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Abstract. The Input/Output (I/O) automaton model, developed by

Lynch and Tuttle[11], models components in asynchronous concurrent

systems as labeled transition systems. IOA is a precise language for de-

scribing I/O automata and for stating their properties. A toolset is being

developed for IOA, to support distributed software design and implemen-

tation. One of the tools consists of a user-assisted code generator from

IOA into an imperative programming language such as C or Java.

One aspect that distinguishes IOA programs from programs written in

imperative languages, is the presence of nondeterminism, which comes

in the form of explicit nondeterministic statements and implicit schedul-

ing choices made during execution. Code generation therefore consists

partially of systematically removing all forms of nondeterminism.

In this paper, we describe our approach and design for code generation.

We focus on the issue of removing implicit nondeterminism, and spec-

ify a transformation on IOA programs that makes all nondeterminism

explicit. The programmer can then replace all explicit nondeterminism

with deterministic statements, prior to code generation. We also describe

this transformation at a semantic level, i.e., at the level of the I/O au-

tomaton mathematical model. We show that the transformation de�ned

at the IOA level conforms to the one at the semantic level.

1 Introduction

The Input/Output (I/O) automaton model, developed by Lynch and Tuttle [11],

models components in asynchronous concurrent systems as labeled transition

systems. It has been used to model and verify many distributed algorithms and

distributed system designs, and also to express impossibility results. Lynch's

book Distributed Algorithms [9] describes many algorithms in terms of I/O au-

tomata and contains proofs of various properties of these algorithms. In [10],

the authors describe atomic transactions in terms of I/O automata. Examples of

work done using this model include among others, implementation of sequentially
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consistent shared objects [3], group communication systems [4, 2], veri�cation of

communication protocols [14].

IOA is a precise language for describing I/O automata and for stating their

properties. It uses Larch [7] speci�cations to de�ne the semantics of abstract

data types and I/O automata. A toolset is being developed for IOA, to support

distributed software design and implementation. These tools range from light

weight tools, which check the syntax of automaton descriptions, to medium

weight tools, which simulate the action of an automaton, and to heavier weight

tools (e.g., theorem provers), which provide support for proving properties of

automata.

The toolset design includes a user-assisted code generator from IOA into

an imperative programming language such as C or Java. The goal of the pro-

cess is to produce a collection of programs that runs in a physically-distributed

setting and whose correctness has been proved, subject to stated assumptions

about the behavior of externally provided system services (e.g., communication

services), and subject to assumptions about the correctness of hand-coded data

type implementations.

One aspect that distinguishes IOA programs from programs written in an

imperative language is the presence of nondeterminism, which comes in the form

of explicit nondeterministic statements and implicit scheduling choices made

during execution. Code generation therefore consists partially of systematically

removing all forms of nondeterminism. This consists of removing all instances of

implicit nondeterminism, and making them explicit statements, and having the

user replace all explicit nondeterminism with deterministic statements.

In this paper, we review our approach and design for code generation, and

the various transformations involved in it. We then carefully focus on one such

transformation which makes the implicit nondeterminism explicit. We describe

this at the level of IOA programs, and call it the syntactic NAD

1

transformation,

as well as at the level of the I/O automaton model which we call the semantic

NAD transformation. The motivation for the latter is to provide a more general

framework for describing the transformation and present it in its full generality,

unconstrained by program syntax. We also use the semantic NAD transformation

to prove that our syntactic transformation is \correct," and conforms to it, in a

sense we de�ne in a later section.

The outline of the paper is as follows. Section 2 brie
y reviews the I/O au-

tomaton model and the IOA language. Section 3 describes the code generation

process within the IOA toolset. Section 4 presents the syntactic NAD transfor-

mation on IOA programs, and Section 5 the semantic NAD transformation on

I/O automata. Finally, Section 6 gives a summary and explores directions for

future work.

1

NAD stands for next-action deterministic, and will be introduced shortly.



2 Background

2.1 I/O Automata

An I/O Automaton A is a tuple consisting of the following components

2

.

{ Sig(A): a signature, consisting of three disjoint sets of input actions In

A

,

internal actions Int

A

, and output actions Out

A

. We use All

A

to denote

the set of all actions of A, and Loc

A

denotes Int

A

[ Out

A

.

{ States(A): a set of states.

{ States

0

(A): a nonempty subset of States(A) known as the initial states.

{ Trans(A): a state-transition relation, where Trans(A) � States(A) �

All

A

� States(A), and for every state S and every input action �, (S, �,

S

0

) 2 Trans(A).

Note that every input action is enabled in every state; we say that I/O

automata are non blocking on inputs. An execution fragment of A is a sequence

of states and actions, S

0

, �

0

, S

1

, �

1

, � � � , starting at a state and such that (S

i

,

�

i

, S

i+1

) 2 Trans(A). An execution of A is an execution fragment starting at

a start state. A trace of A is the subsequence of an execution of A consisting of

all input and output actions. We use Traces(A) to denote the set of traces of

A.

We now introduce what it means for an automaton to be next-state deter-

ministic, and next-action deterministic.

De�nition 1. An I/O automaton A is next-state deterministic if there is a

unique initial state and, for all S 2 States(A) and for all � 2 All

;

there is at

most one S

0

s.t. (S, �, S

0

) 2 Trans(A).

De�nition 2. An I/O automaton A is next-action deterministic if for all S 2

States(A), there is at most one � 2 Loc

A

enabled in S.

Most I/O automata that are written are not next-action deterministic. They

have a form of implicit nondeterminism, which consists of nondeterministically

choosing the next enabled action to execute. Transforming an I/O automaton

into a next-action deterministic one, is a step in generating code from it.

2.2 IOA Language

IOA is a precise language for describing I/O automata and for stating their

properties. It uses Larch [7] speci�cations to de�ne the semantics of abstract

data types. An IOA program A contains the following syntactic components.

{ Param

A

, contains the parameters to the IOA program A.

{ Larch

A

, contains the Larch traits used or assumed by A.

2

We omit tasks for the purposes of this paper.



{ Act

A

, contains the actions of A, where each action a is of the form:

Kind

a

a(p

1

: P

1

; � � � ; p

n

: P

n

) where pred

a

,

where Kind

a

is either input, output, or internal.

{ Var

A

, contains the state variables of A together with their types.

{ init

A

, denotes the initial condition of A.

{ Td

A

, contains the transition de�nitions of A, where each transition de�nition

d corresponding to an action named a is of the form:

Kind

a

a(t

1

; � � � ; t

n

) where pred

d

choose ps

d

pre pre

d

eff prog

d

so that soThat

d

The transition de�nition above speci�es a transition for action a having parame-

ters (t

1

; � � � ; t

n

) subject to the predicate pred

d

. The keyword choose introduces

parameters used in the body of the transition de�nition that are chosen non-

deterministically. The keyword pre introduced the precondition, and eff a se-

quence of statements representing the e�ect of the action on the state. Finally,

the so that predicate puts additional constraints on the e�ect.

An example of an IOA program is given in Figure 1, which represents a

process in the LeLann-Chang-Roberts (LCR) leader election algorithm. In this

algorithm, a �nite set of processes arranged in a ring elect a leader by commu-

nicating asynchronously. The algorithm works as follows. Each process sends a

unique string representing its name, which need not have any special relation

to its index, to its neighbor. When a process receives a name, it compares it to

its own. If the received name is greater than its own in lexicographic order, the

process transmits the received name to the right; otherwise the process discards

it. If a process receives its own name, that name must have travelled all the way

around the ring, and the process can declare itself the leader. Here we do not

show the channel automata that must be composed with the processes.

Note that in this example, all the parameters of transition de�nitions are

globally unique. This is not a requirement of IOA programs. However, it is

an assumption that we make, without loss of generality, on the form of IOA

programs that are subjected to the NAD transformation.

3 Code generation using the IOA Toolset

The code generation tool currently under development is designed to translate

IOA programs into executable programs written in a standard imperative lan-

guage. The programmer starts with a distributed algorithm expressed in IOA

and uses the tool to produce executable code that runs in a physically distributed

computational environment. In our current target environment, the resulting col-

lection of programs runs on a collection of networked workstations. Each host

runs a Java interpreter and communicates via (a subset of) the Message Passing

Interface (MPI) [5, 1] or TCP/IP [8]. This collection can be proved equivalent



automaton Process(I: type, i: I)

assumes RingIndex(I, String)

type Status = enumeration of waiting, elected, announced

signature

input receive(m: String, const left(i), const i)

output send(m: String, const i, const right(i)),

leader(m: String, const i)

states

pending: Mset[String] := {name(i)},

status: Status := waiting

transitions

input receive(m1, j1, i1)

e� if m > name(i) then pending := insert(m, pending)

elseif m = name(i) then status := elected

�

output send(m2, i2, j2)

pre m 2 pending

e� pending := delete(m, pending)

output leader(m3, i3)

pre status = elected ^ m = name(i)

e� status := announced

Fig. 1. IOA speci�cation of election process

to the original algorithm, subject to stated assumptions about the behavior of

externally provided system services (e.g., communication services), and subject

to assumptions about the correctness of hand-coded data type implementations.

3.1 Approach

To transform the original expression of the algorithm in IOA into an executable,

the programmer is guided through a series of successive re�nements to create

an equivalent form of the program that is suitable for automated translation.

Generally, the programmer begins with a simple, global description of the be-

havior of the system and its interface to the environment. This high-level model

tends to be easy to understand and to have important global properties that

can be proved. The re�ned, low-level version of the program is a collection of

interacting automata whose form corresponds to the distributed nature of the

target environment while preserving the important properties and interface of

the system. The programmer can use the validation tools included in the toolset

to con�rm the correctness of these re�nements.

The code generation process starts with an automaton designed to run on

a single computational node of the distributed system. To generate code for an

entire system, this process is repeated for each algorithmically distinct node. For

example, the programs implementing clients and servers are likely to be compiled



separately but the code for parameterized clients or peers can be compiled just

once.

The process consists of a series of re�nements of that \algorithm" automa-

ton. The automaton is connected to (models of) external system services and

transformed to eliminate implicit nondeterminism. The resulting IOA program

can then be automatically translated into the target imperative language and

linked to libraries that implement the external system services.

The code generator is structured as a set of small modules, each of which

performs a transformation. Transformations are source-to-source within the IOA

language (or in an internal intermediate form) up to the last step. Only in

that last step is the IOA program translated into the target language. In our

prototype, we have implemented a uni�ed graphical user interface (GUI) to guide

the programmer through this process.

The code generator does not generate code for the entire distributed system.

Rather, it generates the specialized code necessary to implement the algorithm at

each node. As with any programming system, newly written programs leverage

preexisting, external system services. Programs connect to those services when

running.

For each external system service, we design at least two models. First, we

write an abstract model that describes the interface and the behavior of the

service that the IOA programmer wants to use (e.g., point-to-point, reliable,

FIFO channels as in [9], Chapter 8). Second, we write a lower-level concrete model

that corresponds to the interface and behavior of the actual preexisting service

(e.g., MPI [15]). We then introduce one or more auxiliary automata, written

in IOA, that compose with the lower-level model to implement the abstract

service. (See Fig. 2). Interfaces to system services may be �xed or algorithmically

described. In the former case, the auxiliary automata are �xed and kept as a

library. In the latter case, the auxiliary automata must be generated for each

program. To create a complete executable for each node, the code generator

actually emits code for the composition of the algorithm automaton and all the

auxiliary IOA automata for all the system services the algorithm accesses.

Aut.
Abstract

Service

(a)

Aut.
Aux.

Aut.

Concrete

Service

Abstract Service

(b)

Fig. 2. Auxiliary automata mediate between external system services and algorithm

automata



There is a once-per-service proof obligation that the composition of the con-

crete model and the auxiliary automata implements the abstract service. Once

the proof is done, the programmer can use the properties of the abstract model

subject to the assumption that concrete model corresponds to the behavior of

the service. For example, a proof of correctness for our design that uses MPI to

implement reliable FIFO channels appears in [15].

Each external system service introduces constraints on the form of the low-

level IOA program that accesses it. For example, since the code generator uses

standard workstation networking services, programs submitted for code gener-

ation are required to be in node-channel form. That is, the algorithm must be

described as a collection of algorithm automata (one per node) that communicate

via standard, one-way, reliable, FIFO channel automata.

In addition, the model introduces another (technical) constraint. Atomicity

requires that the e�ect part of each transition be done without interruption,

even if inputs arrive from the external user or from the communication service

during its execution. In our design, such inputs are bu�ered. In between running

non-input actions, the generated program examines bu�ers for newly arrived

inputs, and handles (some of) them by running code for input actions. Since

the processing of inputs is delayed (with respect to the performance of these

actions by their originators), such delays have the potential to upset precise

implementation claims for the algorithm automata. We call this the input delay

insensitivity assumption.

By insisting that IOA programs from which we generate real code match

the available hardware and services, and by requiring algorithm automata to

tolerate input delays, we avoid the need for expensive non-local synchronization

in achieving a faithful implementation.

3.2 Design

The code generator consists of a series small program transformers. Each accepts

an IOA program or programs as input and produces another IOA program as

output (except the last, of course, which translates IOA into the target language).

Several of the modules are used by some, if not all, other tools in the IOA

toolkit. The granularity of the transformation is driven largely by the usefulness

of mixing and matching these tools. Table 1 lists the steps in the process. Below,

we describe each step in process. We brie
y sketch the function of each module

and show how it is used in the code generation process.

The �rst module to which any IOA program is submitted is the parser and

static semantic checker (or simply checker). In addition, to the obvious func-

tions, the checker produces an intermediate representation suitable for use by

other tools. This S-expression-based intermediate language (IL) has a simpler

parse tree than the more readable IOA source language. [12]. As the checker acts

as a front-end to just about all other elements of the toolset, the IL provides

a convenient interchange language within the IOA toolset. A checker prototype

has been implemented. The IL representation is semantically equivalent to the

source representation.



Table 1. Transformers in the IOA code generation process. Numbers in the input

column indicate that the transformer takes in the output of the numbered step.

Step Transformer Output Input

1 Checker internal form algorithm aut.

2 Interface generator auxiliary interface aut. 1

3 Composer primitive aut. 1, 2, auxiliary aut. library

4 NAD next-action deterministic aut. 3

5 Schedule editor next-state deterministic aut. 4

6 Code emitter Java source 5, data type impl. library

The interface generator connects an algorithm automaton with the external

console system service. The console service embodies all user interaction with an

IOA program at a particular node. The interface generator creates a customized

auxiliary automaton to mediate between the console service and the algorithm

automaton. The auxiliary console automaton parses input from the console into

input actions for the algorithm automaton. Similarly, output from the algorithm

automaton is forwarded to the console. In our initial prototype the abstract

model of user input allows the user to nondeterministically invoke any (non-

network) input of the algorithm while the concrete model of the console is a

simple source and sink for streams of integers [16, 13].

The composition tool (composer) converts the description of a composite au-

tomaton into primitive form by explicitly representing its actions, states, tran-

sitions, and tasks. The IOA language includes a composed of statement which

de�nes an automaton to be the parallel composition of referenced automata. The

composer expands the composition statement by \instantiating" and combining

the referenced automata as described by the logical operation on the model. In

the resulting description, the name of a state variable is distinguished by the

names of the components from which it arises. The input to the composer must

be a compatible collection of automata; for example, the component automata

should have no common output actions. Note that composition is a semantically

\neutral" operation. That is, the I/O automata described by the input program

using the composed of statement is equivalent to that described by primitive

output program.

In the code generation process, the programmer's original algorithm automa-

ton is composed with the the auxiliary interface automaton (generated in the

previous step) with �xed auxiliary network automata. The resulting automaton

describes all the behavior of the executable code we actually wish to generate

for that node. Unfortunately, it is not obvious how to directly translate this

nondeterministic form of the program into a standard imperative language.

The next-action determinator (NAD) converts the input IOA program into

an equivalent (in the sense of trace inclusion) next-action deterministic program.

The NAD form of an IOA program has no implicit nondeterminism. Explicit



nondeterminism is grouped in a new schedule transition that contains one set of

choose statements. In this stylized form, each nondeterministic choice is assigned

directly to a state variable of the automaton. Section 4 details the actual program

transformation. Section 5 shows equivalence of the input and output programs.

The �nal step before actually emitting imperative code is to remove explicit

nondeterminism from the automaton. The resulting program is both next-action

and next-state deterministic. In our prototype, the graphical user interface con-

verts the NAD form from the intermediate language into IOA source to display

to the programmer. The programmer edits the schedule transition by replacing

each choose expression in turn with a deterministic IOA expression that selects

a value from the same set as the choose expression. Showing this is a proof

obligation for correctness. The resulting IOA node automaton is completely de-

terministic and easily translated into an imperative language.

The code emitter module translates one primitive, deterministic, node au-

tomaton into actual code in the target language that implements the node au-

tomaton, in the sense of trace inclusion. For each operation, we emit code from

class libraries written in a standard programming language (currently, Java).

At present, we do not address the problem of establishing the correctness of

this sequential code (other than by conventional testing and code inspection).

Standard techniques of sequential program veri�cation based, for example, on

Hoare logic, should be capable of handling such correctness proofs. (Note that

the IOA framework focuses on correctness of the concurrent, interactive aspects

of programs rather than of the sequential aspects.)

Since all implicit nondeterminism has been removed, the code emitter can

start from the unique initial state and perform a loop in which, at each iteration,

it executes the unique action enabled in the current state. More speci�cally, it

uses the programmer-provided expressions to determine the next transition and

parameter values and then executes that transition with those parameters. Since

there is no explicit nondeterminism, this uniquely determines the next state.

4 Syntactic NAD Transformation

In this section, we describe the syntactic NAD transformation on IOA programs,

which makes implicit nondeterminism explicit. Then in the next section, we

present the transformation in the I/O automaton model and show that the

syntactic transformation conforms to the semantic one in a precise sense.

We �rst introduce some notation. Let t be a term and

�

t a sequence of terms.

Let �v and �x be sequences of variable names, having the same size as

�

t. We write

t[�v j

�

t] to denote a term identical to t where every free occurrence of �v

i

, i � 1, if

any, has been replaced by

�

t

i

. We write �v = �x to denote

V

i

�v

i

= �x

i

.

In the program we intend to transform, we assume that the free variables of

actual parameters for transition de�nitions and choose parameters are unique

throughout the program

3

.

3

This assumption does not cause loss of generality. It is possible to relax it by �rst

performing some renaming on the program to be transformed.



Given an IOA programA, let B be the following program, with actionsAct

B

,

state variables Var

B

, initial condition Init

B

, and transition de�nitions Td

B

.

{ Param

B

is identical to Param

A

.

{ Larch

B

is identical to Larch

A

.

{ Act

B

is identical to Act

A

, with an additional internal action:

internal Sched

{ In addition to the state variables of A,Var

B

has the following state variables.

� w

1

: W

1

; � � � ; w

k

: W

k

, where w

1

through w

k

are the free variables ap-

pearing in actual or choose parameters of locally controlled actions of

A.

� pc : fd

1

; � � � ; d

m

; schedg, where d

1

through d

m

are the locally controlled

transition de�nitions of A in the order that they appear syntactically.

{ Init

B

is Init

A

^ pc = sched.

{ Td

B

consists of the following.

� For each input transition de�nition d of A, Td

B

contains an identical

transition de�nition d

0

having e�ect

prog

d

; pc = sched.

� For each locally controlled transition de�nition d of A, corresponding to

an action named a, Td

B

contains the following transition de�nition d

0

,

where �w

d

denotes the sequence of free variables appearing in actual or

choose parameters of d, and �x is a sequence of fresh variables having the

same size as �w

d

.

Kind

a

a(t

1

[ �w

d

j �x]; � � � ; t

n

[ �w

d

j �x])

pre pc = d ^ �w

d

= �x

eff prog

d

;

pc := sched

so that soThat

d

� The following transition de�nition for the internal action Sched, where

a

1

; � � � ; a

m

are the corresponding action names of d

1

; � � � ; d

m

, and �p

a

i

and

�

t

d

i

, 1 � i � m, are the sequence of formal parameters of action a

i

,

and actual parameters of transition de�nition d

i

, respectively.

internal Sched

pre pc = sched

eff w

1

:= choose;

� � �

w

n

:= choose;

pc := choose q where q 6= sched;

if :(pc = d

1

^ pre

d

1

^ where

a

1

[�p

a

1

j

�

t

d

1

] ^ where

d

1

_ � � �

_ pc = d

m

^ pre

d

m

^ where

a

m

[�p

a

m

j

�

t

d

m

] ^ where

d

m

)

then pc := sched fi

We now consider again the example introduced in Section 2.2, representing

a process in the LCR leader election algorithm. Figure 3 presents the result

of subjecting that example automaton to the NAD transformation we de�ned



above. The transformation adds an internal action, sched, as well as a state

variable pc. It also adds all parameters of locally controlled actions to the state.

The parameters of these actions are renamed, and the names do not have to be

unique. The Sched action �rst chooses values for the parameters and for pc, and

then checks whether an action is enabled given these values. If there is, then

that action is chosen to be executed next. The precondition of locally controlled

actions have been modi�ed to make this possible.

In this example, all nondeterminism is explicit in the form of choose state-

ments which choose a value nondeterministically, subject to a condition speci�ed

after the keyword where

4

. Moreover, in any state there is at most one action

enabled. We show that this automaton satis�es next-action determinism, more

precisely in the next section.

5 Semantic NAD Transformationn

In this section, we present the NAD transformation at the I/O automaton level,

and refer to it as a semantic transformation. Our motivation is to provide a

transformation at the level of the mathematical model as a complement to the

syntactic one. This gives a more general characterization of the transformation,

and provides a framework in which we can verify that the syntactic transforma-

tion is correct.

5.1 Semantic Transformation

We de�ne the semantic transformation by giving a relation NAD(A), which

denotes the set of all next-action deterministic I/O automata corresponding to

A.

The relation NAD(A) is de�ned by giving restrictions on the components of

the automata that belong to it. An automaton B in NAD(A) has all the actions

of A, and a set of additional internal actions, which we call scheduling actions,

and denote � .

Next we de�ne the restrictions on the set of states of B. We �rst de�ne a

partition P on the states of B, having an equivalence class for each action that is

locally controlled in B. We write P

�

to denote the equivalence class corresponding

to �. Informally, a state S is in P

�

, if action � has been chosen for execution in

state S. The action � may or may not be enabled in S.

We then de�ne a second partition Q on the states of B, having an equiva-

lence class for each state of A. We write Q

S

A

to denote the equivalence class

corresponding to the state S

A

of A. Informally, a state S of B is in Q

S

+
, if it

\corresponds" to S

+

.

Having de�ned these two partitions we state that they must be restricted

such that 8S 2 States(A), � 2 Loc

B

, Q

S

\ P

�

6= ; holds. This condition

allows us to introduce the following notation. We write [�;S] to denote Q

S

\P

�

,

and call it a sector.

4

When the condition is omitted, it is simply true.



automaton Process(I: type, i: I)

assumes RingIndex(I, String)

type Status = enumeration of waiting, elected, announced

signature

input receive(m: String, const left(i), const i)

output send(m: String, const i, const right(i)),

leader(m: String, const i)

internal Sched

states

pending: Mset[String] := {name(i)},

status: Status := waiting,

m2, m3: String,

i2, i3: I,

j2: I,

pc: enumeration of send, leader, sched

so that pc := sched

transitions

input receive(m1, j1, i1)

e� if m1 > name(i1) then pending := insert(m1, pending)

elseif m1 = name(i1) then status := elected

�;

pc := sched

output send(m, i, j)

pre pc = send ^ m = m2 ^ i = i2 ^ j = j2

e� pending := delete(m2, pending);

pc := sched

output leader(m, i)

pre pc = leader ^ m = m3 ^ i = i3

e� status := announced

internal Sched

pre pc = sched

e� m2 := choose; m3 := choose;

i2 := choose; i3 := choose; j2 := choose;

pc = choose q where q 6= sched;

if not (pc = send ^ m2 2 pending

_ pc = leader ^ status = elected ^ m3 = name(i3))

then pc := sched �

Fig. 3. IOA speci�cation of election process



Informally, B is an automaton which behaves like A, but in addition it ex-

plicitely chooses which action to execute next. For each state S

A

of A, B has a

set of states corresponding to S

A

, and these states encode di�erent choices for

the next action to execute. A state in sector [�;S] corresponds to state S of A

with the choice of executing action � next.

It remains to specify the initial states of B, as well as its transitions. The

initial states of B are all those that belong to [�;S

0

], for � 2 � and S

0

is an

initial state of A.

The transitions of B must be such that if B goes from state S to state S

0

while

executing action � of A, then S corresponds to state S

A

of A, S

0

corresponds to

S

0

A

, and (S

A

; �;S

0

A

) is a transition of A.

Figure 4 illustrates the execution of some automaton b 2 B. In this �gure,

rows represent partition P and columns partition Q. The states in equivalence

classes of P corresponding to scheduling actions are labeled scheduling states. An

execution of B starts at an initial state, which is a scheduling state corresponding

to an initial state of A. Then B executes a scheduling action, and chooses an

action to execute that is enabled in the current state. This causes the automaton

to move vertically into a state in which a choice has been made. Next, B executes

the chosen action, and moves to a scheduling state, and this process is repeated.
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Fig. 4. The exectution of some automaton b 2 B.

Formally, the Nad relation is given as follows.



De�nition 3. B 2 NAD(A) if and only if there exists a set � of actions disjoint

from All

A

, and partitions P and Q on States(B), having an equivalence class

for each action in Loc

B

and each state of A, respectively, such that:

1. 8S 2 States(A), � 2 Loc

B

, Q

S

\ P

�

6= ;.

2. Sig(B) = (In

A

; Int

A

[�;Out

A

).

3. States

0

(B) = fS j 9� 2 �;S

0

2 States

0

(A);S 2 [�;S

0

]g.

4. A transition (S; �;S

0

) is in Trans(B) if and only if:

9�

0

2 �;S

A

;S

0

A

2 States(A) such that:

� 2 In

A

^ (S

A

; �;S

0

A

) 2 Trans(A) ^ S 2 Q

S

A

^ S

0

2 [�

0

;S

0

A

]

_

� 2 Loc

A

^ (S

A

; �;S

0

A

) 2 Trans(A) ^ S 2 [�;S

A

] ^ S

0

2 [�

0

;S

0

A

]

_

� 2 � ^ S 2 [�;S

A

] ^ S

0

2 [�

0

;S

A

] [ [�

0

;S

A

];

for �

0

2 Loc

A

such that �

0

is enabled in S

A

:

5.2 Soundness of Semantic Transformation

In this section, we argue that any I/O automaton in NAD(A) has the same

traces as A and satis�es next-action determinism.

Lemma 1. Let B 2 NAD(A). Then Traces(B) = Traces(A).

Proof. We do not show the proof here. This can be done by induction on the

length of an execution [17].

Lemma 2. Let B 2 NAD(A). B is next-action deterministic.

Proof. Let S be a state of B. In order for any locally controlled action � of B

to be enabled in S, S must be such that S 2 P

�

, by construction. Since P is

a partition on States(B), then there is at most one locally controlled action

enabled in S. Thus B is next-action deterministic.

5.3 Correspondence Between the Syntactic and the Semantic

Transformations

In this section, we argue that the syntactic transformation described previously,

conforms to the semantic transformation above. For this we introduce the notion

of the semantic of an IOA program sem. For an IOA program A, sem(A) denotes

the I/O automaton corresponding to A. The semantics of IOA programs have

been de�ned precisely in [6], and we will not reproduce them here.

Let B be the result of transforming IOA program A with the NAD syntactic

transformation. Then the following holds.

Theorem 1. sem(B) 2 NAD(sem(A))



We do not show the formal proof here, since that would require showing as

well the precise de�nition of the semantics of a program, but we give the informal

argument behind the proof. The proof is presented in [17].

In order for sem(B) to be related to sem(A) via the semantic NAD transfor-

mation, there must exist a set � of actions and partitions P and Q satisfying

the conditions of De�nition 3. In this case, � consists of a single action Sched.

The state of B consists of all the states of A and some additional state

variables, pc and parameter lists, that indicate which action to execute next. We

specify the partition Q as follows. A state S of B is in Q

S

A

, for a state S

A

of A,

if the portion of state S corresponding to the state of A, is identical to S

A

.

We specify the partition P as follows. A state S of B is in P

�

, for a locally

controlled action of B, if the extra state of S indicates that � is the next action

to run.

Given these values for � , Q, and P , we can verify that the conditions of

De�nition 3 are satis�ed.

6 Conclusion

In this paper, we presented our approach and design for code generation in I/O

automata. We have also presented in detail, one of the transformation involved

in this process, the syntactic NAD transformation (synNAD). Further, we de-

scribed the transformation at the level of the mathematical model, the semantic

NAD transformation (semNAD), and showed that the syntactic transformation

conforms to it in a precise sense.

The introduction of a semantic transformation illustrates a method for de-

signing program transformations in this context. We use semNAD as a \speci�-

cation" transformation, that is \implemented" by synNAD. Our method consists

of giving a semantic transformation and a syntactic one, and proving that the

latter conforms to the former in a precise sense. This method has the following

advantages.

{ A precise description of the transformation is given, which makes mathe-

matical manipulation possible.

{ The de�nition of the transformation is as general as possible.

{ It is not tied down to a particular language syntax.

{ Syntactic variations of the same transformation can be easily shown to be

equivalent.

As future work, we plan to investigate ways of assisting the user in replacing

explicit nondeterministic statements with deterministic ones, and to complete a

working prototype of the code generator.
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