
Safety Verification of an Aircraft Landing

Protocol: A Refinement Approach�

Shinya Umeno and Nancy Lynch

CSAIL, Massachusetts Institute of Technology, Cambridge MA, USA
{umeno,lynch}@theory.csail.mit.edu

Abstract. In this paper, we propose a new approach for formal verifi-
cation of hybrid systems. To do so, we present a new refinement proof
technique, a weak refinement using step invariants. As a case study of
the approach, we conduct formal verification of the safety properties of
NASA’s Small Aircraft Transportation System (SATS) landing protocol.
A new model is presented using the timed I/O automata (TIOA) frame-
work [1], and key safety properties are verified. Using the new refinement
technique presented in the paper, we first carry over the safety verifica-
tion results from the previous discrete model studied in [2] to the new
model. We also present properties specific to the new model, such as
lower bounds on the spacing of aircraft in specific areas of the airspace.

1 Introduction

Hybrid systems are complex. In order to obtain a manageable mathematical
model of a real hybrid system, a certain level of abstraction needs to be taken.
A high-level abstraction of a system gives us a discrete state-transition model,
where timing-dependent and continuous behavior of a real system are abstractly
represented as discrete transitions. This high-level abstraction is particularly
useful for a system that has algorithmically complex behavior. For instance,
in [3], the initial start-up algorithm for the Time-Triggered Architecture [4] is
formally verified using such a high-level abstraction. An important question here
is whether the properties proved for the discrete abstraction hold for a real
system, or for a refined, more realistic model.

In this paper, we propose a new approach to formally verify a given hybrid
system. Basic concept of this approach is to use two levels of abstraction to
verify a given hybrid system. The low-level continuous model includes descrip-
tions of timing-dependent and continuous behavior, whereas in the high-level
discrete model, timing-dependent and continuous behavior are abstracted away.
Verification for these two models is done in the following steps.

1. First, the formal verification of the discrete model is conducted. This can be
done either by the invariant-proof technique, or a model-checking.

2. Next, to carry over verification results from the discrete model to the contin-
uous model, we prove a refinement from the continuous model to the discrete
model.

� This project is supported by Air Force Contract FA9550-04-C-0084.

A. Bemporad, A. Bicchi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 557–572, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

558 S. Umeno and N. Lynch

3. Finally, by using invariants carried over from the discrete model, we prove
safety properties in the continuous model. Some of these properties immedi-
ately follow from the invariants carried over. On the other hand, some other
properties can be expressed only in the continuous model, since they involve
time-dependent or continuous behavior.

We technically contribute to the second step in the above stated approach.
We often need some invariants of both the discrete model and the continuous
model to prove a refinement. To make use of the invariants of the discrete model
to larger extent than the existing techniques, we introduce a new refinement
technique, called a weak refinement using step invariants. This technique differs
from the existing techniques in that, by using this, we can use invariants of the
discrete model in order to prove invariants of the continuous model needed for
a refinement proof. Since we can assert the fact that invariants of the discrete
model also hold for the continuous model only after proving a refinement be-
tween them, using the existing techniques causes a circular reasoning. Our new
technique, a weak refinement using step invariants, resolves this problem.

As a case study of an application of the newly presented approach and refine-
ment technique, we conduct a safety verification of the aircraft landing protocol
that is part of NASA’s Small Aircraft Transportation System (SATS) concept of
operation [5]. Some formal verification studies for this protocol have been con-
ducted so far. In [6], Dowek, Muñoz, and Carreño presented a state-transition
model of the protocol. This model was a discrete model in that the airspace
of airport is divided into several logical zones, and movements of aircraft are
represented as discrete transitions Using this discrete model, safety verification
of the model was done in [6], using a model-checking. The safety properties
the authors model-checked were key upper bounds on the number of aircraft
in the specific divided zones. In [7], Muñoz and Dowek extended their previ-
ous work [6] by presenting a hybrid model of the protocol, in which aircraft
in a specific portion of the airspace of the airport exhibit continuous behav-
ior, but movements of aircraft in the remaining portion are still discretized.
Using this model, in [7], the authors verified key spacing properties of aircraft
in the continuous portion of the hybrid model, using symbolic model-checking
technique. We previously presented in [2] invariant-proof-style verification of the
discrete model presented in [6]. In doing so, we first re-constructed the discrete
model of [6] using an untimed I/O automata (IOA) framework, and verified key
safety properties model-checked in [6] by using the invariant-proof technique. The
proof for this case study has been mechanically checked using the PVS theorem
prover [8].

In this paper, we present a new model of the protocol, ContSATS, which
represents the continuous model in our new approach for this case study. This
model more realistically reflects the dynamics of aircraft movement in a real sys-
tem than the previous models presented in [6] and [7]. In contrast to the previous
models, our new model captures continuous movements of aircraft in the entire
airspace of the airport. The model is constructed using the timed I/O automata
(TIOA) framework [1]. This framework and the hybrid I/O automata (HIOA)

Safety Verification of an Aircraft Landing Protocol: A Refinement Approach 559

framework [9]1 have been used successfully to model several hybrid systems, such
as a helicopter controller [10], the Traffic Alert and Collision Avoidance System
[11] and a Lego car [12]. We first carry over the result from the discrete model
to ContSATS by proving a refinement, and then prove key spacing properties
of aircraft in ContSATS, which can be expressed by ContSATS, but not by
the discrete model.

This paper is organized as follows: In Section 2, we briefly explain the TIOA
framework, and introduce a new refinement technique. In Section 3, we quickly
review the discrete model of [6], and present key invariants of the model proved
in [2]. In Section 4, we introduce the new model ContSATS. Section 5 is devoted
to proving a refinement from ContSATS to the discrete model. In Section 6,
we present lower bounds on the spacing of aircraft in ContSATS. These are ob-
tained by using the results carried over from the discrete model by a refinement.
Finally, in Section 7, we summarize the results, and discuss some future work.

2 Timed I/O Automata Framework

In this section, we explain some basics of the timed I/O automata (TIOA) frame-
work [1]. In Section 2.2, we introduce a new refinement technique, a weak re-
finement using step invariants. We also present a theorem that states that this
refinement from automaton A to B implies that invariants of B also hold in A
in some specific sense.

2.1 Timed I/O Automata

A timed I/O automaton (TIOA) is a state transition machine with an extension
of continuous behavior. Every discrete transition is defined in a precondition-
effect style, and continuous behavior is defined using trajectories. A trajectory
is a partial function from a time to the current values of the state components
of the automaton. The domain of a trajectory must be some interval in the
time domain, and the size of the domain represents the duration that elapses
by that trajectory. A trajectory can be a point trajectory, whose domain is a
point [t, t], for some time t. The trajectories of an automata are specified by
the evolve and the stop when statement in the trajectory definition. In the
evolve statement, we state the rate of the value change of a real-time variable x
by differential equations or inequalities in terms of d(x), the first derivative of x.
Informally, the stop when statement specifies the time when we want the model
to perform some discrete transition. An execution fragment of an automata is
a (possibly infinite) alternating sequence of trajectories and discrete transitions
τ0a1τ1a2τ2... that satisfies the following three conditions: 1). Each trajectory
satisfies the constraints defined by the evolve and the stop when statements;
1 The latest version of the TIOA framework presented in [1] is the restricted version

of the HIOA framework in that external analog variables cannot be used for TIOA.
Since we do not have any analog variables in automata for our case study, the two
frameworks are intrinsically same in this study.

560 S. Umeno and N. Lynch

2). ai+1 is enabled in τi.lstate (the last state of trajectory τi); 3). ai+1 represents
the transition from τi.lstate to τi+1.fstate (the first state of trajectory τi+1). We
call an execution fragment an execution if it starts with one of the designated
start states. We say that state s is a reachable state if there is an execution α
such that α.lstate = s. Informally, the trace of an execution is the externally
visible part of the execution. More formally, it is the alternating sequence of the
duration that elapses by the trajectory and the external transitions, such that
each duration matches up the duration of the corresponding trajectory in the
execution, and all internal transitions are hidden.

Let A be a TIOA. QA denotes the set of the states of A. ΘA denotes the set
of the start states of A. reachable(A) denotes the set of the reachable states of
A. tracesA denotes the set of the the traces of A. An invariant of automaton A
is a predicate over QA that is satisfied for any s ∈ reachable(A). A step of A
starting with state s is an execution fragment of A starting with s that consists
of either one discrete transition surrounded by two point trajectories, or one
closed trajectory with no discrete transition.

2.2 Weak Refinement Using Step Invariants

A refinement is a proof technique that has been used to show trace inclusion
between two automata A and B (tracesA ⊆ tracesB). Informally, the above
stated trace inclusion tells us that the external behavior of A does not go beyond
what we expect from B. In some cases, we want to use invariants of automata
in a proof of a refinement. A weak refinement2 has been used for such cases.
These refinement techniques, and simulation relations (more general version of
refinements) are well studies in the computer science community, and several
kinds of such simulation techniques for TIOA are summarized in [13].

In some cases (as we will see in Section 5), we actually need invariants of B
in order to prove some invariants of A needed in the proof of a refinement from
A to B. Since we can assert the fact that invariants of B also hold for A only
after proving a refinement from A to B, we end up with circular reasoning if we
use an existing refinement technique. This is why we need our new technique, a
weak refinement using step invariants. Informally, our solution to this problem
is to prove only the inductive case of the invariant proof for such invariants
of A, assuming some additional conditions. In the following, we present a new
definition of invariants that captures the above informal discussion.

Definition 1. Let A be a TIOA. Let P1 and P2 be predicates over QA. We say
that P1 is a step invariant of A using P2, or simply a step invariant using P2

when A is obvious from the context, if, for any reachable state s of A and any
step α of A starting with s, the following condition holds.

P1(α.fstate) ∧ P2(α.fstate) ⇒ P1(α.lstate)

2 This usage of the term “weak” here comes from [13]. We use this term since we
have more assumptions (namely, invariants of automata) in some conditions of the
definition of this refinement, than an ordinary refinement.

Safety Verification of an Aircraft Landing Protocol: A Refinement Approach 561

That is, to show that P1 is a step invariant using P2, we prove only the step
condition of the invariant proof for P1, assuming the additional condition P2.
The following lemma easily follows from the definition of a step invariant.

Lemma 2. P1∧P2∧ ...∧Pn is a step invariant for automaton A using condition
Q if P1 is a step invariant of A using Q, and Pi, 2 ≤ i ≤ n, is a step invariant
of A using Q ∧ P1 ∧ ... ∧ Pi−1.

Now we define the new refinement. The main difference from the definition of
an ordinary weak refinement3 is that we assume an additional predicate P ∗ over
QA in the step condition (Conditions 2) of the refinement. This P ∗ must be a
step invariant using λs.PB(r(s))4, where PB is an invariant of B. This captures
the above informal discussion: since we need invariant PB of B in order to prove
that P ∗ is an invariant of A, we just require P ∗ to be a step invariant using
λs.PB(r(s)), invariant PB “adapted” to A using mapping r.

Definition 3. Let A and B be TIOA. Let PA be an invariant of A, and PB be
an invariant of B. Let r be a partial function from QA to QB. Let P ∗ be a step
invariant of A using λs.PB(r(s)).

We say that r is a weak refinement using PA, PB, and P ∗ if it satisfies the
following two conditions for all states xA and xB of A and B, respectively.

1. If xA ∈ ΘA then xA ∈ dom(r), r(xA) ∈ ΘB, and P ∗(xA) hold.
2. If α is a step of A, and α.fstate ∈ dom(r), and

PA(α.fstate) ∧ PB(r(α.fstate)) ∧ P ∗(α.fstate)

holds, then α.lstate ∈ dom(r) and B has a closed execution fragment β with
β.fstate = r(α.fstate), trace(β) = trace(α), and β.lstate = r(α.lstate).

We can prove the following soundness theorem for this new refinement technique.
A proof appears in the full version of this paper [14].

Theorem 4. Let A and B be TIOA and r be a weak refinement from A to B,
using PA, PB, and P ∗. Then tracesA ⊆ tracesB .

The existence of a refinement from A to B actually implies more than just trace
inclusion. Due to space limitation, we cannot present general theorems about
this close correspondence (they appear in [14]). Here we present one theorem
regarding invariants of automata.

Theorem 5. Let A and B be TIOA. Let r be a refinement, a weak refinement,
or a weak refinement using step invariants, from A to B. Let PB be an invariant
of B. Then, the predicate λs.PB(r(s)) is an invariant of A.
3 Due to space limitation, we cannot give the definition of an ordinary refinement or

that of a weak refinement in this paper. The definition appears in the full version of
this paper [14].

4 λs.PB(r(s)) is the function that, given s1 ∈ QA, returns PB(r(s1)).

562 S. Umeno and N. Lynch

Theorem 5 is used in Section 5 to carry over the invariants of the discrete model
that have been proved in [2] to our new continuous model presented in Section 4.

Related works: The new refinement introduced in this section has a flavor
of assume-guarantee reasoning, which has also been applied to hybrid systems
[15,16]. Assume-guarantee reasoning is used for compositional verification of a
system. When we verify a composed system S1||S2, instead of verifying S1 and
S2 separately, we sometimes want to assume some properties of the system to
be composed with. For example, to prove that S1 works correctly, we may have
to assume that S2 “well behaves” in some particular sense. Assume-guarantee
techniques allows us to have deduction rules that if S1 is correct assuming S2 well
behaves and S2 is correct assuming S1 well behaves, then, the composed final
system S1||S2 is correct. In contrast to the existing assume-guarantee techniques,
with our new technique, we can assume that the high-level abstraction behaves
correctly in order to prove that the low-level abstraction has invariants needed
to prove the refinement. To our best knowledge, we have not seen any other
technique that uses assume-guarantee reasoning in the above sense.

3 Discrete Model

A discrete state-transition model of the SATS landing protocol is presented in
[6]. In this model, the airspace of the airport is discretized, and every movement
of the aircraft is represented as a transition of the model. In [2], we reconstructed
the model using the I/O automata framework. Due to space limitation, we cannot
present a formal description of the discrete model. However, we present a formal
description of our new model in Section 4, and also discuss differences between
the discrete model and the new model in the same section.

Aircraft: An aircraft is defined as a tuple that has two attributes: the mahf
assignment, mahf, which will be explained shortly, of type Side (an enumeration
of left and right); and a unique ID, id.

Logical zones: In the discrete model, the airspace of the airport is logically
divided into 13 zones (see Fig. 1). Each zone is modeled as a first-in first-out
queue of aircraft. A movement of aircraft is represented by moving an aircraft
from the head of one queue to the end of another queue. We refer to the T-shaped
area consists of base(right), base(left), intermediate, and final as the approach area.
This area is where aircraft perform the final approach to the ground.

Landing sequence: When an aircraft enters the system, the system assigns its
leader aircraft, or the aircraft it has to follow. This leader relation is used in the
protocol as a guard that delays the aircraft’s final approach initiation for safe
landings: an aircraft cannot enter the approach area until its leader has done so.
In our discrete model, we encode this notion of the leader aircraft as an explicit
queue of aircraft, called the landing sequence. When an aircraft enters the logical
zones, it is also added to the end of the landing sequence, and is removed when
it finishes landing. We define the leader of aircraft a as the aircraft just in front
of a in the landing sequence.

Safety Verification of an Aircraft Landing Protocol: A Refinement Approach 563

holding3(right)

holding2(right)

holding3(left)

holding2(left)

base(right)base(left)

intermediate

final

runway

lez(left)lez(right)

maz(right) maz(left)

Fig. 1. 13 logical zones in
the discrete model

Lateral Entry

Vertical Entry

Fig. 2. Paths of aircraft

If mahf is right If mahf is left

Fig. 3. Paths of aircraft
that have missed the ap-
proach

Paths of aircraft: Here we present a high level picture of aircraft movements
in the logical zones. All movements are represented by transitions, which are
described in the precondition-effect style. A transition moves one aircraft from
one zone to another in a way that it satisfies the rules specified in the protocol.
The paths of aircraft are depicted in Fig. 2. An aircraft may miss the approach
to the ground at the final zone. In such a case, it goes back to a holding fix
(either holding3 or holding2), and makes the next try to land. An aircraft needs
to determine the side of the holding fixes to which it goes in case it misses
the approach. For this purpose, the assignment of the side, called the missed
approach holding fix (mahf) is given to an aircraft when it enters the system.
These paths of missed aircraft are depicted in Fig. 3.

Properties: In [6], some interesting properties of the discrete model that express
safe separation of aircraft are presented and are exhaustively checked using an
exhaustive exploration technique. In [2], using the invariant-proof technique,
we proved key safety properties presented in [6]. Here we review some of the
properties proved in [2]. The following condition Φ is defined as the conjunction
of the listed seven conditions. An auxiliary predicate on approach qn(σ) checks
if there is some aircraft assigned σ as its mahf in the approach area. In the rest
of the paper, we refer to the first condition of Φ by Φ.1, the second condition by
Φ.2, and so on. In Section 5.1, we present auxiliary invariants of the new model
that is needed to prove a refinement as a step invariant using this Φ. It is worth
to note here that, Conditions 3, 4, and 5 cannot be derived from the main safety
properties taken from [6], but are derived from auxiliary lemmas to prove the
main properties. Since we need these three conditions in Φ to prove a refinement
in Section 5.2, this indicates that, by proving these auxiliary invariants, the
assertional-style techniques give us more insight to how the system works, than
an exhaustive exploration.

Condition Φ

1. ∀σ : side, length(holding3(σ)) ≤ 1 ∧ length(holding2(σ)) ≤ 1
2. ∀σ : side, ¬empty qn(lez(σ)) ⇒

empty qn(holding2(σ)) ∧ empty qn(holding3(σ)) ∧ empty qn(maz(σ))
3. first(final) = first(landing seq)
4. ∀σ : side, (on approach qn(σ) ∧ ¬empty qn(maz(σ))) ⇒ empty qn(holding3(σ))

564 S. Umeno and N. Lynch

5. ∀σ : side, on approach qn(σ) ⇒ length(holding2(σ)) + length(holding3(σ)) ≤ 1
6. ∀σ : side, length(maz(σ)) ≥ 2 ⇒ empty qn(holding2(σ)) ∧ empty qn(holding3(σ))
7. ∀σ : side,¬empty qn(maz(σ))) ⇒ length(holding2(σ)) + length(holding3(σ)) ≤ 1

4 Our New Continuous Model

In this section, we present our new continuous model, ContSATS, which more
realistically reflects the dynamics of the aircraft movement in a real system than
the discrete model or the hybrid model presented in [7]. In the hybrid model of [7],
the movement of the aircraft in the approach area and the missed approach zones
is modeled as continuous behavior. These areas are modeled as abstract lines5

representing paths of aircraft on which aircraft continuously move according to
their velocity vectors. Now a discrete transition for aircraft in the approach area
and the maz zones is performed when an aircraft reaches the intersection points
of the lines, in order to reassign the line on which that aircraft move.

To describe continuous dynamics of aircraft in the entire airspace of the air-
port, we use the same strategy as used for the hybrid model of [7]: in ContSATS,
we model the paths of aircraft predetermined by the protocol as a collection
of lines, with aircraft moving on them according to their velocity. (see Fig. 4,
and compare it with Fig. 2 and 3). In the new model, analogous to the hybrid
model of [7], we use transitions to re-assign the line on which aircraft move.
The pre-determined paths in ContSATS include holding points (holding3hold
and holding2hold in Fig. 4), where aircraft hover until the condition for the next
procedure (transition) is satisfied.

holding3hold(left)

holding2hold(left)

These two end points coincide.
We did not depict them in the same
picture to avoid a complication.

The missed paths for the right
side is analogously defined

base(right)lez(right)

maz(left)

holding3ma(left)

holding2ma(left)
holding3dec(left)

()

intermediate

final

Fig. 4. Our new continuous model: ContSATS

4.1 Formal Specification for ContSATS

In this subsection, we present formal code for ContSATS, written in the TIOA
specification language [17]. We explain auxiliary constants and functions first.

The line on which a specific aircraft currently moves is specified by a new
attribute of aircraft, line. We use the prefix “LINE ” for the line names; for
example, the final zone as a line is represented as LINE final. The position of
5 These lines forms “trajectories” of aircraft flying on the pre-determined paths. How-

ever, we avoid using the term “trajectories”, and instead use “lines”, since the term
is also used in the TIOA framework and thus two usages may confuse the reader.

Safety Verification of an Aircraft Landing Protocol: A Refinement Approach 565

a specific aircraft in the line is specified by another new attribute of aircraft,
pos. Using both the line value and pos value of a particular, we can uniquely
determine on which line, and at what position in that line that aircraft is now.

Another new attribute of aircraft is t, which is used to express a time bound for
some specific transitions to be performed. When one of the designated transitions
becomes enabled, the aircraft a corresponding to that transition (the aircraft that
will move by the transition) has its t value set to the current value of now. By the
stop when clause in the trajectory definition, ContSATS is guaranteed to fire
the transition corresponding to aircraft a either before or at the time the value of
now−a.t reaches the pre-determined time bound for that transition. T3, T2, and
TTax represents the time bounds for StartDescending, VerticalApproachInitiation,
and Taxiing, respectively. We use function T that maps the name of a zone to
the above specified time bounds for aircraft in that zone. We set t of aircraft
outside of the holding zones or of the runway to −1, indicating that a timer is
not set for those aircraft.

For simplicity, we assume that the lines are exactly symmetric on the right
and left sides of the airport. L3dec, L3ma, LB, LI, LF, and LM respectively represents
the lengths of holding3dec, holding3ma, base, intermediate, final, and maz. We use
the function L to represent the length of the line for a given line. We denote by
LT the length aircraft fly in the entire approach area, that is, LB + LI + LF. We
use the function D to represent the distance a specific aircraft has flown in the
approach area, and then in the missed approach zone; for example, if aircraft a is
in final, D(a) = LB+LI+a.pos, and if a is in maz(σ), D(a) = LB+LI++LF+a.pos.
If an aircraft is not in the approach area nor in the missed approach zones, the
D function returns 0.

The velocity of the aircraft is bounded by some constants. This constraint is
specified in the evolve statement in the trajectory definition.

We present formal code for ContSATS in the following. Due to space limita-
tion, we only show the definitions of three transitions (VerticalApproachInitiation,
MissedApproach, and LowestAvailableAltitude), and the trajectory definition. The
full specification appears in [14]. The above three transitions are chosen because
of the following three reasons. 1: VerticalApproachInitiation is one of the most
interesting transitions, which represents an initiation of the aircraft’s final ap-
proach to the ground. The precondition of the transition represents the guard so
that an aircraft cannot initiate its approach until its leader has done so and the
separation between the aircraft and its leader becomes at least S0. 2: MissedAp-
proach is also an interesting transition, which represents missed approaches of
aircraft. As we can see from the precondition, this transition is preformed nonde-
terministically whenever an aircraft reaches the end point of the final line (a.pos
= LF). 3: In addition to the extra structure needed to represent the continu-
ous behavior (such as now, pos, or the trajectory definition), we also modified
three transitions inherited from the discrete model, in order to more faithfully
represent a real system (how we modified them is explained in [14]). These are
LowestAvailableAltitude, Landing, and HoldingPatternDescend. Due to this mod-
ification, we need some nontrivial auxiliary invariants of ContSATS to prove

566 S. Umeno and N. Lynch

a refinement from ContSATS to the discrete model. As we will see in Section
5.1, these invariants are proved as step invariants using Φ (Corollary 7). In this
paper, we focus on LowestAvailableAltitude among the three transitions.

We use three effects set pos, set line, and set t to re-assign the pos, line, and t
attributes of aircraft, respectively. The code of the automaton imports a vocabu-
lary, ContSatsVocab, where auxiliary functions used in ContSATS are defined.
We do not have a space to explain all these functions (it appears in [14]), but
will explain those we need for the lemma statement and the proof. leader(a, land-
ing seq) represents the leader of aircraft a in the landing sequence. The predicate
on approach qn(a) where a is an aircraft checks if a is in the approach area. The
predicate on approach qn(σ) where σ is a side checks if there is some aircraft
assigned to σ as its mahf in the approach area. The predicate on zone qn(z, a)
checks if aircraft a is in zone z.
——————————————————————————————————
automaton ContSATS

imports ContSatsVocab

%% All original discrete transitions are considered as the output transitions.
%% We added four new internal transitions, as well as the trajectory definition.
signature
output

VerticalEntry(ac:Aircraft, id:ID, side:Side), LateralEntry(ac:Aircraft, id:ID, side:Side),
HoldingPatternDescend(ac:Aircraft,side:Side), VerticalApproachInitiation(ac:Aircraft,side:Side),
LateralApproachInitiation(ac:Aircraft,side:Side), Merging(ac:Aircraft,side:Side),
Exit(ac:Aircraft), FinalSegment(ac:Aircraft), Landing(ac:Aircraft), Taxiing(ac:Aircraft),
MissedApproach(ac:Aircraft), LowestAvailableAltitude(ac:Aircraft,side:Side),

internal
StartHolding2(ac:Aircraft,side:Side), StartHolding3(ac:Aircraft,side:Side),
StartDescending(ac:Aircraft,side:Side), SetTime

states
zones : zone map, % mapping from a zone name to a zone
nextmahf : Side, % Next missed approach holding fix
landing seq : Zone % landing sequence is defined as a queue
now : AugumentedReal % the time elapsed from the initial state
initially

zones = initialZones ∧ nextmahf = right ∧ landing seq = empty ∧ now = 0

%% Definitions of auxiliary functions are not shown in this code due to space limitation.

transitions
output VerticalEntry(a, id, side)

output LateralEntry(a, id, side)

internal StartDescending(a, side)

output HoldingPatternDescend(a, side)

output VerticalApproachInitiation(a, side)
pre ¬(empty qn(holding2(side))) ∧

a = first(holding2(side)) ∧
length(base(opposite(side))) ≤ 1 ∧
(first in seq qn(a) ∨

(on approach qn(leader(a,landing seq)) ∧
D(leader(a,landing seq)) ≥ S0))

eff set line(a, AC base(side)); set pos(a, 0);
set t(a, -1);
zones := move(holding2(side),base(side),zones)

output LateralApproachInitiation(a, side)

internal SetTime

output Merging(a, side)

output Exit(a)

output FinalSegment(a)

output Landing(a)

output Taxiing(a)

output MissedApproach(a)
pre ¬(empty qn(final)) ∧ ¬(empty qn(landing seq))
∧ a = first(final) ∧ a.pos = LF

eff set line(a, AC maz(a.mahf)); set pos(a, 0)
zones:= assign(zones, final, rest(final));
zones:= assign(zones, maz(a.mahf),

add(maz(a.mahf),reassign(a)));
landing seq := add(rest(landing seq),reassign(a));
nextmahf := opposite(reassign(a).mahf);

Safety Verification of an Aircraft Landing Protocol: A Refinement Approach 567

output LowestAvailableAltitude(a, side)
pre ¬(empty qn(maz(side))) ∧

a = first(maz(side)) ∧ a.pos = LM;
eff IF empty qn(holding3(side)) ∧

empty qn(holding2(side))
THEN set line(a, AC holding2ma(side));

set pos(a,0);
zones := move(maz(side),holding2(side),zones);

ELSE set line(a, AC holding3ma(side));
set pos(a,0)

zones := move(maz(side),holding3(side),zones);
FI

internal StartHolding3(a, side)

internal StartHolding2(a, side)

trajectories
stop when

(∃ a:Aircraft,
(∃ z:Zone, on zone qn(z, a)) ∧
a.pos ≥ L(a.line))

∨ (∃ a:Aircraft,
(∃ z:Zone, on zone qn(z, a)) ∧
a.t 	= −1 ∧ now − a.t ≥ T(a.line))

∨ (∃ a:Aircraft,
(∃ z:Zone, on zone qn(z, a)) ∧
((a.line = holding2L ∨ a.line = holding2R)∧

a.t = −1 ∧ ¬first in seq qn(a) ∧
on approach qn(leader(a,landing seq)) ∧
D(leader(a,landing seq)) = S0))

evolve
d(now) = 1
∀ a: Aircraft
IF (a.line=holding3decL ∨ a.line=holding3decR)
THEN (Vd min ≤ d(a.pos) ≤ Vd max)
ELSE (Vmin ≤ d(a.pos) ≤ Vmax) FI

——————————————————————————————————

In order to obtain a refinement, we have to assume the following condition:
(L3ma

Vmin
+ T3 + L3dec

Vd min
)Vmax < LT + LM. This is used in the refinement proof in the

case of the LowestAvailableAltitude transition.

5 Carrying over the Results from the Discrete Model
Using a Refinement

In [2], we formally verified the safe separation of aircraft in the discrete model,
by proving bounds on the number of aircraft in the logical zones. If we can carry
over these results to ContSATS, the properties carried over tell us important
spacing properties in ContSATS. For example, from the property that there
is at most one aircraft in one holding3(σ), we can guarantee that two aircraft
would never get close in the holding3 line in ContSATS. On the other hand,
we cannot guarantee spacing properties of two aircraft on two adjacent lines
from the properties of the discrete model. Some of these properties are actually
proved as auxiliary lemmas for the refinement. We also examine several spacing
properties in Section 6.

To make the discrete model (an ordinary IOA) comparable to ContSATS (a
TIOA), we first construct ExtSATS, a natural extension of the discrete model
to a TIOA. This extension can be done in the following generic way: Given an
ordinary IOA A, we construct A′ that is an timed extension (TIOA version)
of A. First, in A′, we add a new now state component to A which evolves at
rate 1 (d(now) = 1). There is no stop when statement for A′, and all discrete
transitions are exactly the same as before the extension. From this straightfor-
ward extension, it is easy to see that all invariants of A are also invariants of A′.
From Theorem 5, if we prove a refinement from ContSATS to ExtSATS, any
invariant of ExtSATS is guaranteed to be an invariant of ContSATS.

568 S. Umeno and N. Lynch

One straightforward refinement mapping to consider (and actually the one
we use for the refinement proof) is the following mapping r from a state of
ContSATS to a state of ExtSATS: for all s ∈ QContSATS, r(s) = t such that

zones equal(s.zones, t.zones) ∧ s.nextmahf = t.nextmahf ∧
queue equal(s.landing seq, t.landing seq) ∧ t.now = s.now,

where zones equal and queue equal represent the equalities for two zone maps
and two aircraft queues, respectively, defined by ignoring the new attributes
of aircraft in ContSATS, such as pos (formal definitions appear in [14]). This
mapping r maps a state of ContSATS to a state of ExtSATS so that every
component of the state of ContSATS matches the corresponding component of
the state of ExtSATS. Note that such a state r(s) in ExtSATS is uniquely
determined for every state s of ContSATS, since the above conditions specify
all components of ExtSATS.

It turns out that we have to use a weak refinement using step invariants
introduced in Section 2.2 for this mapping r. This is because in order to prove
some invariants of ContSATS needed to prove a refinement, we actually need
some invariants of ExtSATS that have been verified.

5.1 Auxiliary Invariants

In this subsection, we present the auxiliary invariants needed for the refinement
proof. Due to space limitation, we cannot present a proof for these auxiliary
invariants (it appears in [14]). We use Condition Φ defined in Section 3 as a
state proposition of ContSATS.

Lemma 6. Consider the following conditions A1, A2, B, C1, and C2.
(A1) : ∀a, b : Aircraft,∀σ : side, on approach qn(a)∧

a.mahf = σ ∧ on zone qn(holding3(σ), b) ⇒ (1) ∧ (2) ∧ (3)

(1) b.line = LINE holding3ma(σ) ⇒ D(a) ≤ b.pos
Vmin

· Vmax.

(2) b.line = LINE holding3hold(σ) ⇒ D(a) ≤ (L3ma
Vmin

+ (now − b.t)) · Vmax.

(3) b.line = LINE holding3dec(σ) ⇒ D(a) ≤ (L3ma
Vmin

+ T3 + b.pos
Vd min

) · Vmax.

(A2) : ∀a, b : Aircraft,∀σ : side, on zone qn(maz(σ), a)∧
on zone qn(holding3(σ), b) ⇒ (1) ∧ (2) ∧ (3)

(1) b.line = LINE holding3ma(σ) ⇒ D(a) ≤ b.pos
Vmin

· Vmax.

(2) b.line = LINE holding3hold(σ) ⇒ D(a) ≤ (L3ma
Vmin

+ (now − b.t)) · Vmax.

(3) b.line = LINE holding3dec(σ) ⇒ D(a) ≤ (L3ma
Vmin

+ T3 + b.pos
Vd min

) · Vmax.

(B) : ∀a : Aircraft, ∀σ : side,

(on zone qn(holding3(σ)) ∧ a.line = LINE holding3dec(σ)) ⇒ empty qn(holding2(σ)).

(C1) : ∀a : Aircraft, (on approach qn(a) ∧ ¬first in seq qn(a)) ⇒
D(leader(a, landing seq)) − D(a) ≥ S0 − D(leader(a,landing seq))−S0

Vmin
(Vmax − Vmin).

(C2) : ∀a, b : Aircraft, (on zone qn(runway, a) ∧ on approach qn(b)) ⇒
now − a.t ≥ D(b)−(LT−ST)

Vmax

Safety Verification of an Aircraft Landing Protocol: A Refinement Approach 569

The following conditions hold:

1. A1, B, and C1 are step invariants using Φ.
2. A2 is a step invariant using Φ and A1.
3. C2 is a step invariant using Φ and C1.

From Lemmas 2 and 6, we have the following corollary.

Corollary 7. The conjunction A1 ∧A2 ∧B ∧C1 ∧C2 forms a step invariant of
ContSATS using Φ.

Conditions A2, B, and C2 are used in the refinement proof (Theorem 8) for
transitions LowestAvailableAltitude, HoldingPatternDescend, and Taxiing, respec-
tively. Recall that these three transitions are modified from those in the original
discrete model, so that ContSATS more realistically models a real system. This
is why we need these nontrivial conditions A2, B, and C2 in the refinement
proof, in order to show that the modified transitions of ContSATS matches
with the original transitions of the discrete model. In the proof sketch of Theo-
rem 8, we demonstrate how A2 is used in the case of LowestAvailableAltitude in
the refinement proof.

5.2 Refinement Proof

Now we prove a refinement from ContSATS to ExtSATS. We use the mapping
r defined in the beginning of Section 5. We use InvCont, some auxiliary invariants
of ContSATS proved in [14], and InvExt, invariants of the discrete model (and
thus of ExtSATS) proved in [2]. We use A1∧A2∧B∧C1∧C2 as a step invariant
using InvExt (since InvExt implies Φ).

Theorem 8. The function r is a weak refinement from ContSATS to ExtSATS
using InvCont, InvExt, and A1 ∧ A2 ∧ B ∧ C1 ∧ C2.

Proof sketch: Condition 1 is easy to prove.
Condition 2: Suppose α is a step of A. We refer to α.fstate as s and α.lstate as s′

in the following. It is easy to see that s′ ∈ dom(r) since r is a total function. We
also assume invariants of ContSATS, Conditions Φ, and A1 ∧A2 ∧B ∧C1 ∧C2

hold in s. We demonstrate how a proof goes for Condition 2 by proving the case
of the LowestAvailableAltitude(σ) transition. We use Condition A2 for this case.

Suppose α consists of one LowestAvailableAltitude(σ) transition. From the pre-
condition of the transition, there is at least one aircraft in maz(σ) in s, and thus
also in r(s). It follows that LowestAvailableAltitude(σ) is enabled in r(s), and
thus an execution fragment β of ExtSATS starting with r(s) that consists of
one LowestAvailableAltitude(σ) is a valid execution fragment of ExtSATS. It is
easy to see trace(α) = trace(β). Now we prove β.lstate = r(s′). If holding3(σ)
is empty in s, LowestAvailableAltitude(σ) actually has the exact same effects
in ContSATS and ExtSATS (see [14]). Hence it is sufficient to prove that
holding3(σ) is empty in s. From the precondition, there is an aircraft a such that

570 S. Umeno and N. Lynch

a.pos = LM, and a.line = LINE maz(σ). From Condition A2 and an invariant of
ContSATS: ∀b : Aircraft, b.pos ≤ L(b.line) (this can be easily proved by induc-
tion), if holding3(σ) is not empty, then a.x = LM ≤ (L3ma

Vmin
+T3 + L3dec

Vd min
)Vmax −LT.

This contradicts the assumption that (L3ma

Vmin
+ T3 + L3dec

Vd min
)Vmax < LT + LM. �

From Theorems 8 and 5, we have the following corollary.

Corollary 9. Let P be an invariant of ExtSATS. Then λs.P (r(s)) is an in-
variant of ContSATS.

6 Spacing Properties of Aircraft in ContSATS

In the previous section, by using a refinement technique, we proved as Corollary
9 that all invariants of the discrete model of SATS that have been proved in [2]
are also invariants of ContSATS. For example, from Φ.1 (the number of aircraft
in each vertical fix is at most one), we can guarantee two aircraft would never
get close in holding2 and holding3 zones in ContSATS. This kind of spacing
properties of ContSATS are derivable from the invariants of the discrete model,
and they express the safe separation of aircraft in one specific zone (represented
by a line in ContSATS). However, one might be interested in the safe separation
of aircraft in two consecutive zones. In this section, we conclude the analysis
of safe separation properties for ContSATS in this paper, by presenting such
spacing properties for all pairs of consecutive zones in ContSATS. The spacing
between two aircraft is defined as the distance of the two aircraft with respect
to the pre-determined paths of ContSATS.

holding3dec(right)

base(right)lez(right)

holding3ma(left)

holding2ma(left)

maz(left)

S(H3,B)

S(L,B) ST

S(T,M)

SM

S(M,H3)

S(M,H2)

’

holding2hold(right)
S(H3,B) L3dec − L3dec

Vmaz
(Vmax − Vmin)

S(L,B) Ll − Ll
Vmaz

(Vmax − Vmin)

ST S0 − LT−S0
Vmin

(Vmax − Vmin)

S(T,M) S0 − LT
Vmax

(Vmax − Vmin)

S′
M 2S0 − (LT + LM − S0)Δ

S(M,H2) (1 + Vmin
Vmax

)S0 − Vmax−Vmin
Vmax

(LT + LM)

S(M,H3) LM + LT − L3maΔ.

Fig. 5. Lower bounds on the spacing of aircraft in two consecutive zones in ContSATS

An overview of the spacing properties of aircraft in two consecutive zones
that we have proved in [14] is depicted in Figure 5. Each bi-directional arrow in
the picture represents a lower bound on the spacing of aircraft. We have proved
these properties by induction over the length of the execution of ContSATS. To
do so, we used invariants carried over from the discrete model to ContSATS,
by Corollary 9. Among these spacing properties, ST and S′

M are the ones model-
checked in [7] (we actually obtained a better bound for S′

M than [7], using some
reasonable assumption stated in [14]).

Safety Verification of an Aircraft Landing Protocol: A Refinement Approach 571

7 Conclusion

In this paper, we presented a new approach to verify a given hybrid system.
For the new approach, we introduced a new refinement proof technique, a weak
refinement using step invariants. To demonstrate how the approach can be used,
we conduct formal verification of NASA’s SATS aircraft landing protocol. We
believe that this approach is highly applicable to other hybrid systems as well.
Proving the soundness of the abstraction used in [3] for a start-up algorithm of
TTA by this approach appears one possible interesting future work.

Acknowledgment. we thank anonymous reviewers for their fruitful comments
on an earlier version of this paper.

References

1. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O
Automata. Synthesis Lectures on Computer Science. Morgan & Claypool Publish-
ers (2006)

2. Umeno, S., Lynch, N.: Proving safety properties of an aircraft landing protocol
using I/O automata and the PVS theorem prover: a case study. In: FM 2006:
Formal Methods. Volume 4084 of Lecture Notes in Computer Science., Hamilton,
Ontario Canada (2006) 64 – 80

3. Steiner, W., Rushby, J., Sorea, M., Pfeifer, H.: Model Checking a Fault-Tolerant
Startup Algorithm: From Design Exploration To Exhaustive Fault Simulation. In:
Proc. of the 2004 International Conference on Dependable Systems and Networks,
Florence, Italy, IEEE Computer Society (2004) 189–198

4. Kopetz, H., Bauer, G.: The time-triggered architecture. Proceedings of The IEEE
91; PART 1 (2003) 112–126

5. T.Abbott, Jones, K., Consiglio, M., Williams, D., Adams, C.: Small Aircraft Trans-
portation System, High Volume Operation concept: Normal operations. Tech-
nical Report NASA/TM-2004-213022, NASA Langley Research Center, NASA
LaRC,Hampton VA 23681-2199, USA (2004)

6. Dowek, G., Muñoz, C., Carreño, V.: Abstract model of the SATS concept of
operations: Initial results and recommendations. Technical Report NASA/TM-
2004-213006, NASA Langley Research Center, NASA LaRC,Hampton VA 23681-
2199, USA (2004)

7. Muñoz, C., Dowek, G.: Hybrid verification of an air traffic operational concept.
In: Proceedings of IEEE ISoLA Workshop on Leveraging Applications of Formal
Methods, Verification, and Validation, Columbia, Maryland (2005)

8. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification sys-
tem. In Kapur, D., ed.: 11th International Conference on Automated Deduction
(CADE). Volume 607 of Lecture Notes in Computer Science., Saratoga, NY (1992)
748 – 752

9. Lynch, N., Segala, R., Vaandraager, F.: Hybrid I/O automata. Information and
Computation 185(1) (2003) 105–157

10. Mitra, S., Wang, Y., Lynch, N., Feron, E.: Safety verification of model helicopter
controller using hybrid Input/Output automata. In: HSCC’03, Hybrid System:
Computation and Control, Prague, the Czech Republic (2003)

572 S. Umeno and N. Lynch

11. Livadas, C., Lygeros, J., Lynch, N.A.: High-Level Modeling and Analysis of the
Traffic Alert and Collision Avoidance System (TCAS). Proceedings of the IEEE,
Special Issue on Hybrid Systems: Theory & Applications 88(7) (2000) 926–948

12. Fehnker, A., Zhang, M., Vaandrager, F.: Modeling and verifying a lego car using
hybrid I/O automata. In: Third International Conference on Quality Software
(QSIC 2003), Dallas, Texas, USA, IEEE Computer Society Press (2003)

13. Lynch, N., Vaandrager, F.: Forward and backward simulations – part II: Timing-
based systems. Information and Computation 128(1) (1996) 1 – 25

14. Umeno, S.: Proving safety properties of an aircraft landing protocol using timed
and untimed I/O automata: a case study. Master’s thesis, Massachusetts Institute
of Technology, Cambridge, MA (2006)

15. Henzinger, T.A., Minea, M., Prabhu, V.: Assume-guarantee reasoning for hierar-
chical hybrid systems. In: Proc. of HSCC’01, Hybrid Systems: Computation and
Control. Volume 2034 of Lecture Notes in Computer Science. (2001) 275 – 290

16. Frehse, G., Han, Z., Krogh, B.: Assume-guarantee reasoning for hybrid I/O-
automata by over-approximation of continuous interaction. In: CDC 2004: IEEE
Conference on Decision and Control. (2004)

17. Garland, S.: TIOA User Guide and Reference Manual. (2005)

	Introduction
	Timed I/O Automata Framework
	Timed I/O Automata
	Weak Refinement Using Step Invariants

	Discrete Model
	Our New Continuous Model
	Formal Specification for ContSATS

	Carrying over the Results from the Discrete Model Using a Refinement
	Auxiliary Invariants
	Refinement Proof

	Spacing Properties of Aircraft in ContSATS
	Conclusion

