I|I'I- Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2008-048 October 19,2008

Event Order Abstraction for Parametric
Real-Time System Verification
Shinya Umeno

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

Event Order Abstraction for
Parametric Real-Time System Verification

Shinya Umeno
Computer Science and Atrtificial Intelligence Laboratory,
Massachusetts Institute of Technology,
32 Vassar St, Cambridge MA, 02139, USA

Abstract

We present a new abstraction technigexent order abstractio(EOA), for parametric safety verification of
real-time systems in which “correct orderings of events” neededyRiem correctness are maintained by timing
constraints on the systems’ behavior. By using EOA, one can sepagatasthof verifying a real-time system
into two parts: 1. Safety property verification of the system given that corsect event orderings occur; and 2.
Derivation of timing parameter constraints for correct orderings efievin the system.

The user first identifies a candidate set of bad event orders. Thesijrg ordinary untimed model-checking,
the user examines whether a discretized system model in which all timiisgraoms are abstracted away satisfies
a desirable safety property under the assumption that the identified éaicbeders occur in no system execution.
The user uses counterexamples obtained from the model-checkemtiyigelditional bad event orders, and
repeats the process until the model-checking succeeds. In this stegethebtains a sufficient set of bad event
orders that must be excluded by timing synthesis for system corrsctnes

Next, the algorithm presented in the paper automatically derives a set oftpanameter constraints under
which the system does not exhibit the identified bad event orderingm this step combined with the untimed
model-checking step, the user obtains a sufficient set of timing paraowistraints under which the system
executes correctly with respect to a given safety property.

We illustrate the use of EOA with a train-gate example inspired by the gerdrabid crossing problem [13].
We also summarize three other case studies, a biphase mark protod&Ef#d 394 root contention protocol,
and the Fischer mutual exclusion algorithm.

1 Introduction

In a typical real-time system, timing constraints on thei@ygs behavior are used to ensure its correctness. Such
a system is often modeled by using a setiofing parametersrather than using concrete timing constants (for
example, [25, 27, 13]). These parameters specify, foriretabounds on the duration between two specific events
in a system execution or certain delays, such as messagergid¢lmes.

Typically, only a subset of possible parameter combinatiorthe entire parameter space satisfies correctness
of such a system. A verification engineer or researcher &jlgifollows one of the following two approaches to
formally verify such a system: 1.Fixed-parameter verificationBy fixing all timing parameters in the system,
he/she reduces the system model to a more tractable one sachAur-Dill timed automaton [1] and model-
checks the reduced system (using UPPAAL [20] or KRONOS [88]instance [12, 6, 22]); or 2.Parametric
verification) he/she treats the timing parameters as uninterpretedasissfinds an appropriate set of constraints
for the parameters, and manually proves or mechanicallgisheorrectness under the constraints [25, 31, 34].

The second approach is attractive in the sense that if welitaina positive verification result by this approach,
then we have a concrete set of constraints on the timing paemsfor the system to be correct, and may give an
implementation engineer more freedom of choice, than fpa@meter verification.

The user can experiment with several instances of the firsfioation approach using multiple parameter
combinations, and then can try to figure out possible cdicgla between parameters in order for the system to be

*This work is supported by NSF Award 0702670. The confereresion of this report will appear in proceedings of EMSOFD2(B0].

correct (for example, [27] uses this approach). Howevesegtexperiments by themselves never become exhaustive
if the number of possible parameter combinations is infi(fite example, a parameter can be real-valued, or an
integer but unbounded). Thus we need a more intelligentogaprfor completely parametric verification.

Another important challenge, in addition to time-paranceterification, istiming synthesisf a time-parametric
model. For timing synthesis, one tries to derive, in a syat@mvay, a sufficient set of timing parameter constraints
under which the system executes correctly. Automatic isynthesis is considered to be an even harder problem
than automatic time-parametric verification since an atlgor or a tool is not a priori given a set of timing con-
straints by the user, but has to derive constraints by itetlassical undecidability result about parametric timed
automata by Alur et al. [2] implies that a completely automtining synthesis does not terminate in general.

In this paper, we present a new abstraction techniepent order abstractio(EOA), for parametric safety ver-
ification of the subclass of real-time systems in whiohrect orderings of eventmaintained by timing constraints
on the systems’ behavior are critical for correctness (fangple, a biphase mark protocol [25], the Fischer mutual
exclusion algorithm ([21], Section 24.2), and the IEEE 1884t contention protocol [27]). By using EOA, one
can separate the task of verifying a safety property of a&ay#tto two parts: 1. Safety property verification of the
system given that only correct event orderings occur; aridkivation of timing parameter constraints for correct
orderings of events in the system.

To use EOA, the user models a real-time system by usingrtreeinterval automatTIA) framework, which
is an extension of the I/O automata framework [21], and camess certain restricted class of timed I/O automata
[19]. By using the TIA framework, the user can specify lowadaipper bounds on the time interval between a
specific event and a set of possible events that follow. Témdéwork has a certain structure that is suitable for a
mechanical timing constraint derivation scheme presentéds paper.

A parametric verification of a real-time system using EOAasducted in the following steps. First step is
identification of “bad” event orders. The user proposes alickate set of bad event orders that he/she wants to
exclude from the system executions by timing synthesis. ukee then model-checks a safety property of interest
on adiscretized modedf the underlying TIA, under the assumption that the modelsdwot exhibit the proposed
bad event orders A discretized model of a TIA is simply anmady untimed I/O automaton that does not have
any timing constraints as the original TIA does. If the medeécking is completed with a positive answer, the
user has obtained a set of bad event orders that he/she nemddutde. Otherwise, the user uses counterexamples
obtained from the model-checking to extract additional &aeht order, and repeats the same process until he/she
successfully model-checks the discretized model.

The user expresses bad event orders by a simple languagantetpress a sequential order of events and some
types of repetition of events. He/she typically needs tdyappman insight to extract from the counterexample a
bad event order expressed in a concise way, and this is whyaweerhanually identified bad event orders for the
case studies presented in the paper.

Model-checking under a specific event order assumption eaalyied out in the following two steps. The user
first constructs a monitor that raises a flag when one of thetifitd bad event orders is exhibited. Then he/she
model-checks the discretized model with this monitor urtderassumption that the monitor does not raises a flag
(in Linear Temporal Logic (LTL) [23], this condition can bepresented byJ(—Monitor.flag) =
O(—DiscretizedModel.propertyViolated)). We used the SAL model-cheker [9] in this paper. We manuzdly-
structed monitors since the construction was straightodwior the presented case studies (we are planning to
develop an automatic monitor construction tool). Since wecsssively refine the underlying discretized model
(by refining the bad order assumption) from a counterexarptained from model-checking, EOA can be re-
garded as aounterexample guided abstraction refinem@&EGAR) technique [7].

Next, by an algorithm that we present in the paper, the ugenaatically derives timing parameter constraints
under which the system exhibits none of the identified badtemelers. From this step, the user obtains sufficient
timing constraints under which the system executes cdyresith respect to a given safety property.

Related work: Some of the existing timed model-checkers/(H=cH[14], RED [32], TReX [3], LPMC [28], and
an extension of UPPAAL [18]) allowutomatic synthesisf timing parameters for a specified desirable property of
a given system: these tools automatically derive a set aftcaints on timing parameters for the system to satisfy
a given property. However, termination is in general notrgnteed for these model-checkers.

The main differences of EOA from the existing automatic timeodel-checkers listed above are the following
four.

First, to use EOA, the user has to provide a set of bad eveer®td be excluded in the system by timing
synthesis. Timed model-checkers mentioned above doesrdtsuch inputs.

Second, EOA can treat a class of systems that may exhibit houmded number of repetitions of events.
The existing parametric model-checkers listed above us#slic reachability analysis of states symbolically
represented by linear logic expressions. Thus, if an upiteylparametric model has an unbounded loop that
involves evolution of continuous variables, then this redaility analysis does not terminate, and therefore the
verification attempt fails (for example, in [14], Sectior2 4the authors stated that they had to modify a model
of a biphase mark protocol so that it exhibits no unboundeg)lo In EOA, by using a language construct that
represents an unbounded number of repetitions of eveltsisér can handle this kind of system.

Third, when doing successive refinements by using EOA, elastnaction in a refinement step is a completely
untimed transition system (an ordinary I/O automaton witteaing constraints). Thus the user can directly employ
existing verification techniques for untimed transitiosteyns.

Fourth, EOA does not suffer from the “dimensionality prabfeas much as the timed model-checkers listed
above do. Automatic timing synthesis using the above listedel-checkers rapidly becomes intractable as the
number of parameters grows ([14], Section 5. Lessons ldarn€his problem is called the “dimensionality
problem”; and is regarded as one of the main bottle neckseofithe-parametric model-checkers. With EOA,
timing synthesis is handled separately from model-chegrkithe tool derives timing parameter constraints from
identified event orders just with information about time bds between events, and does not use any information
about the state transition structure of the system. Thithggis process does not use a fixed-point computation as
timed model-checkers do, and thus does not need lineardogjaification for terminatioh Instead, as we present
in Section 6, timing synthesis is done by a straightforwaash within a certain space inferred by specified event
orders. In all case studies summarized in this paper, thetsspaces were small. Indeed, the train-gate example
that we use to illustrate EOA throughout the paper has tesmpeters, and the timing synthesis for it from specified
event orders took less than one second.

Frehse, Jha, and Krogh [11] presented a CEGAR-based appfoaautomatically synthesizing parameter
constraints of linear hybrid automata (LHA) [15]. Thouglistivork is independently done from our work, the
approach is similar to ours in that it uses discrete abstract the underlying system to obtain counterexamples,
and then synthesize the timing (continuous) parameterti@nts to exclude the obtained counterexamples. The
main differences between their approach and our approa&ctharfollowing three: 1. Their approach automati-
cally identifies bad event sequences; 2: Their approach miotetseat a repetition of events as our approach does
(Treating repetitions is crucial to verify certain exangdeich as the train-gate example in this paper and a biphase
mark protocol, for which meaningful parameter constrag#a be obtained only by treating repetitive events);
3: Their approach treats LHA, which is more general than TTAey experimented their approach by a simple
car-conflict prevention example, which has only two pararsetThe applicability of their approach to a system
with a large number of parameters such as the ones in Secisomof known.

Several researchers considered digitization of timedsitian systems [17, 5, 4, 26]. These techniques could
possibly be used to obtain a discrete version of real-tinséesys for fixed parameters, but as far as we know, an
application of the technique to parametric verification hasbeen studied.

We have developed EOA to fill in the gap between the inductieefmpproach and automatic time-parametric
model-checking. The inductive proof approach needs humsiglits into an underlying system to come up with
an inductive property, and we believe that identifying begn orders is more amenable process and requires less
training than coming up with inductive properties. On thieesthand, automatic time-parametric model-checking
may not always scale to a system with a considerable numhinioly variables and parameters, as we described
earlier.

When automatic time-parametric model-checker does nat sgaé can try using inductive invariant reasoning
or by model-checking using parameter constraints as inpthiese are typically more scalable compared to auto-
matic parameter synthesis tools. To do so, he/she first rieatisive a set of timing parameter constraints under
which (he/she believes) the system works correctly. Tylyiche user performs this derivation by first drawing a
process communication diagram that depicts a possibledsthso, and then manually finding out how to con-
strain timing parameters to exclude the depicted scena@lticg approach is used in [31] to verify a biphase mark
protocol, and in [27] for the root contention resolving aitfum of the IEEE 1394 protocol. With EOA, the user
can directly make use of these human insights into the bathsios, and can also automate the process of deriving
timing constraints from the bad scenarios.

The rest of the paper is organized as follows. In Section 2jniveduce a new automata framewotkne-
interval automata We present the train-gate example, which is inspired byileoaa crossing problem [13],

INevertheless, a linear logic simplification for a derived set of constraipt®isded by the prototype tool for user’s convenience.

in the TIA setting. We use this example to illustrate the uB&OA throughout the paper. The example is
simple compared to an industrial protocol, for example, ghése mark protocol that we study in Section 7,
yet has ten parameters and exhibits an unbounded repatitiovents. In Section 3, we explain how the user
can formally specify event orders. In Section 4, we dematsthow the user can conduct the bad-event-order
identification step. Section 5 is devoted to presenting tshfor automatic timing constraint derivation. In
Section 6, we present a prototype implementation that aatioadly synthesize timing constraint from given event
orders. Section 7 presents a detailed case study of tinaregdric verification for the train-gate example using
EOA. We also summarize in Section 8 three other case stualigiphase mark protocol that has been studied in
several verification papers (for example, [25, 31]), theEEE394 root contention protocol [27], and the Fischer
mutual exclusion algorithm ([21], Section24.2). As a cosan, in Section 9 we discuss a summary of the paper
and possible future work.

2 Time-Interval Automata

Thetime-interval automatdTIA) framework is an extension of the I/O automata (IOA)frawork [21]. An I/O
automaton is a guarded-command style transition systemdistinguished input, output, and internal actions.

Definition 1. (From [21]) An I/O automatom (without a task partition) consists of four components:

e sig(A) = S, a signature, which is a triple consisting of three disj@ets ofactions the input actions
in(S), theoutput actionsout(S), and theinternal action int(S). We define theexternal actionsext(S)
to bein(S) U out(S); thelocally controlled actiongocal(.S), to beout(S) U int(S); andact(S) to be all
the actions ofs.

o states(A), a set ofstates
e start(A), a nonempty subset efates(A) known as thestart stateor initial states

e trans(A), astate-transition relationwheretrans(A) C states(A) x acts(sig(A)) x states(A); we say
that actionr is enabledin states if there is a state’ such that(s,r,s’) € trans(A). A must beinput-
enabledthat is, in every state, every input actionr must be enabled.

Definition 2. An executiorof an 1/O automaton A is a (possibly infinite) sequence
o = 89,71, 81,2, , T, - -+ Where thes;’s are states ofi and ther;’s are actions of4; sy € start(A); and for
anyj > 1, (sj—1,m;,s;) € trans(A).

Informally, with the TIA framework, one can specify the lowand upper time bounds on the interval between
one action and its following actions for an underlying I/Gamuaton. A time bound for actiom and actions in
B is represented as an interval in the fofhhw]. This bound represents that, for any time of occurreficef
actiona, no action inB occurs beforé, + [, and at least one action it is performed before or at, + u. An
interval-bound maglefined in the following Definition 3 formally specifies thime bound. The special symbol
1 is used to express the time bound on the interval betweenytiers start time and the time an action in the
specified set occurs.

Definition 3. (Internal-bound map). Amterval-bound map for an I/O automatom is a pair of mappinggpwer
andupper. Each oflower andupper is a partial function fromuctions(A), x P(actions(A)) to R>°, where
actions(A) L = actions(A) U {L} is a set of actions ofi extended with a special symbal, P(actions(A)) is
the power set of actions of, andR>? is the set of positive reals. We say tl@atime bound is defined for a pair
(w1, 1) € actions(A) 1 x P(actions(A)) if eitherlower(r ,IT) or upper(w, , 1) is defined.

An interval-bound map defined in Definition 3 may not satisfguirements to express a meaningful bound
(for example, the specified lower bound is no grater thanpleeiied upper bound). Thus, we need a definition of
avalid interval-bound map (Definition 4).

Definition 4. A valid interval-bound map for an 1/0 automatonA is an interval-bound map that satisfies the
following four conditions.

1. For every paif(w,II) € actions(A), x P(actions(A)), lower(w,IT) andupper(r,,II), if they are
defined, satisfy the following conditiof: < lower(m, , 1) < upper(mw,, 1) < co.

2. For apaif(rm,II) € actions(A) 1 x P(actions(A)) with a time bound defined] C local(sig(A)).

3. For a pair(w,II) € actions(A) x P(actions(A)) with a time bound defined (note is not L), for any
(possibly infinite) subsequenge = .5, 7,11 - -+ Of an execution of4, if the following two conditions
hold, then at least one actionlhare enabled in any state that appears.in

@) m =m.
(b) For allr,, such thatn > r andm,, isin 8, 7, ¢ 10

4. For a pair(L,II) € {r} x P(actions(A)) with a time bound defined, for any (possibly infinite) prefix
8 = sgm1s1mo - - - Of an execution of4, if no action that appears ifi is in I1, then at least one action It
are enabled in any state that appears.in

The condition 1 states that the specified lower bound mustfivéta real, and the lower bound must be less
than the upper bound. The condition 2 states that since wetaontrol the timing of input actions (they are not
locally controlled), all timing-controlled actions must local actions. The condition 3 guarantees that, for a pair
(w,II) of an action and a set of actions with a bound defined, whendtenar is performed, at least one action
in IT are enabled from then on until an actionlins performed. The condition 4 is an equivalent of the conditi
3 for the case ofl.

Definition 5. (Time-interval automaton). A time-interval automatof,) is an /0 automatom together with a
valid interval-bound map for A.

Now we define how a time-interval automaton executes.

Definition 6. A timed executionf a time-interval automatofy, b) is a (possibly infinite) sequence
o = 8o, (71,1t1), 81, (72, t2),- -+, (7, t-), - - - Where thes;’s are states ofl, then;’s are actions of4, and thet;’s
are times inR=Y; sq € start(A); and for anyj > 1, (s;_1,7;,s;) € trans(A) andt; < ;1.

We also require a timed execution to satisfy the lower anag&uppund requirements expressedby
Upper bound:

1. For every pair of an action and a set of actionH with upper(w,II) defined, and every occurrenceof
in the executionr, = , if there existsk > r with ¢, > ¢, + upper(m,II), then there existg’ > r with
ty < t, + upper(m,II) andny € IL.

2. Forevery pair of. and a set of actiorid with upper (L, IT) defined, if there exists with ¢, > upper(L,II),
then there exists’ with t;, < upper (L, 1) andmy € II.

Lower bound:

1. For every pair of an actiom and a set of actionH with lower(, 1) defined, and every occurrencemfn
the executionr, = , there does not exiét > r with t;, < ¢, + lower(r,II) andn, € IL.

2. For every pair ofL and a set of actionH with lower(_L,II) defined, there does not existwith ¢, <
lower(L,II) andm, € II.

The upper bound condition 1 states that if time ever passgmbehe specified upper bound fer, IT) from
the time whenr is performed, then an action Ih must occur in the interim. The lower bound condition 1 states
that, from any occurrence af, no action inlI can occur before the specified lower bound. The second ¢onslit
for upper bounds and lower bounds are analogous to the finglittans, but represents the requirement for bounds
with L.

Definition 7. We say that a stateof a time-interval automatofy, b) is reachableif there is a timed execution
of (A, b) that ends withs.

In order to define a composition for time-interval automata, need a definition of the compatibility of a
collection of time-interval automata.

Definition 8. For a finite collection of time-interval automaf@A;, b;)}.cs, they are said to beompatibleif the
underlying 1/O automatgA; };c; are compatible, that is, for signatur§sandS; for A; and A;, respectively, if
i # j, thenint(S;) N acts(S;) = 0 andout(S;) Nout(S;) = 0.

Note that the “compatibility” of the bound mags; };; (only one automaton can control timing behavior of
a specific action) is given by the compatibility for the autdensignatures and timing controllability condition
(the condition 2 in Definition 4). That is, for any two paifs;, ®;) € actions(A;)1 x P(actions(A;)) and
(mj, ®;) € actions(A;) L x P(actions(A;)), if ime bound for both pairs are defined, thépn ®; = 0.

Now we are ready to define a composition of time-interval enata.

Definition 9. For a compatible collection of timed-interval automat&, ¢bmpositior(A, b) = I1;c;(A4;, b;) is the
timed-interval automaton as follows. (1. is the composition of the underlying I/O automédt4; };c; (which is

an ordinary asynchronous composition with synchroniratidnput and output actions with the same name [21]),
and (2). lower is given by taking union oflower; };c; andupper is given by taking union ofupper; }icr (by
regarding partial functions as sets of ordered pairs).

Note that, due to the compatibility of the bound mé&pg <, bothlower andupper in the composed automa-
ton are single-valued functions fromations(A) | x P(actions(A)) to R>°.

A TIA must satisfy some specific conditions in order to havasmnable timing constraints on it's behavior.
Namely, every execution of a TIA must be extended to a tinverding execution. Théeasibility of a TIA in
Definition 10 formally defines these conditions.

Definition 10. We say that a TIA A, b) is feasible if every finite timed execution

a = So,(m1,t1), 81, (M2, t2), -+ , (7, t1-), 8 OF (A,b) can be extended to an infinite timed executioh =
S0, (m1,11), 81, (m2,t2), -+, (7, t1), Sp, ... With sup,~o{t;} = oo (anda’ satisfies the conditions of a timed exe-
cution of (4, b), stated in Definition 6). -

Definition 11. (Discretized TIA) Given a TIA(A, b), the discretized model ofA, b) is simply an underlying
ordinary untimed I/O automataA.

The set of (untimed) executions of a TI@d, b) (obtained by ignoring time stamps in timed executions) is
contained by the set of executions of its discretized megainceA does not have any timing constraint. Thus,
if A satisfies a safety property under a certain event orderisigngstion for its executions, theém, b) also does
so under the same ordering assumption.

Related work of the time-interval automata framework: The timed I/O automata (TIOA) framework [19]
is a highly expressive framework with which the user can gp@ontinuous evolution ofinalog variablesby
using differential equations and inequalities, as well@ec#ying discrete state transitions as in an ordinary 1/0
automaton. Indeed, any TIA can be expressed as a TIOA as ttellever, a TIOA does not have an explicit
time bound structure like a time-interval bound map of a TéAd thus information about time bound cannot
be easily handled by the scheme or the tool presented in ther |fa time lower bound needs to be embedded
in the precondition of an action, and an upper bound needs &xpressed by another construct, shap-when
statement).

The MMT (time-constrained) automata framework [24] is elggelated to the TIA framework. While a TIA
specifies time upper and lower bounds on the interval betweegvent and a set of events that follow, an MMT
automaton specifies time upper and lower bounds on the dartditat an action in a specific set of actions called a
taskstays enabled. When we define a TIA, for a gairII) of an action and an action set with a bound defined,
we impose constraints on the TIA so that at least one actidhritust be enabled afterand before an action i
is performed. If we impose the same constraint on an MMT aatom we have a framework similar to TIA. The
timed transition system framework [16] is close to the MMTaamata framework, in that the lower and upper time
bound on the duration that one transition is enabled can éecif@gd. One main difference between TIA and these
two frameworks is that in TIA, the user can use different lsifor the same set of actions depending on which
action precedes it. We need this feature to model certags aéreal-time systems like a biphase mark protocol
[31].

The Alur-Dill timed automata framework [1] is arguably thedb known framework to model a real-time
system, and is the theoretical foundation for timed modhelekers like UPPAAL [20] and KRONOS [33]. This
framework can model only a system with fixed timing parangteut not a time-parametric system.

The parametric timed automata (PTA) framework introducef] is a time-parametric version of the Alur-
Dill timed automata framework. In a PTA, the user specifi@gioand upper bounds on a time interval in which

Automaton Train(r, R, p, P: Real) where
0<r<RAOLp<P
signature

output Request

output Pass
states

requested: Bool := false;
transitions

output Request

Automaton Gate(d, A, 7,
0<6<A0<T
signature

input Request
output Close
output Open
output Check(result: Bool)
states
open: Bool :=true;
train_requested: Bool := false;
check_succeeded: Bool := false
transitions
input Request
eff train_requested := true;
output Close
pre check_succeeded A open
eff open := false;
output Open
pre —open
eff open := true;
train_requested := false;
check_succeeded := false;
output Check(result)

IA S
o
°Q

pre —requested

eff requested := true;
output Pass

eff requested := false;

pre —check_succeeded A result = train_requested
eff check_succeeded := train_requested;

bounds:
bounds: b(L, {Check(true), Check(false)}) = [4, A];
b(L, {Request}) = [r, R]; b(Check(false), { Check(true), Check(false)}) = [d, A];
b(Pass, {Request}) = [r, R]; b(Close, {Check(true), Check(false)} =[5, A];
b(L, {Pass}) = [p, PJ; b(Check(true), {Close}) = [r, T;
b(Pass, {Pass}) = [p, PJ; b(Close, {Open}) = [¢, C];

Figure 1: Train automaton Figure 2: Gate automaton

the automaton stays in a specilidcation (in the Alur-Dill timed automata sense). A TIA can be modeteda
PTA, but time bound for events becomes implicit (unlike tkplieit interval-bound map) and thus cannot directly
use the automatic timing synthesis scheme presented irafies.p

Example 1. (Time-Interval Automaton). We describe an example of timterval automata. The example is
inspired from railroad crossing problems [13]. The exanptnstructed from a composition of a train automaton
(Figure 1) and a gate automaton (Figure 2). An informal dpson of the problem we want to solve is the
following. A train is about to pass the railroad crossinghaatgate. The gate is supposed to be open except for the
time that the train passes the crossing, so that cars casitbsailroad. When the train gets close to the crossing,
it requestgo close the gate. The gate needs to be closed at the timeatheptrsses the crossing. The railroad
actually forms a circle, and thus the train passes the eallaossing cyclically. After the gate becomes closed, it
becomes open after a bounded time intefval.

The actions of thdrain automaton models actions taken by the train in the railroEte Request action
represents an close request made by the train to the gatePadseaction represents that the train passes the
crossing. The automaton has four bounds for these two actidme first oney(L, {Request}) = [r, R]) and the
second onel{Pass, {Request}) = [r, R]) say that thdRequest action will be performed within the time interval
[r, R] after the system starts, and every time after the train pakeecrossing, respectively. The third boubL(,
{Pass}) = [p, P]) and the forth bound)(Pass, {Pass}) = [p, P]) say that the Pass action will be performed within
the time intervalp, P] after the system starts, and every time after the train pabsecrossing, respectively.
The gate automaton described in Figure 2 models a gate syistemses a busy-wait loop for checking whether
a request has been made. The gate automaton cannot imme#iates the arrival of an request. Instead, a
request information is stored in a state variatskin_requested, and the gate automaton needs to repeatedly

2|f the reader prefers an example with more digital system flavor than the trainygateke, he/she can regard this example as, for instance, the following
single-writer/multi-reader shared variable problem: one writer process (Train) writesttared variable (railroad crossing) periodically, and before writing to the
variable, it first requests the guardian process (Gate) to lock the variable so that agy(eeedr crossing the rail-road) cannot access to the variable while the
writer is writing to it.

Swe could, for example, think that a train is moving with a bounded vejagithin [v,in, Vmaz], and the length of the railroad &. The time bound of
[p, P] for the pass event is equivalent to saying that L/vyqe @NdP = L /Uy in.

check this variable (expressed by a successful ch&lo&ck(true), and a failing checkCheck(false)). We set the
time interval between two repeated checks to be wiffiil\]. Once a check succeeds, the gate automaton stops
checkingtrain_requested, but resumes it withifd, A] after the gate becomes closed. The gate becomes closed
(Close action) within the time intervdlr, T'] after a successful check. The gate becomes open &pén(action)
withing the time intervalc, C] after it becomes closed.

The safety property that we want to verify is that the traisges the crossing only when the gate is closed.
We use a monitor automatdnonitor that monitors output actiorass, Close, andOpen from Train andGate,
and set its state variablead to true if Pass occurs when the gate is open. A formal description of the tooni
automaton is shown in Figure 3.

Automaton Monitor
signature
input Pass
input Close
input Open
states
open: Bool := true;
bad: Bool := false;

transitions

input Pass
eff bad := if open
then true
else false;
input Close

eff open := false;

input Open
eff open := true;

Figure 3: Monitor automaton

The invariant (safety property) we want to check is: for aegahable state dfrain||Gate||Monitor, Moni-
tor.bad = false.

3 Specifying Event Orders

In this section, we introduce a formal way of specifying aaréorder that needs to be excluded for system correct-
ness. We first consider a simple way of specifying an evergrpethd then extend an event order specification by
introducing “don’t-care” events. The notion of these “decare” events are important in order to treat a repetition
of events in a single system (as we will see in the case studhéatrain-gate example in Section 7) and in order
to ignore events by a process that is unrelated to a key letaMior in concurrent or distributed systems.

An event order (without “don’t-care”) simply specifies theder of consecutive actions in an execution of a
TIA. For example, the event ordeRéquest-Pass” for the automatonTrain||Gate) shown in Example 1 matches
any execution ofTrain||Gate) that contains &equest action immediately followed by Bass action. We give a
formal definition of a match between an automaton executiohea event order in Definition 15, after introducing
“don’t-care” events. An event order may start withLasymbol, which specifies that the event order matches a
finite prefix of an execution of an underlying automaton. In other words\gent order that start with specifies
the very first sequence of events that occur after the autonsiarts executing.

Definition 12. (Event order) An event order of a time-interval automatdnb) is a sequence of actions df,
possibly starts with a special symhol

Example 2. (Event order). An example of event orders that we want tougeInTrain||Gate||Monitor discussed

in Example 1 isl-Check(false)-Request-Check(true)-Pass. In this event order, the gate module first failed to
detect a request from the train since a request has not beda yeé After the train makes a request, the gate
module succeeds to detect it, and starts closing the gatevevtw, the gate close request is detected too late

relative to the speed of closing the gate, and consequédmlyrain passes the crossing before the gate becomes
closed (that is, before th&lose event occurs).

For a system that exhibits an unbounded repetition of ev@uoish as the train-gate example in Example 1
and a biphase mark protocol that we study in Sections 7 andoB)e event orders to be excluded cannot be
represented in a form of a simple event order like the onesomsider earlier in this section. Consider the event
order “L-Pass” for (Train || Gate). This event order need to be excluded for an obvious redbertrain passes
the crossing even before the train requests that the gatéobedc Considering that the gate is doing a busy-
loop checking of a request, thigass event can possibly be preceded by multiple failing che€ksetk(false)).
Indeed, since the relation between the frequency of thesekshf and A) and the time when a request is made
(r and R) is unknown, the number of possible failing checks that gdecthePass event is unbounded. What
we want to do is tdgnore these failing checks in betweenh andPass in the event order. By using a regular-
expression-like language, this event order can be exptdnsel -(Check(false))*-Pass”, where «’ is a symbol
of repetition. The following event order using @mored event specificatiofiES) is more comprehensible when
an event is ignored for a specific event-index interval, nst jn between two consecutive events: = “ | -Pass:
insert {Check(false)} to[0, 1]". Informally, the ignored event specification (statemefigrinsert)) in the above
event orderF, specifies that when checking a match between an automatentexeand the event order, we
ignore in that execution any occurrenceGlieck(false) in between the beginning of the executieg)(and the
first occurrence oPass (e1). A formal definition of an IES is as follows.

Definition 13. (Ignored event specification). An ignored event specificatiES) for an event order is in the
following form: insert (Y, to [im, jm]) whereY,,, is a set of events that are ignored in the interval between
€i,, ande;,,.

T
m=1"

To formally define a match between an automaton executioraarevent order with an IES, we neéf that
represents the set of the ignored events in the intervaldmihe:-th and ¢+1)-st events i (L is considered
as the zero-th event).

Definition 14. (Ignored event set). For an event order with an IES,
E=(L)er-en: insert (Yy, t0 [im, jm])h—1, We definelF = Ui¢rL§k<jm Y,,for0<k<n-—1.

Definition 15. (Match between a timed execution and an event order with &). IEonsider a timed execution
o = sg, (m1,1t1), 81, - - Of an time-interval automatofy, b). Let o’ be the sequence of actions that appeat,in
that is,o’ = mymams - - -. We say thaty matches an event order with an IES,

E =e---e,: insert (Y, to [im, jm])",—;, if there exists a finite subsequengef o’ such that3 can be split
into Bomk, f17k, B2 -+ - P17k, ,» Where, for alli, 1 < ¢ < n, 1, = e;, andp; is a sequence of actions and all
actions that appear ifi; are inI”.

A match for an event order that starts withis defined similarly to Definition 15 (an additional conditio
k1 = 1is added to the definition). For an event order without an HlS3;’s in Definition 15 are empty sequences.
We refer to an execution that matchBsas F-matching executian

4 |dentifying Bad Event Orders

In this section, we illustrate how the user can extract badesrders from counterexamples obtained from untimed
model-checking of the discretized model.

We use the train-gate example. The safety property we wattiegok is that the gate is closed whenever the
train passes the gate.

We first specified the following set of bad event orders as didate’:

Aq. L-Pass: insert {Check(false)} to [0, 1]
Ag. L1-Request-Pass : insert {Check(false)} to [0, 1]
As. L-Request-Check(true)-Pass : insert {Check(false)} to [0, 1]

40f course, the user could instead start by model-checking the untimed mobelawitrdering constraint, and build up sufficient event orders. Nevertheless,
if the user knows partial information about what bad event orders might béieheds use human insight to set up a candidate set of bad orders at the tggginnin
as in the presented case.

The above event orders;, A5, and A3 represent a situation that the train passes the crossiogebttfe gate
becomes closed; specifies a situation that the train passes the gate everebefequests the gate be closeti.
specifies a situation that the train has requested the gateses, but the gate automaton does not detect a request
before the train passes the crossidg.specifies the situation that the gate automaton succegsdftitcts a close
request, but the gate does not become closed before th@asses the crossing. Here we used our human insight
into the underlying system that an unbounded numbeCluck(false) events can appear before tRequest
event.

We manually constructed event order monitdSOM,; }3_,, for these event orders, and then model-checked
the untimed model under the assumption that the above cdderst appear in system executions. In Linear Tem-
poral Logic (LTL) [23], this condition can be expressed biitimedTrain||UntimedGate||SM =
D(ﬂ\/?zl EOM;.flag) = O(—SM.propertyViolated). A counterexample that can be obtained from a LTL expres-
sion in this form starts with a system execution that leads bad state, followed by eyclein which the flags
of all monitors never become true. This is because we useallays” [operator for the ordering assumption.
The user can basically ignore the cycle part and can jussfoauhe first part of the counterexample that contains
information about a bad event order.

When we model-checked the safety property with the ordergsgmaption thatd,, A, and A3 do not occur,
we obtained the following counterexample executiRaguest - Check(true) - Close - Open - Pass, followed by a
cyclein which\/?:1 EOM,;.flag never becomes true. This execution represents a situaihe gate successfully
becomes closed before the train passes the crossing, lmmbsopen again too fast. Since we knew that multiple
Check(false) events could have appeared before Reguest event and after th®pen event in this execution,
we identified the following bad event order.

B;. L-Request-Check(true)-Close-Open-Pass : insert { Check(false)} to [0, 1], {Check(false)} to [4, 5]

In this way, the user can continue identifying bad event rdesing both counterexamples from untimed
model-checking and human insight. We present the entirefdead event orders for the train-gate example in
Section 7.

5 Deriving Timing Constraints

In this section, we present a scheme to derive a set of timongtcaints to exclude an execution that matches a
given event order. The scheme just uses the bound map of @nlyind TIA, but not the state-transition structure
of it.

Derivation of a timing parameter constraint for a given exader is taken in the following three steps:

1. We enumerate bounds on a pair of events in the event oraearth immediately derivable from the bound
mapb of an underlying TIA and the bound conditions in Definition 6.

2. We combine enumerated individual bounds to form a timenddor larger interval of events in order to
derive a meaningful constraint in the next step.

3. We find a matching pair of combined upper bound and lowentpand then derive a timing constraint.

As we show in Section 6, this scheme forms the basis for thiofyme implementation. More specifically,
each step of the above described scheme is systematic, are easily automated. We present a more detail of
each of the steps in the following.

Enumerating bounds Given an event ordeF’ and the bound mapof a TIA, we first enumerate the upper and
lower bounds between the time of occurrence of two evenfs from the upper and lower bound conditions in
Definition 6.

The following bound setéffj and ij contain upper and lower bounds between the times of ocaereh
the actions that matcty ande; in E, respectively, that are immediately derivable from therwbmapb and the
upper and lower band conditions in Definition 6 (thesymbol is treated as the zero-th evep). The bounds
are tagged with the event-index interval for which they aseveéd. Note that an upper bound for an event-index
interval [i, j] is constructed from the fact that a particular evéoés not appeain [i, j|, whereas a lower bound
for [4, j] is constructed from the fact that particular events appeaaad;. This is consistent with the upper and
lower bound conditions in Definition 6.

Note that the bound map of an underlying TIA is used only is fhist enumeration step.

10

(eo) e e: es es

1 — cneck(false) — Request — Check(true) — Pass
(RIOAD: —B
(RI0.2D: | =R |
@oayi —=8 | ‘
@L2pi =4
Upper Bounds: (AL,3]) : i <A i '
TEAayi ¢ op ! =
IGICED R a— P ‘ ‘
. .
(P.[0,2])] I
(P,[0,3]) ! =P | '
®.oay: | 1 = 1 i

@G —=8

(r.[0,2]) I = |

Lower Bounds: (3.[1,3]) . } 36‘ Y
Go3D; 25 : i
04D} | ‘ =P ‘ i

Figure 4: Upper and lower bounds for the event otller

For anyE-matching execution = sq(m1,%1)s1 - - -, the matched subsequence of actiéns Gy, 51 - - - Bk, _, Tk
(in Definition 15) satisfie$;, — ¢, < u for (u, [i,]) e U, andty, —ty, > Ifor (,[i,j]) € L. This factis
proved as Lemma 1.

Definition 16. (Upper bound set). Farandj, 0 <i < j < n,
Uiy = {(w,[i, j]) | upper(e;, 1) is defined for some action sHt
u = ’U‘pper(eia H)7
(j =14+ 1o0re;1---e;_1 does not contain any action I), and
Ui; IF does not contain any action 1. }

Definition 17. (Lower bound set). Farandj, 0 <i < j <mn,

L, = {(¢4,]i, j]) | lower(e;, IT) is defined for some action sHt

¢ = lower(e;,1T), and e; € II}

Lemma 1. For any E-matching timed execution = so(71,%1)s1 - - -, the matched subsequence of actigns
Bok, B1 -+ - Br,,_ Tk, (in Definition 15) satisfies,, — tx, < u for (u,[i,j]) € U”, andty, — ty, > [for
(l7 [Zvj]) € LzE,j

Proof. By contradiction.

Upper bound set: Supposg — ti, > u, or equivalentlyt,, > tx, + u. From the upper bound condition of a
timed execution stated in Definition 6, there exists> k; with ¢ < tx, +u andry, € II. From the monotonicity
of the time increase;’ < k;. This contradicts the fact from the construction(af [z, j]) that, for any action
., in II for the upper bound definitionpper(m, II) = u from which (u, [¢, j]) is derived,r,, does not appear in
Thy41 """ Thy—1-

Lower bound set: Supposg, — i, < [, or equivalentlyf, < t, +1. From the lower bound condition of a timed
execution stated in Definition 6 and the constructioiofi, j]), there does not exiét > k; with ¢, < t;, + 1 and
7y, € II for the lower bound definitiodower(w, II) = [from which (I, [z, j]) is derived. This is a contradiction
sincek; satisfies conditions for suchia O

Example 3. (Upper and lower bound sets). We show an exampl@i@fandej. The underlying automaton is
Train||Gate2||Monitor discussed in Example 1, the train-gate model with a busg-tdwecking. As discussed in
Example 2, one of the event order that we want to excludg,is= | -Check(false)-Request-Check(true)-Pass.
Figure 4 depicts the upper boundsUﬁ and lower bounds mLEJ1

Upper bound exampléife have an upper bour®, [0, 1]) for the interval between, (L) ande; (Check(false))
since we have an upper boungper (L, {Request}) = R defined in the bound map, and the evBeguest is
not performed betwees, ande;. For a similar reason, we have an upper bo(Rd[0, 2]) betweere, (L) andes

11

(Request). The upper bound séfolﬁ for the interval between, ande; is: {(R,[0,1]), (P, [0,1]), (A,[0,1])}
Lower bound exampleWe have a lower boundy, [1,3]) for the interval betweer; (Check(false)) and es
(Check(true)) since we have a lower bound

lower(Check(false), { Check(false), Check(true)})) = ¢ defined in the bound map.

Combining bounds We need a notion of a covering upper bound set and a distddotver bound set to com-
bine individual bounds i/; ; and L; ;, respectively, so that we can synthesize a meaningful groonstraint.
Informally, a covering upper bound sEtfor an event interval is a set of upper bounds such that when we take
a union of all intervals that tag upper bounddinthe union becomeB (tagged intervals of upper boundsiih
coverl’). A distributed lower bound set for an event interval is a set of lower bounds such that each interval
that tags a lower bound if is contained i", and all intervals that tag lower boundsiindo not overlap (tagged
intervals of lower bounds i aredistributedin T", without overlapping).

Definition 18. (Covering upper bound set). Consider a set of upper boSnés{(uy, [ix, jx]) }7, for a time-
interval automatorfA, b) and an event orde (possibly with an IES), wheréuy, [ix, jx]) € Uib;’jk fork,1 <
k < m. We say that covers the interval betweepande,, if for any event pointep, v < p < w — 1, there exists

an upper boundug, , [ix,, jr,]) € S suchthat,, <pandp+1 < jyi,.

Definition 19. (Distributed lower bound set). Consider a set of lower baud= {(lx, [ix, ji]) };-, for a time-
interval automatori4, b) and an event order (possibly with an IES), wher@y, [ix, jx]) € LE . fork,1 <k <

ikyJk
m. We say tha6 is distributed in the interval betweep ande,, if the following two conditions hold:

1. For any lower boundl, , [ik, , jk,]) € S, v < i, andjx, < w.
2. For any two lower bound8y., , [ix, s 71 1)s (Ueas [kes Tka)) € Sy Ty < iy OF Jry < ik, -

Example 4. (A covering upper bound set and a distributed lower bound ket us look at Figure 4 again. The set
of upper boundg (R, [0, 2]), (A, [1, 3]), (T, [3,4])} covers the interval between ande, ([0,2] U [1,3] U [3,4] =
[0,4]). Each lower bound by itself constructs a lower bound setithdistributed in the interval betweeg and

ey, but any set with two or more lower bounds is not distributethie same interval, since we have some overlap
of the intervals for which the lower bounds are defined.

Deriving bounds: The following Theorem 2 implies that if we find a covering epfpound set and a distributed
lower bound set for the same interval, then we can obtainithing constraints by the third condition in the
theorem (the sum of the upper bounds is strictly less thasuheof the lower bounds).

Theorem 2. Consider an event ordef. A time-interval automatoA, b) exhibits noE-matching execution if
there exists a set of upper bountis = {(wm, [im, jm])}r,—; Where (upm, [im, jm]) € UZE7 a set of lower

boundsL = {(I,, [ir, j-]) }1_, where(l,, [ir, j,]) € L{”:_,jT, and two events, ande,, such that the following three
conditions hold:

1. U covers the interval between ande,,.

2. L is distributed in the interval between ande,,.

3 Yt < S

We need the following supporting lemmas (Lemmas 3 and 4)deepf heorem 2.

Lemma 3. Consider a set of real-number intervdlg?!, t2]}_, and an intervalt,, ¢,] that satisfies the following
two properties:

1. For eachi, 1 < i < n, there is some real numbes such thatt} — ¢? < u;.
2. Ui, [th, 7] = [t ta)-
If such a set exists, then — 1 < >, u;.

Proof. U, [t},t?] = [t1,t2] impliesthaty " (¢ —t}!) > t»—t, (otherwise the union of the underlying intervals

177

U7, [t;,t7] cannot entirely cover the interva, ¢5]). Sinced"" , (t2 — ¢;) < > i, u;, the condition holds. [J

i=11"17 "1

12

Lemma 4. Consider a set of real-number intervglg?, t?]}7"_, and an intervalt, t,] that satisfies the following
three properties:

1. For eachi, 1 < i < n, there is some real numbérsuch thatt! —t? > [,

2. Foranyi, 1 <i <, [t} t2] C [t1,ta].

1771

3. Foranyiandj, 1 <i<j<m,[t;,t7]N[t], 3] = 0.

If such a set exists, thep — ¢t1 > > | ;.

Proof. Since all intervals i{[¢},¢7]}!, are disjoint and are inside f, t2], >, (t7 — t}) < t> — t; (otherwise
there must be an overlap between some two interval§ti ¢7]}7,). Sinced " ,(t7 —t}) > Y." , l;, the

condition holds. O

<
t

Now we are ready to prove Theorem 2.

Proof. (of Theorem 2). By contradiction. Suppose the conditiomstfe theorem hold, but there is @ymatching
timed executiomx = sg, (71,t1) - - - . Thisimplies that there is a subsequence of actibasfym, 51 - - - Ok, _, Tk,
that satisfies the conditions described in Definition 15nfFt@mma 1, for eacku, [in,, jm]) € U, ty,, —tr, <
un, holds, and for eacll,, [, j,|) € L, ty;, —tx, > l. holds. Sincel covers the interval between and
ew, for any intervalfty, tgy1], u < d <wv — 1, there is some,,, € U such thafty, ,tx, | D [ta,tas1]. Thus,
U(,[im,jm])eU[tkzm7th‘m] = [tu, t,] Hence from Lemma &,, — ¢, < Y _, u,,. On the other hand, sindeis
distributed in the interval between ande,, [tx, ,tx; | C [tu,t,] forany(l,, i, j-]), and for any twd, 1 andi,.2
€ L, [th,, , tr, |U[tk, o, tk,) = 0. Hence from Lemma 4, —t, > >.7_, I,. Therefore} "7 | I, < >0 | tp,.
This contradicts the third condition of the theorem assuionpt O

Example 5. (Timing constraint derivation for an event order without I&$). Again, consider the event order
depicted in Fig. 4. As discussed in Example 4, the upper beetf{ R, [0, 2]), (A, [1,3]), (T, [3,4])} covers the
interval betweer, ande,. In addition, the lower bound sétp, [0, 4]} is distributed in the same interval. From
Theorem 2, ifp > R+ A + T, then {rain || Gate2) exhibits noE;-matching execution.

Example 6. (Timing constraint derivation for an event order with an JEGonsider the event ordét, = “ | -
Pass: insert Check(false) to(0,1)". We have a lower boundower (L, {Pass}) = p, and L appears atg
andPass at e;. Thus we have a lower bound betweeney ande; (from Definition 17). We have an upper
boundupper(L, {Request}) = R defined forTrain||Gate2, and theRequest event is not ignored in the in-
terval betweerey (L) ande; (Pass) — only Check(false) is ignored. Thus we have a valid upper bouRd
betweere, (L) ande; (Pass). Therefore, we can derive a constrgint- R, which imposes an order constraint
that aRequest event must occur before Bass event. On the other hand, though we have an upper bound
upper(L, {Check(true), Check(false)}) = A, we cannot derive an upper bourd betweene, ande;, since
Check(false) is ignored in that interval. Therefore, we cannot derive ast@intp > A. Indeed, the above
constraint does not excludB,, since the constraint just imposes that the f@seck event must occur before
Pass.

6 Implementation

We have implemented in Python a prototype of a timing comdtcerivation tool (METEORS: Mechanical Tim-

ing / Event-Qrder Synthesizer, version 0.1), based on the scheme desdnilgection 5. The problem that the
implemented prototype tool solves is as follows. The usergyihe tool the set of time bounds defined in an under-
lying TIA for which he/she wants to derive a timing parametenstraint. Then the user gives the tool (typically
multiple) bad event orders to be excluded by timing syntheBhe tool first enumerates upper and lower bounds
immediately derivable from the given time bound informatidhe computational complexity of this enumeration
process grows only linearly with respect to the number oépaaters (we need to do an enumeration for each pa-
rameter, and enumerations for different parameters asperntient of each other). The tool then searches over all
possible covering upper bound sets and distributed lomandbgets. When the tool finds a matching pair of a cov-
ering upper bound and a distributed lower bound set, it deriiming constraints in the same way as demonstrated
in Examples 5 and 6.

13

The current prototype assumes both lower and upper bowndsd P;, respectively) are defined for all pairs
with bounds(m;, IT;) € actions(A); x P(actions(A)).> Therefore, the underlying TIA has the lower bound
parameter sefp;}?_, and the upper bound parameter §& 1" ,, both of which contain the same number of
timing parameters, and a lower bound is at most as large amadtehing upper boungi; < P;.

A linear term over lower bound parametefs; }*_, is in the formcip; + cop2 + - - - + ¢, py, Which we also
write as) ", ¢;p;, Wherec; is an integer constant fdr < ¢ < n. A linear term over upper bound parameters
{P;}_, is defined analogously.

An inequality the tool derives from one pair of a covering e@ppound set and a distributed lower bound set
has the formp > 1, whereg = >"""_, ¢;p; is a linear term over lower bound parameters @nd Y7 | d;P; is a
linear term over upper bound parameters. The tool in gefiadd in a given event order multiple matching pairs
of covering upper bound sets and distributed lower bourgl f@t each of which it can derive a linear inequality.
In such a case, multiple inequalities can be derived, andjitre event order appears in no system execution if
at least one of the inequalities is satisfied. Thus, the tedVds adisjunction of linear inequalitiefor one given
event order.

The user typically needs to exclude multiple bad event ardélt specified event orders can be excluded if all
disjunctions of linear inequalities derived from the everrtters are satisfied. Therefore, a timing constraint derive
by the tool forms aonjunction of disjunctions of linear inequalitiesn a form similar to conjunctive normal form
of Boolean logic, but in our case we have linear inequalitisgead of Boolean variableg,_, \/ .. ; Li ;, where
L, ; is a linear inequality.

The constraint derived by the tool may first contain somealizable inequalities (for example, an upper bound
for a specific action set is strictly smaller than a lower lbfor the same action set), or redundant inequalities
(for example, one inequality is weaker than or equivalerartother inequality in a disjunction). We use a simple
simplification algorithm to prune these inequalities, expéd in the following8

We say that an inequality appears as solo inequalityin a timing constraint (a conjunction of disjunctions of
linear inequalities)\;_ \/jeJi L; ;, if there is a singleton sef, € {J;}icr, and\/ L; ; is not a disjunction
of multiple inequalities, but simply the inequalify.

The tool finds out an unrealizable inequality by using théofeing fact. Given a linear termp = > | ¢;p;
over lower bound parameters and a linear térm >, d, P, over upper bound parameters, if forall < i < n:
¢; < d;, theng < . This is because; < P; for 1 < ¢ < n (the lower bound is at most as large as the upper
bound). Thus, for such a pair gfand, ¢ > v is not realizable. If the tool finds an unrealizable inegyalt
removes the inequality from a disjunction in the constraint

A logical implication between two linear inequalities isalused to simplify the constraint. The tool makes
use of the following simple Lemma 5 to identify an implicatio

JjeJ; 1,51

Jj€Jk

Lemma 5. Suppose two linear termg; and ¢, over lower bound parameters and two linear tergiysand ¢,
over upper bound parameters have the following formgs: = %2 ,cfp;; and ¢, = X0 ,d¥P;, fork = 1,2.
Consider two linear inequalities (1); > v and (2)¢o > 1.

Inequality (1) implies Inequality (2) if forall, 1 <i < n: ¢} — ¢? < d} — d?

Proof. If we have¢; — g2 < ¢1 — ¢o, then we are done since from (X); — 1 > 0, and thus (2) holds
from0 < ¢1 — 1 < ¢1 — ¢a. Sincep; < P, (¢! — c})pi < (d} — d?)P; forall i, 1 < i < n. Therefore,

S (e —¢l)pi < By (d} —d7) P;, which is equivalent to — ¢z < 1 — 2. Thus we havey — g2 < é1 — oo,
as needed. O

Now we explain how this implication-check scheme can be usddentify redundant disjunction of linear
inequalities in the constraint. The current prototype dolyuses on a solo inequality in the constraint, since this
was sufficient to simplify the constraint for the four casedgts we present in Sections 7 and 8.

Suppose we have a solo inequalityand a disjunction of inequalitieB; v By V --- B,,. If A implies B;
for somei, 1 < i < m, thenA A (ByV B2V --- B,,) = A. Therefore, if the tool finds in the constraint a solo

Safter obtaining a constraint simplified by the tool, the user can manualhgtitutep, = 0 for (;, II;) with only an upper bound, and can substitute
P; = oo for (m;, I1;) with only a lower bound. The current prototype does not make use aiffieisnation of “unbounded in one side” in a simplification of a
constraint, and this is our future work.

6Note that this simplification process is completely independent of consttaiivation process, and is provided by the tool for user's convenience. The
user could instead manually simplify the derived constraint or could usenattlinear-logic simplification tools as well. This is different from theetthybrid
model-checkers like HyTech, RED, TRex, and LPMC which inherently need an gretetllinear-logic simplification scheme to conduct a fixed-point calculation
for reachable states symbolically expressed by a linear logic expression.

14

inequality A and an inequalityB in a disjunctionD such thatA implies B, then the tool can remove this whole
disjunctionD from a constraint without changing the logical meaning @f ¢bnstraint.

The tool uses an implication check to identify unrealizahkqualities as well. If the derived constraint in-
cludes a solo inequality > v, where¢ = """ | ¢;p; andy = Y 1" | d;P;, then the inequality: > 7" | d;p; >
>, ¢;P; cannot be true for the constraint to be satisfied. Therefbome of the disjunctions in the constraint
includes an inequality that implies, then this inequality cannot be satisfied, and thus can bevedhwithout
changing logical meaning of the constraint.

Scalability experiment To obtain a rough idea of the scalability of the constrairivéition process of the pro-
totype with respect to the event order length, we conduateelxperiment on deriving a constraint for randomly
generated event orders of the train-gate example. Thisriexpet (and all other experiments in this paper) was
conducted on a desktop computer with an Intel &2 Quad at 2.66 GHz and 4GB memory. We experimented
with ten randomly generated event orders with length otekin, and the tool finished the constraint derivation
process within one second for all experiments. Considehatthe length of the event orders that we identified for
the case studies presented in Sections 7 and 8 are all lestethahe results of these experiments are satisfactory.
However, we have to conduct more case studies in order toiegahe order of the length of the bad event orders
in larger real-time systems.

Discussion Though the current prototype does not treat a “disjunttaeguage construct (such asof a regular
expression), it is easy to derive a constraint for an evesi¢rothat uses such a construct at the top level. For
example, suppose we want to exclude a (pseudo) event eregfel, i }e4, which specifies that the third event
order is eithere} or e2. We can simply treat this event order as two distinguishezheorderse;eseie, and
61626%64.

Similarly, to exclude an execution that matches both of twene ordersE'; and E5 (E; N Es in a regular
expression), we can individually derive constraints fgrand E», and then disjunct them to obtain a constraint
(at least one of¥1 and E5 needs to be excluded to excludig N F,). Since we disjunct disjunctions of linear
inequalities derived foF; and E», the derived constraint fdr; N E5 is a disjunction of linear inequalities. Thus,
derivation of a constraint fromv; N E, (among other ordinary event orders) does not destruct thigiiection-of-
disjunctions structure of the final constraint.

7 Case Study: Train-Gate Problem

In this section, we illustrate the user of EOA and the praietjool using the train-gate examleain||Gate||SM
that we have used in earlier sections of the paper.

We identified the following ten event orders to exclude alll lexecutions in the same way as described in
Section 4.

Aj. L-Pass: insert {Check(false)} to [0, 1]
As. L-Request-Pass : insert {Check(false)} to [0, 1]
As. L-Request-Check(true)-Pass : insert { Check(false)} to [0, 1]
Ay4. Pass-Open-Pass : insert { Check(false)} to [2, 3]
As. Pass-Open-Request-Pass : insert {Check(false)} to 2, 3]

Ag. Pass-Open-Request-Check(true)-Pass : insert {Check(false)} to [2, 3]

Ar. Pass-Pass

Bi. 1-Request-Check(true)-Close-Open-Pass : insert { Check(false)} to [0, 1], {Check(false)} to [4, 5]
Bj. Pass-Open-Request-Check(true)-Close-Open-Pass : insert { Check(false)} to [2, 3], {Check(false)} to [6, 7]
C1. Close-Pass-Request

We can classify these event orders into three groups. Theayfosp (A, - A7) represents a situation that the
train passes the crossing before the gate becomes closgd4,, and A, are the event orders used as a first
candidate set of bad event orders in Section 444nAs5, andAg, the L symbol inA;, A,, andAgs, respectively, is
replaced byPass-Open, so that they specify situations similarfa, A,, andAgs, but after at least onRass events
have been performed4; is like A4, but withoutOpen after Pass. The second groupH; and B-) represents a
situation that the gate becomes open too fast after it bes@hosed, and thus the gate is open when the train
passes the crossingg; and B; intrinsically represents the same situation, but_theymbol in B; is replaced by
Pass-Open, so thatB, specifies a situation after at least dhuss events have been performed. The third group

15

(C4) represents a situation that the gate becomes open agdateothat is, after the train makes a next request.
Since all state variables of the gate automaton are reset thieegate becomes open (Bpen event), if the gate
becomes open after a request from the train, the requestriafmn is reset, and thus the gate would not become
closed.

In this bad order identification process, we manually carxséd a monitor (a classical finite state machine) for
each of the identified ten event orders. Each monitor raislegy@xclude when it finds a subsequence of actions
that match the underlying event order in a current autometacution. Actually, we could (manually) combine
some of the monitofsand needed to construct only six monitoEOM1 - EOMS) at last. Model-checking for
each refinement step took less than one second. At the end biathorder identification step, we successfully
model-checked the properfy(—bad_event_order) = O(—~SM.propertyViolated) for
Train||Gate||SM||[EOM1|| - - - ||EOMS6, using a SAL symbolic model-checker [9], whebad_event order =
EOM1.flag v EOM2.flag Vv - -- vV EOM6.flag.

For event ordersls, A3, As, and Ag, we had to do a “decomposition” of an event order. For exampée
cannot directly derive a meaningful constraint frotp. In A3, unlike the event ordeF; depicted in Figure 4,
we have possibly unbounded numbeGifeck(false) events befor&equest, and thes€heck(false) events are
ignored. Thus, the bounds corresponding4g [0, 1]), (A, [1,2]), (A, [1, 3]), (4, [0, 1]), and(d, [1, 3]) in Figure 4
are removed from the set of enumerated bounds for derivimmpat@int forAs, and therefore we cannot derive
the same constraint as in Example 5. Decompodgip@nto the following two event orders resolved this problem:
one with noCheck(false): A5 = L-Request-Check(true)-Pass, and one with one or mor€heck(false) events:
AY = L-Check(false)-Request-Check(true)-Pass :
insert {Check(false)} to [0, 1]. A% still has an IES, but for this event order, an upper bound xemidrom the
upper bound set aF; in Figure 4 is only(A, [0, 1]), and thus we can derive the same constrait R + T + A
as in Example 5. We decomposdd, A5, and A similarly to the case ofi; described above. We manually
decomposed event orders for this case study, and autontdtibis decomposition is future work. More detailed
analysis and automation of this decomposition processrifuture work.

After the decompositions ofl;, A3, As, and Ag, we had fourteen event orders, and the tool derived the
following set of constraints from the given event orderg#tutomatic simplification (the total time of derivation
and simplification took less than one second){d> R+ T + A); 2. (r+t+c¢>P V § +t+c > P);and
3. (r > C). The tool indicated that the first constraint was originalgrived from a decomposet;, the second
from B, and the third fromC;. Therefore, we obtained a constraint for each of the threagg we explained
above.

8 Summary of Other Case Studies

In this section, we summarize three case studies that wedwnaricted thus far. The case studies are: a biphase
mark protocol [25], the IEEE 1394 root contention proto@¥]} and the Fischer mutual exclusion protocol ([21],
Section 24.2).

8.1 Biphase Mark Protocol

A biphase mark protocol [25] is a lower-layer communicatfmotocol for consumer electronics. Several re-
searchers have conducted formal verification of this patfor example, [25, 31]), but as far as we know, com-
pletely automatic verification of it has not been done. Waiified 22 bad event orders. (We successfully model-
checked the discretized model under the condition that 2Rdvant orders do not occur, and model-checking
for each refinement step took less than one second). Thisetumdy look large, but similarly to the train-gate
example in Section 7, we identified multiple event ordersnfi single bad situation (there were eight bad situ-
ations). Eight event orders (derived from three situadidrasl to be decomposed as in the case of the train-gate
example. The tool derived five constraints (it took less thia@ second). Three of them are equivalent to the three
conditions manually derived in [31]. The remaining two doasits are not reported in [31], but we believe that
the constraint must hold for correctness (it is needed ttudrca simple bad scenario). In [31], the authors added
an additional condition during the verification processsithey could not prove one key lemma. It seemed to

“For example, by changing the initial state of the monitorAoy, we could also treatl; . Same for the pairs ol and As; A3 and Ag; and B, and Bs.

16

us that this condition actually contradicts one of the thzeeditions they manually derived and assumed in the
verification process. A more detailed report on this casgysiill appear in a forthcoming publication [29].

8.2 IEEE 1394 Root Contention Protocol

The IEEE 1394 standard specifies communication infrastradietween electric devices. By using IEEE 1394,
up to 63 devices can be connected in a tree topology. The oot¢iation protocol (RCP) that we studied is used at
the last phase of the tree topology identification. Thoughoidd scenarios to be excluded are two, due to the inter-
leaved process actions (events), we ended up having 42 enars. The model-checking successfully completed
under the ordering assumption within one second. The todletba set of constraints that are equivalent to those
manually derived in [27]. A more detailed report on this csisly will appear in a forthcoming publication [29].

8.3 Fischer Mutual Exclusion

The Fischer mutual exclusion algorithm ([21], Section 24s2a mutual exclusion algorithm that uses a timing

behavior for correctness. We identified one bad event ottleysing the symmetry among process behavior.
In this event order, we focus on a specific interleaving ofnévdetween a pair of processes. Ignored event
specifications are used to treat behavior of other procésaaghe focused pair as “don’t-care”. We successfully
model-checked the discrete model under the correct oglagsumption (it took 40 seconds for a system with five
processes). The tool derived the constraint that is mandatived in [21].

9 Conclusion and Future Work

In this paper, we presented tbeent order abstractio(EOA) technique to parametrically verify real-time system
By using EOA, the user can directly make use of his/her iimmmiaibout what kind of bad scenarios need to be
prevented, by specifying bad event orders. We demonstthgedpplicability of the technique by a simple train-
gate system and a summary of three other case studies, abiptak protocol, the root contention protocol of
IEEE 1394, and the Fisher mutual exclusion algorithm, aiefligrreported.

This technique can be extended by enhancing automatiorrifitation using EOA in the following processes:
construction of an event order monitor, decomposition ot order, and extraction of a bad event order using
heuristics. An interesting future direction is extendiragllevent order language to treat a partial order of events,
as well as the current sequential order.

We consider that identifying bad event orders is useful mbt €or the verification/synthesis process of EOA,
but also for implementation engineers to understand wimak & undesirable scenarios can occur in the underlying
system/protocol when parameters are badly tuned. Alorgylithe, identified bad event orders could be used in
model-based testing or model-based test-case generafioB]} in which a formally specified model is used to
test an actual implementation of a system.

Acknowledgment: First of all, | thank my supervisor, Prof. Nancy Lynch, forrlpatient guidance on this research
and fruitful comments on an earlier version of the paperoAseveral comments from Eunsuk Kang helped me
revise the paper. | also thank anonymous reviewers of a camde version of this paper for their helpful comments.

References

[1] Rajeev Alur and David L. Dill. A theory of timed automaft@heoretical Computer SciencE26(2):183-235,
1994,

[2] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi.dPaetric real-time reasoning. ACM Symposium
on Theory of Computingages 592—-601, 1993.

[3] Aurore Annichini, Ahmed Bouajjani, and Mihaela Sigharai. TReX: A tool for reachability analysis of
complex systems. I@omputer Aided Verificatigmppages 368—-372, 2001.

17

[4] Eugene Asarin, Oded Maler, and Amir Pnueli. On discedton of delays in timed automata and digital
circuits. InProc. of CONCUR’98volume 1466 of ecture Notes in Computer Scienpages 470-484, Nice,
France, 1998. Springer.

[5] Dragan Bosnacki. Digitization of timed automata.Rroc. of FMICS 991999.

[6] Howard Bowman, Giorgio Faconti, Joost-Pieter Katoemdd Latella, and Mieke Massink. Automatic
verification of a lip-synchronisation protocol using uppdarmal Aspects of Computin@0(5-6):550-575,
1998.

[7]1 Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu,Helchut Veith. Counterexample-guided
abstraction refinement. IBAV 2000 volume 1855 ol_ecture Notes in Computer Sciengages 154-169.
Springer, 2000.

[8] Siddhartha R. Dalal, Ashish Jain, Nachimuthu Karurtanil. M. Leaton, Christopher M. Lott, Gardner C.
Patton, and Bruce M. Horowitz. Model-based testing in peactin International Conference on Software
Engineering pages 285-294, 1999.

[9] Leonardo Mendonca de Moura, Sam Owre, Harald Ruel3, WbhRushby, Natarajan Shankar, Maria Sorea,
and Ashish Tiwari. SAL 2. IiProc. of CAV 2004volume 3114 ot.ecture Notes in Computer Scienpages
496-500. Springer, 2004.

[10] Jeremy Dick and Alain Faivre. Automating the genematimd sequencing of test cases from model-based
specifications. IfFME '93: Proceedings of the First International Symposiuinfk@rmal Methods Europe on
Industrial-Strength Formal Methodpages 268—284, London, UK, 1993. Springer-Verlag.

[11] Goran Frehse, Sumit Kumar Jha, and Bruce H. Krogh. A tmemample-guided approach to parameter
synthesis for linear hybrid automata. HECC 2008 volume 4981 ofLecture Notes in Computer Science
pages 187—-200. Springer, 2008.

[12] K. Havelund, A. Skou, K.G. Larsen, and K. Lund. Formaldating and analysis of an audio/video proto-
col: an industrial case study using uppaal.RMSS '97: Proceedings of the 18th IEEE Real-Time Systems
Symposium (RTSS '9fage 2, Washington, DC, USA, 1997. IEEE Computer Society.

[13] C. Heitmeyer and N. Lynch. The generalized railroadssiog: A case study in formal verification of real-
time systems. Technical Report MIT/LCS/TM-511, MIT, 1994.

[14] T. Henzinger, J. Preussig, and H. Wong-Toi. Some les$am the HYTECH experience. IRroc. of the
40th Annual Conference on Decision and Contpalges 2887—-2892. IEEE Computer Society Press, 2001.

[15] T. A. Henzinger. The theory of hybrid automata. WCS '96: Proceedings of the 11th Annual IEEE
Symposium on Logic in Computer Scienuage 278, Washington, DC, USA, 1996. IEEE Computer Saciety

[16] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Tdnransition systems. IREX workshop Real-
Time: Theory in Practicevolume 600 ofLecture Notes in Computer Sciengages 226—-251. Springer-
Verlag, 1992.

[17] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Whaddyare digital clocks? IRroc. of ICALP
1992 volume 623 of_ecture Notes in Computer Scienpages 545-558. Springer, 1992.

[18] Thomas Hune, Judi Romijn, Marielle Stoelinga, anddVit Vaandrager. Linear parametric model checking
of timed automata. Iifools and Algorithms for Construction and Analysis of Syst@ages 189-203, 2001.

[19] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and$whandragerThe Theory of Timed I/O Automata
Synthesis Lectures on Computer Science. Morgan & Claypoblighers, 2006.

[20] Kim Guldstrand Larsen, Paul Pettersson, and Wang YiPAKL in a nutshell. International Journal on
Software Tools for Technology Transfé(1-2):134-152, 1997.

[21] Nancy A. Lynch.Distributed Algorithms Morgan Kaufmann Publishers Inc., 1996.

18

[22] O. Maler and S. Yovine. Hardware timing verificationngikronos.iccsse 00:23, 1996.

[23] Zohar Manna and Amir PnueliThe Temporal Logic of Reactive and Concurent Systems: fRjagicin
Springer-Verlag, 1993.

[24] Michael Merritt, Francesmary Modugno, and Marc R. TutTime-constrained automata (extended abstract).
In Proc. of CONCUR 1991volume 527 ofLecture Notes in Computer Sciengmages 408—423. Springer,
1991.

[25] J Strother Moore. A formal model of asynchronous comitaiion and its use in mechanically verifying a
biphase mark protocoFormal Aspects of Computing(1):60-91, 1994.

[26] Jcel Ouaknine and James Worrell. Revisiting digitizatioustness, and decidability for timed automata.
In Proc. of the 18th IEEE Symposium on Logic in Computer Scidr€&S’'03), pages 198—-207, 2003.

[27] David P. L. Simons and Marielle Stoelinga. Mechanicatification of the IEEE 1394a root contention
protocol using Uppaal2kinternational Journal on Software Tools for TechnologyrnBter, 3(4):469—-485,
2001.

[28] RFL Spelberg and WJ Toetenel. Parametric real-time incecking using splitting treeNordic Journal
of Computing8:88-120, 2001.

[29] Shinya Umeno. Parametrically verifying embedded-teaé protocols using event order abstraction. Tech-
nical report, Massachusetts Institute of Technology. Teeap (A conference version has been submitted for
publication).

[30] Shinya Umeno. Event order abstraction for parametal-time system verification. IEMSOFT 2008:
International Conference on Embedded Softwamegust 2008. To apprear.

[31] Frits W. Vaandrager and Adriaan de Groot. Analysis offghhse mark protocol with UPPAAL and PVS.
Formal Asp. Comput18(4):433-458, 2006.

[32] Farn Wang. Symbolic parametric safety analysis ofdimkybrid systems with BDD-like data-structures.
Transactions on Software Engineerjrgf:38-51, 2005.

[33] Sergio Yovine. KRONOS: a verification tool for real-tnsystemsinternational Journal on Software Tools
for Technology Transfer (STT,T)(1-2):123-133, 1997.

[34] Dezhuang Zhang and Rance Cleaveland. Fast on-ther8yrric real-time model checking. Broceedings
of the 26th IEEE Real-Time Systems Symposnages 157-166, 2005.

19

