
Specifying and Proving Properties of Timed I/O Automata
in the TIOA Toolkit �

Myla Archer
Center for High Assurance Computer Systems, Code 5546
Naval Research Laboratory, Washington, DC 20375 USA

archer@itd.nrl.navy.mil

HongPing Lim Nancy Lynch Sayan Mitra Shinya Umeno
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139 USA hongping,lynch,mitras,umeno@csail.mit.edu

Abstract

Timed I/O Automata (TIOA)is a mathematical frame-
work for modeling and verification of distributed systems
that involve discrete and continuous dynamics. TIOA can
be used for example, to model a real-time software com-
ponent controlling a physical process. The TIOA model
is sufficiently general to subsume other models in use for
timed systems. TheTIOA toolkit, currently under develop-
ment, is aimed at supporting system development based on
TIOA specifications. The TIOA toolkit is an extension of
the IOA toolkit, which provides a specification simulator, a
code generator, and both model checking and theorem prov-
ing support for analyzing specifications. This paper focuses
on modeling of timed systems with TIOA and the TAME-
based theorem proving support provided in the TIOA toolkit
for proving system properties, including timing properties.
Several examples are provided by way of illustration.

1 Introduction

To achieve high assurance in the development of com-
plex systems, an appropriate development framework sup-
porting system specification, implementation, and analysis
is essential. The support provided by the framework should
apply not only to those systems that can be modeled as finite
state machines but to those that cannot, such as many real-
time embedded or hybrid systems systems involving soft-
ware and/or continuous behavior. Thus an ideal general de-
velopment framework should provide:

1. A mathematical model capable of capturing the range
of discrete and continuous phenomena that arise in typ-
ical systems,

�This research is funded by AFOSR and ONR

2. A well defined notion in the model of external (vis-
ible) behavior, and a definition of implementation of
one component by another, or equivalence of two com-
ponents, in terms of their visible behavior,

3. Compositionality—i.e, the ability to build larger sys-
tems by composing smaller components in a manner
that respects the notion of implementation,

4. User-friendly tool support for proving the commonly
encountered types of properties for the models, such
as invariant properties, implementation relations, and
stability, and

5. A basis supporting the use of automatic analysis and
other software tools to the extent possible.

The Timed Input/Output Automaton (TIOA) toolkit [15,
9], currently under development, provides just such a frame-
work. The TIOA toolkit, based on the TIOA model [16], is
especially suited to the specification and analysis of real-
time, embedded systems.

The focus of this paper is on the theorem proving support
provided in the TIOA toolkit for the analysis of TIOA spec-
ifications. With a set of small examples, we illustrate how
one can use the toolkit to model timed systems and spec-
ify their properties in the TIOA language, and then verify
the specified properties using the theorem prover PVS [26]
through the interface TAME [3].

The paper is organized as follows. Section 2 gives
an overview of the Timed I/O Automaton (TIOA) model
and the TIOA toolkit that supports its use. Section 3 de-
scribes how one can specify and prove properties of TIOA
models and how the TIOA toolkit supports verifying (or
proof checking) the properties mechanically in PVS. Sec-
tion 4 presents our example TIOA specifications of au-
tomata and their properties, and shows how the properties

TIOA file
automaton A

simulation

invariants of B

invariants of A
automaton B

forward

from A to B

TIOA Toolkit

Frontend TranslatorSyntax Tree
Abstract A_decls.pvs

A_invariants.pvs

B_decls.pvs

B_invariants.pvs

A2B.pvs

Other tools

PVS

(E.g. Simulator,
Model Checker)

TAME Library for TIOA

auto_induct
pvs−strategies

forward_simulation.pvs

deadline_reason
try_simp

time_thy.pvs

time.pvs

time_machine.pvs

timed_automaton.pvs

Figure 1. TIOA framework for theorem-proving

can be proved in a “natural”, high-level fashion in PVS us-
ing the toolkit’s TAME support. Finally, Section 5 discusses
some lessons learned from these and other examples, Sec-
tion 6 mentions some related work, and Section 7 describes
our future plans and presents some conclusions.

2 Background

2.1 The TIOA model

The TIOA model is a timed version of the I/O automa-
ton model described in [21]. In the I/O automaton model,
states are represented by an assignment of values to state
variables, and state transitions are the result of actions. Ac-
tions may have parameters, and their transitions are defined
in terms of preconditions and effects. Actions are classified
asexternal(i.e., input or output) or internal. I/O automata
can be composed throughshared actions: an output action
of one automaton can be combined with compatible input
actions of one or more other I/O automata.

Timing can be added to I/O automata by various means;
see, for example [23, 22]. In the TIOA model, time pas-
sage is modeled usingtrajectories, which represent paths
through the state space that are followed during the pas-
sage of time. A trajectory is specified by 1) a description
of its evolution over time, which may be nondeterministic,
given, e.g., in terms of algebraic or differential equations or
inequalities; 2) an (optional) stopping condition that, when
it becomes true, ends the trajectory; and 3) an (optional)
state invariant that must hold throughout the trajectory. The
TIOA model is sufficiently general to subsume most other
commonly used models for timed automata (e.g., [2, 1]). A
detailed description of the theory of TIOA and its compari-
son with other models can be found in [16].

2.2 The TIOA toolkit

The TIOA toolkit [9], currently under development, is a
formal framework for system development based on spec-
ifications in the TIOA language. The TIOA language con-
structs related to timing are discussed in Section 4; example
TIOA specifications can be found in Figures 2, 7, and 8. As
an extension of the IOA toolkit [11], the TIOA toolkit pro-
vides a specification simulator, a code generator, and both

model checking and theorem proving support for analyz-
ing specifications. For model checking an appropriately re-
stricted class of timed systems in TIOA, an interface to UP-
PAAL [17] is being developed.

The TIOA framework for theorem proving (Figure 1),
initially introduced in [15], provides an approach for writ-
ing a system specification in the TIOA language, translating
the TIOA description into the language of PVS, and then us-
ing PVS to verify properties of the system. The framework
makes use of a PVS theory template which is instantiated
with the states, actions and transitions of an automaton. To
perform this translation and instantiation automatically, a
translator tool has been developed [19, 18] as part of the
TIOA toolkit. The PVS theory template used in the TIOA
toolkit is a variant of the TAME (Timed Automata Model-
ing Environment) [3, 5] automaton template, whose origi-
nal variants supported modeling and proving properties of
MMT automata [23] and SCR automata [14]. An important
part of the design of TAME proof support for any particular
automaton model is the design of the PVS theory template
which representations of model instances will follow. The
design of the TAME TIOA template is especially aimed at
supporting TAME proof steps (which are implemented as
PVS strategies) for reasoning about trajectories. Table 1 de-
scribes the new TAME strategies for reasoning about trajec-
tories. Example proofs usingapply traj evolve and
deadline reason can be seen in Section 4.1, Figure 6
and Section 4.2, and Figure 13 respectively.

TAME proof step effect

(apply traj evolve t) Compute state timet from now

Deduce that the stopping condition
(apply traj stop t) cannot hold after timet in a

trajectory T unless T ends att

(apply traj invariant t) Deduce trajectory invariant holds
time t from now

Deduce trajectory cannot evolve
(deadline reason t) more than timet if a deadline

is reached timet from now

Table 1. New TAME strategies for trajectories.

2

3 Overview of the TIOA proof methodology

The TIOA mathematical model is useful for specifying
timed distributed systems and analyzing properties of the
systems as invariants and simulation relations. The model
also provides a means of organizing proofs of such proper-
ties by induction over the length of the execution of an au-
tomaton into a systematic case analysis with respect to the
actions and trajectories. It is therefore possible to develop
PVS strategies to partially automate such proofs.

The TIOA methodology for theorem proving involves
(1) writing the specification of a system and its properties in
the TIOA language, (2) using the translator tool to generate
the PVS equivalent of the system, and then (3) proving the
properties in PVS using TAME strategies; (see Figure 1).
The user describes the system in the TIOA language using
the state-transition structure. The user writes simple pro-
gram statements to describe transitions, and specifies tra-
jectories using differential equations. Once the TIOA de-
scription is type checked by the front end of the toolkit, the
translator generates a set of PVS files. Together with the
TAME library containing PVS definitions for timed I/O au-
tomata and any additional data type theories, these gener-
ated files specify the automaton and its properties. The user
then uses TAME strategies developed for TIOA to prove the
properties of the system in PVS.

By using this approach, the user avoids having to write
the automaton description directly in PVS. Moreover, the
translator also performs the task of translating program
statements in TIOA into functional relations in PVS, and
trajectories with differential equations into time-passage ac-
tions. An additional benefit gained from using the approach
is that the user can also use other tools in the toolkit includ-
ing the simulator, code generator and model checker.

4 Examples

This section provides three simple examples that to-
gether illustrate how TIOA is used to represent systems and
properties, how trajectories can be used to capture desired
timing behavior, and how system properties can be mechan-
ically verified using PVS. The first example,fischer , is a
timed version of Fischer’s mutual exclusion algorithm. We
use this example to illustrate in some detail how various
features of a TIOA specification, in particular, its trajec-
tories, are represented in PVS. We also illustrate how its
main correctness property, an invariant, can be proved us-
ing TAME. The second example,TwoTaskRace (repre-
senting, as its name suggests, a two task race), is used as an
example in which the main correctness property is an ab-
straction property (forward simulation). The last example,
timeout , representing a simple timeout system, is used to
illustrate the support provided for expressing and reasoning
about complex data types in the TIOA toolkit.

4.1 Fischer’s mutual exclusion algorithm

Fischer’s mutual exclusion algorithm solves the mutual
exclusion problem in which multiple processes compete for
a shared resource. Figure 2 shows the TIOA specification
of a timed version of the Fischer algorithm.

In the Fischer algorithm, each process proceeds through
different phases in order to get to thecritical phase
where it gains access to the shared resource. In the au-
tomaton used to model the algorithm, each phase has a cor-
responding action; timing is modeled in the algorithm by
time bounds on the actions. The interesting action cases
aretest , set , andcheck . The actionset has an upper
time bound,u set , while the actioncheck has a lower
time boundl check , andu set < l check . When a
process enters thetest phase, it tests whether the value
of a shared variablex has been set by any process; if not,
the process can proceed to the next phase,set , within the
upper time bound,u set . In the set phase, the process
sets a shared variablex to its index. Thereafter, the pro-
cess can proceed to the next phasecheck only afterl set
amount of time has elapsed. In thecheck phase, the pro-
cess checks to see ifx contains the index of the process. If
so, it proceeds to thecritical phase.

The safety property we want to prove is that no two pro-
cesses are simultaneously in thecritical phase. We also
prove simpler invariants to help us prove this main invari-
ant. Figure 3 shows all the invariants that we have proved,
the last invariant being the safety property.

To illustrate how the various elements of an automa-
ton specification in TIOA translate into TAME, Figure 4
shows the TAME specification output by the TIOA-to-
TAME translator applied to the TIOA specification in Fig-
ure 2. The TAME specification has been edited slightly to
save space. In the TAME specification, automaton parame-
ters are translated as constants, and thewhere clause con-
straining the parameters is expressed as an axiom named
const facts . The state variables are represented as a
record type namedstates . A start predicate is defined
to be true for states with the specified initial values. The
actions of the automaton are declared as a subset of the
actions data type in the TAME specification. A pred-
icateenabled captures the precondition for each action,
while a transition functiontrans captures the post-state
obtained by applying the transition of an action on a given
pre-state. In translating the effect of an action into the tran-
sition function, the translator performs explicit substitutions
in accordance with the program statements in the specifica-
tion of the effect of the action in TIOA, in order to express
each state variable in the post-state explicitly in terms of the
variables in the pre-state.

The trajectory definitiontraj in the TIOA specifica-
tion is translated as a time passage actionnu traj in the
TAME specification which has two parameters:delta t ,

3

vocabulary fischer_types
2 t ypes process,

PcValue enumerat ion [pc_rem, pc_test, pc_set, pc_check,
4 pc_leavetry, pc_crit, pc_leaveexit, pc_reset]

6 automaton fischer(l_check, u_set: Real) where
u_set < l_check ∧ u_set ≥ 0 ∧ l_check ≥ 0

8 imports fischer_types
s i g n a t u r e

10 output try(i: process) i n t e r n a l test(i: process)
output crit(i: process) i n t e r n a l set(i: process)

12 output exit(i: process) i n t e r n a l check(i: process)
output rem(i: process) i n t e r n a l reset(i: process)

14 s t a t e s
turn: Null[process] : = nil,

16 now: Real : = 0,
pc: Array[process, PcValue] : = constant(pc_rem),

18 last_set: Array[process, AugmentedReal] : = constant(u_set),
first_check: Array[process, Real] : = constant(0)

20 t r a n s i t i o n s
i n t e r n a l test(i) i n t e r n a l reset(i)

22 pre pc[i] = pc_test pre pc[i] = pc_reset
e f f i f turn = nil then e f f pc[i] : = pc_leaveexit;

24 pc[i] : = pc_set; turn : = nil;
last_set[i] : =

26 now + u_set output try(i)
f i pre pc[i] = pc_rem

28 e f f pc[i] : = pc_test
i n t e r n a l set(i)

30 pre pc[i] = pc_set output crit(i)
e f f turn : = embed(i); pre pc[i] = pc_leavetry

32 pc[i] : = pc_check; e f f pc[i] : = pc_crit
last_set[i] : = \infty;

34 first_check[i] : = output exit(i)
now + l_check; pre pc[i] = pc_crit

36 e f f pc[i] : = pc_reset
i n t e r n a l check(i)

38 pre pc[i] = pc_check ∧ output rem(i)
first_check[i] ≤ now pre pc[i] = pc_leaveexit

40 e f f i f turn = embed(i) then e f f pc[i] : = pc_rem;
pc[i] : = pc_leavetry

42 e l s e
pc[i] : = pc_test

44 f i ;
first_check[i] : = 0;

46
t r a j e c t o r i e s

48 t r a j d e f traj
s top when

50 ∃ i: process (now = last_set[i])
evo lve

52 d(now) = 1

Figure 2. TIOA specification for fischer .

i n v a r i a n t o f fischer:
2 ∀ k: process (pc[k] = pc_set ⇒

(last_set[k] ≤ (now + u_set)))
4

i n v a r i a n t o f fischer:
6 ∀ k: process (now ≤ last_set[k])

8 i n v a r i a n t o f fischer:
∀ k: process

10 (pc[k] = pc_set ⇒ last_set[k] 6= \infty)

12 i n v a r i a n t o f fischer:
∀ i: process ∀ j: process

14 (pc[i] = pc_check
∧ turn = embed(i)

16 ∧ pc[j] = pc_set
⇒ first_check[i] > last_set[j])

18
i n v a r i a n t o f fischer:

20 ∀ i: process ∀ j: process
(pc[i] = pc_leavetry ∨ pc[i] = pc_crit

22 ∨ pc[i] = pc_reset
⇒ turn = embed(i) ∧ pc[j] 6= pc_set)

24
i n v a r i a n t o f fischer:

26 ∀ i: process ∀ j: process
(i 6= j ⇒ pc[i] 6= pc_crit ∨ pc[j] 6= pc_crit)

Figure 3. TIOA invariants for fischer .

fischer_decls : THEORY BEGIN
. . .
l_check: real; u_set: real
const_facts: AXIOM U_set < l_check AND u_set >= 0 AND l_check >= 0
states: TYPE = [#

turn: lift[process],
now: real,
pc: array[process -> PcValue],
last_set: array[process -> time],
first_check: array[process -> real] #]

start(s: states): bool = s=s WITH [
turn := bottom,
now := 0,
pc := (lambda(i_0: process): pc_rem),
last_set := (lambda(i_0: process): fintime(u_set)),
first_check := (lambda(i_0: process): 0)]

f_type(i, j: (fintime?)): TYPE = [(interval(i, j))->states]
actions: DATATYPE BEGIN

nu_traj(delta_t:{t:(fintime?)| dur(t)>=0},
f:f_type(zero,delta_t)): nu_traj?

try(i: process): try?
. . .
reset(i: process): reset?

END actions
visible?(a:actions): bool =

try?(a) OR crit?(a) OR exit?(a) OR rem?(a)
timepassageaction?(a:actions): bool = nu_traj?(a)
traj_invariant(a:(timepassageaction?))(s:states):bool =

CASES a OF nu_traj(delta_t, F): TRUE ENDCASES
traj_stop(a:(timepassageaction?))(s:states):bool = CASES a OF

nu_traj(delta_t, F):
EXISTS(i:process): fintime(now(s))=last_set(s)(i)

ENDCASES
traj_evolve(a:(timepassageaction?)) (t:(fintime?),s:states):states =

CASES a OF
nu_traj(delta_t, F): s WITH [now := now(s) + 1 * dur(t)]

ENDCASES
enabled(a:actions, s:states):bool = CASES a OF

nu_traj(delta_t, F):
(FORALL(t:(interval(zero,delta_t))): traj_invariant(a)(F(t)))
AND
(FORALL(t:(interval(zero,delta_t))): traj_stop(a)(F(t)) => t=delta_t)
AND
(FORALL(t:(interval(zero,delta_t))): F(t)=traj_evolve(a)(t, s)),

try(i): pc(s)(i) = pc_rem,
crit(i): pc(s)(i) = pc_leavetry,
exit(i): pc(s)(i) = pc_crit,
rem(i): pc(s)(i) = pc_leaveexit,
test(i): pc(s)(i) = pc_test,
set(i): pc(s)(i) = pc_set,
check(i): pc(s)(i) = pc_check AND first_check(s)(i) <= now(s),
reset(i): pc(s)(i) = pc_reset
ENDCASES

trans(a:actions, s:states):states = CASES a OF
nu_traj(delta_t, F): F(delta_t),
try(i): s WITH [pc := pc(s) WITH [(i) := pc_test]],
crit(i): s WITH [pc := pc(s) WITH [(i) := pc_crit]],
exit(i): s WITH [pc := pc(s) WITH [(i) := pc_reset]],
rem(i): s WITH [pc := pc(s) WITH [(i) := pc_rem]],
test(i): s WITH [last_set := IF turn(s) = bottom

THEN last_set(s) WITH
[(i) := fintime(now(s) + u_set)]

ELSE last_set(s) ENDIF,
pc := IF turn(s) = bottom

THEN pc(s) WITH [(i) := pc_set]
ELSE pc(s) ENDIF],

set(i):
s WITH [turn := up(i),

last_set := last_set(s) WITH
[(i) := infinity],

first_check := first_check(s) WITH
[(i) := now(s) + l_check],

pc := pc(s) WITH [(i) := pc_check]],
check(i):

s WITH [first_check := first_check(s) WITH [(i) := 0],
pc := IF turn(s) = up(i)

THEN pc(s) WITH [(i) := pc_leavetry]
ELSE pc(s) WITH [(i) := pc_test] ENDIF],

reset(i):
s WITH [turn := bottom,

pc := pc(s) WITH [(i) := pc_leaveexit]]
ENDCASES

IMPORTING timed_auto_lib@time_machine
[states,actions,enabled,trans,start,visible?,timepassageaction?,

lambda(a:(timepassageaction?)): dur(delta_t(a))]
END fischer_decls

Figure 4. TAME representation of fischer

4

Inv_5(s:states):bool =
FORALL (i: process, j: process):

i /= j => pc(s)(i) /= pc_crit OR pc(s)(j) /= pc_crit

lemma_5: LEMMA FORALL (s:states): reachable(s)=> Inv_5(s);

Figure 5. TAME lemma 5 for fischer

;;; Proof lemma_5-1 for formula fischer_invariants.lemma_5
;;; developed with shostak decision procedures
(""

(auto_induct)
(("1" ;; Case nu_traj(delta_t_action, F_action)

(apply_specific_precond)
;; Applying the precondition
;; (FORALL (t: (interval(zero, delta_t_action))):
;; traj_invariant(nu_traj(delta_t_action, F_action))
;; (F_action(t)))
;; AND
;; (FORALL (t: (interval(zero, delta_t_action))):
;; traj_stop(nu_traj(delta_t_action, F_action))
;; (F_action(t))
;; => t = delta_t_action)
;; AND
;; (FORALL (t: (interval(zero, delta_t_action))):
;; F_action(t) =
;; traj_evolve(nu_traj(delta_t_action, F_action))
;; (t, prestate))
(apply_traj_evolve "delta_t_action")
;; Using the fact that
;; F_action(delta_t_action) =
;; prestate WITH
;; [now := 1 * dur(delta_t_action) + now(prestate)]
(try_simp))

("2" ;; Case crit(i_action)
(apply_specific_precond)
;; Applying the precondition
;; pc(prestate)(i_action) = pc_leavetry
(apply_inv_lemma "4" "i_theorem" "j_theorem")
;; Applying the lemma
;; FORALL (i: process, j: process):
;; pc(prestate)(i) = pc_leavetry OR
;; pc(prestate)(i) = pc_crit OR pc(prestate)(i) = pc_reset
;; => turn(prestate) = up(i) AND pc(prestate)(j) /= pc_set
(apply_inv_lemma "4" "j_theorem" "i_theorem")
;; Applying the lemma
;; FORALL (i: process, j: process):
;; pc(prestate)(i) = pc_leavetry OR
;; pc(prestate)(i) = pc_crit OR pc(prestate)(i) = pc_reset
;; => turn(prestate) = up(i) AND pc(prestate)(j) /= pc_set
(try_simp))))

Figure 6. TAME proof of lemma 5 in fischer

the duration of the trajectory, andF, a function repre-
senting the trajectory, which maps a time interval to a
state. The definitionstraj invariant , traj stop ,
and traj evolve capture the invariant, stopping condi-
tion and evolve clause of the trajectory definition respec-
tively. The effect of the “trajectory action”nu traj is
constrained—and thus, effectively, captured—by the pre-
condition of nu traj , which asserts that (1) the invari-
ant holds throughout the duration of the trajectory, (2) the
stopping condition holds only in the last state of the trajec-
tory, and (3) the evolution of the state variables satisfies the
evolve clause. The transition function fornu traj simply
returns the post-state obtained by applying the functionF
representing the trajectory on the time interval ofdelta t .
This method of representation, adapted from a technique of
Luchangco [20], allowstrans to be represented as a func-

tion from states and actions to states while allowing the re-
sult of anu traj “action” to be nondeterministic.

The new TAME strategies in Table 1, combined with
the existing TAME strategies, provide a set of proof steps
that allow thefischer invariants shown in Figure 3 to be
proved interactively in PVS in a clear, high-level fashion.
The TIOA-to-TAME translator transforms the six invariants
in Figure 3 into TAME invariants and lemmas numbered
starting from 0. Thus, the goal safety property, the last in-
variant in Figure 3, becomes the TAME invariant-lemma
pair shown in Figure 5.

Figure 6 shows a verbose TAME proof oflemma 5
in Figure 5. To create this proof, which can be rerun in
PVS, the user simply types in the eight TAME proof steps
in the proof script—(auto induct) , (apply speci-
fic precond) , and so on. The comments in this proof
(which appear as text after semicolons) are generated by the
TAME strategies, and serve to label the proof branches and
document the facts introduced by the proof steps in these
branches. Because TAME automatically handles “trivial”
cases, only the proof steps requiring human guidance need
to be recorded. This proof can be understood as fol-
lows: The values with names ending in “theorem ” or
“ action ” are skolem constants standing for variables in
the lemma and parameters in the current action, respec-
tively. The nameprestate refers to the prestate of the
current action, and the values of state variables in any
states are represented as functions ofs . The base case
and all the action cases exceptnu traj(delta t ac-
tion, F action) and crit(i action) are trivial.
Thenu traj(delta t action, F action) case is
proved by recalling the full precondition and then using
the new TAME steptraj evolve in Table 1 to compute
what the current state will be after timedelta t action .
Once this is done, only “obvious” reasoning is needed. The
proof in thecrit(i action) case first recalls the pre-
condition and then applies two earlier invariant lemmas to
appropriate instances of their quantified variables. Then,
only “obvious” reasoning is needed to complete the proof.

4.2 A two task race

The two-task race system (see Figure 7 for its TIOA de-
scription) increments a variablecount repeatedly, within
a1 and a2 time, a1 < a2 , until it is interrupted by a
set action. Thisset action can occur betweenb1 and
b2 time from the start, whereb1 � b2 . After set ,
the value ofcount is decremented (every[a1 , a2] time)
and areport action is triggered whencount reaches 0.
We want to show that the time bounds on the occurrence
of the report action are: lower bound:if a2 < b1
then min(b1,a1) + (b1-a2)*a1

a2 else a1 , and

upper bound:b2 + a2 + b2*a2
a1 . This property is proved

by specifying an abstract automatonTwoTaskRaceSpec

5

automaton TwoTaskRace(a1, a2, b1, b2: Real) where
2 a1 > 0 ∧ a2 > 0 ∧ b1 ≥ 0 ∧ b2 > 0 ∧ a2 ≥ a1 ∧ b2 ≥ b1

4 s i g n a t u r e
i n t e r n a l increment

6 i n t e r n a l decrement
i n t e r n a l set

8 output report
s t a t e s

10 count: Int : = 0,
flag: Bool : = false,

12 reported: Bool : = false,
now: Real : = 0,

14 first_main: Real : = a1,
last_main: AugmentedReal : = a2,

16 first_set: Real : = b1,
last_set: AugmentedReal : = b2

18 t r a n s i t i o n s
i n t e r n a l increment

20 pre ¬flag ∧ now ≥ first_main
e f f count : = count + 1;

22 first_main : = now + a1;
last_main : = now + a2

24 i n t e r n a l set
pre ¬flag ∧ now ≥ first_set

26 e f f flag : = true;
first_set : = 0;

28 last_set : = \infty
i n t e r n a l decrement

30 pre flag ∧ count > 0 ∧ now ≥ first_main
e f f count : = count - 1;

32 first_main : = now + a1;
last_main : = now + a2

34 output report
pre flag ∧ count = 0 ∧ ¬reported ∧ now ≥ first_main

36 e f f reported : = true;
first_main : = 0;

38 last_main : = \infty
t r a j e c t o r i e s

40 t r a j d e f traj
s top when now = last_main ∨ now = last_set

42 evo lve
d(now) = 1

Figure 7. TwoTaskRace in TIOA

automaton TwoTaskRaceSpec(a1, a2, b1, b2: Real) where
2 a1 > 0 ∧ a2 > 0 ∧ b1 ≥ 0 ∧ b2 > 0 ∧ a2 ≥ a1 ∧ b2 ≥ b1

s i g n a t u r e
4 output report

s t a t e s
6 reported: Bool : = false,

now: Real : = 0,
8 first_report: Real : =

i f a2 < b1 then min(b1, a1) + (((b1 - a2) * a1) / a2) e l s e a1,
10 last_report: AugmentedReal : =

b2 + a2 + ((b2 * a2) / a1)
12 t r a n s i t i o n s

output report
14 pre ¬reported ∧ now ≥ first_report

e f f reported : = true;
16 first_report : = 0;

last_report : = \infty
18 t r a j e c t o r i e s

t r a j d e f pre_report
20 i n v a r i a n t ¬reported

s top when now = last_report
22 evo lve

d(now) = 1
24 t r a j d e f post_report

i n v a r i a n t reported
26 evo lve

d(now) = 1

Figure 8. TwoTaskRaceSpec in TIOA

which performs areport action within these bounds (see
Figure 8) and defining forward simulation relation from
TwoTaskRace to TwoTaskRaceSpec (see Figure 10).

The abstract automatonTwoTaskRaceSpec has two
trajectories: pre report and post report . The
TAME representation ofTwoTaskRaceSpec (see Fig-
ure 9) illustrates how the translator represents multiple tra-
jectories in TAME: the preconditions inenabled and

TwoTaskRaceSpec_decls : THEORY BEGIN
. . .
% Trajectory invariants
traj_invariant(a:(timepassageaction?))

(s:states):bool =
CASES a OF

nu_pre_report(delta_t,F): NOT reported(s),
nu_post_report(delta_t,F): reported(s)

ENDCASES
% Trajectory stopping conditions
traj_stop(a:(timepassageaction?))

(s:states):bool =
CASES a OF

nu_pre_report(delta_t,F):
fintime(now(s))=last_report(s),

nu_post_report(delta_t,F):
true

ENDCASES
% Trajectory evolve clauses
traj_evolve(a:(timepassageaction?))

(t:(fintime?),s:states):states =
CASES a OF

nu_pre_report(delta_t,F):
s WITH [now := now(s) + 1 * dur(t)],

nu_post_report(delta_t,F):
s WITH [now := now(s) + 1 * dur(t)]

ENDCASES
% Enabled
enabled(a:actions, s:states):bool = CASES a OF

nu_pre_report(delta_t,F):
(FORALL (t:(interval(zero,delta_t))):

traj_invariant(a)(F(t)))
AND (FORALL (t:(interval(zero,delta_t))):

traj_stop(a)(F(t)) => t = delta_t)
AND (FORALL (t:(interval(zero,delta_t))):

F(t) = traj_evolve(a)(t, s)),
nu_post_report(delta_t,F):

(FORALL (t:(interval(zero,delta_t))):
traj_invariant(a)(F(t)))

AND (FORALL (t:(interval(zero,delta_t))):
traj_stop(a)(F(t)) => t = delta_t)

AND (FORALL (t:(interval(zero,delta_t))):
F(t) = traj_evolve(a)(t, s)),

report: NOT reported(s)
AND now(s) >= first_report(s)

ENDCASES
% Transition function
trans(a:actions, s:states):states = CASES a OF

nu_pre_report(delta_t,F): F(delta_t),
nu_post_report(delta_t,F): F(delta_t),
report: s WITH [last_report := infinity,

reported := true,
first_report := 0]

ENDCASES
. . .
END TwoTaskRaceSpec_decls

Figure 9. TwoTaskRaceSpec trajectories in
TAME.

postconditions intrans are expressed identically, while
the details of the trajectories are captured in separate cases
in traj invariant , traj stop , andtraj evolve .

The TIOA-to-TAME translator transforms the TIOA
specification in Figure 10 of the forward simulation rela-
tion into the PVS theory in Figure 11 that asserts (as a the-
orem to be proved) the propertyforward simulation .
The theory in Figure 11 follows the TAME template for for-
mulating abstraction relations between automata described
in [24]. The theoryforward simulation imported in
Figure 11 just before the statement of the theorem provides
the generic definition of thepropertyforward simula-
tion stating what it means for a relation between two au-

6

forward s imu la t i on from TwoTaskRace to TwoTaskRaceSpec:
2 % a1,a2,b1,b2 are assumed to be the automata parameters by the translator

∀ a1: Real ∀ a2: Real ∀ b1: Real ∀ b2: Real
4 ∀ last_set: Real ∀ last_main: Real ∀ last_report: Real

(a1 > 0 ∧ a2 > 0 ∧ b1 ≥ 0 ∧ b2 > 0 ∧ a2 ≥ a1 ∧ b2 ≥ b1
6 ∧ last_set ≥ 0

∧ last_set = TwoTaskRace.last_set
8 ∧ last_main ≥ 0

∧ last_main = TwoTaskRace.last_main
10 ∧ last_report ≥ 0

∧ last_report = TwoTaskRaceSpec.last_report
12 ⇒

TwoTaskRace.reported = TwoTaskRaceSpec.reported
14 ∧ TwoTaskRace.now = TwoTaskRaceSpec.now

∧
16 (¬TwoTaskRace.flag ∧ last_main < TwoTaskRace.first_set

⇒
18 TwoTaskRaceSpec.first_report

≤
20 (min(TwoTaskRace.first_set, TwoTaskRace.first_main)

+
22 ((TwoTaskRace.count

+ ((TwoTaskRace.first_set - last_main) / a2))
24 * a1)))

∧
26 (TwoTaskRace.flag ∨ last_main ≥ TwoTaskRace.first_set

⇒ TwoTaskRaceSpec.first_report ≤
28 (TwoTaskRace.first_main + (TwoTaskRace.count * a1)))

∧
30 (¬TwoTaskRace.flag ∧ TwoTaskRace.first_main ≤ last_set

⇒
32 last_report

≥
34 (last_set

+
36 ((TwoTaskRace.count + 2

+ ((last_set - TwoTaskRace.first_main) / a1))
38 * a2)))

∧
40 (¬(TwoTaskRace.reported) ∧

(TwoTaskRace.flag ∨ TwoTaskRace.first_main > last_set)
42 ⇒ last_report ≥ (last_main + (TwoTaskRace.count * a2))))

Figure 10. Forward simulation from
TwoTaskRace to TwoTaskRaceSpec

TwoTaskRace2TwoTaskRaceSpec: THEORY BEGIN

IMPORTING TwoTaskRace_invariants
IMPORTING TwoTaskRaceSpec_invariants
timed_auto_lib: LIBRARY = "../timed_auto_lib"
MA: THEORY = timed_auto_lib@timed_automaton

:-> TwoTaskRace_decls
MB: THEORY = timed_auto_lib@timed_automaton

:-> TwoTaskRaceSpec_decls

amap(a_A:
{a: MA.actions |

visible?(a) AND NOT timepassageaction?(a)}):MB.actions =
CASES a_A of report: report ENDCASES

ref(s_A: MA.states, s_B: MB.states): bool =
FORALL (last_set: real):
FORALL (last_main: real):
FORALL (last_report: real):

a1>0 AND a2>0 AND b1>=0 AND b2>0 AND a2>=a1 AND b2>=b1
AND last_set >= 0
AND fintime(last_set) = last_set(s_A)
AND last_main >= 0
AND fintime(last_main) = last_main(s_A)
AND last_report >= 0
AND fintime(last_report) = last_report(s_B)

=>
reported(s_A) = reported(s_B)

AND now(s_A) = now(s_B)
AND (NOT flag(s_A) AND last_main < first_set(s_A) =>

first_report(s_B) <=
min(first_set(s_A), first_main(s_A)) +

count(s_A) + (first_set(s_A) - last_main)/a2*a1)
AND (flag(s_A) OR last_main >= first_set(s_A) =>

first_report(s_B) <= first_main(s_A) + count(s_A)*a1)
AND (NOT flag(s_A) AND first_main(s_A) <= last_set =>

last_report >= last_set + count(s_A) + 2
+ (last_set - first_main(s_A))/a1*a2)

AND (NOT reported(s_A)
AND (flag(s_A) OR first_main(s_A) > last_set)
=> last_report >= last_main + count(s_A) * a2)

IMPORTING timed_auto_lib@forward_simulation[MA, MB, ref,
(LAMBDA(a:MA.actions): timepassageaction?(a)),
(LAMBDA(a:{a:MA.actions|timepassageaction?(a)}):

dur(delta_t(a))),
amap]

fw_simulation_thm: THEOREM forward_simulation

END TwoTaskRace2TwoTaskRaceSpec

Figure 11. Simulation relation in TAME

0: invariant of TwoTaskRace:
a1 >= 0 /\ a2 > 0 /\ b1 >= 0 /\
b2 > 0 /\ a2 >= a1 /\ b2 >= b1

1: invariant of TwoTaskRace:
now >= 0

2: invariant of TwoTaskRace:
(now + b2) >= 0

3: invariant of TwoTaskRace:
flag => last_set = \infty

4: invariant of TwoTaskRace:
now >= 0 => last_main >= now

Figure 12. TwoTaskRace invariants 0–4.

;;; Proof lemma_4-1 for formula
;;; TwoTaskRace_invariants.lemma_4
;;; developed with shostak decision procedures
(""

(auto_induct)
(("1" ;; Base case

(const_facts)
;; Applying the facts about the constants:
;; a1 > 0 AND a2 > 0 AND b1 >= 0 AND
;; b2 > 0 AND a2 >= a1 AND b2 >= b1
(try_simp))

("2" ;; Case nu_traj(delta_t_action, F_action)
(apply_specific_precond)
;; Applying the precondition
;; (FORALL (t: (interval(zero, delta_t_action))):
;; traj_invariant(F_action(t)))
;; AND
;; (FORALL (t: (interval(zero, delta_t_action))):
;; traj_stop(F_action(t)) => t = delta_t_action)
;; AND
;; (FORALL (t: (interval(zero, delta_t_action))):
;; F_action(t) = traj_evolve(t, prestate))
(apply_traj_evolve "delta_t_action")
;; Using the fact that
;; F_action(delta_t_action) =
;; prestate WITH
;; [now := 1 * dur(delta_t_action) + now(prestate)]
(apply_inv_lemma "1")
;; Applying the lemma
;; now(prestate) >= 0
(deadline_reason "last_main(prestate)")
;; Reasoning that time cannot pass beyond
;; last_main(prestate)
(try_simp))

("3" ;; Case increment
(const_facts)
;; Applying the facts about the constants:
;; a1 > 0 AND a2 > 0 AND b1 >= 0 AND
;; b2 > 0 AND a2 >= a1 AND b2 >= b1
(try_simp))

("4" ;; Case decrement
(const_facts)
;; Applying the facts about the constants:
;; a1 > 0 AND a2 > 0 AND b1 >= 0 AND
;; b2 > 0 AND a2 >= a1 AND b2 >= b1
(try_simp))

("5" ;; Case report
(try_simp))))

Figure 13. Proof of TwoTaskRace invariant 4.

7

tomata to be a forward simulation. The proof of this prop-
erty for TwoTaskRace andTwoTaskRaceSpec makes
use of invariants of both automata.

The invariants ofTwoTaskRace andTwoTaskRace-
Spec needed for the forward simulation proof have all
been proved in TAME. The proofs of these invariants
are all quite simple; in fact, all of the invariants needed
for TwoTaskRaceSpec are proved automatically by the
TAME induction strategyauto induct . The proofs of
a few of the invariants forTwoTaskRace are interest-
ing because they illustrate the use of the new TAME strat-
egy deadline reason , which was not used in the in-
variant proofs forfischer . One such invariant is in-
variant 4 in Figure 12, whose TAME proof is shown in
Figure 13. Invariant 4 essentially says that in the TIOA
model of TwoTaskRace , the current timenow cannot
pass beyond the deadlinelast main . In this proof,
TAME has determined that the base case and four of the
five possible action cases are nontrivial. The crux of this
proof is the reasoning in the single time passage case,
namely, the action casenu traj(delta t ac tion .
After using (apply specific precondition) and
(apply traj evolve) to compute the state after time
delta t action and applying invariant 1 to establish
that now >= 0 at the beginning of the trajectory, the
new TAME step(deadline reason) argues thatnow
<= last main at the end of the trajectory. The step
(try simp) then completes the proof with “obvious rea-
soning”. The remaining cases are easily proved using “ob-
vious reasoning” following, in some cases, introduction of
facts about the constants in the specification.

TAME also provides strategies for establishing abstrac-
tion relations between automata, including forward simu-
lation. Forward simulation proofs have a high-level struc-
ture similar to the structure of induction proofs of in-
variants; however, rather than beginning with the proof
step auto induct , they begin with the proof step
prove fwd sim . For more details, see [24].

4.3 A simple timeout system

A simple timeout system consists of a sender, a delay
prone channel, and a receiver (see Figure 14 for its TIOA
description). The sender sends messages to the receiver,
within u1 time after the previous message has been sent.
A timed message Queue delays the delivery of each
message by at mostb time. A failure can occur at any time,
after which the sender stops sending. The receiver times out
after not receiving a message for at leastu2 time.

We are interested in proving the two following proper-
ties for this system: (1) Safety: A timeout occurs only after
a failure has occurred; (2) Timeliness: A timeout occurs
within u2 + b time after a failure. The safety property can
be captured by an invariant of the system. As in the two-

automaton timeout(u1, u2, b: Real)
2 where u1 ≥ 0 ∧ u2 ≥ 0 ∧ b ≥ 0 ∧ u2 > (u1 + b)

imports timed_queue
4 s i g n a t u r e

i n t e r n a l send(m: M)
6 i n t e r n a l receive(m: M)

output fail
8 output timeout

s t a t e s
10 p_clock: AugmentedReal : = 0,

t_clock: AugmentedReal : = u2,
12 suspected: Bool : = false,

failed: Bool : = false,
14 now: Real : = 0,

queue: timed_message_Queue : = mtQ
16 t r a n s i t i o n s

i n t e r n a l send(m)
18 pre now ≥ 0 ∧ ¬failed ∧ p_clock = now

e f f i f (now + u1) ≥ 0 then p_clock : = now + u1 f i ;
20 i f (now + b) ≥ latest_deadline(queue) then

queue : = enQ(MKtimed_message(m, now + b), queue)
22 f i ;

i n t e r n a l receive(m)
24 pre now ≥ 0 ∧ enQ_qn(queue) ∧ m = earliest_msg(queue)

e f f i f (now + u2) ≥ 0 then t_clock : = now + u2 f i ;
26 i f enQ_qn(queue) then queue : = deQ(queue) f i

output fail
28 pre ¬ failed

e f f failed : = true;
30 p_clock : = \infty

output timeout
32 pre now ≥ 0 ∧ ¬suspected ∧ t_clock = now

e f f suspected : = true;
34 t_clock : = \infty

t r a j e c t o r i e s
36 t r a j d e f traj

s top when now ≥ 0 ∧ (now = p_clock ∨ now = t_clock
38 ∨ now = earliest_deadline(queue))

evo lve d(now) = 1

Figure 14. TIOA description of timeout

vocabulary timed_queue
types M, timed_message_Queue, timed_message
operators

mtQ: -> timed_message_Queue
enQ_qn: timed_message_Queue -> Bool
deQ: timed_message_Queue -> timed_message_Queue
enQ: timed_message, timed_message_Queue

-> timed_message_Queue
MKtimed_message: M, Real -> timed_message
earliest_msg: timed_message_Queue -> M
earliest_deadline: timed_message_Queue

-> AugmentedReal
latest_deadline: timed_message_Queue -> Real
time_ordered: timed_message_Queue -> Bool
nthQ: timed_message_Queue, Nat -> M
lengthQ: timed_message_Queue -> Nat
deadline: M -> Real

Figure 15. TIOA declaration of custom data
types and operators used in timeout .

task race example, to show the timeliness, we first create
an abstract automaton that times out withinu2 + b time of
occurrence of a failure, and then we prove a forward sim-
ulation from the system to its abstraction. Both the safety
and timelines properties have been proved using the TAME
strategies in a manner analogous to the invariant and for-
ward simulation proofs in the previous examples, with one
extra complication: the need to introduce knowledge about
special data types referred to in the TIOA specifications.

The timeout system makes use of a custom data type
timed message queue . TIOA provides avocabula-
ry syntax to allow the user to declare custom data types

8

Queue[T:TYPE]: DATATYPE
BEGIN

mtQ: mtQ?
enQ(last:T, before_last:Queue): enQ?

END Queue

Queue_thy[T:type]: THEORY
BEGIN

IMPORTING Queue[T]

lengthQ(q:Queue): RECURSIVE nat =
IF mtQ?(q) THEN 0
ELSE lengthQ(before_last(q)) + 1 ENDIF

MEASURE reduce_nat(0, (LAMBDA (x:T), (n:nat): n+1));

deQ(q:(enQ?)): RECURSIVE Queue =
IF mtQ?(before_last(q)) THEN mtQ
ELSE enQ(last(q),deQ(before_last(q))) ENDIF

MEASURE lengthQ(q);

nthQ(q:(enQ?),
n:{i:nat| 0<=i & i<=lengthQ(q)-1}): RECURSIVE T =

IF n=0 THEN last(q) ELSE nthQ(before_last(q),n-1) ENDIF
MEASURE n;

. . .

END Queue_thy

timed_message_Queue_thy[M:TYPE] : THEORY
BEGIN

. . .

IMPORTING timed_message_thy[M]
IMPORTING Queue_thy[timed_message]
timed_message_Queue: TYPE = Queue[timed_message];

time_ordered(q:timed_message_Queue): bool =
FORALL (i: [upto(lengthQ(q) - 1)],

j: {n:nat | n >= i & n <= lengthQ(q)-1}):
deadline(nthQ(q,i)) >= deadline(nthQ(q,j));

END timed_message_Queue_thy

Figure 16. Sample PVS definitions of custom
data types and operators used in timeout .

and operators. Figure 15 shows how the data type for
timed message queue and the associated operators are
declared in TIOA. The actual PVS definitions of these types
and operators are provided as part of a TIOA library of data
type theories; Figure 16 shows a sample of these defini-
tions. Aside from the PVS operatorenQ? (which imple-
ments the TIOA operatorenQ qn for querying whether a
timed message queue is a nonempty queue), the PVS
vocabulary is identical to the TIOA vocabulary. Properties
of these data types have been proved in PVS, and have been
used in proofs of the specification properties.

5 Discussion

Developing theorem proving support. Our approach to
developing appropriate theorem proving support for TIOA
is to study many examples of TIOA specifications and their
properties and identify what is needed for implementing
a standard, straightforward set of proof steps sufficient to
mechanize proofs of the properties. One lesson we have
learned is that the details of the specification template that
a translator to PVS targets, if chosen carefully, can greatly
facilitate the implementation of PVS strategies. Details of
the TAME template for TIOA that have proved helpful for
strategy development include the overall scheme for repre-
senting trajectories illustrated in Figure 9 and the scheme
for representing the start state predicatestart(s) as an
equality of the forms = ... , possibly in conjunction

with additional restrictions (see, for example, Figure 4).
Another detail of our translation scheme is the use of sym-
bolic computation, if necessary, to permit the effects of tran-
sitions, which are defined in TIOA as the effect of a se-
quence of computations, to be represented intrans by
explicit updates to state variable. This allows the theorem
prover to reason directly about new state values of individ-
ual variables with less effort.

One goal in developing support for interactive theorem
proving is to find a minimal set of proof steps that are nat-
ural to use in high level reasoning and that are sufficient
(or nearly so) for mechanizing proofs of properties. Study-
ing many examples has helped us in this regard. For exam-
ple, we observed that many proofs included the observation
that time cannot pass beyond a given deadline unless some
discrete action occurs. This observation led us to include
dealine reason among our set of proof steps.

Mechanizing proofs. The theorem proving support we
are developing for TIOA does not make mechanizing proofs
of properties automatic, but it does make it simpler. A user
who wishes to prove properties of a TIOA specification us-
ing TAME must in general be a domain expert for the sys-
tem modeled in TIOA, and, usually, able to sketch out at a
high level why a property is expected to hold. To produce
a mechanical proof of the property, the user applies TAME
reasoning steps that match this high level reasoning.

While it is good to have a mechanical check of a proof’s
validity, it is equally important to have some feedback on
what went wrong if the mechanical check fails. For failed
proofs, TAME provides some useful feedback: the saved
TAME proof script can be used to detect the place in the
proof where the proof breaks down. The user can then re-
view the high level reasoning to see whether there is an error
or if introducing additional facts can complete the proof.

Scalability. We have begun experimentation with using
the TAME support for TIOA on larger examples. Our first
larger example is the Small Aircraft Traffic System protocol
SATS. An abstract model of this system has been defined
in [8]. An IOA version of this model has been represented
and verified in PVS [27]. We have used the TIOA-to-TAME
translator to represent the IOA model in TAME, and have
begun redoing the proofs using the TAME strategies.

The SATS example has raised an issue that is likely
to arise in many large examples: the use by specifiers of
multi-layered definitions of application-specific functions
and predicates. One way to manage the many definition
expansions for proof efficiency would be to expand them
in layers to allow reasoning to proceed at the highest pos-
sible layer. A goal for the translator is to generate “local
strategies” for a specific application that group definitions
by layer. A scheme of this sort is used in the SCR-to-TAME
translator to increase the efficiency of that TAME strategies
that support reasoning about SCR automata [3].

9

6 Related work

Previous work has been performed to develop tools
to translate specifications written in the IOA language to
the language of various theorem provers, for example,
Larch [6, 10], PVS [7], and Isabelle [28, 25]. Our imple-
mentation of the TIOA to PVS translator described in [19]
builds upon [6]. The target PVS specifications of this trans-
lator strongly resemble TAME specifications. In addition,
an early version of TAME’sdeadline reason strategy
was implemented as the PVS strategydeadline check
described in [19]. The TIOA-to-TAME translator is essen-
tially a version of the TIOA-to-PVS translator of [19] with
modifications that allow the straightforward implementa-
tion of new TAME strategies for TIOA and the most ef-
fective use of existing TAME strategies. In [12], a slightly
different approach usingurgency predicatesinstead of stop-
ping conditions or invariants to limit trajectories is used
to describe timed I/O automata. An approach to proving
invariant properties of timed I/O automata using urgency
predicates is described, but no tool support. A proposed de-
sign for supporting urgency predicates in the TIOA toolkit
is given in [4].

7 Conclusion

The TIOA framework is ultimately intended to sup-
port all phases of system development from specification,
through verification and validation, to implementation. In
this paper, we have focused on the usability of the TIOA
framework for modeling and mechanical verification of
properties of timed systems with both discrete and contin-
uous transitions. We have described the theorem proving
support provided, and illustrated how it is used in examples
where the properties of interest are invariant properties or
simulation properties, and where the models involve non-
trivial data types.

Our plan for the future is experiment with more complex
examples, such as SATS or DBHP (using models based on
the work described in [13]), to explore extensions and im-
provements to our proof support.

References

[1] R. Alur. Timed automata. InProc. 11th Intern. Conf. on Computer
Aided Verif. (CAV ’99), volume 1633 ofLect. Notes in Comp. Sci.,
pages 8–22. Springer-Verlag, 1999.

[2] R. Alur and D. L. Dill. A theory of timed automata.Theoretical
Computer Science, 126:183–235, 1994.

[3] M. Archer. TAME: Using PVS strategies for special-purpose the-
orem proving. Annals of Mathematics and Artificial Intelligence,
29(1-4):139–181, 2000. Published Feb., 2001.

[4] M. Archer. Basing a modeling environment on a general purpose
theorem prover. InProc. Monterey Wkshp. on Soft. Eng. Tools:
Compat. and Integr., Baden, Austria, Oct. 2004. To appear.

[5] M. Archer, C. Heitmeyer, and E. Riccobene. Proving invariants
of I/O automata with TAME. Automated Software Engineering,
9(3):201–232, 2002.

[6] A. Bogdanov, S. Garland, and N. Lynch. Mechanical translation of
I/O automaton specifications into first-order logic. InForm. Tech.s
for Networked and Distr. Sys. - FORTE 2002 : 22nd IFIP WG 6.1
Intern. Conf., pages 364–368, Texas, Houston, USA, Nov. 2002.

[7] M. Devillers. Translating IOA automata to PVS. Technical Report
CSI-R9903, Computing Science Institute, University of Nijmegen,
February 1999.

[8] G. Dowek, C. Muñoz, and V. Carre˜no. Abstract model of the SATS
concept of operations: Initial results and recommendations. Tech-
nical Report NASA/TM-2004-213006, NASA Langley Res. Ctr.,
Hampton, VA, 2004.

[9] S. Garland. TIOA User Guide and Reference Manual. Technical
report, MIT CSAIL, Cambridge, MA, 2006.
URL http://tioa.csail.mit.edu .

[10] S. Garland and J. Guttag. A guide to LP, the Larch prover. Technical
report, DEC Systems Research Center, 1991.
URL http://nms.lcs.mit.edu/Larch/LP .

[11] S. Garland, N. Lynch, J. Tauber, and M. Viziri. IOA User Guide
and Reference Manual. Technical Report MIT-LCS-TR-961, MIT
CSAIL, Cambridge, MA, 2004.

[12] B. Gebremichael and F. W. Vaandrager. Specifying urgency in
timed I/O automata. InProc. 3rd IEEE Intern. Conf. on Softw. Eng.
and Form. Meths. (SEFM 2005), pages 64–73, Koblenz, Germany,
September 5-9 2005. IEEE Comp. Soc.

[13] N. D. Griffeth and C. Djouvas. Experimental method for testing net-
works. InSoft. Eng. Research and Practice, pages 935–941, 2005.

[14] C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jeffords. Tools for
constructing requirements specifications: The SCR toolset at the
age of ten.Intern. J. on Computer System Science and Engineering,
20(1):19–35, January 2005.

[15] D. Kaynar, N. A. Lynch, R. Segala, and F. Vaandrager. A mathe-
matical framework for modeling and analyzing real-time systems.
In The 24th IEEE Intern. Real-Time Systems Symposium (RTSS),
Cancun, Mexico, December 2003.

[16] D. Kaynar, N. A. Lynch, R. Segala, and F. Vaandrager.The Theory
of Timed I/O automata. Ssynthesis Lectures on Computer Science.
Morgan Claypool Publishers, 2005.

[17] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell.In-
tern. J. on Software Tools for Tech. Transfer, 1(1-2):134–152, 1997.

[18] H. Lim. Translating timed I/O automata specifications for theorem
proving in PVS. Master’s thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA, 2006.
URL http://tioa.csail.mit.edu/ .

[19] H. Lim, D. Kaynar, N. Lynch, and S. Mitra. Translating timed
I/O automata specifications for theorem proving in PVS. InFor-
mal Modeling and Analysis of Timed Systems (FORMATS), pages
17–31, Uppsala, Sweden, Sept. 2005.

[20] V. Luchangco. Personal communication. 1996.
[21] N. Lynch and M. Tuttle. An introduction to Input/Output automata.

CWI-Quarterly, 2(3):219–246, Sept. 1989. Centrum voor Wiskunde
en Informatica, Amsterdam, Netherlands.

[22] N. Lynch and F. Vaandrager. Forward and backward simulations
– Part II: Timing-based systems.Information and Computation,
128(1):1–25, July 1996.

[23] M. Merritt, F. Modugno, and M. R. Tuttle. Time constrained au-
tomata. In J. C. M. Baeten and J. F. Goote, eds., CONCUR’91: 2nd
Intern. Conference on Concurrency Theory, vol. 527 ofLect. Notes
in Comp. Sci.Springer-Verlag, 1991.

[24] S. Mitra and M. Archer. PVS strategies for proving abstraction
properties of automata.Electronic Notes in Theor. Comp. Sci.,
125(2):45–65, 2005.

[25] L. C. Paulson.Isabelle: A Generic Theorem Prover, volume 828 of
Lect. Notes in Comp. Sci.Springer-Verlag, 1994.

[26] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert.
PVS Prover Guide, Version 2.4. Technical report, Comp. Sci. Lab.,
SRI Intl., Menlo Park, CA, Nov. 2001.

[27] S. Umeno and N. Lynch. Proving safety properties of an aircraft
landing protocol using I/O Automata and the PVS theorem prover:
A case study. Submitted. Long vers. to appear as an MIT T. R.

[28] T. N. Win. Theorem-proving distributed algorithms with dynamic
analysis. Master’s thesis, Massachusetts Institute of Technology,
Dept. of Electr. Eng. and Comp. Sci., May 2003.

10

