
Virtual Syn
hrony Semanti
s:A Client - Server ImplementationbyIgor Tarash
hanskiySubmitted to the Department of Ele
tri
al Engineering and ComputerS
ien
ein partial ful�llment of the requirements for the degree ofMaster of Engineering in Computer S
ien
e and Engineeringat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYSeptember 2000

 Igor Tarash
hanskiy, MM. All rights reserved.The author hereby grants to MIT permission to reprodu
e and distributepubli
ly paper and ele
troni

opies of this thesis do
ument in whole or inpart.
Author .Department of Ele
tri
al Engineering and Computer S
ien
eAugust 31, 2000Certi�ed by .Idit KeidarPostdo
toral Resear
h Asso
iateThesis SupervisorA

epted by .Arthur C. SmithChairman, Department Committee on Graduate Students

Virtual Syn
hrony Semanti
s:A Client - Server ImplementationbyIgor Tarash
hanskiySubmitted to the Department of Ele
tri
al Engineering and Computer S
ien
eon August 31, 2000, in partial ful�llment of therequirements for the degree ofMaster of Engineering in Computer S
ien
e and EngineeringAbstra
tGroup
ommuni
ation systems (GCSs) with virtual syn
hrony (VS) semanti
s have provento be powerful abstra
tions for distributed fault-tolerant appli
ation development. In thisthesis, we present an implementation of a virtally syn
hronous servi
e whi
h is a part of theemerging Xpand GCS. This servi
e is based on a new fast VS algorithm. This algorithm is apart of the ar
hite
ture that separates the multi
ast and the membership servi
es in order toparallelize their operations. The performan
e measurements of the system have shown thatthe
ommui
ation overhead is low and the parallelism of the membeship and VS servi
es ise�e
tive.Thesis Supervisor: Idit KeidarTitle: Postdo
toral Resear
h Asso
iate

2

A
knowledgmentsI would like to thank Idit Keidar, my advisor, and Roger Khazan for providing valuableinsights and suggestions. I also would like to thank Tal Anker, Ilya Shnaiderman and GregoryCho
kler for sharing with me their experien
e in
omputer system development.

3

Contents
1 Introdu
tion 82 Virtual Syn
hrony Spe
i�
ations 122.1 Membership Safety . 122.2 Multi
ast Safety . 132.3 Ordering and Reliability . 132.4 Liveness . 142.5 The Utility of Virtual Syn
hrony and Transitional Set 153 Environment 163.1 Membership Servi
e . 163.2 Core as Reliable FIFO Layer . 173.3 Support for Multiple Groups . 184 Virtually Syn
hronous Client Interfa
e 204.1 VS-wsession User API . 215 VS-wsession Implementation 255.1 Roadmap . 255.2 Inter
onne
tion with Other Modules . 255.3 Event-Driven Design . 265.4 Communi
ation Messages . 265.5 The Algorithm Overview . 285.6 Data Stru
tures and Algorithmi
 Details . 294

5.7 Garbage Colle
tion . 325.8 Forwarding Strategy . 325.9 Stability Tra
king . 325.10 VS-wsession Limitations . 336 Performan
e Measurements 346.1 Measurement Setup . 346.2 Overhead at Normal Delivery . 356.3 Virtual Syn
hrony Algorithm Duration . 367 Con
lusion 417.1 Future Developments . 41

5

List of Figures
3-1 VS ar
hite
ture . 176-1 Distribution of VS message overhead, �. 356-2 Distribution of time to re
eive a membership view, Æ1. 366-3 Distribution of time to
olle
t all syn
hronization messages, Æ2. 376-4 Distribution of the total view re
on�guration time, Æ3. 376-5 Distribution of the di�eren
e between Æ1 and Æ2. 386-6 Distribution of the di�eren
e between Æ3 and Æ1. 38

6

List of Tables
6.1 Average and median times for the VS algorithm duration. 39

7

Chapter 1
Introdu
tion
Group
ommuni
ation is a means for providing multi-point to multi-point
ommuni
ationamong a group of pro
esses. A group
ommuni
ation abstra
tion provides appli
ation writerswith reliable multi
ast
ommuni
ation servi
es within dynami
ally
hanging groups. It alsoprovides membership servi
es whi
h inform group members when other members
rash, leave,or join the group.A group
ommuni
ation system (GCS) allows
lients to join one or several multi
astgroups and informs
lients about membership
hanges via views. A view
ontains a set of
urrently
onne
ted
lients in a given group. The views are delivered to a
lient within thestream of messages multi
ast by
lients to the group. A membership servi
e, whi
h is a partof the GCS, generates views in response to pro
esses joining, leaving or dis
onne
ting fromthe group. The task of this servi
e is to maintain and distribute the information about the
urrent group membership.The ability to share
ommon information in a fault-tolerant manner is what many appli
a-tions require. GCSs are designed to meet exa
tly this requirement; therefore, fault-toleran
eis one of the key properties of any GCS. As a matter of fa
t, a great deal of distributedfault-tolerant appli
ations already rely on the group
ommuni
ation abstra
tion be
ause ofits useful semanti
s (see [4, 5, 11℄).A group
ommuni
ation system typi
ally provides a handful of properties [13℄. The GCSsafety properties guarantee that the system never violates
ertain
orre
t
hara
teristi
s.8

Some of them spe
ify the behavior of the GCS membership servi
e. That is, they statethe requirements about the membership views provided by the servi
e. The GCS must alsoprovide
ertain multi
ast
hara
teristi
s regarding the reliability and ordering of messages.An important safety property is Virtual Syn
hrony [13℄. It guarantees syn
hronous messagedelivery with respe
t to views. Spe
i�
ally, if two
lients transition from V 0 to V together,they must deliver the same set of messages in V 0.In addition to the safety properties, a GCS must provide some liveness guarantees. They
hara
terize how well a system progresses in delivering messages and views. Liveness of thesystem depends heavily on the stability of the underlying physi
al network. However, thisis barely a problem be
ause, at least temporary, network stability is a sensible
onditionin pra
ti
e. The term virtual syn
hrony semanti
s (VS) refers to a
ombination of theseliveness and safety properties that in
ludes the Virtual Syn
hrony property.A serious issue with whi
h a virtually syn
hronous GCS has to
ope is maintaining ana

eptable level of performan
e while the number of
ommuni
ating
lients, and the size ofthe network grow. To implement VS, a GCS needs to perform the syn
hronization roundsin whi
h the
lients ex
hange the information about their states. As the network laten
yin
reases, the syn
hronization rounds be
ome very
ostly. Message length and
omplexityin
rease with the number of
lients.This thesis implementation is a building blo
k of the emerging Xpand GCS designed toresolve many performan
e issues. Spe
i�
ally, we implement the VS algorithm by Keidarand Khazan [10℄, as a part of the ar
hite
ture proposed by Anker et al. [2℄. The noveltyof this ar
hite
ture is the separation of the membership servi
e from the multi
ast
lientin order to parallelize the exe
utions of the membership and the VS proto
ols. Moreover,the VS proto
ol requires only one round of syn
hronization messages per ea
h membership
hange. It uses the external membership servi
e of Keidar et al. [10℄. The new features allowthe system to operate eÆ
iently on a Wide Area Network (WAN).The Xpand system
onsists of three main
omponents:� Core implements reliable FIFO multi
ast [3℄ among
lients.� The membership server provides
lients with views via a TCP interfa
e [9℄.9

� The VS library,
alled VS-wsession, provides the VS servi
e implemented in this proje
t.VS-wsession supports two types of semanti
s: strong and weak. The �rst one refers to theVS semanti
s des
ribed earlier while the se
ond type of semanti
s implements only a subsetof the VS properties that does not in
lude Virtual Syn
hrony. The
apability to support twosemanti
s makes the entire system more
exible and more useful for appli
ations requiringdi�erent semanti
s. For example, an appli
ation
an parti
ipate in a video
onferen
e andedit a shared �le at the same time. Clearly, the �le
onsisten
y requires stronger reliabilityguarantees than the video.VS-wsession is a C++ library, whi
h
an be linked with the user appli
ation. It isimplemented using approximately 9000 lines of
ode. VS-wsession allows the appli
ationto establish new or join existing groups in order to multi
ast and re
eive messages. Themulti
ast send and re
eive operations are non-blo
king; they return an error in
ase thelower level operations would blo
k.VS-wsession also informs the appli
ation about new membership views be
ause a typi
alappli
ation needs to know the other parties with whi
h it
ommuni
ates. The membershipviews go through VS-wsession from the membership server to the appli
ation. However,before VS-wsession
an deliver a view to the appli
ation, it has to
omplete one or moresyn
hronization rounds. To parallelize the generation of a new membership view with thesyn
hronization rounds, the membership server noti�es its
lients, VS-wsessions, when itbegins to engage in a membership
hange in a given group. Thus, the
lients
an startsyn
hronizing even before they re
eive the view from the membership server. On
e the viewis re
eived from the membership server and the syn
hronization are rounds
omplete, theview
an be delivered to the appli
ation.In this thesis, we present measurements of VS-wsession's performan
e. The results of ourmeasurements show that the
omputation overhead asso
iated with message delivery whileno membership
hanges o

ur is very low. It also shows that the syn
hronization rounds
omplete faster than the membership view generation in majority of
ases, and the di�eren
ein time is approximately 50%.The following se
tions des
ribe the system in greater detail. Chapter 2
ontains the10

spe
i�
ations of VS-wsession. Chapter 3 des
ribes how VS-wsession intera
ts with Core andthe membership server. Chapter 4 des
ribes the API. The details of the implementation ofVS-wsession follow in Chapter 5. This thesis also shows the performan
e
hara
teristi
s ofthe system in Chapter 6.

11

Chapter 2
Virtual Syn
hrony Spe
i�
ations
We now present the spe
i�
ations of the entire system as
onveyed by VS-wsession to itsappli
ation. Here, a pro
ess
orresponds to an instan
e of VS-wsession on a network. Ea
hpro
ess is responsible for serving its user appli
ation. The
ommuni
ation between a pro
essand its user is de�ned in terms of a set of events. The send event refers to submitting amessages by the appli
ation to the pro
ess for multi
asting. Similarly, a re
eive event refersto the delivery of a message by the pro
ess, possibly from another pro
ess, to the appli
ation.The stream of messages delivered to the appli
ation
ontains views. The view
onsists of aset of
ommuni
ating pro
esses in a given group and an identi�er from an ordered set. Theinstallation of a view is the delivery of a message
ontaining the view and a transitional setto the appli
ation, as explained below.Of the spe
i�
ation properties below, VS-wsession simply preserves most of them. Theonly properties it implements itself are (1.3),(2.3) - (2.5) and (4.1.b). The properties itpreserves are guaranteed by the membership servi
e and Core. The details of the intera
tionof VS-wsession with the two
omponents follow in Chapter 3.VS-wsession meets the following spe
i�
ations des
ribed in [13, 10℄:2.1 Membership Safety(1.1) Self In
lusion: If pro
ess p installs view V , then p is a member of V .12

(1.2) Lo
al Monotoni
ity: If a pro
ess p installs view V after installing view V 0, then theidenti�er of V is greater than that of of V 0.(1.3) Initial View Event: Every send and re
eive event o

urs in some view.2.2 Multi
ast Safety(2.1) Delivery Integrity: For every re
eive event, there is a pre
eding send event for thatmessage.(2.2) No Dupli
ation: Two di�erent re
eive events with the same message
annot o

urat the same pro
ess.(2.3) Sending View Delivery If a pro
ess p re
eives message m in view V , and somepro
ess q (possibly p = q) sends m in view V 0, then V = V 0.(2.4) Virtual Syn
hrony If pro
esses p and q install the same new view V in the sameprevious view V 0, then any message re
eived by p in V 0 is also re
eived by q in V 0.(2.5) Transitional Set :1. If pro
ess p installs a view V in (previous) view V 0, then the transitional set forview V at pro
ess p is a subset of the interse
tion between the member sets of Vand V 0.2. If two pro
esses p and q install the same view, then q is in
luded in p's transitionalset for this view if and only if p's previous view was also identi
al to q's previousview.2.3 Ordering and Reliability(3.1) FIFO Delivery: If a pro
ess p sends two messages, then these messages are re
eivedin the order in whi
h they were sent at every pro
ess that re
eives both.13

(3.2) Reliable FIFO: If pro
ess p sends message m before message m0 in the same viewV , then any pro
ess q that re
eives m0 re
eives m as well.2.4 LivenessBefore spe
ifying the liveness properties, we need to de�ne, as in [13℄, a stable
omponentand an eventually perfe
t failure dete
tor used by the VS servi
e. The stable
omponent isa group of
ommuni
ating pro
esses that are eventually alive and
onne
ted to ea
h other,but dis
onne
ted from all pro
esses not in the group. A failure dete
tor is a module thatprovides information about liveness of pro
esses on the network. An eventually perfe
tfailure dete
tor is a failure dete
tor that eventually reports the
orre
t information aboutthe pro
esses'
onne
tivity. It is referred as 3P in [6, 13℄. For more more formal de�nitions,please see [13℄.Liveness is only required if eventually there exists a stable
omponent S in the network(pro
esses eventually stop
rashing or re
overing), and the failure dete
tor behaves like 3P[6, 13℄.(4.1) Liveness: Assuming that S exists and the failure dete
tor behaves like 3P , then forevery stable
omponent S there exists a view V with S as its members set su
h thatthe following three properties hold for ea
h pro
ess p in S:a. Membership Pre
ision: p installs view V as its last view.b. Multi
ast Liveness: Every message p sent in V is re
eived by every pro
ess inS.
. Self Delivery: p delivers every message p sent in any view unless p
rashed aftersending it.
14

2.5 The Utility of Virtual Syn
hrony and TransitionalSetVirtual Syn
hrony is a very useful property for many appli
ations that maintain repli
ateddata. The appli
ation pro
esses that maintain data repli
as join multi
ast groups througha GCS with virtual syn
hrony semanti
s. The operations on the the repli
ated data aremulti
ast in messages by ea
h pro
ess to the entire group. These messages are re
eivedreliably and in a FIFO manner. If a pro
ess applies the operations indi
ated in the re
eivedmessages, the Virtual Syn
hrony property guarantees that the pro
esses remaining in a groupwill re
eive the same sequen
es of messages and perform the same operations on their datarepli
as. This implies data
onsisten
y among the group members.Transitional Set allows pro
esses to exploit Virtual Syn
hrony. Spe
i�
ally, the transi-tional set tells an appli
ation pro
ess whi
h other pro
esses move together with it from theirmutual
urrent view into their mutual new view. This way, the pro
ess knows whi
h otherdata repli
as remain
onsistent with itself. For
on
rete appli
ations of Virtual Syn
hronyplease see [7, 11, 1℄.

15

Chapter 3
Environment
The distin
tion of the new design is that it separates the membership servi
e from themulti
ast
ommuni
ation. Sin
e the membership
hanges are relatively infrequent
omparedto the
ommuni
ation traÆ
, the new design removes the unne
essary overhead from themajor part of the
ommuni
ation traÆ
 and thus provides for better eÆ
ien
y. This featuremakes the system espe
ially suitable for su
h wide area networks as the Internet. Moreover,the
lient-server ar
hite
ture, whi
h is shown in Figure 3-1, improves the s
alability of thesystem.3.1 Membership Servi
eA set of servers
ommuni
ating among themselves and with their VS
lients via TCP so
ketsimplement the membership servi
e [9℄. Ea
h server uses its TCP interfa
e to
ommuni
atetwo types of messages to its
lients:1. Start-Change Message: A start-
hange message
ontaining an identi�er tells a
lientthat the membership is
hanging. It provides an approximation view of the membershipof the next view. It also
arries an identi�er.2. New-View Message: A new-view message
ontains a set of
lients that the mem-bership servers have determined to be in the next view. The new-view message also16

 Core
 Memb.

Module

Events

Library

VS-wsession

Events

Library

VS-wsession

ApplicationApplication

 Membership
 Server

 Memb.

Module
 Core

Figure 3-1: VS ar
hite
ture
ontains a view identi�er and the last start-
hange identi�ers re
eived by ea
h groupmember.These messages are provided to
lient's VS-wsession. The identi�ers of the start-
hangeand the new-view messages are guaranteed to monotoni
ally in
rease. Moreover, the mem-bership of the new-view message is guaranteed to be a subset of set given in the last start-
hange message. They also guarantee properties (1.1), (1.2) and (4.1.a).Ea
h VS-wsession uses the membership interfa
e module provided by Xpand in order toretrieve the messages from its membership server. The information available in the start-
hange allows to a
lient to start the syn
hronization round with the set of
lients indi
atedin the message. The new-view allows ea
h
lient to determine the transitional set and toagree with other
lients on whi
h message to deliver before installing the message's view.3.2 Core as Reliable FIFO LayerThe VS-wsession is linked with Core, whi
h provides reliable FIFO multi
ast
hannels ontop of UDP/IP-multi
ast [3℄. Core maintains a
onne
ted set. This set is a set of
lientswith whom Core maintains reliable FIFO
ommuni
ation. Core bu�ers all re
eived messagesuntil it is told to deallo
ate them.Core's interfa
e provides the following operations:17

1. Multi
ast messages to a given
ommuni
ation group;2. Re
eive messages delivered to a given group from
lients;3. Re-multi
ast or re-uni
ast to a spe
i�

lient messages delivered from other
lients,VS-wsession uses this operations to forward messages;4. Change the
onne
ted set;5. Inform Core when a parti
ular message
an be deallo
ated.The proto
ol implemented by Core guarantees properties (2.1), (2.2), (3.1), (3.2), and(4.1.b-
).The UDP proto
ol has been
hosen for Core over TCP for performan
e reasons. Eventhough the TCP proto
ol guarantees all the required properties, it
an only support point-to-point
ommuni
ation. On the other hand, the UDP proto
ol
an multi
ast messages viaIP-multi
ast. The use of multi
ast eliminates the need to send the same message multipletimes and thus alleviates the network load.Core
ompensates for UDP's unreliability and reordering. It provides FIFO message or-dering between any pair of
lients in a group. Core uses an ACK/NACK algorithm withtimeouts. It bu�ers all in-bound and out-bound messages, a
knowledges re
eived messages,sends negative a
knowledgments in
ase it dete
ts missing messages, and retransmits a mes-sage after re
eiving a NACK for it.Core allows VS-wsession to use its message bu�er spa
e to avoid multiple message
opy-ing. When VS-wsession informs Core about a message deallo
ation, Core will \garbage-
olle
t" all the messages up to and in
luding the indi
ated one a

ording to the messagesequen
e numbers. A more detailed dis
ussion of Core
an be found in [3℄.3.3 Support for Multiple GroupsThe VS-wsession also uses the membership interfa
e module for group multiplexing [3℄.VS-wsession
reates and manages strong and weak groups. VS-wsession guarantees virtualsyn
hrony semanti
s in ea
h strong group. The appli
ation
an be a member of any number of18

groups limited by a
on�gurable
onstant MAX GROUP NUM. The groups are referen
edby names, whi
h are
hara
ter strings with maximum length of MAXGRPNAME. Coreresolves the group names into group identi�ers and network addresses internally [3℄ whileVS-wsession uses the string representation.

19

Chapter 4
Virtually Syn
hronous ClientInterfa
e
As mentioned above, the obje
tive of VS-wsession is to provide the appli
ation with thevirtually syn
hronous semanti
s using the membership and Core. As for the appli
ationinterfa
e, VS-wsession allows the appli
ation to join and leave existing groups (known to the
lient's server). If the appli
ation attempts to join a non-existent group, the group will beestablished with a single member. On
e the appli
ation has
hosen to join one or more stronggroups, the VS-wsession joins these groups at the membership server and starts deliveringappli
ation messages in a manner that is syn
hronous with respe
t to the membership events.VS-wsession also generates blo
k events with spe
ial blo
king messages inje
ted into theappli
ation message stream. A blo
k event noti�es the appli
ation about a pending viewinstallation. The appli
ation must �nish sending its messages in the
urrent view and subse-quently respond with a blo
k-OK message generating a blo
k-OK event at VS-wsession. Theblo
k-OK event allows VS-wsession to run the syn
hronization round for the pending viewinstallation. The appli
ation will be unblo
ked when VS-wsession delivers the new view [10℄.The
urrent implementation of the VS
lient is single-threaded; it relies on Xpand'sevents library. The thread of
ontrol is shared among the user appli
ation, the VS
lient,the membership interfa
e module, and Core based on demand and priority. Every moduleregisters its event handlers as
all-ba
k routines with the events library, whi
h is responsible20

for s
heduling these
all-ba
ks.In order to re
eive information from VS-wsession, the appli
ation must provide deliveryand unblo
k
all-ba
ks upon join. These routines will be
alled to deliver a message or anunblo
k event. In
ase of the weak servi
e group, the user also needs to supply a membership
hange
all-ba
k. For the strong groups, the third
all-ba
k is not needed be
ause the VS-wsession will notify the user about a new view through the delivery
all-ba
k using a spe
ialnew-view message.VS-wsession uses the following messages to
ommuni
ate with its appli
ation:1. Appli
ation Message, APP MSG: This message is the appli
ation data treated asa byte bu�er sent and delivered among group members.2. New ViewMessage, NVIEW MSG: The new view message
ontains a membershipand a view identi�er. It also
ontains a transitional set. After re
eiving this message,the appli
ation
an
ontinue multi
asting messages in the new view.3. Blo
k Message, BLOCK MSG: The blo
k message is used to notify the appli
ationabout the start of a view re
on�guration.4. Blo
k-OK Message, BOK MSG Upon re
eiving the blo
k message, the user appli-
ation must send any relevant messages in the
urrent view and terminate them witha blo
k-OK message. The blo
k-OK message tells the
lient that the appli
ation willnot send any more messages in the
urrent view.The VS-wsession library provides only per group semanti
s and
an support the weakgroups as well as strong ones. It has the following user API.4.1 VS-wsession User APIW Init()arguments:
har string
lient name
har string server addressunsigned short server port 21

membership type type
he
ks: if type 2 {WEAK, STRONG}.effe
ts: instantiates and initializes the VS-wsession abstra
tionfor a new
lient;if type = STRONG, VS-wsession will allow to
reateonly STRONG groups.returns: a new wsession handle.W Close()arguments: wsession handle weph
he
ks:effe
ts: dis
onne
ts from the membership server and deallo
ates allthe data stru
tures for this
lient.returns:W Join()arguments: wsession handle weph
har string group namefun
tion pointer unblo
k
allba
kgeneri
 pointer unblo
k parameterfun
tion pointer delivery
allba
kgeneri
 pointer delivery parameterfun
tion pointer membership
allba
k (NULL for STRONG (VS) groups)generi
 pointer membership parameter (NULL for STRONG (VS) groups)membership type type
he
ks: if this
lient is already a member of the requested group;if type 2 {WEAK,STRONG};if type 6= WEAK in
ase of the STRONG wsession type.effe
ts: instantiates and initializes a new group obje
t;issues a join event for the appropriate group tothe membership server;notifies Core.returns: new group handle. 22

W Leave()arguments: wsession handle wephgroup handle group ID
he
ks:effe
ts: issues a leave event to the membership server;notifies Core;deallo
ates the group instan
e and removes
all-ba
ks.returns:W Send()arguments: wsession handle wephgroup handle group IDunsigned short bu�er length
har buffer bu�er
he
ks: if bu�er length � MAX VS USER MSG SIZE.effe
ts: sends an APP MSG
ontaining bu�erto the group with group ID.returns: 0 if message is sent;-1 if message
annot be sent presently.W Group Poll()arguments: wsession handle wephgroup handle group ID
he
ks:effe
ts: polls Core for available messages to re
eive inthe group spe
ified by group ID.returns: number of deliverable messages.W Group Re
eive()arguments: wsession handle wephmessage pointer msg pointergroup handle group ID23

he
ks:effe
ts: performs non-blo
king re
eive;if there is a message to deliver, msg pointer pointsto the message;else msg pointer is set to NULL;returns: number of bytes in msg bu�er if message is APP MSG;number of
lients if message is NVIEW MSG;0 if message is BLOCK MSG;-1 if no messages available.The
ontents of msg pointer are deallo
ated on
e
ontrol returns from appli
ation to VS-wsession.W Copy Group Re
eive()arguments: wsession handle wephmessage pointer msg pinterunsigned short maximum lengthgroup handle group IDuser message info pointer info pointer
he
ks:effe
ts: same as above, ex
ept that message
ontentsare
opied to msg pointer;returns: same as above;W Blo
k A
k()arguments: wsession handle wephgroup handle group ID
he
ks:effe
ts: a
knowledges BLOCK MSG and agrees notto send messages until next view.returns:
24

Chapter 5
VS-wsession Implementation
5.1 RoadmapThis Chapter is stru
tured as follows: Se
tion 5.2 des
ribes how VS-wsession works withother Xpand modules. Se
tion 5.3 explains the advantages of the event-driven design ofVS-wsession. Se
tion 5.5 presents an overview of the VS servi
e algorithm [10℄. Se
tion 5.6des
ribes the main data stru
tures of VS-wsession and how they are used by the algorithm.Se
tion 5.8 elaborates on the forwarding strategy employed by the algorithm [10℄. Se
tion 5.9explains the stability tra
king me
hanism of VS-wsession. Finally, Se
tion 5.10 exposes thelimitations of VS-wsession.5.2 Inter
onne
tion with Other ModulesThe
all-ba
ks provided by the appli
ation to VS-wsession for a weak group are registereddire
tly with Core and the membership interfa
e module. For the strong groups, the twoappli
ation
all-ba
ks are registered with the VS-wsession instead.In order to re
eive messages from the network, VS-wsession registers its own deliveryand unblo
k
all-ba
ks with Core. In addition, VS-wsession registers a
all-ba
ks with themembership interfa
e module to handle the messages arriving from the membership server.All the
all-ba
ks are invoked in a
ontext of a group.25

5.3 Event-Driven DesignA single-threaded
ontrol managed by the events library has been preferred be
ause theentire system is inherently event-driven. Namely, all
omputations are triggered either bynetwork events, or by the user appli
ation.Another natural reason to adhere to the single-threaded event-driven paradigm is the
omplexity and the performan
e overhead asso
iated with data syn
hronization. With dataheavily shared among all groups on the level of the Core layer, it is not
lear how to distributethe work among multiple threads.Although less signi�
ant, portability is still another reason to avoid multiple threads.Di�erent platforms are optimized for di�erent thread pa
kages. Even though POSIX seemsto be standard for the Unix platforms, Mi
rosoft Windows systems perform noti
eably betterwith their native threads libraries.5.4 Communi
ation MessagesThe
lient manipulates a set of messages to
ommuni
ate with the membership server, otherVS
lients in its groups, and the user appli
ation. The
ommuni
ation with the user appli-
ations, whi
h has been des
ribed in Chapter 4, is lo
al. That is, the appli
ation is linkedwith an instan
e of VS-wsession. The des
riptions and formats of the remaining messagesare presented below.Membership server to VS
lient
ommuni
ation:1. Start-Change Message: The start-
hange message is sent by the membership serverto its
lients whenever the server engages in a membership
hange. This messageprovides an approximation of the new membership. Ea
h start-
hange message also
ontains an identi�er, whi
h in
reases monotoni
ally with respe
t to ea
h server. Thepurpose of this identi�er will be mentioned during the des
ription of the syn
hroniza-tion message. 26

2. Membership View Message: The membership view message from the server
on-tains a set of
lients that the membership servers have determined to be in the nextview. This set of
lients is guaranteed to be a subset of the view provided in thepre
eding start-
hange message. The membership view message also
ontains a viewidenti�er and a mapping from view members to the last start-
hange identi�ers re-
eived by ea
h of them. The monotoni
ity of the view identi�ers is also guaranteed bythe server.Client to
lient
ommuni
ation:1. Appli
ation Message: This is the message sent and re
eived by appli
ation as de-s
ribed in Chapter 4. The appli
ation message must not ex
eed MAX VS USER SIZEbytes in order to be su

essfully multi
ast. It is the responsibility of the appli
ationto make sure that the messages it tries to
ommuni
ate via the VS-wsession do notex
eed this limit. The appli
ation messages
arry sequen
e numbers when sent among
lients.2. Syn
hronization Message, also Cut, CUT MSG: VS-wsession multi
asts a
utmessage every time it re
eives a start-
hange message from the server. The
ut in
ludesthe
urrent view, in
luding the start-
hange mapping, and the view identi�er. It also
ontains the sequen
e numbers of the last messages it
an potentially deliver to theappli
ation from ea
h view member at the moment of sending this
ut. These arethe messages re
eived from Core. It also has a
ut identi�er, whi
h is equal to thestart-
hange identi�er in the start-
hange message re
eived before the
ut.3. Stability Message, also Stable Cut, STBL MSG: VS-wsession uses the stable
ut message to
ommuni
ate the message stability information
urrently available toit to other VS-wsesion instan
es. The stable
ut spe
i�es the last message delivered tothe appli
ation from ea
h sender in the group.4. View-Start Message, also VSTRT MSG: The view-start message is identi
al tothe membership view message in
ontent, but is multi
ast within the group rather than27

sent from the server to its
lients. It identi�es the end of the appli
ation message streamin the old view and noti�es other group members about this member's transition tothe new view.5.5 The Algorithm OverviewWhile the network is stable and the
lient has installed at least one view in the group,VS-wsession immediately delivers all the messages from Core to the appli
ation through thedelivery
all-ba
k registered by the user when it joins. When a view re
on�guration o

urs,the VS algorithm is triggered.When the membership server informs VS-wsession (via the appropriate
all-ba
k) abouta pending view with a start-
hange message, VS-wsesion blo
ks the user appli
ation fromsending further messages. Then, after the appli
ation replies with a blo
k-OK message, VS-wsession multi
asts a syn
hronization message tagged with the identi�er provided in the laststart-
hange message. That is, the identi�er of the syn
hronization message is equal to theidenti�er of the start-
hange message.To keep tra
k of the appli
ation messages re
eived from Core, VS-wsession assigns VSsequen
e numbers to them; these sequen
e numbers are di�erent from those used by Core.The syn
hronization message des
ribes whi
h appli
ation messages VS-wsession is
apableof delivering by spe
ifying the VS sequen
e number of the last message re
eived from Corefrom ea
h member. In order to guarantee Property (2.3), all the VS-wsessions in the grouphave to agree on the set of messages they deliver to the appli
ation. After
olle
ting all thesyn
hronization messages and re
eiving the view from the membership server, ea
h instan
eof VS-wsession
an determine the appropriate set, as explained below.Be
ause VS
lients operate
ompletely asyn
hronously and be
ause multiple membership
hanges may o

ur, VS-wsession
an re
eive multiple start-
hange and syn
hronization mes-sages before the membership view arrives. The start-
hange identi�ers mapping in
luded inthe membership view tells VS-wsession whi
h syn
hronization messages from other membersto
onsider. Using the information
ontained in these syn
hronization messages, this VS-wsession de
ides on the set of appli
ation messages it must deliver in its
urrent view. Sin
e28

the same view sent to all VS-wsessions
ontains the same start-
hange identi�ers mapping,VS-wsessions use the same syn
hronization messages to agree on the
orre
t set of messages.On
e VS-wsession re
eives a new view V from the membership server, it
an determinethe interse
tion of the
urrent view V 0 and V . After VS-wsession
olle
ts a syn
hronizationmessage whose identi�er is equal to the respe
tive start-
hange identi�er given in V fromea
h member of the interse
tion, it
omputes the transitional set of views V and V 0 toin
lude every member of the interse
tion whose syn
hronization messages
orresponding toV
ontain the same view V 0.VS-wsession delivers the maximum number of messages with respe
t to the transitionalset. That is, for ea
h sender, VS-wsession delivers the maximum number of messages indi-
ated in the
ut messages of the members of the transitional set.VS-wsession may not have all the messages it has to deliver before transitioning to thenew view be
ause some members of the transitional set may have delivered more messagesfrom already dis
onne
ted
lients than this VS-wsession. In this
ase, a

ording to theforwarding strategy explained below, some members of the transitional set must forward thene
essary messages to this VS-wsession. This way, the lo
al VS-wsession
an satisfy the VS
onditions and install a new view.This algorithm operates in parallel with the membership servi
e algorithm and requiresa single round of syn
hronization messages per every start-
hange event. Assuming the lowfrequen
y of the membership
hanges, the algorithm minimizes the re
on�guration periodduring whi
h the appli
ation is blo
ked from sending and makes the high laten
ies of thewide area networks tolerable.5.6 Data Stru
tures and Algorithmi
 DetailsThis se
tion des
ribes how VS-wsession data stru
tures are used by the algorithm. Most ofthe VS-wsession data stru
tures implement the VS state des
ribed in [10℄.� WEPID: Every
lient in a group has a WAN end-point identi�
ation
ontaining
lient'sname, membership server IP,
lient's IP, UDP port number and some other information29

used by Core. Thus, the
lients are referen
ed by their WEPIDs in all lo
al datastru
tures.� Reliable Set: The VS-wsession maintains a reliable set, the set of
lients to whom Corehas to maintain reliable
ommuni
ation. This reliable set is equal to the
urrentlyinstalled membership view during normal operation. On
e a start-
hange message isre
eived, the reliable-set be
omes the union of the start-
hange set and the
urrentreliable set. Ultimately, when a new membership view is installed, the reliable set isreset ba
k to normal, that is, to the view's membership.� Message Data Stru
tures: In addition, VS-wsession needs to keep tra
k of the
urrentview, the last start-
hange message from the membership server, and the last syn-
hronization messages from all other VS-wsession instan
es. The VS-wsession storesonly the last start-
hange and
orresponding syn
hronization messages be
ause thesystem does not deliver obsolete views. (This is di�erent from the algorithm des
rip-tion in [10℄). In other words, if this VS-wsession re
eives a new start-
hange message,it will deliver a view no older than the one
orresponding to this message { all theintermediate views will be skipped. Similarly, if this VS-wsession re
eives a new syn-
hronization message from another group member, it will deliver a view no older thanthe one
orresponding to this syn
hronization message, whi
h in turn
orresponds tothe start-
hange re
eived by the other member. As mentioned in Chapter 5.4, the
orresponden
e between the start-
hange and syn
hronization messages is establishedthrough their identi�ers.Analogously to the syn
hronization messages, VS-wsession stores the last view-startmessage from ea
h. Sin
e the VS-wsession instan
es operate asyn
hronously with dif-ferent speeds, ea
h instan
e needs to know the view of ea
h other one in order toguarantee property (2.3). Thus, ea
h message re
eived from Core is asso
iated withthe
orre
t view.� Send and Re
eive queues: VS-wsession also maintains a send queue and a re
eivequeue. The re
eive queue is
leared after the appli
ation delivery
all-ba
k is invoked30

for
ing the appli
ation to dequeue every message delivered to it. The send queue isnot used for appli
ation messages, but only for internal messages su
h as
uts, stable
uts, and view-start messages. These are put on the queue until the Core is ready tomulti
ast them. VS-wsession tries to
ush the send queue before every send operation.� Appli
ation and Forward Set Message Bu�ers: The most
omplex data stru
turesof VS-wsession are the message bu�ers. Both the appli
ation message and the forwardset bu�ers are multi-dimensional data stru
tures that are indexed by a view, a messagesour
e WEPID, and a message VS sequen
e number.While in normal mode, that is, no membership events are pending, the messages fromthe network are put on the re
eive queue and delivered to the appli
ation. However,before invoking the appli
ation delivery
all-ba
k, VS-wsession saves ea
h message inthe forward set message bu�er. The forward set
ontains all the messages that mayhave to be forwarded to other members during the next view
hange. The messagesin this bu�er are \garbage
olle
ted" either by the stability tra
king me
hanism afterthey have been universally delivered, or during view re
on�gurations along with allother data stru
tures.If a view
hange is taking pla
e, VS-wsession will �rst verify if the appli
ation messageis delivery-safe a

ording to the VS semanti
s. A message is is delivery-safe if: VS-wsession has no
urrent start-
hange message, or VS-wsession has not send a syn
hro-nization message
orresponding to the
urrent start-
hange, or VS-wsession
ontainsa syn
hronization message from a member of the
urrent transitional set and whi
hhas
ommitted to deliver this message. If not, the message will be put into the appli-
ation message bu�er for potential later delivery. The
lient attempts to empty theappli
ation message bu�er every time it re
eives a membership view, a syn
hronizationmessage, or another appli
ation message.Ultimately, the messages stored in the appli
ation message bu�er either be
ome safeto deliver before the new view is installed, or they are dis
arded, and the storage is\garbage
olle
ted". The safe messages will be delivered to the appli
ation and bu�eredin the forward set as des
ribed above. 31

5.7 Garbage Colle
tionEventually, if the network stabilizes (no membership events are generated),VS-wsession willre
eive the last membership view message from its membership server. This will allow the VSalgorithm to determine the transitional set and the set of messages to be delivered from andforwarded to all other group members. Before delivering the new view to the appli
ation andmulti
asting a new view-start message, VS-wsession re
laims the spa
e of all data pertainingto the old views. This in
ludes all types of messages sent and re
eived in the previous viewsplus some bookkeeping data. The subsequent new view delivery will also unblo
k the userappli
ation, and the
lient will resume its normal operation.5.8 Forwarding StrategyVS-wsession relies on a forwarding strategy that uses the transitional set information inorder to minimize the number of the forwarded messages. On
e the transitional set has beendetermined and all the syn
hronization messages have been
olle
ted, VS-wsession
an �ndout whi
h
lients miss whi
h messages. They determine whi
h messages ea
h VS-wsessionmust forward. If more than one instan
e of VS-wsession is
apable of retransmitting a
ertainmessage, the one with the minimumWEPID will retransmit. The missing messages from themembers of the transitional set will not be forwarded be
ause these members must still be
onne
ted through the Core, whi
h must eventually deliver the messages. Before VS-wsessioninstalls a new membership view, it forwards all the ne
essary messages in the
urrent viewfrom its forward set bu�er, using Core's re-multi
ast/re-uni
ast operation. Sin
e the
urrentview may stay un
hanged for a long time, in order to avoid forward set bu�er over
ow,VS-wsession employs stability tra
king as explained in the next se
tion.5.9 Stability Tra
kingVS-wsession maintains a stability matrix that is a set of stability
ut message, one from ea
hmember of the
urrent view. While the view is stable (no membership re
on�guration in32

progress), the VS-wsession periodi
ally multi
asts stability tra
king information. Spe
i�-
ally, whenever the lo
al message
ount ex
eeds BUFFER LIMIT, VS-wsession multi
asts astable
ut. Upon re
eiving a stable
ut message, VS-wsession
an determine if this
ut be-longs to the
urrent view using the saved view-start message of the sour
e. If so, VS-wsessionwill add this
ut to its stability matrix and will attempt to \garbage
olle
t" appli
ationmessages relying on the information in the updated matrix as explained below.If the matrix
ontains stable
uts from all the members of the
urrent view, VS-wsessiondetermines the minimum entry of all the stable
uts
orresponding to a
ertain sender,and \garbage
olle
ts" all the messages in its own forward set bu�er up to this minimum.VS-wsession repeats the pro
edure for all the members of the
urrent view. This type ofstability tra
king has been
hosen be
ause of its simpli
ity; it
an be �ne-tuned by adjustingBUFFER LIMIT, whi
h is the minimum number of bu�ered messages before the next stable
ut is sent. The stability matrix size is �(#
lients2). For groups of several hundred members,this is a tolerable memory overhead.5.10 VS-wsession LimitationsThe maximum message size is limited by the UDP pa
ket size, 64 Kbytes, be
ause the
ur-rent implementation is not
apable of message fragmentation and reassembly.MAX VS USER MSG SIZE (see Se
tion 4.1) is somewhat smaller due to headers. Con-sequently, the system is
urrently restri
ted in two ways. First, the user appli
ation mustfragment and reassemble its own messages if it wants to send longer messages. Se
ond, thegroup size must not ex
eed � 450 members; otherwise, some internal VS messages like
utswould not �t into a single message.More importantly, the system's s
alability is limited as a result of the linear message sizegrowth with respe
t to the number of members in a group. The sizes of the start-
hange, newview, view-start, and the syn
hronization messages are dire
tly proportional to the groupsize. Thus, the number and the size of the messages required to guarantee VS grow linearly.The s
alability
an be improved by adding hierar
hy to the system as in Stru
tured VirtualSyn
hrony [8℄, whi
h is explained in Chapter 7.1.33

Chapter 6
Performan
e Measurements
The system performan
e was measured on a LAN. The goal was to measure two
hara
ter-isti
s:1. The time overhead asso
iated with the delivery of an appli
ationmessage fromXpand'sCore to the user appli
ation at normal times.2. The time required to satisfy Virtual Syn
hrony during a view re
on�guration.The next se
tion des
ribes the group
on�guration used for the measurements. Se
tion 6.2explains the overhead asso
iated with normal message delivery. Se
tion 6.3 des
ribes theoverhead of the VS algorithm during a view re
on�guration.6.1 Measurement SetupThe measurements were
ondu
ted on three ma
hines: Pentium III(850 MHz, 512 MB RAM),Pentium II(400 MHz, 128 MB RAM), and Pentium Pro (200 MHz, 256 MB RAM). All threema
hines ran Red Hat Linux (Version 2.2.14-5), and all three were
onne
ted to a LANwhose round-trip times for 8 Kbytes and 500 bytes were 17 mse
 and 2.5 mse
 respe
tively.All three ma
hines did not run any user pro
esses ex
ept for a
lient running VS-wsession, amembership server, and an X-server. The data presented on the �gures below were
olle
tedon the fastest ma
hine. 34

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16
0

5

10

15

20

25

30
ε

msec

%

Figure 6-1: Distribution of VS message overhead, �.6.2 Overhead at Normal DeliveryWe denote by � the time sin
e an appli
ation message is available from Core until its deliveryby VS-wsession to appli
ation. Figure 6-1 shows the distribution of � on the fastest ma
hinefor the des
ribed group
on�guration of 3 membership servers and 3 VS
lients, one
lientper ea
h server. In this
on�guration, ea
h
lient sends an 8 Kbyte message every se
ond.The average and the median of 8900 samples are 98.5 �se
 and 94 �se
, respe
tively on thefastest ma
hine.During normal operation, that is, when no membership events are generated, the messageoverhead is well below 1 mse
 on all ma
hines. On the fastest ma
hine of those three, shownin the �gure, the numbers are very
lose to 100 �se
. The numbers for the other two ma
hinesare proportional to their
omputer speeds:� avg/median = 221.7/210 �se
 for Pentium II;� avg/median = 419.2/406 �se
 for Pentium Pro;These results show that the message delivery overhead is negligible. It is smaller than thenetwork delay of a message delivery even on a LAN by more than one order of magnitude.35

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

δ
1

msec

%

Figure 6-2: Distribution of time to re
eive a membership view, Æ1.6.3 Virtual Syn
hrony Algorithm DurationThe following de�nitions explain the notation used for the �gures in this Se
tion:� Æ1 = the time sin
e the start-
hange message until the following new view message;� Æ2 = the time sin
e the �rst start-
hange message until all syn
hronization messages are
olle
ted for the subsequent view;� Æ3 = the time sin
e the �rst start-
hange message until new view is delivered to appli
ation,This is equal to max(Æ1; Æ2)+
omputation time.Figures 6-2 , 6-3 , and 6-4 display the distributions of Æ1, Æ2, and Æ3 respe
tively. Theyhave been
omputed for the aforementioned
on�guration with a fourth
lient joining andleaving every 5 se
. The number of membership events registered on ea
h ma
hine is 8900.No noti
eable di�eren
e between join and leave events has been observed. The messages usedin the syn
hronization algorithm are of size � 500 bytes. The fourth
lient that generatesthe membership events joins and leaves the group via the membership server running on thePentium II ma
hine. 36

0 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

20

25

30

35

40

δ
2

msec

%

Figure 6-3: Distribution of time to
olle
t all syn
hronization messages, Æ2.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

δ
3

msec

%

Figure 6-4: Distribution of the total view re
on�guration time, Æ3.
37

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

δ
1
 − δ

2

msec

%

Figure 6-5: Distribution of the di�eren
e between Æ1 and Æ2.

0 1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

δ
3
 − δ

1

msec

%

Figure 6-6: Distribution of the di�eren
e between Æ3 and Æ1.
38

Table 6.1: Average and median times for the VS algorithm duration.Æ1 Æ2 Æ3 Æ1 � Æ2 Æ3 � Æ1Pentium III avg (mse
) 50 13 52 38 1.9median (mse
) 40 5 41 30 1.6Pentium II avg (mse
) 116 67 120 49 4.0median (mse
) 80 47 84 38 3.4Pentium Pro avg (mse
) 76 30 83 48 7.2median (mse
) 50 10 56 37 6.6Figure 6-5 shows the distribution of the di�eren
e between Æ1 and Æ2. The di�eren
e is
onsistently positive and � 50% of Æ1 in magnitude. This indi
ates that the VS syn
hro-nization
ompletes by 30 mse
 on average faster than the membership algorithm.Sin
e Æ1 is
onsistently greater than Æ2, Figure 6-6 shows the
omputation overhead ofthe VS algorithm after all the syn
hronization and the membership messages are re
eived.The averages and the medians of the six quantities on all three
omputers are presentedin Table 6.1.The distributions of Æ1 and Æ2
on�rm that the membership and the VS algorithms indeedrun in parallel. The VS algorithm, implemented in the proje
t for this thesis, is more eÆ
ient(at least by � 50%). In fa
t, Æ2 is
omparable with the network round-trip time.Although the absolute values of Æ1 are higher. This time is not in the s
ope of this thesisimplementation, rather it is the time the membership servi
e requires. The membershipmessages and VS-wsession messages propagate simultaneously as they should. The largevalues of Æ2 on Pentium II are due to the membership events generated on this ma
hine. VS-wsession on Pentium II re
eives a start-
hange message from the lo
al membership serverright after a membership event is generated. However, in order to
olle
t all syn
hronizationmessages, the Pentium II VS-wsession has to wait for: the membership information to prop-agate to other servers, the servers to send the start-
hange messages to their
lients, and forthe syn
hronization messages from other VS-wsessions to rea
h the Pentium II VS-wsession.Therefore, it takes longer.The results
on�rm that the major overhead of the VS
lient is asso
iated with the viewtransition. However, the syn
hronization algorithm is faster than the membership proto
ol.39

The syn
hronization time is
lose to the network round-trip time, and it is not the limitingfa
tor in the
ombined algorithm. If the network is stable, the message delivery overhead isnegligible on a LAN { it is even less signi�
ant on a WAN. For a long stable
ommuni
ationperiods, the
ost of the view syn
hronization
an be signi�
antly amortized.

40

Chapter 7
Con
lusion
The group
ommuni
ation system developed in this proje
t is a useful tool in distributedfault-tolerant system development. The semanti
s that the VS
lient supports have provento be useful. The performan
e is mainly
onstrained by the underlying network. Therefore,the s
alability of the entire system in large depends on the message size and
omplexity.The
urrent system has improved a fair amount of the GCS s
alability
hara
teristi
s dueto the separation and parallelization of the membership and the VS algorithms. It has alsoimplemented a more eÆ
ient VS algorithm, whi
h minimizes the number of
ommuni
ationrounds. The
omplete Xpand system
an now serve as a powerful appli
ation developmentinfrastru
ture and as a base for further improvements and optimizations.7.1 Future DevelopmentsSeveral future enhan
ements are planned. The VS
lient
an be extended to support theOptimisti
 Virtual Syn
hrony semanti
s (OVS) [12℄. OVS allows the user appli
ation to sendmessages while in a re
on�guration state, where the
urrent implementation blo
ks. Thiswould improve network utilization and performan
e. Based on the information providedin the start-
hange message, the OVS
lient
an send messages optimisti
ally before thenext view is determined by the membership servi
e. If the start-
hange information is not
ompletely a

urate, the optimisti
 messages will be dealt with a

ording to the poli
y41

spe
i�ed by an appli
ation.Stru
tured Virtual Syn
hrony[8℄ is a way to improve s
alability of the
urrent VS system.The Stru
tured Virtual Syn
hrony, just like the membership servi
e, exploits the hierar
hi
alapproa
h.There are two main
omponents in this hierar
hi
al implementation:
ontrollers and
lients. Ea
h
lient runs a simple algorithm that sends and re
eives messages from the
lient's
ontroller. Ea
h
ontroller is responsible for a group of
hildren
lients; the
ontrollers inturn
ommuni
ate among themselves to share stability and
lient liveness information. Inother words, the
ontroller group implements a full-power virtually syn
hronous algorithmseparately from the lo
al
lients, just as the membership servers run the membership algo-rithm in the membership group. Sin
e the
ontrollers are syn
hronized and
ommuni
atewith their
hildren
lients via an RFIFO network layer, the lo
al
lients also provide the VSsemanti
s to the appli
ation layer. Possibly, Xpand'sThe membership servi
e relays both the
ontroller and the
lient membership informationto the
ontrollers, whi
h use it to implement virtual syn
hrony and in turn to inform the
lients of their new views. The SVS ar
hite
ture suggests the membership servi
e be splitin two groups. The �rst group will play its usual role in the
ontroller group, whereas these
ond membership group will be distributed among the
ontrollers in order to tra
k themembership events within
ontrollers' lo
al groups.The SVS approa
h in
reases s
alability dramati
ally [8℄. Sin
e the
ontroller group doesnot have to grow very fast with the number of
lients, the network load also remains low
ompared to the standard VS algorithm. This means that the same physi
al networks
an support a larger number of
lients. Moreover, the number of the SVS levels
an bein
reased. For example, some appli
ations may need a higher degree of s
alability and havemore than two levels:
ontrollers, sub-
ontrollers and lo
al
lients. However, as the hierar
hyin
reases it requires more
omplex
ontrollers and more sophisti
ated membership servi
e.A performan
e gain is still a
hievable with a moderate in
rease in
omplexity. Therefore,SVS is
onsidered the next step in the development of the VS systems.
42

Bibliography
[1℄ Y. Amir, G. V. Chokler, D. Dolev, and R. Vitenberg. EÆ
ient state transfer in parti-tionable environments. In 2nd European Resear
h Seminar on Advan
es in DistributedSystems (ERSADS'97), pages 183{192. BROADCAST (ESPRIT WG 22455), Operat-ing Systems Laboratory, Swiss Federal Institute of Te
hnology, Lausanne, Mar
h 1997.Full version: Te
hni
al Report CS98-12, Institute of Computer S
ien
e, The HebrewUniversity, Jerusalem, Israel.[2℄ T. Anker, G. Cho
kler, D. Dolev, and I. Keidar. S
alable group membership servi
es fornovel appli
ations. In Marios Mavroni
olas, Mi
hael Merritt, and Nir Shavit, editors,Networks in Distributed Computing (DIMACS workshop), volume 45 of DIMACS, pages23{42. Ameri
an Mathemati
al So
iety, 1998.[3℄ T. Anker, G. Cho
kler, I. Shnaiderman, and D. Dolev. The Design of Xpand: A GroupCommuni
ation System for Wide Area Networks. Te
hni
al Report 2000-31, Instituteof Computer S
ien
e, Hebrew University, Jerusalem, Israel, July 2000.[4℄ T. Anker, D. Dolev, and I. Keidar. Fault tolerant video-on-demand servi
es. In 19thInternational Conferen
e on Distributed Computing Systems (ICDCS), pages 244{252,June 1999.[5℄ K. Birman. Building Se
ure and Reliable Network Appli
ations. Manning, 1996.[6℄ T. D. Chandra and S. Toueg. Unreliable failure dete
tors for reliable distributed systems.Journal of the ACM, 43(2):225{267, Mar
h 1996.

43

[7℄ R. Friedman and A. Vaysburg. High-performan
e repli
ated distributed obje
ts in par-titionable environments. Te
hni
al Report 97-1639, Dept. of Computer S
ien
e, CornellUniversity, Itha
a, NY 14850, USA, July 1997.[8℄ Katherine Guo, Werner Vogels, and Robbert van Renesse. Stru
tured virtual syn-
hrony: Exploring the bounds of virtual syn
hronous group
ommuni
ation. In 7thACM SIGOPS European Workshop, September 1996.[9℄ I. Keidar, J. Sussman, K. Marzullo, and D. Dolev. A Client-Server Oriented Algorithmfor Virtually Syn
hronous Group Membership in WANs. In 20th International Con-feren
e on Distributed Computing Systems (ICDCS), pages 356{365, April 2000. Fullversion: MIT Te
hni
al Memorandum MIT-LCS-TM-593.[10℄ Idit Keidar and Roger Khazan. A
lient-server approa
h to virtually syn
hronous groupmulti
ast: Spe
i�
ations and algorithms. In 20th International Conferen
e on Dis-tributed Computing Systems (ICDCS), pages 344{355, April 2000. Full version: MITLab. for Computer S
ien
e Te
h. Report MIT-LCS-TR-794.[11℄ Roger Khazan, Alan Fekete, and Nan
y Lyn
h. Multi
ast group
ommuni
ation as abase for a load-balan
ing repli
ated data servi
e. In 12th International Symposium onDIStributed Computing (DISC), pages 258{272, Andros, Gree
e, September 1998.[12℄ J. Sussman, I. Keidar, and K. Marzullo. Optimisti
 virtual syn
hrony. In 19th IEEEInternational Symposium on Reliable Distributed Systems (SRDS), O
tober 2000. Toappear. Previous version: Te
hni
al Report MIT-LCS-TR-792 MIT Lab for ComputerS
ien
e; and Te
hni
al Report CS1999-634 University of California, San Diego, Depart-ment of Computer S
ien
e and Engineering.[13℄ R. Vitenberg, I. Keidar, G. V. Cho
kler, and D. Dolev. Group Communi
ation Spe
i-�
ations: A Comprehensive Study. Te
hni
al Report CS99-31, Institute of ComputerS
ien
e, Hebrew University, Jerusalem, Israel, September 1999. Also Te
hni
al ReportMIT-LCS-TR-790, Massa
husetts Institute of Te
hnology, Laboratory for Computer44

S
ien
e and Te
hni
al Report CS0964, Computer S
ien
e Department, the Te
hnion,Haifa, Israel.

45

