Virtual Synchrony Semantics:
A Client - Server Implementation
by
[gor Tarashchanskiy

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2000
(© Igor Tarashchanskiy, MM. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute
publicly paper and electronic copies of this thesis document in whole or in
part.

Department of Electrical Engineering and Computer Science
August 31, 2000

Idit Keidar
Postdoctoral Research Associate
Thesis Supervisor

Arthur C. Smith

Chairman, Department Committee on Graduate Students

Virtual Synchrony Semantics:

A Client - Server Implementation
by

Igor Tarashchanskiy

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2000, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Group communication systems (GCSs) with virtual synchrony (VS) semantics have proven
to be powerful abstractions for distributed fault-tolerant application development. In this
thesis, we present an implementation of a virtally synchronous service which is a part of the
emerging Xpand GCS. This service is based on a new fast VS algorithm. This algorithm is a
part of the architecture that separates the multicast and the membership services in order to
parallelize their operations. The performance measurements of the system have shown that
the commuication overhead is low and the parallelism of the membeship and VS services is
effective.

Thesis Supervisor: Idit Keidar
Title: Postdoctoral Research Associate

Acknowledgments

I would like to thank Idit Keidar, my advisor, and Roger Khazan for providing valuable
insights and suggestions. I also would like to thank Tal Anker, Ilya Shnaiderman and Gregory

Chockler for sharing with me their experience in computer system development.

Contents

Introduction

Virtual Synchrony Specifications

2.1 Membership Safety
2.2 Multicast Safety
2.3 Ordering and Reliability 0o
24 LAVENeSS
2.5 The Utility of Virtual Synchrony and Transitional Set
Environment

3.1 Membership Service
3.2 Core as Reliable FIFO Layer
3.3 Support for Multiple Groups

Virtually Synchronous Client Interface

4.1 VS-wsession User API s

V' S-wsession Implementation

5.1 Roadmap
5.2 Interconnection with Other Modules
5.3 Event-Driven Designo
5.4 Communication Messages o
5.5 The Algorithm Overview
5.6 Data Structures and Algorithmic Details

12
12
13
13
14
15

16
16
17
18

20
21

5.7 Garbage Collection 32

5.8 Forwarding Strategy 32
5.9 Stability Trackingo 32
5.10 VS-wsession Limitations oL 33
Performance Measurements 34
6.1 Measurement Setup e 34
6.2 Overhead at Normal Delivery 35
6.3 Virtual Synchrony Algorithm Duration 36
Conclusion 41
7.1 Future Developments 41

List of Figures

3-1

6-1
6-2
6-3
6-4
6-5
6-6

VS architectureo 17
Distribution of VS message overhead, e. 0. 35
Distribution of time to receive a membership view, 6. 36
Distribution of time to collect all synchronization messages, d,. 37
Distribution of the total view reconfiguration time, d3.. 37
Distribution of the difference between 6; and d. 38
Distribution of the difference between d3 and 6;. 38

List of Tables

6.1 Average and median times for the VS algorithm duration.

Chapter 1

Introduction

Group communication is a means for providing multi-point to multi-point communication
among a group of processes. A group communication abstraction provides application writers
with reliable multicast communication services within dynamically changing groups. It also
provides membership services which inform group members when other members crash, leave,
or join the group.

A group communication system (GCS) allows clients to join one or several multicast
groups and informs clients about membership changes via views. A view contains a set of
currently connected clients in a given group. The views are delivered to a client within the
stream of messages multicast by clients to the group. A membership service, which is a part
of the GCS, generates views in response to processes joining, leaving or disconnecting from
the group. The task of this service is to maintain and distribute the information about the
current group membership.

The ability to share common information in a fault-tolerant manner is what many applica-
tions require. GCSs are designed to meet exactly this requirement; therefore, fault-tolerance
is one of the key properties of any GCS. As a matter of fact, a great deal of distributed
fault-tolerant applications already rely on the group communication abstraction because of
its useful semantics (see [4, 5, 11]).

A group communication system typically provides a handful of properties [13]. The GCS

safety properties guarantee that the system never violates certain correct characteristics.

Some of them specify the behavior of the GCS membership service. That is, they state
the requirements about the membership views provided by the service. The GCS must also
provide certain multicast characteristics regarding the reliability and ordering of messages.
An important safety property is Virtual Synchrony [13]. Tt guarantees synchronous message
delivery with respect to views. Specifically, if two clients transition from V' to V' together,
they must deliver the same set of messages in V.

In addition to the safety properties, a GCS must provide some liveness guarantees. They
characterize how well a system progresses in delivering messages and views. Liveness of the
system depends heavily on the stability of the underlying physical network. However, this
is barely a problem because, at least temporary, network stability is a sensible condition
in practice. The term virtual synchrony semantics (VS) refers to a combination of these
liveness and safety properties that includes the Virtual Synchrony property.

A serious issue with which a virtually synchronous GCS has to cope is maintaining an
acceptable level of performance while the number of communicating clients, and the size of
the network grow. To implement VS, a GCS needs to perform the synchronization rounds
in which the clients exchange the information about their states. As the network latency
increases, the synchronization rounds become very costly. Message length and complexity
increase with the number of clients.

This thesis implementation is a building block of the emerging Xpand GCS designed to
resolve many performance issues. Specifically, we implement the VS algorithm by Keidar
and Khazan [10], as a part of the architecture proposed by Anker et al. [2]. The novelty
of this architecture is the separation of the membership service from the multicast client
in order to parallelize the executions of the membership and the VS protocols. Moreover,
the VS protocol requires only one round of synchronization messages per each membership
change. It uses the external membership service of Keidar et al. [10]. The new features allow
the system to operate efficiently on a Wide Area Network (WAN).

The Xpand system consists of three main components:

e Core implements reliable FIFO multicast [3] among clients.

e The membership server provides clients with views via a TCP interface [9].

9

e The VS library, called VS-wsession, provides the VS service implemented in this project.

VS-wsession supports two types of semantics: strong and weak. The first one refers to the
VS semantics described earlier while the second type of semantics implements only a subset
of the VS properties that does not include Virtual Synchrony. The capability to support two
semantics makes the entire system more flexible and more useful for applications requiring
different semantics. For example, an application can participate in a video conference and
edit a shared file at the same time. Clearly, the file consistency requires stronger reliability
guarantees than the video.

VS-wsession is a C++ library, which can be linked with the user application. It is
implemented using approximately 9000 lines of code. VS-wsession allows the application
to establish new or join existing groups in order to multicast and receive messages. The
multicast send and receive operations are non-blocking; they return an error in case the
lower level operations would block.

VS-wsession also informs the application about new membership views because a typical
application needs to know the other parties with which it communicates. The membership
views go through VS-wsession from the membership server to the application. However,
before VS-wsession can deliver a view to the application, it has to complete one or more
synchronization rounds. To parallelize the generation of a new membership view with the
synchronization rounds, the membership server notifies its clients, VS-wsessions, when it
begins to engage in a membership change in a given group. Thus, the clients can start
synchronizing even before they receive the view from the membership server. Once the view
is received from the membership server and the synchronization are rounds complete, the
view can be delivered to the application.

In this thesis, we present measurements of VS-wsession’s performance. The results of our
measurements show that the computation overhead associated with message delivery while
no membership changes occur is very low. It also shows that the synchronization rounds
complete faster than the membership view generation in majority of cases, and the difference
in time is approximately 50%.

The following sections describe the system in greater detail. Chapter 2 contains the

10

specifications of VS-wsession. Chapter 3 describes how VS-wsession interacts with Core and
the membership server. Chapter 4 describes the API. The details of the implementation of
VS-wsession follow in Chapter 5. This thesis also shows the performance characteristics of

the system in Chapter 6.

11

Chapter 2

Virtual Synchrony Specifications

We now present the specifications of the entire system as conveyed by VS-wsession to its
application. Here, a process corresponds to an instance of VS-wsession on a network. Each
process is responsible for serving its user application. The communication between a process
and its user is defined in terms of a set of events. The send event refers to submitting a
messages by the application to the process for multicasting. Similarly, a receive event refers
to the delivery of a message by the process, possibly from another process, to the application.
The stream of messages delivered to the application contains views. The view consists of a
set of communicating processes in a given group and an identifier from an ordered set. The
installation of a view is the delivery of a message containing the view and a transitional set
to the application, as explained below.

Of the specification properties below, VS-wsession simply preserves most of them. The
only properties it implements itself are (1.3),(2.3) - (2.5) and (4.1.b). The properties it
preserves are guaranteed by the membership service and Core. The details of the interaction
of VS-wsession with the two components follow in Chapter 3.

VS-wsession meets the following specifications described in [13, 10]:

2.1 Membership Safety

(1.1) Self Inclusion: If process p installs view V', then p is a member of V.

12

(1.2) Local Monotonicity: If a process p installs view V" after installing view V'| then the

identifier of V' is greater than that of of V',

(1.3) Initial View Event: Every send and receive event occurs in some view.

2.2 Multicast Safety

(2.1) Delivery Integrity: For every receive event, there is a preceding send event for that

message.

(2.2) No Duplication: Two different receive events with the same message cannot occur

at the same process.

(2.3) Sending View Delivery If a process p receives message m in view V., and some

process g (possibly p = ¢) sends m in view V', then V = V",

(2.4) Virtual Synchrony If processes p and ¢ install the same new view V' in the same

previous view V', then any message received by p in V' is also received by ¢ in V.
(2.5) Transitional Set :

1. If process p installs a view V' in (previous) view V', then the transitional set for
view V' at process p is a subset of the intersection between the member sets of V'

and V.

2. If two processes p and ¢ install the same view, then ¢ is included in p’s transitional
set for this view if and only if p’s previous view was also identical to ¢’s previous

view.

2.3 Ordering and Reliability

(3.1) FIFO Delivery: If a process p sends two messages, then these messages are received

in the order in which they were sent at every process that receives both.

13

(3.2) Reliable FIFO: If process p sends message m before message m' in the same view

V', then any process ¢ that receives m' receives m as well.

2.4 Liveness

Before specifying the liveness properties, we need to define, as in [13], a stable component
and an eventually perfect failure detector used by the VS service. The stable component is
a group of communicating processes that are eventually alive and connected to each other,
but disconnected from all processes not in the group. A failure detector is a module that
provides information about liveness of processes on the network. An eventually perfect
failure detector is a failure detector that eventually reports the correct information about
the processes’ connectivity. It is referred as OP in [6, 13]. For more more formal definitions,
please see [13].

Liveness is only required if eventually there exists a stable component S in the network
(processes eventually stop crashing or recovering), and the failure detector behaves like &P

[6, 13].

(4.1) Liveness: Assuming that S exists and the failure detector behaves like OGP, then for
every stable component S there exists a view V with S as its members set such that

the following three properties hold for each process p in S:

a. Membership Precision: p installs view V' as its last view.

b. Multicast Liveness: Every message p sent in V is received by every process in

S.

c. Self Delivery: p delivers every message p sent in any view unless p crashed after

sending it.

14

2.5 The Utility of Virtual Synchrony and Transitional
Set

Virtual Synchrony is a very useful property for many applications that maintain replicated
data. The application processes that maintain data replicas join multicast groups through
a GCS with virtual synchrony semantics. The operations on the the replicated data are
multicast in messages by each process to the entire group. These messages are received
reliably and in a FIFO manner. If a process applies the operations indicated in the received
messages, the Virtual Synchrony property guarantees that the processes remaining in a group
will receive the same sequences of messages and perform the same operations on their data
replicas. This implies data consistency among the group members.

Transitional Set allows processes to exploit Virtual Synchrony. Specifically, the transi-
tional set tells an application process which other processes move together with it from their
mutual current view into their mutual new view. This way, the process knows which other
data replicas remain consistent with itself. For concrete applications of Virtual Synchrony

please see [7, 11, 1].

15

Chapter 3

Environment

The distinction of the new design is that it separates the membership service from the
multicast communication. Since the membership changes are relatively infrequent compared
to the communication traffic, the new design removes the unnecessary overhead from the
major part of the communication traffic and thus provides for better efficiency. This feature
makes the system especially suitable for such wide area networks as the Internet. Moreover,
the client-server architecture, which is shown in Figure 3-1, improves the scalability of the

system.

3.1 Membership Service

A set of servers communicating among themselves and with their VS clients via TCP sockets
implement the membership service [9]. Each server uses its TCP interface to communicate

two types of messages to its clients:

1. Start-Change Message: A start-change message containing an identifier tells a client
that the membership is changing. It provides an approximation view of the membership

of the next view. It also carries an identifier.

2. New-View Message: A new-view message contains a set of clients that the mem-

bership servers have determined to be in the next view. The new-view message also

16

Application Application
VS-wsession V S-wsession
Events | Memb. Memb. | Events c
Core | Library | Module Module | Library ore
\ Membership /
Server

Figure 3-1: VS architecture

contains a view identifier and the last start-change identifiers received by each group

member.

These messages are provided to client’s VS-wsession. The identifiers of the start-change
and the new-view messages are guaranteed to monotonically increase. Moreover, the mem-
bership of the new-view message is guaranteed to be a subset of set given in the last start-
change message. They also guarantee properties (1.1), (1.2) and (4.1.a).

Each VS-wsession uses the membership interface module provided by Xpand in order to
retrieve the messages from its membership server. The information available in the start-
change allows to a client to start the synchronization round with the set of clients indicated
in the message. The new-view allows each client to determine the transitional set and to

agree with other clients on which message to deliver before installing the message’s view.

3.2 Core as Reliable FIFO Layer

The VS-wsession is linked with Core, which provides reliable FIFO multicast channels on
top of UDP/IP-multicast [3]. Core maintains a connected set. This set is a set of clients
with whom Core maintains reliable FIFO communication. Core buffers all received messages
until it is told to deallocate them.

Core’s interface provides the following operations:

17

1. Multicast messages to a given communication group;
2. Receive messages delivered to a given group from clients;

3. Re-multicast or re-unicast to a specific client messages delivered from other clients,

VS-wsession uses this operations to forward messages;
4. Change the connected set;
5. Inform Core when a particular message can be deallocated.

The protocol implemented by Core guarantees properties (2.1), (2.2), (3.1), (3.2), and
(4.1.b-c).

The UDP protocol has been chosen for Core over TCP for performance reasons. Even
though the TCP protocol guarantees all the required properties, it can only support point-
to-point communication. On the other hand, the UDP protocol can multicast messages via
[P-multicast. The use of multicast eliminates the need to send the same message multiple
times and thus alleviates the network load.

Core compensates for UDP’s unreliability and reordering. It provides FIFO message or-
dering between any pair of clients in a group. Core uses an ACK/NACK algorithm with
timeouts. It buffers all in-bound and out-bound messages, acknowledges received messages,
sends negative acknowledgments in case it detects missing messages, and retransmits a mes-
sage after receiving a NACK for it.

Core allows VS-wsession to use its message buffer space to avoid multiple message copy-
ing. When VS-wsession informs Core about a message deallocation, Core will “garbage-
collect” all the messages up to and including the indicated one according to the message

sequence numbers. A more detailed discussion of Core can be found in [3].

3.3 Support for Multiple Groups

The VS-wsession also uses the membership interface module for group multiplexing [3].
VS-wsession creates and manages strong and weak groups. VS-wsession guarantees virtual

synchrony semantics in each strong group. The application can be a member of any number of

18

groups limited by a configurable constant MAX_GROUP_NUM. The groups are referenced
by names, which are character strings with maximum length of MAXGRPNAME. Core
resolves the group names into group identifiers and network addresses internally [3] while

VS-wsession uses the string representation.

19

Chapter 4

Virtually Synchronous Client

Interface

As mentioned above, the objective of VS-wsession is to provide the application with the
virtually synchronous semantics using the membership and Core. As for the application
interface, VS-wsession allows the application to join and leave existing groups (known to the
client’s server). If the application attempts to join a non-existent group, the group will be
established with a single member. Once the application has chosen to join one or more strong
groups, the VS-wsession joins these groups at the membership server and starts delivering
application messages in a manner that is synchronous with respect to the membership events.

VS-wsession also generates block events with special blocking messages injected into the
application message stream. A block event notifies the application about a pending view
installation. The application must finish sending its messages in the current view and subse-
quently respond with a block-OK message generating a block-OK event at VS-wsession. The
block-OK event allows VS-wsession to run the synchronization round for the pending view
installation. The application will be unblocked when VS-wsession delivers the new view [10].

The current implementation of the VS client is single-threaded; it relies on Xpand’s
events library. The thread of control is shared among the user application, the VS client,
the membership interface module, and Core based on demand and priority. Every module

registers its event handlers as call-back routines with the events library, which is responsible

20

for scheduling these call-backs.

In order to receive information from VS-wsession, the application must provide delivery
and unblock call-backs upon join. These routines will be called to deliver a message or an
unblock event. In case of the weak service group, the user also needs to supply a membership
change call-back. For the strong groups, the third call-back is not needed because the VS-
wsession will notify the user about a new view through the delivery call-back using a special
new-view message.

VS-wsession uses the following messages to communicate with its application:

1. Application Message, APP_MSG: This message is the application data treated as

a byte buffer sent and delivered among group members.

2. New View Message, NVIEW _MSG: The new view message contains a membership
and a view identifier. It also contains a transitional set. After receiving this message,

the application can continue multicasting messages in the new view.

3. Block Message, BLOCK_MSG: The block message is used to notify the application

about the start of a view reconfiguration.

4. Block-OK Message, BOK_MSG Upon receiving the block message, the user appli-
cation must send any relevant messages in the current view and terminate them with
a block-OK message. The block-OK message tells the client that the application will

not send any more messages in the current view.

The VS-wsession library provides only per group semantics and can support the weak

groups as well as strong ones. It has the following user API.

4.1 VS-wsession User API

W _Init()

arguments: char string client_name
char string server_address
unsigned short server_port

21

checks:

effects:

returns:

W _Close()

arguments:

checks:

effects:

returns:

W _Join()

arguments:

checks:

effects:

returns:

membership type type

if type € {WEAK, STRONG}.

instantiates and initializes the VS-wsession abstraction
for a new client;

if type = STRONG, VS-wsession will allow to create

only STRONG groups.

a new wsession handle.

wsession handle weph

disconnects from the membership server and deallocates all

the data structures for this client.

wsession handle weph

char string group_name

function pointer unblock_callback

generic pointer unblock_parameter

function pointer delivery_callback

generic pointer delivery_parameter

function pointer membership_callback (NULL for STRONG (VS) groups)
generic pointer membership_parameter (NULL for STRONG (VS) groups)
membership type type

if this client is already a member of the requested group;

if type € {WEAK,STRONG};

if type # WEAK in case of the STRONG wsession type.

instantiates and initializes a new group object;

issues a join event for the appropriate group to

the membership server;

notifies Core.

new group handle.

22

W _Leave()
arguments: wsession handle weph

group handle group_ID

checks:
effects: issues a leave event to the membership server;
notifies Core;
deallocates the group instance and removes call-backs.
returns:
W _Send()

arguments: wsession handle weph
group handle group_ID

unsigned short buffer_length

char buffer buffer
checks: if buffer_length < MAX_VS_USER_MSG_SIZE.
effects: sends an APP_MSG containing buffer

to the group with group_ID.
returns: 0 if message is sent;

-1 if message cannot be sent presently.

W _Group_Poll()
arguments: wsession handle weph

group handle group_ID

checks:

effects: polls Core for available messages to receive in
the group specified by group_ID.

returns: number of deliverable messages.

W _Group_Receive()

arguments: wsession handle weph
message pointer msg_pointer
group handle group_ID

23

checks:

effects: performs non-blocking receive;
if there is a message to deliver, msg_pointer points
to the message;
else msg_pointer is set to NULL;

returns: number of bytes in msg buffer if message is APP_MSG;
number of clients if message is NVIEW_MSG;
0 if message is BLOCK_MSG;

-1 if no messages available.

The contents of msg_pointer are deallocated once control returns from application to VS-

wsession.

W _Copy_Group_Receive()

arguments: wsession handle weph
message pointer msg_pinter
unsigned short maximum_length
group handle group_ID

user message info pointer info_pointer
checks:
effects: same as above, except that message contents
are copied to msg_pointer;

returns: same as above;

W _Block_Ack()

arguments: wsession handle weph
group handle group_ID

checks:

effects: acknowledges BLOCK_MSG and agrees not
to send messages until next view.

returns:

24

Chapter 5

VS-wsession Implementation

5.1 Roadmap

This Chapter is structured as follows: Section 5.2 describes how VS-wsession works with
other Xpand modules. Section 5.3 explains the advantages of the event-driven design of
VS-wsession. Section 5.5 presents an overview of the VS service algorithm [10]. Section 5.6
describes the main data structures of VS-wsession and how they are used by the algorithm.
Section 5.8 elaborates on the forwarding strategy employed by the algorithm [10]. Section 5.9
explains the stability tracking mechanism of VS-wsession. Finally, Section 5.10 exposes the

limitations of VS-wsession.

5.2 Interconnection with Other Modules

The call-backs provided by the application to VS-wsession for a weak group are registered
directly with Core and the membership interface module. For the strong groups, the two
application call-backs are registered with the VS-wsession instead.

In order to receive messages from the network, VS-wsession registers its own delivery
and unblock call-backs with Core. In addition, VS-wsession registers a call-backs with the
membership interface module to handle the messages arriving from the membership server.

All the call-backs are invoked in a context of a group.

25

5.3 Event-Driven Design

A single-threaded control managed by the events library has been preferred because the
entire system is inherently event-driven. Namely, all computations are triggered either by
network events, or by the user application.

Another natural reason to adhere to the single-threaded event-driven paradigm is the
complexity and the performance overhead associated with data synchronization. With data
heavily shared among all groups on the level of the Core layer, it is not clear how to distribute
the work among multiple threads.

Although less significant, portability is still another reason to avoid multiple threads.
Different platforms are optimized for different thread packages. Even though POSIX seems
to be standard for the Unix platforms, Microsoft Windows systems perform noticeably better

with their native threads libraries.

5.4 Communication Messages

The client manipulates a set of messages to communicate with the membership server, other
VS clients in its groups, and the user application. The communication with the user appli-
cations, which has been described in Chapter 4, is local. That is, the application is linked
with an instance of VS-wsession. The descriptions and formats of the remaining messages

are presented below.

Membership server to VS client communication:

1. Start-Change Message: The start-change message is sent by the membership server
to its clients whenever the server engages in a membership change. This message
provides an approximation of the new membership. Each start-change message also
contains an identifier, which increases monotonically with respect to each server. The
purpose of this identifier will be mentioned during the description of the synchroniza-

tion message.

26

2. Membership View Message: The membership view message from the server con-
tains a set of clients that the membership servers have determined to be in the next
view. This set of clients is guaranteed to be a subset of the view provided in the
preceding start-change message. The membership view message also contains a view
identifier and a mapping from view members to the last start-change identifiers re-
ceived by each of them. The monotonicity of the view identifiers is also guaranteed by

the server.

Client to client communication:

1. Application Message: This is the message sent and received by application as de-
scribed in Chapter 4. The application message must not exceed MAX_VS_USER_SIZE
bytes in order to be successfully multicast. It is the responsibility of the application
to make sure that the messages it tries to communicate via the VS-wsession do not
exceed this limit. The application messages carry sequence numbers when sent among

clients.

2. Synchronization Message, also Cut, CUT_MSG: VS-wsession multicasts a cut
message every time it receives a start-change message from the server. The cut includes
the current view, including the start-change mapping, and the view identifier. It also
contains the sequence numbers of the last messages it can potentially deliver to the
application from each view member at the moment of sending this cut. These are
the messages received from Core. It also has a cut identifier, which is equal to the

start-change identifier in the start-change message received before the cut.

3. Stability Message, also Stable Cut, STBL_MSG: VS-wsession uses the stable
cut message to communicate the message stability information currently available to
it to other VS-wsesion instances. The stable cut specifies the last message delivered to

the application from each sender in the group.

4. View-Start Message, also VSTRT_MSG: The view-start message is identical to

the membership view message in content, but is multicast within the group rather than

27

sent from the server to its clients. It identifies the end of the application message stream
in the old view and notifies other group members about this member’s transition to

the new view.

5.5 The Algorithm Overview

While the network is stable and the client has installed at least one view in the group,
VS-wsession immediately delivers all the messages from Core to the application through the
delivery call-back registered by the user when it joins. When a view reconfiguration occurs,
the VS algorithm is triggered.

When the membership server informs VS-wsession (via the appropriate call-back) about
a pending view with a start-change message, VS-wsesion blocks the user application from
sending further messages. Then, after the application replies with a block-OK message, VS-
wsession multicasts a synchronization message tagged with the identifier provided in the last
start-change message. That is, the identifier of the synchronization message is equal to the
identifier of the start-change message.

To keep track of the application messages received from Core, VS-wsession assigns VS
sequence numbers to them; these sequence numbers are different from those used by Core.
The synchronization message describes which application messages VS-wsession is capable
of delivering by specifying the VS sequence number of the last message received from Core
from each member. In order to guarantee Property (2.3), all the VS-wsessions in the group
have to agree on the set of messages they deliver to the application. After collecting all the
synchronization messages and receiving the view from the membership server, each instance
of VS-wsession can determine the appropriate set, as explained below.

Because VS clients operate completely asynchronously and because multiple membership
changes may occur, VS-wsession can receive multiple start-change and synchronization mes-
sages before the membership view arrives. The start-change identifiers mapping included in
the membership view tells VS-wsession which synchronization messages from other members
to consider. Using the information contained in these synchronization messages, this VS-

wsession decides on the set of application messages it must deliver in its current view. Since

28

the same view sent to all VS-wsessions contains the same start-change identifiers mapping,
VS-wsessions use the same synchronization messages to agree on the correct set of messages.

Once VS-wsession receives a new view V' from the membership server, it can determine
the intersection of the current view V' and V. After VS-wsession collects a synchronization
message whose identifier is equal to the respective start-change identifier given in V' from
each member of the intersection, it computes the transitional set of views V and V' to
include every member of the intersection whose synchronization messages corresponding to
V' contain the same view V.

VS-wsession delivers the maximum number of messages with respect to the transitional
set. That is, for each sender, VS-wsession delivers the maximum number of messages indi-
cated in the cut messages of the members of the transitional set.

VS-wsession may not have all the messages it has to deliver before transitioning to the
new view because some members of the transitional set may have delivered more messages
from already disconnected clients than this VS-wsession. In this case, according to the
forwarding strategy explained below, some members of the transitional set must forward the
necessary messages to this VS-wsession. This way, the local VS-wsession can satisfy the VS
conditions and install a new view.

This algorithm operates in parallel with the membership service algorithm and requires
a single round of synchronization messages per every start-change event. Assuming the low
frequency of the membership changes, the algorithm minimizes the reconfiguration period
during which the application is blocked from sending and makes the high latencies of the

wide area networks tolerable.

5.6 Data Structures and Algorithmic Details

This section describes how VS-wsession data structures are used by the algorithm. Most of

the VS-wsession data structures implement the VS state described in [10].

e WEPID: Every client in a group has a WAN end-point identification containing client’s

name, membership server 1P, client’s [P, UDP port number and some other information

29

used by Core. Thus, the clients are referenced by their WEPIDs in all local data

structures.

e Reliable Set: The VS-wsession maintains a reliable set, the set of clients to whom Core
has to maintain reliable communication. This reliable set is equal to the currently
installed membership view during normal operation. Once a start-change message is
received, the reliable-set becomes the union of the start-change set and the current
reliable set. Ultimately, when a new membership view is installed, the reliable set is

reset back to normal, that is, to the view’s membership.

e Message Data Structures: In addition, VS-wsession needs to keep track of the current
view, the last start-change message from the membership server, and the last syn-
chronization messages from all other VS-wsession instances. The VS-wsession stores
only the last start-change and corresponding synchronization messages because the
system does not deliver obsolete views. (This is different from the algorithm descrip-
tion in [10]). In other words, if this VS-wsession receives a new start-change message,
it will deliver a view no older than the one corresponding to this message — all the
intermediate views will be skipped. Similarly, if this VS-wsession receives a new syn-
chronization message from another group member, it will deliver a view no older than
the one corresponding to this synchronization message, which in turn corresponds to
the start-change received by the other member. As mentioned in Chapter 5.4, the
correspondence between the start-change and synchronization messages is established

through their identifiers.

Analogously to the synchronization messages, VS-wsession stores the last view-start
message from each. Since the VS-wsession instances operate asynchronously with dif-
ferent speeds, each instance needs to know the view of each other one in order to
guarantee property (2.3). Thus, each message received from Core is associated with

the correct view.

e Send and Receive queues: VS-wsession also maintains a send queue and a receive

queue. The receive queue is cleared after the application delivery call-back is invoked

30

forcing the application to dequeue every message delivered to it. The send queue is
not used for application messages, but only for internal messages such as cuts, stable
cuts, and view-start messages. These are put on the queue until the Core is ready to

multicast them. VS-wsession tries to flush the send queue before every send operation.

e Application and Forward Set Message Buffers: The most complex data structures
of VS-wsession are the message buffers. Both the application message and the forward
set buffers are multi-dimensional data structures that are indexed by a view, a message

source WEPID, and a message VS sequence number.

While in normal mode, that is, no membership events are pending, the messages from
the network are put on the receive queue and delivered to the application. However,
before invoking the application delivery call-back, VS-wsession saves each message in
the forward set message buffer. The forward set contains all the messages that may
have to be forwarded to other members during the next view change. The messages
in this buffer are “garbage collected” either by the stability tracking mechanism after
they have been universally delivered, or during view reconfigurations along with all

other data structures.

If a view change is taking place, VS-wsession will first verify if the application message
is delivery-safe according to the VS semantics. A message is is delivery-safe if: VS-
wsession has no current start-change message, or VS-wsession has not send a synchro-
nization message corresponding to the current start-change, or VS-wsession contains
a synchronization message from a member of the current transitional set and which
has committed to deliver this message. If not, the message will be put into the appli-
cation message buffer for potential later delivery. The client attempts to empty the
application message buffer every time it receives a membership view, a synchronization

message, or another application message.

Ultimately, the messages stored in the application message buffer either become safe
to deliver before the new view is installed, or they are discarded, and the storage is
“garbage collected”. The safe messages will be delivered to the application and buffered

in the forward set as described above.

31

5.7 Garbage Collection

Eventually, if the network stabilizes (no membership events are generated),VS-wsession will
receive the last membership view message from its membership server. This will allow the VS
algorithm to determine the transitional set and the set of messages to be delivered from and
forwarded to all other group members. Before delivering the new view to the application and
multicasting a new view-start message, VS-wsession reclaims the space of all data pertaining
to the old views. This includes all types of messages sent and received in the previous views
plus some bookkeeping data. The subsequent new view delivery will also unblock the user

application, and the client will resume its normal operation.

5.8 Forwarding Strategy

VS-wsession relies on a forwarding strategy that uses the transitional set information in
order to minimize the number of the forwarded messages. Once the transitional set has been
determined and all the synchronization messages have been collected, VS-wsession can find
out which clients miss which messages. They determine which messages each VS-wsession
must forward. If more than one instance of VS-wsession is capable of retransmitting a certain
message, the one with the minimum WEPID will retransmit. The missing messages from the
members of the transitional set will not be forwarded because these members must still be
connected through the Core, which must eventually deliver the messages. Before VS-wsession
installs a new membership view, it forwards all the necessary messages in the current view
from its forward set buffer, using Core’s re-multicast /re-unicast operation. Since the current
view may stay unchanged for a long time, in order to avoid forward set buffer overflow,

VS-wsession employs stability tracking as explained in the next section.

5.9 Stability Tracking

VS-wsession maintains a stability matriz that is a set of stability cut message, one from each

member of the current view. While the view is stable (no membership reconfiguration in

32

progress), the VS-wsession periodically multicasts stability tracking information. Specifi-
cally, whenever the local message count exceeds BUFFER_LIMIT, VS-wsession multicasts a
stable cut. Upon receiving a stable cut message, VS-wsession can determine if this cut be-
longs to the current view using the saved view-start message of the source. If so, VS-wsession
will add this cut to its stability matrix and will attempt to “garbage collect” application
messages relying on the information in the updated matrix as explained below.

If the matrix contains stable cuts from all the members of the current view, VS-wsession
determines the minimum entry of all the stable cuts corresponding to a certain sender,
and “garbage collects” all the messages in its own forward set buffer up to this minimum.
VS-wsession repeats the procedure for all the members of the current view. This type of
stability tracking has been chosen because of its simplicity; it can be fine-tuned by adjusting
BUFFER_LIMIT, which is the minimum number of buffered messages before the next stable
cut is sent. The stability matrix size is O (#clients?). For groups of several hundred members,

this is a tolerable memory overhead.

5.10 VS-wsession Limitations

The maximum message size is limited by the UDP packet size, 64 Kbytes, because the cur-
rent implementation is not capable of message fragmentation and reassembly.
MAX_VS_USER_MSG SIZE (see Section 4.1) is somewhat smaller due to headers. Con-
sequently, the system is currently restricted in two ways. First, the user application must
fragment and reassemble its own messages if it wants to send longer messages. Second, the
group size must not exceed =~ 450 members; otherwise, some internal VS messages like cuts
would not fit into a single message.

More importantly, the system’s scalability is limited as a result of the linear message size
growth with respect to the number of members in a group. The sizes of the start-change, new
view, view-start, and the synchronization messages are directly proportional to the group
size. Thus, the number and the size of the messages required to guarantee VS grow linearly.
The scalability can be improved by adding hierarchy to the system as in Structured Virtual
Synchrony [8], which is explained in Chapter 7.1.

33

Chapter 6

Performance Measurements

The system performance was measured on a LAN. The goal was to measure two character-

istics:

1. The time overhead associated with the delivery of an application message from Xpand'’s

Core to the user application at normal times.
2. The time required to satisfy Virtual Synchrony during a view reconfiguration.

The next section describes the group configuration used for the measurements. Section 6.2
explains the overhead associated with normal message delivery. Section 6.3 describes the

overhead of the VS algorithm during a view reconfiguration.

6.1 Measurement Setup

The measurements were conducted on three machines: Pentium II1(850 MHz, 512 MB RAM),
Pentium I1(400 MHz, 128 MB RAM), and Pentium Pro (200 MHz, 256 MB RAM). All three
machines ran Red Hat Linux (Version 2.2.14-5), and all three were connected to a LAN
whose round-trip times for 8 Kbytes and 500 bytes were 17 msec and 2.5 msec respectively.
All three machines did not run any user processes except for a client running VS-wsession, a
membership server, and an X-server. The data presented on the figures below were collected

on the fastest machine.

34

30

a, Ban ; 1
0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16
msec

Figure 6-1: Distribution of VS message overhead, e.
6.2 Overhead at Normal Delivery

We denote by € the time since an application message is available from Core until its delivery
by VS-wsession to application. Figure 6-1 shows the distribution of € on the fastest machine
for the described group configuration of 3 membership servers and 3 VS clients, one client
per each server. In this configuration, each client sends an 8 Kbyte message every second.
The average and the median of 8900 samples are 98.5 usec and 94 pusec, respectively on the
fastest machine.

During normal operation, that is, when no membership events are generated, the message
overhead is well below 1 msec on all machines. On the fastest machine of those three, shown
in the figure, the numbers are very close to 100 usec. The numbers for the other two machines

are proportional to their computer speeds:

e avg/median = 221.7/210 usec for Pentium II;

e avg/median = 419.2/406 usec for Pentium Pro;

These results show that the message delivery overhead is negligible. It is smaller than the

network delay of a message delivery even on a LAN by more than one order of magnitude.

35

40—

0 20 40 60 80 100 120 140 160 180 200
msec

Figure 6-2: Distribution of time to receive a membership view, ¢;.
6.3 Virtual Synchrony Algorithm Duration
The following definitions explain the notation used for the figures in this Section:

e 0; = the time since the start-change message until the following new view message;

e 0, = the time since the first start-change message until all synchronization messages are

collected for the subsequent view;

e 03 = the time since the first start-change message until new view is delivered to application,

This is equal to maz(d;, d2)+ computation time.

Figures 6-2 , 6-3 , and 6-4 display the distributions of d;, d5, and 03 respectively. They
have been computed for the aforementioned configuration with a fourth client joining and
leaving every 5 sec. The number of membership events registered on each machine is 8900.
No noticeable difference between join and leave events has been observed. The messages used
in the synchronization algorithm are of size ~ 500 bytes. The fourth client that generates
the membership events joins and leaves the group via the membership server running on the

Pentium II machine.

36

40 T

0 10 20 30 40 50 60 70 80 90 100 110
msec

Figure 6-3: Distribution of time to collect all synchronization messages, ;.

507 T

451 s

401 s

0 20 40 60 80 100 120 140 160 180 200
msec

Figure 6-4: Distribution of the total view reconfiguration time, J;.

37

of I,
oL oy | N :

0 20 40 60 80 100 120 140 160 180 200
msec

Figure 6-5: Distribution of the difference between d; and 9s.

Figure 6-6: Distribution of the difference between 03 and 9;.

38

Table 6.1: Average and median times for the VS algorithm duration.

O |92 |03 | 01— 02| 03— 0y
Pentium III avg (msec) o0 | 13|52 | 38 1.9
median (msec) | 40 |5 |41 |30 1.6
Pentium I avg (msec) 116 | 67 | 120 | 49 4.0
median (msec) | 80 | 47 | 84 | 38 3.4
Pentium Pro avg (msec) 76 | 30|83 |48 7.2
median (msec) | 50 | 10 | 56 | 37 6.6

Figure 6-5 shows the distribution of the difference between §; and d5. The difference is
consistently positive and ~ 50% of §; in magnitude. This indicates that the VS synchro-
nization completes by 30 msec on average faster than the membership algorithm.

Since 9, is consistently greater than d,, Figure 6-6 shows the computation overhead of
the VS algorithm after all the synchronization and the membership messages are received.

The averages and the medians of the six quantities on all three computers are presented
in Table 6.1.

The distributions of §; and d, confirm that the membership and the VS algorithms indeed
run in parallel. The VS algorithm, implemented in the project for this thesis, is more efficient
(at least by ~ 50%). In fact, d5 is comparable with the network round-trip time.

Although the absolute values of §; are higher. This time is not in the scope of this thesis
implementation, rather it is the time the membership service requires. The membership
messages and VS-wsession messages propagate simultaneously as they should. The large
values of 9, on Pentium II are due to the membership events generated on this machine. VS-
wsession on Pentium Il receives a start-change message from the local membership server
right after a membership event is generated. However, in order to collect all synchronization
messages, the Pentium IT VS-wsession has to wait for: the membership information to prop-
agate to other servers, the servers to send the start-change messages to their clients, and for
the synchronization messages from other VS-wsessions to reach the Pentium II VS-wsession.
Therefore, it takes longer.

The results confirm that the major overhead of the VS client is associated with the view

transition. However, the synchronization algorithm is faster than the membership protocol.

39

The synchronization time is close to the network round-trip time, and it is not the limiting
factor in the combined algorithm. If the network is stable, the message delivery overhead is
negligible on a LAN it is even less significant on a WAN. For a long stable communication

periods, the cost of the view synchronization can be significantly amortized.

40

Chapter 7

Conclusion

The group communication system developed in this project is a useful tool in distributed
fault-tolerant system development. The semantics that the VS client supports have proven
to be useful. The performance is mainly constrained by the underlying network. Therefore,
the scalability of the entire system in large depends on the message size and complexity.
The current system has improved a fair amount of the GCS scalability characteristics due
to the separation and parallelization of the membership and the VS algorithms. It has also
implemented a more efficient VS algorithm, which minimizes the number of communication
rounds. The complete Xpand system can now serve as a powerful application development

infrastructure and as a base for further improvements and optimizations.

7.1 Future Developments

Several future enhancements are planned. The VS client can be extended to support the
Optimistic Virtual Synchrony semantics (OVS) [12]. OVS allows the user application to send
messages while in a reconfiguration state, where the current implementation blocks. This
would improve network utilization and performance. Based on the information provided
in the start-change message, the OVS client can send messages optimistically before the
next view is determined by the membership service. If the start-change information is not

completely accurate, the optimistic messages will be dealt with according to the policy

41

specified by an application.

Structured Virtual Synchrony[8] is a way to improve scalability of the current VS system.
The Structured Virtual Synchrony, just like the membership service, exploits the hierarchical
approach.

There are two main components in this hierarchical implementation: controllers and
clients. Each client runs a simple algorithm that sends and receives messages from the client’s
controller. Each controller is responsible for a group of children clients; the controllers in
turn communicate among themselves to share stability and client liveness information. In
other words, the controller group implements a full-power virtually synchronous algorithm
separately from the local clients, just as the membership servers run the membership algo-
rithm in the membership group. Since the controllers are synchronized and communicate
with their children clients via an RFIFO network layer, the local clients also provide the VS
semantics to the application layer. Possibly, Xpand’s

The membership service relays both the controller and the client membership information
to the controllers, which use it to implement virtual synchrony and in turn to inform the
clients of their new views. The SVS architecture suggests the membership service be split
in two groups. The first group will play its usual role in the controller group, whereas the
second membership group will be distributed among the controllers in order to track the
membership events within controllers’ local groups.

The SVS approach increases scalability dramatically [8]. Since the controller group does
not have to grow very fast with the number of clients, the network load also remains low
compared to the standard VS algorithm. This means that the same physical networks
can support a larger number of clients. Moreover, the number of the SVS levels can be
increased. For example, some applications may need a higher degree of scalability and have
more than two levels: controllers, sub-controllers and local clients. However, as the hierarchy
increases it requires more complex controllers and more sophisticated membership service.
A performance gain is still achievable with a moderate increase in complexity. Therefore,

SVS is considered the next step in the development of the VS systems.

42

Bibliography

1]

Y. Amir, G. V. Chokler, D. Dolev, and R. Vitenberg. Efficient state transfer in parti-
tionable environments. In 2nd European Research Seminar on Advances in Distributed
Systems (ERSADS’97), pages 183-192. BROADCAST (ESPRIT WG 22455), Operat-
ing Systems Laboratory, Swiss Federal Institute of Technology, Lausanne, March 1997.
Full version: Technical Report CS98-12, Institute of Computer Science, The Hebrew

University, Jerusalem, Israel.

T. Anker, G. Chockler, D. Dolev, and I. Keidar. Scalable group membership services for
novel applications. In Marios Mavronicolas, Michael Merritt, and Nir Shavit, editors,
Networks in Distributed Computing (DIMACS workshop), volume 45 of DIMACS, pages
23 42. American Mathematical Society, 1998.

T. Anker, G. Chockler, I. Shnaiderman, and D. Dolev. The Design of Xpand: A Group
Communication System for Wide Area Networks. Technical Report 2000-31, Institute

of Computer Science, Hebrew University, Jerusalem, Israel, July 2000.

T. Anker, D. Dolev, and I. Keidar. Fault tolerant video-on-demand services. In 19th
International Conference on Distributed Computing Systems (ICDCS), pages 244-252,
June 1999.

K. Birman. Building Secure and Reliable Network Applications. Manning, 1996.

T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225-267, March 1996.

43

[7]

[10]

[11]

[12]

R. Friedman and A. Vaysburg. High-performance replicated distributed objects in par-
titionable environments. Technical Report 97-1639, Dept. of Computer Science, Cornell

University, Ithaca, NY 14850, USA, July 1997.

Katherine Guo, Werner Vogels, and Robbert van Renesse. Structured virtual syn-

chrony: Exploring the bounds of virtual synchronous group communication. In 7th

ACM SIGOPS European Workshop, September 1996.

I. Keidar, J. Sussman, K. Marzullo, and D. Dolev. A Client-Server Oriented Algorithm
for Virtually Synchronous Group Membership in WANs. In 20th International Con-
ference on Distributed Computing Systems (ICDCS), pages 356-365, April 2000. Full
version: MIT Technical Memorandum MIT-LCS-TM-593.

Idit Keidar and Roger Khazan. A client-server approach to virtually synchronous group
multicast: Specifications and algorithms. In 20th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 344-355, April 2000. Full version: MIT
Lab. for Computer Science Tech. Report MIT-LCS-TR-794.

Roger Khazan, Alan Fekete, and Nancy Lynch. Multicast group communication as a
base for a load-balancing replicated data service. In 12th International Symposium on

DIStributed Computing (DISC), pages 258 272, Andros, Greece, September 1998.

J. Sussman, I. Keidar, and K. Marzullo. Optimistic virtual synchrony. In 19th IEEFE
International Symposium on Reliable Distributed Systems (SRDS), October 2000. To
appear. Previous version: Technical Report MIT-LCS-TR-792 MIT Lab for Computer
Science; and Technical Report CS1999-634 University of California, San Diego, Depart-

ment of Computer Science and Engineering.

R. Vitenberg, 1. Keidar, G. V. Chockler, and D. Dolev. Group Communication Speci-
fications: A Comprehensive Study. Technical Report CS99-31, Institute of Computer
Science, Hebrew University, Jerusalem, Israel, September 1999. Also Technical Report

MIT-LCS-TR-790, Massachusetts Institute of Technology, Laboratory for Computer

44

Science and Technical Report CS0964, Computer Science Department, the Technion,

Haifa, Israel.

45

