the label of 2 node ¢ and ¢4,...,¢, are
the labels of the children of ¢, then there is a

rule M in R and a substitution ¢ such that
éi = ¢[(] and ¢ = ¢'[(].
If a proof tree for 9 exists, then ¢ is provable from P,
notation P F . The set enabled(t) of actions which

inaction

prefixing; for each a € A

choice, sum

parallel, (free) merge

synchronous composition, product
renaming; for each p : A — A
process names; for each X € X

=4 5 o
O NN O

e X

Table 1: The signature of PC.

are enabled in a term t is defined by
enabled(t) Z{a€ A|3' : PFt -1},

If t,t € T(X) and ¢ = a;---a, € A*, write P |
t -2 ¢’ if there are terms ty,...,t, such that t = tg,
foralli<n: Pt tiﬁt.-_n and t, = t'.

Example 2.6. As a simple example of a calculus
in the style of CCS and ACP, consider the Process
Calculus PC. PC is parametrized by a finite set 4 of
actions, ranged over by a, b, . . ., and a set X of process
names, ranged over by X,Y,.... The signature Xp¢
of PC is displayed in Table 1. Infix notation will be
used for the binary function symbols, and I write a-p
instead of a-(p). To avoid parentheses, it is assumed
that prefixing has most binding power, followed by
product, which in turn is followed by free merge,
which is followed by alternative composition (which
has the weakest binding power). In the case of several
sum, merge or product operations I will mostly omit
brackets since semantically these operations are asso-
ciative. For a finite index set I = {i;,...,i,} and PC
terms pi,, ..., Pi,, D ;e Pi abbreviates p;, +...+pi,,.
By convention E;ee stands for §. Trailing 8’s will
often be dropped.

Intuitively, é denotes inaction, a process that does
not do anything at all. The process a-p first performs
an a-action and then behaves like p. Process p + ¢
will behave either like p or like ¢. It is not specified
whether the choice between p and q is made by the
process itself or by the environment. The term pl|q
denotes the parallel composition of p and ¢ without
synchronization. The term p x q denotes the paral-
lel composition of p and ¢ in which all actions must
synchronize. Process ¢(p) behaves just like process p,
except that the actions of p are renamed according to
@. The recursive definitions of the process names are
given by a declaration function E : X — T(Xp¢). So
the behavior of a process name X is specified recur-
sively by E(X). Only guarded recursion is permitted:
in terms E(X) process names are only allowed to oc-
cur in the scope of a prefixing operator.

The inference rules which define the operational
semantics of PC are presented in Table 2. In the

390

az-z

r a 2! y a y/
v =r sty
%z y->y

ely-=2lly zlly—==lly

-z y-S>vy z-% 1!

rxy-Saxy o(z) 2 p(a)

EX)*>y
XSy

Table 2: The inference rules of PC.

table a and b range over A, X over X, and ¢ over
A — A. The variables z,z’, y and ¢/ are fixed and all
different.

3 Trace and Failure Preorders:
the General Case

Before studying trace preorders in a setting with in-

put, output and internal actions, I first consider the

simple case in which no special assumptions are made

about the nature of actions, and study substitutivity

of preorders which are based on finite traces, i.e. se-

quences of actions that are enabled from a given state.
Fix a calculus P = (X, 4, R).

Definition 3.1 (Trace preorder). The set of (finite)
traces of a term t € T(X) is

traces(t) = {oc € A* | ;' : PH1 -5 t').

The trace preorder Cp on T(X) is defined by: ¢t Cp ¢/
iff traces(t) C traces(t').

The requirement that the trace preorder Crp is sub-
stitutive excludes a lot of calculi. In fact, all the
counterexamples that are presented in [13] to show
that strong bisimulation equivalence is not substitu-
tive for certain calculi can be used again. Two of
these counterexamples will be recalled here.

The first example illustrates that substitutivity is
often endangered if a variable occurs more than once
in the left-hand-side of the conclusion of a rule: if
one adds to PC a rule z + & =~ 6, then a Cr af|6 but
a+alZr a+(alld).

The second example shows that problems can arise
if function symbols occur in the right-hand-side of a
premis: if one adds to PC a rule

z-%6
az-256
then § Cr 6|6 but a-a-6 Z7 a-a-(8}|6).

Basically, the counterexamples of [13] show that
problems can be expected if the rules do not fit the
tyft/tyzt format introduced in that paper. However,
the following counterexamples show that the trace
preorder is not substitutive for all calculi in tyft/tyzt
format.

In general it is not allowed to test whether, from a
certain state, more than one action is enabled: if one
adds to PC rules

-y

B(z) % B(y) and

rty 252

B(z)-%+6

then a(b+c) Cr ab+ac but B(a{b+c)) Z7 B(ab+ac).
Also rules with lookahead cause problems: if one
adds to PC rules

Z““‘b Y

L(z) = L(y)’

cHy, y—"z

L(z) - L(y)

an

then a{a+b) Cr aa+adbut L(a{a+b)) Z7 L(aa+ad).

The search for simple constraints on inference rules
which guarantee that the trace preorder is substitu-
tive, leads to a format of rules that is essentially due
to De Simone [25]. For any obvious relaxation of the
constraints imposed by this format a counterexample
in the style of the ones presented above can be found.
Without doubt it is possible to come up with a format
which is more general than the format of De Simone
such that the trace preorder is still substitutive, but
the definition of such a format will be more complex.

In the definition below I use the notion of stut-
tering steps. These stuttering steps are technically
convenient but not essential and all the results of this
paper carry over in a trivial way to a setting without
them. Remark 3.3 comments on this issue in more
detail.

Definition 3.2 (De Simone calculi). Let {z; | i €
N} and {y; | j € N} be two fixed sets of variables in V
with all z; and y; different. Let ¥ be a signature, A a
set of labels, and * a special label, not in A, denoting
stuttering or idling.

A rule in Cf(E, AU {#}) is a De Simone rule if it
takes the form

{ei by |1<i<n}

flzr,. .. zn) ot

391

where (f,n) € £, a € Aand forall i, a; € AU{*}, and
t € T(X) is a context with variablesin {y1,...,¥.} (so
variables occur linearly in t). In the above rule, (f,n)
is the type, a the action, t the target, and the tuple
(a1,...,an) is the trigger. If a; € A, then the i-th
position is active in the rule; otherwise it is passive.
Each rule is characterized uniquely by its type, action,
target and trigger. If r is a rule, these ingredients
will be referred to as type(r), action(r), target(r) and
trigger(r).

A calculus P = (Z,A U {#},R) is a De Simone
calculus if ¥ can be partitioned into X; and X5, and
R can be partitioned into Ry, R and R3 in such a
way that

e all the rules in R; are De Simone rules with a
type in £y;

o there exists a set X and a mapping £ : X —
T'(X) such that:

Z:2 {(X’O)IXEX}’

E(X)L’yo

Ba = {X'L’yo

| X €X A a€ A}

o Rj consists of the single stuttering ariom z - .

Elements of X are referred to as process names and
E is called the declaration mapping. If P is a De
Simone calculus, then both the set of process names
and the declaration mapping are uniquely determined
and will be referred to as Xp and Ep.

Remark 3.3. Given a De Simone rule, the corre-
sponding variant of it without stuttering is obtained
by removing all the stuttering premises and replacing
in the target y; by z; for each stuttering argument
i. If P’ is the result of applying this procedure to
all De Simone rules in a De Simone calculus P and
discarding moreover the stuttering axiom, then it is
easy to see that for all a # *, P proves a transi-
tion with label a iff P/ does. In addition P proves a
x-transition from each term to itself. When present-
ing a concrete De Simone calculus, I mostly give the
variants of the rules without stuttering, and often use
different names for the variables. PC is a De Simone
calculus in this sense. Also the definitions of the var-
ious preorders (except for the fair trace preorder at
the very end) refer to the *-less variants.

In process algebra deadlock phenomena are often
modeled in terms of states without outgoing transi-
tions. The trace preorder does not preserve deadlock
behavior in this sense. Therefore one is often inter-
ested in the following refinement of the trace preorder.

Definition 3.4 (Completed trace preorder). The

set of (finite) completed traces of a term ¢ is

ctraces(t) =
{ceA* |3t :PHt-25¢' A enabled(t') = 0}.

The completed trace preorder Cor on T(X) is given
by

tCort 2 tCpt' A ctraces(t) C ctraces(t’).

All the counterexamples that were presented to show
that the trace preorder is not substitutive for all cal-
culi, can be used again to show that also the com-
pleted trace preorder is not substitutive in general.
Thus it can be argued that a format for which the
completed trace preorder is substitutive should be at
least as restrictive as the De Simone format. How-
ever, it is well known that in general the completed
trace preorder is not substitutive for De Simone cal-
culi. The canonical counterexample can be expressed
in PC:
a-b+a-cCer a(b + C)

but
abx(ab+a-c)Zeradx(a(b+c)).

Instead of imposing additional constraints on the in-
ference rules, the research on algebraic process theory
has concentrated on finding substitutive preorders, as
coarse as possible, that refine completed trace equiv-
alence. For several individual De Simone calculi a full
abstractness result has been established in the litera-
ture which says that the so-called failure preorder is
the coarsest substitutive preorder which refines the
completed trace preorder (see for instance [10, 4]).
Below it will be shown that the failure preorder is
substitutive for any De Simone calculus. The full ab-
straction result then follows for any calculus which
is sufficiently expressive to distinguish between terms
that are not related by the failure preorder.

Definition 3.5 (Failure preorder). The set of failure
pairs of a closed term ¢t is

failures(t) = {(o, X) € A* x 24 |
' :PHt-1' A enabled(t')N X = 0}.

The failure preorder Cp on T(X) is defined by

tCpt' = failures(t) C failures(t').

392

The failure preorder refines the completed trace pre-
order since there is a 1-to-1 correspondence between
failure pairs of the form (7, 0) and traces o, and also
a 1-to-1 correspondence between failure pairs of the
form (o, A) and completed traces o. Let ¢ and t' be
PC terms with ¢ Zp ¢. Then there exists a pair
{a; - --an, X) which is a failure pair of ¢ but not of t'.
Because PC has guarded recursion only, the induced
transition relation is finitely branching ([6, 7, 27]),
and for this reason we can assume w.l.o.g. that X is
in fact finite ([12]). Now consider the context

Clz] = (al-a2~...-an~(z b)) x .

beX

It is straightforward to check that a; - - -a, is a com-
pleted trace of C[t] but not of C[t']. Hence C[t] Zcr
C[t']. In combination with the following theorem
these observations imply that, for the language PC,
the failure preorder is the coarsest substitutive pre-
order that refines the completed trace preorder.

Theorem 3.6. For any De Simone calculus the as-
sociated trace and fatlure preorders are substitutive.

Due to the generality of this theorem, its proof is
quite involved and refers to a number of definitions
and technical lemmas, which are not included in this
abstract. The proof exploits the strong similarity be-
tween proof trees of transitions and the leftmost term
in transitions. In order to emphasize this similarity
and to facilitate reasoning about proofs, a special syn-
tax for proofs is introduced in the style of [8].

4 Internal Affairs

All the preorders of the previous section are based on
notions of observation which assume that all actions
are equally visible. Often however it is realistic to
assume that certain state transitions in a reactive or
concurrent system cannot be observed from the out-
side and that the corresponding actions are internal
or hidden. This type of assumption naturally leads
to different preorders.

Fix a calculus P = (X, A,R) and aset I C A of
‘internal’ actions. Let £ = A —I.

Definition 4.1 (External trace preorders). Relative
to P and I, define the sets of ezternal traces and
external completed traces of a closed term ¢ by

etraces(t) = traces(t)[E,

ectraces(t) 2 ctraces(t)[E.

The ezternal trace preorder C.r and eziernal com-
pleted trace preorder C.cT are given by

tCert = etraces(t) C etraces(t'),

(>

tCecrt' t Cer t' A ectraces(t) C ectraces(t').

The C.r preorder is essentially the <may-preorder
of [14], except that it is defined relative to a set of
internal actions instead of just a single one. In the
extreme case of calculi with an empty set of inter-
nal actions, external trace equivalence coincides with
trace equivalence. Thus the counterexamples which
were presented in the previous section for trace equiv-
alence can be used again to argue that it is nontriv-
ial to find a format of rules which is more general
than De Simone’s format such that the external trace
preorder is substitutive. Additional restrictions are
needed however since both C.r and C.cr are not
substitutive in general for De Simone calculi. In the
case of C.r the canonical PC example is

aCeria but axalZ.raxia

(here of course it is assumed that ¢ is internal and
a is external). For C.cr the same example applies
that was used in the previous section. Below I will
propose some syntactic restrictions on De Simone cal-
culi which, when met, guarantee that C.7 is substi-
tutive. There is no obvious way to relax these re-
strictions without loosing substitutivity. The exter-
nal completed trace preorder can be refined into a
failure type preorder as follows.

Definition 4.2 (External failure preorder). The set
of external failure pairs of t is

efailures(t) 2 {(p[E, X) € E* x 27 |
3t :Prt-Lst' A enabled(t)N(XUI)=0}.

The external failure preorder C.p is defined by

tCert' 2 tCert' A efailures(t) C efailures(t’).

The preorder C.r turns out to be substitutive for
any De Simone calculus which obeys the restrictions
to be defined below and moreover, for sufficiently ex-
pressive calculi, it is the coarsest substitutive preorder
that refines C.cr. The kernel of C.p is very similar
to the failure semantics with fair abstraction of unsta-
ble divergence of Bergstra, Klop and Olderog [3], but
does not handle stability at the root and successful
termination.

393

Definition 4.3 (Sleeping arguments). Let P =
(X, AU{*}, R) be a De Simone calculus, let (f,n) €
and let 1 < ¢ < n. Then (f, n) tests its i-th argument
and the i-th argument is called awake if there is a rule
in R of type (f,n) in which the i-th position is active
(i-e. a; # *); otherwise the i-th position is sleeping.
A subterm s of a term ¢ is sleeping if it occurs in a
subterm which is on a sleeping position. Of course,
subterms which are not sleeping are called awake.

Example 4.4. The prefixing operators a of PC all
have a single argument, which is sleeping. All the
other operators of PC only have arguments that are
awake. A very useful auxiliary operator in algebraic
process theory is the binary lefi-merge operator IL:

z- 2
zly % 2|y’

The first argument of this operator is awake, whereas
its second argument is sleeping.

Definition 4.5 (Internal action sets). Let P =
(X, AU{x}, R) be a De Simone calculus and let I be a
nonempty subset of A. The set I is called an internal
action set if P satisfies the following properties:

1. Non-blocking: for each (f,n) € X, for each argu-

ment ¢ of (f, n) that is awake, and for each a € I,

R contains a clearing rule, i.e. a rule of the form
{zi >y} U{e; Sy |j#14)
f(zlx"':zﬂ)—b—)f(yla'~-)yn)

where b € I;

2. Redundancy: for each rule in R that is not a
clearing rule, and with a premis z; 2+ y; for
some a € I, there is another rule in R which
is exactly the same except that it has a premis
z; = y; instead.

As far as I know, the notion of an operator testing
an argument, and also the non-blocking constraint
are due to Bloom [5]. The notion of clearing rules oc-
curred earlier in the work of Parrow [23] in the setting
of ‘static’ operators. My constraints are much less re-
strictive than the ones imposed by Parrow, since he
allows only for internal steps in clearing rules, and
moreover insists on clearing rules for all arguments,
not just the ones that are awake. In contrast to this,
Bloom imposes less restrictions than I do, because he
has no constraints besides the non-blocking require-
ment. As a consequence he ends up with the some-
what peculiar notion of firework simulation, which in

zOy-—>= tdy-y
z-"Ts2!

z+y-Sz'+y

y-—y
z+y-zr+y
z-z! Y=y
z|ly " ||y z|ly — =y’
il y—y
Xy xy zXy-—zxy

-2
p(z) T p(z')

z -z z-% 2

—if I if
m1(z) - 71(z) Haec ifag!

n(:c) LN T](.’l:’)

Table 3: The inference rules of TAU.

my view does not properly capture the concept of
internal actions since a term with two consecutive in-
ternal transitions is distinguished from a term with
only a single internal transition.

Example 4.6. The calculus PC has no internal
action set since there are no clearing rules for the op-
erators + and x. Below I describe an extension of
PC called PC, which does have an internal action
set {r}. Here 7 is a ‘fresh’ label not in the label set A
of PC. PC; is defined as the union of PC and an aux-
iliary calculus TAU. The signature of TAU consists of
the signature of PC augmented with a binary internal
choice operator @ and unary hiding operators 77 for
each I C A. The label set of TAU is AU {r} and its
rules are displayed in Table 3. By adding the clear-
ing rules for +, the choice combinator of PC, which
is essentially the same as the choice combinator of
CCS and ACP, is turned into the external choice op-
erator O of CSP [15]. The & combinator of PC; is
Just the internal choice operator M of CSP (the nota-
tion employed here is from [14]). Note that the fact
that {7} is an internal action set of PC; in the sense
of Definition 4.5, depends crucially on the fact that
the presence of clearing rules is required only for ar-
guments that are awake: @ does not need to have
clearing rules since both its arguments are sleeping.

Using the same context that was used in the case
without internal actions, it is an elementary exercise
to show that, assuming that C.p is substitutive, it is
in fact the coarsest substitutive preorder on PC, that
refines C.cor.

394

The must preorder Kmusr of [14] carries over trivially
to the setting of this paper; for reasons of space I will
not recall its definition here. However, the following
theorem holds.

Theorem 4.7. For any De Simone calculus P and
for any internal action set of P, the associated ex-
ternal trace, external failure and must preorders are
substitutive.

5 Input/Qutput Calculi

The I/O automata approach postulates three differ-
ent types of labels in a transition system: input ac-
tions, output actions and internal actions. Techni-
cally this trichotomy is reflected in the notion of an
action signature.

Definition 5.1. An action signature S is a triple
(in(S), out(S), int(S)) of three disjoint sets of resp.
inpul actions, oulpul actions and internal actions.
The derived sets of ezternal actions, locally controlled
actions and actions of S are defined resp. by

ext(S) = in(S)Uout(S),
local(S) = out(S)Uint(S),
act(S) £ in(S) Uout(S) Uint(S).

5.1 Input Actions

I/0 models require that in each state each input ac-
tion is enabled, since input actions are considered to
be under the control of the environment, and not the
machine itself. Below I will present two simple syn-
tactic conditions on De Simone calculi which together
guarantee input enabling.

Definition 5.2 (Input action sets). Let P = (X, AU
{*}, R) be a De Simone calculus and let In C A.
The set In is called an input action set of P if for
each signature element (f,n) € T and for each action
a € In, there is a rule in R of type (f,n) with action
a, and a trigger with labels in In U {*}.

Definition 5.3 (Guardedness). Let P be a De Si-
mone calculus. A term ¢ over the signature of P is
guarded if all process names in ¢ occur in sleeping sub-
terms. P is guarded if all terms in the image of Ep
are guarded.

The above notion of guardedness (which generalizes
the notion of guardedness for PC) has been intro-
duced in [27]. Some assumptions about the recursive

definitions are needed for input enabling: if X is a
process name with recursive definition X, then no
outgoing transitions can be derived using the stan-
dard inference rules for recursion.

Lemma 5.4 (Input enabling). Let P be a guarded
De Simone calculus and let In be an input action set
of P. Then for all closed terms t, In C enabled(t).

Note that the notions of input and internal actions
are independent in the following sense: in order to
prove substitutivity of the ‘external’ preorders one
only needs assumptions about the internal action set,
and in the proof of the above Lemma 5.4 one only
needs the assumptions about the input action set and
guardedness.

5.2 Quiescence

In I/O models deadlock phenomena are not modeled
in terms of states without outgoing transitions: due
to input enabling there are no such states. Instead
one uses the notion of a guiescent state, a state which
enables no locally controlled actions, but only input
actions. In a quiescent state the system waits for
stimuli from the environment but has no activity of
its own.

Fix an action signature S and a guarded De Simone
calculus P = (T, act(S)U{*}, R) with in(S) an input
action set and int(S) an internal action set.

Definition 5.5 (Quiescent trace preorder). A term
is quiescent if it only enables input actions. The set
of (finite) quiescent traces of ¢ is

gtraces(t) £
{pfext(S) |3t' : PFt L5t A t' quiescent}.

The quiescent trace preorder Cyr is defined by

tCert' = tCert' A gtraces(t) C giraces(t’).

The quiescent trace preorder is in general not substi-
tutive. In order to see this, consider the simple case
in which the set of input actions is empty. In this
case the quiescent trace preorder coincides with the
external completed trace preorder and the standard
example — a-b+ a-c versus a- (b + ¢) — showing
that the latter is not substitutive can also be used
to show nonsubstitutivity of the former. It turns out
that basically all one has to do in order to guarantee
that C,r is substitutive, is to add the following con-
straint which says that a context has no longer the
possibility to block output actions.

395

L) 0 inaction
e 1 prefixing; foreach e € A UA

1+7 2 external choice; for each I,J C A
@® 2 internal choice

llg 2 parallel, merge; for each H C A
¢ 1 renaming; foreachp: A — A

rr 1 hiding, abstraction; for each I C A
X 0 process names; for each X € X

Table 4: The signature of IOC.

Definition 5.6 (Qutput blocking). P hasno output
blocking if for each (f,n) € I, for each argument i of
(f,n) that is awake, and for each action a € out(S),
there is a rule in R with type (f,n), called a clearing
rule, in which the premis for z; has label a, all other
premises have a label in in(S) U {#}, and the conclu-
sion has a label in local(S).

Note that the conditions on clearing rules for output
actions are less restrictive than those for internal ac-
tions. The clearing rules for internal actions do not al-
low for other arguments to take non-stuttering steps,
they require the target to be of the form f(y1,...,¥n),
and the label of the conclusion has to be a internal
action.

All the restrictions on general transition system
specifications introduced thus far come together in
the following definition.

Definition 5.7. An I/O calculus is a triple Q@ =
(%, S, R) with S an action signature and (X, act(S) U
{#}, R) a guarded De Simone calculus with in(S) an
input action set, int(S) an internal action set, and no
output blocking.

Theorem 5.8. For any I/O calculus the associated
quiescent trace preorder is substitutive.

Example 5.9. The I/O calculus IOC is parame-
trized by a set A, ranged over by a,b,..., and a set
X of process names, ranged over by X,Y,.... Like
in CCS, there is also a set A, with @,b,... ranging
over A. The action signature of I0C is (4,4, 7). So
actions of the form a are input actions, actions of the
form @ are output actions and 7 is the only internal
action. The signature of IOC is displayed in Table
4, and its rules are given in Table 5. However, the
presence of clearing rules for 7 is assumed implicitly.
Also, if for a certain type (f,n) and a certain input
action a, Table 5 mentions no rule with that type and
that action, then IOC contains in fact a rule

f(xl)'“yxn)’l"f(l'l,..

Due to this convention, the rules for prefixing in Ta-

.y Zn).

ez sz rhy—>=z

[/
— I ifeelUR
r+g y—z
s, y-Sy

——————— ifa€H
zllwy—=>2 |y

z-2 g

— T ifa¢H
ellay-—=2'llmy

22z, gy fagH
—_— 17 7 ifa
elluy->2|lny

-z

(@) 2T o(z")

z-5 g -
— if 1
m1(z) > (') et

ey |y

rdy-y

y—=—y

—_— ifee JU4A
zr4s Y-y

-,y y

ifae H

y-2y

— fa¢ H
Moy Sellay °F

z-2 2!

(@) T o(z")

z-5 2!

ifegT

m1(z) = 71(2')

Table 5: The inference rules of IOC.

ble 5 look the same as the rules for this operator in
the calculus PC. However, the prefixing operators of
I0C and PC are really different. Both in IOC and PC
the process @§ has two states. In IOC the initial state
has a self loop for each input action. Moreover there
is a transition @ to the final state in which also has a
self loop for each input action. In PC the process just
has the single @ transition from the initial to the final
state and there are no loops. In calculi like CCS and
PC, the prefixing and choice operators play a cru-
cial role since they make it possible, provided there
is a sufficient amount of recursive power, to specify
in the language each finitely branching transition sys-
tem up to isomorphism. In order to obtain a similar
expressiveness, the language IOC incorporates, be-
sides the modified prefixing operators, binary choice
operators s+; and hiding operators ;. Using re-
cursion, prefixing and y+;, it is a simple exercise to
specify any finitely branching, input enabled automa-
ton over a given, finite action signature that contains
no transitions that are labeled with internal actions.
Arbitrary finitely branching, input enabled automata
can be obtained by applying a hiding operator on top
of this construction. The choice operator + of PC,
does fit the I/O calculi format, but the reader can
easily convince him/herself that this operator alone
does not give the required amount of expressiveness.
The parallel combinator ||g is just a proposal which

looks interesting. Subsequent research has is needed
to see whether this operator is sufficiently expressive.
It might be that a simpler calculus can be obtained
by parametrizing expressions by an action signature,
like in CSP [15] and all I/O models that have been
proposed thus far. In this case one would only need a
single parallel combinator instead of an operator for
each H C A.

In Table 5, the rules for recursion and stuttering
are omitted as usual, a,bd, ... range over A and e, ...
range over external actions, unless further restrictions
are made. The symbols H, I, J range over subsets of
A, and ¢ ranges over A — A.

5.3 Fairness

All I/O models incorporate some notion of fairness,
but they all do it in a different way. All I/O models
agree however, that an execution of the composition
of automata is fair iff it is fair to each of its compo-
nents. Furthermore, a key result in all [/O models is
that the preorder induced by the traces of fair execu-
tions is substitutive for the operations of composition,
hiding and renaming, which are the only operations
defined on I/O automata thus far. Therefore it seems
reasonable to require that the fair trace preorder (or
at least a close approximation of it) is also substitu-
tive for any new operator.

396

In the syntactic setting of this paper, weak process
fairness appears to be a natural fairness notion. As
it turns out, the resulting preorder is substitutive for
any I/0O calculus. Unfortunately, due to lack of space,
it is not possible to present the precise definition of
this preorder in this abstract. For this the reader is
refered to the full version of this paper.

Fix an 1/O calculus P.

Definition 5.10 (Fairness). An execution of P (i.e.
an infinite sequence of proofs of consecutive transi-
tions) is unfair if it has a suffix and there exists a
marking of the first proof such that if this subterm
is traced throughout the execution, it remains the
same, it stays awake, stutters and enables a locally
controlled action. An execution is fair if it is not un-
fair.

In the full paper it will be argued in detail why this
notion of fairness is reasonable and useful. The fol-
lowing lemma, whose formulation is due to [18], im-
plies that the fairness notion is feasible in the sense
of [1].

Lemma 5.11. Let T be a finite execution frag-
ment and let o be a sequence of input actions. Then
there exists a £ such that TE is a fair execution and

E[in(S) = 0.

For nontrivial calculi like IOC it is trivial to show
that the above fairness notion is liveness enhancing
in the sense of [1]: there is some term which has some
liveness property which it would not have without the
fairness assumption. Since the notion of independent
actions has not been defined in the setting of this pa-
per, it is not possible to argue that the fairness notion
is equivalence robust in the sense of [1]. An interest-
ing topic for future work is to define independence of
actions (transitions) for arbitrary De Simone calculi
in the style of [8]. I expect no problems with equiva-
lence robustness once this work has been carried out,
because conspiracies, the main source of difficulties
with the equivalence robustness of weak process fair-
ness in languages like CCS and CSP, are no longer
possible in I/O calculi.

Definition 5.12 (Fair trace preorder). The set
ftraces(t) of fair traces of a term ¢ is defined as the
projection on the external actions of the traces cor-
responding to the fair executions of . The induced
Jair trace preorder Cyr is defined by

tCyrt' = flraces(t) C flraces(t').

The expected theorem is true:

397

Theorem 5.13. For any I/0 calculus the associated
fair trace preorder is substitutive.

6 Concluding Remarks

“So where are the I/O automata? the reader may
ask. And indeed, not even their definition does oc-
cur in the text. The full paper will define in detail
how an I/O calculus determines operations on I/O
automata. The definition is completely standard for
readers who are familiar with SOS and who are used
to think about Plotkin-style calculi as a way to define
operations on automata, even when these automata
are not present explicitly.

A topic for future research is to extend the I/O cal-
culi format to allow for predicates on terms dealing
with action signatures. This would make it possible
to define the parallel composition operator of the I/O
automata models of [16, 19], which appears to be sim-
pler and more intuitive than the parallel combinators
of my calculus IOC. Finally, an obvious open question
is to give a complete axiomatization of the quiescent
trace preorder for the recursion free part of (a variant
of) I0C.

References

[1] K.R. Apt, N. Francez, and S. Katz. Appraising
fairness in languages for distributed program-
ming. Distributed Computing, 2:226-241, 1988.

J.C.M. Baeten and W.P. Weijland. Process Alge-
bra. Cambridge Tracts in Theoretical Computer
Science 18. Cambridge University Press, 1990.

J.A. Bergstra, J.W. Klop, and E.-R. Olderog.
Failures without chaos: a new process seman-
tics for fair abstraction. In M. Wirsing, editor,
Formal Description of Programming Concepts -
III, Proceedings of the 3% IFIP WG 2.2 working
conference, Ebberup 1986, pages 77-103, Ams-
terdam, 1987. North-Holland.

[4] J.A. Bergstra, J.W. Klop, and E.-R. Olderog.
Readies and failures in the algebra of communi-
cating processes. SIAM Journal on Compuling,
17(6):1134-1177, 1988.

(2

B3l

5] B. Bloom. Strong process equivalence in the
g
presence of hidden moves. Preliminary report,

October 1990.

B. Bloom, S. Istrail, and A.R. Meyer. Bisim-
ulation can’t be traced: preliminary report. In
Proceedings 15** ACM Symposium on Principles

(6]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

of Programming Languages, San Diego, Califor-
nia, pages 229-239, 1988.

B. Bloom, S. Istrail, and A.R. Meyer. Bisimula-
tion can’t be traced. Technical Report 90-1150,
Department of Computer Science, Cornell Uni-
versity, Ithaca, New York, August 1990.

G. Boudol and I. Castellani. Permutation of
transitions: an event structure semantics for
CCS and SCCS. In J.W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, REX
School/Workshop on Linear Time, Branching
Time and Partial Order in Logics and Models for
Concurrency, Noordwijkerhout, volume 354 of
Lecture Notes in Computer Science, pages 411~
427. Springer-Verlag, 1989.

G. Costa and C. Stirling. A fair calculus
of communicating systems. Acta Informatica,
21(5):417-441, December 1984.

R. De Nicola. Testing Equivalences and Fully
Abstract Models for Communicating Processes.
PhD thesis, Department of Computer Science,
University of Edinburgh, 1985.

R. De Nicola and M. Hennessy. Testing equiva-
lences for processes. Theoretical Computer Sci-
ence, 34:83-133, 1984.

R.J. van Glabbeek. The linear time - branching
time spectrum. In J.C.M. Baeten and J.W. Klop,
editors, Proceedings CONCUR 90, Amsterdam,
volume 458 of Lecture Notes in Computer Sci-
ence, pages 278-297. Springer-Verlag, 1990.

J.F. Groote and F.W. Vaandrager. Structured
operational semantics and bisimulation as a con-
gruence (extended abstract). In G. Ausiello,
M. Dezani-Ciancaglini, and S. Ronchi Della
Rocca, editors, Proceedings 16t ICALP, Stresa,
volume 372 of Lecture Notes in Computer Sci-
ence, pages 423-438. Springer-Verlag, 1989. Full
version to appear in Information and Computa-
tion.

M. Hennessy. Algebraic Theory of Processes.
MIT Press, Cambridge, Massachusetts, 1988.

C.A.R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall International, Englewood

Cliffs, 1985.

B. Jonsson. A model and proof system for asyn-
chronous networks. In Proceedings of the 4*"
Annual ACM Symposium on Principles of Dis-
tributed Computing, Minaki, Ontario, Canada,
pages 49-58, 1985.

398

(17]

(18]

(19]

(20]

(21]

22]

(23]

(24]

(25]

(26]

[27)

B. Jonsson. Compositional Verification of Dis-
tributed Systems. PhD thesis, Department of
Computer Systems, Uppsala University, 1987.
DoCS 87/09.

N.A.Lynch and E.W. Stark. A proof of the Kahn
principle for input/output automata. Informa-
tion and Computation, 82(1):81-92, July 1989.

N.A. Lynch and M.R. Tuttle. Hierarchical cor-
rectness proofs for distributed algorithms. In
Proceedings of the 6'* Annual ACM Symposium
on Principles of Distributed Computing, Vancou-
ver, Canada, pages 137-151, August 1987. A
full version is available as MIT Technical Report
MIT/LCS/TR-387.

N.A. Lynch and M.R. Tuttle. An introduc-
tion to input/output automata. CWI Quarterly,
2(83):219-246, September 1989.

R. Milner. Communication and Concurrency.
Prentice-Hall International, Englewood Cliffs,
1989.

J. Parrow. Fairness Properties in Process Alge-
bra - With Applications in Communication Pro-
tocol Verification. PhD thesis, Department of
Computer Systems, Uppsala University, 1985.
DoCS 85/03.

J. Parrow. The expressive power of simple par-
allelism. In E. Odijk, M. Rem, and J.-C. Syre,
editors, Proceedings PARLE’89, Eindhoven, Vol.
II (Parallel Languages), volume 366 of Lec-
ture Notes in Computer Science, pages 389-405.
Springer-Verlag, 1989.

G.D. Plotkin. An operational semantics for CSP.
In D. Bjgrner, editor, Proceedings IFIP TC2
Working Conference on Formal Description of
Programming Concepts - II, Garmisch, pages
199-225, Amsterdam, 1983. North-Holland.

R. de Simone. Calculabilité et Ezpressivité dans
U’Algebra de Processus Paralléles MEIJE. Theése
de 3¢ cycle, Univ. Paris 7, 1984.

E.W. Stark. Foundations of a Theory of Spec-
ification for Distributed Systems. PhD thesis,
Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Tech-
nology, August 1984. Available as Technical Re-
port MIT/LCS/TR-342.

F.W. Vaandrager. Expressiveness results for pro-
cess algebras. In preparation, 1991.

