
12

Securing Distributed Gradient Descent in High Dimensional
Statistical Learning

LILI SU∗, CSAIL, EECS, MIT, USA

JIAMING XU, The Fuqua School of Business, Duke University, USA

We consider unreliable distributed learning systems wherein the training data is kept confidential by external

workers, and the learner has to interact closely with those workers to train a model. In particular, we assume

that there exists a system adversary that can adaptively compromise some workers; the compromised workers

deviate from their local designed specifications by sending out arbitrarily malicious messages.

We assume in each communication round, up to q out of them workers suffer Byzantine faults. Each worker

keeps a local sample of size n and the total sample size is N = nm. We propose a secured variant of the gradient

descent method that can tolerate up to a constant fraction of Byzantine workers, i.e., q/m = O (1). Moreover,

we show the statistical estimation error of the iterates converges in O (logN) rounds to O (
√
q/N +

√
d/N),

where d is the model dimension. As long as q = O (d), our proposed algorithm achieves the optimal error

rate O (
√
d/N). Our results are obtained under some technical assumptions. Specifically, we assume strongly-

convex population risk. Nevertheless, the empirical risk (sample version) is allowed to be non-convex. The

core of our method is to robustly aggregate the gradients computed by the workers based on the filtering

procedure proposed by Steinhardt et al. [29]. On the technical front, deviating from the existing literature

on robustly estimating a finite-dimensional mean vector, we establish a uniform concentration of the sample

covariance matrix of gradients, and show that the aggregated gradient, as a function of model parameter,

converges uniformly to the true gradient function. To get a near-optimal uniform concentration bound, we

develop a new matrix concentration inequality, which might be of independent interest.

CCS Concepts: • Security and privacy→ Distributed systems security;Mobile and wireless security;
• Computing methodologies→ Batch learning; MapReduce algorithms;

Additional Key Words and Phrases: Distributed systems, learning, security, Byzantine adversaries, high-

dimensional statistics

ACM Reference Format:
Lili Su and Jiaming Xu. 2019. Securing Distributed Gradient Descent in High Dimensional Statistical Learning.

Proc. ACM Meas. Anal. Comput. Syst. 3, 1, Article 12 (March 2019), 41 pages. https://doi.org/10.1145/3311083

1 INTRODUCTION
Distributed machine learning has been an attractive solution to large-scale problems for years [5].

At the same time, learning in the presence of (possibly malicious) outliers has a deep root in robust

statistics [15] and has become an extremely active area recently [7, 9, 10, 19, 29]. However, most

of the previous work implicitly assumes that the systems used to carry out the learning task are

reliable, i.e., each computing device follows some designed specification. In this work, we consider

∗
This is the corresponding author

Authors’ addresses: Lili Su, CSAIL, EECS, MIT, 32 Vassar St, Cambridge, MA, 02139, USA, lilisu@mit.edu; Jiaming Xu, The

Fuqua School of Business, Duke University, 100 Fuqua Drive, Durham, NC, USA, jx77@duke.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2476-1249/2019/3-ART12 $15.00

https://doi.org/10.1145/3311083

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

https://doi.org/10.1145/3311083
https://doi.org/10.1145/3311083

12:2 L. Su and J. Xu.

unreliable distributed learning systems [2, 4, 8, 20, 30, 38] that are prone to system failures or even

adversarial attacks. In particular, we assume that there exists a system adversary that can adaptively

choose some computing devices to compromise; the compromised devices deviate from their local

designed specifications and behave maliciously in an arbitrary manner.

Our consideration of unreliable distributed learning systems is motivated by the recent trends in

a new learning framework wherein the training data is kept confidential by external computing

devices, and the learner interacts with the external computing devices to train a model. In classical

learning frameworks, data is collected from its providers (who may or may not be voluntary) and

is stored by the learner. Such data collection immediately leads to data providers’ serious privacy

concerns, which root in not only purely psychological reasons but also the poor real-world practice

of privacy-preserving solutions. In fact, privacy breaches occur frequently, with recent examples

including Facebook data leak scandal, iCloud leaks of celebrity photos, and PRISM surveillance

program. Putting this privacy risk aside, data providers often benefit from the learning outputs.

For example, in medical applications, although participants may be embarrassed about their use of

drugs, they might benefit from good learning outputs that can provide high-accuracy predictions

of developing diseases.

To resolve this dilemma of data providers, researchers and practitioners have proposed an

alternative learning framework wherein the training data is kept confidential by its providers

from the learner and these providers function as workers [12, 17, 22]. This framework has been

implemented in practical systems such as Google’s Federated Learning [17, 22], wherein Google tries

to learn a model with the training data kept confidential on the users’ mobile devices. We refer to

this new learning framework as learning with external workers. In contrast to the traditional learning
framework under which models are trained within data-centers, in learning with external workers
the learner faces serious security risk: (1) some external workers may be highly unreliable or even be

malicious (hacked by the system adversary); (2) the learner lacks enough administrative power over

those external workers. In this paper, we aim to develop strategies to safeguard distributed machine

learning against adversarial workers while keeping the following two key practical constraints in

mind:
1

• Small local samples versus high model dimensions: While the total volume of data over all

workers may be large, individual workers may keep only small samples comparing to model

dimensions. That is, the training data is locally a scarce resource.

• Communication constraints: Similar to other large distributed systems, the external work-

ers are typically highly heterogeneous in terms of computation powers, real-time local

computation environments, etc. As a result of this, each round of communication requires

synchronization [40]; the transmission between the external workers and the learner typically

suffers from high latency and low throughout.

These two constraints together raise significant challenges for designing securing strategies. With-

out the first constraint, a one-shot outlier-resilient aggregation procedure suffices: each worker

separately performs learning based on the local sample and sends the local estimates to the learner

who aggregates these estimates to output a final global estimate. This procedure is straightforward

to implement and is communication-efficient [13, 40]. However, the correctness of these algorithms

crucially relies on the assumption that the local sample size is sufficiently large. In particular,

n = N /m ≫ d , wherem is the number of workers, n is the local sample size, N = nm is the total

sample size, and d is the model dimension. In contrast, practical distributed learning systems often

1
Depending on applications, there might be many other constraints such as unevenly distributed training data, intermittent

availability of external workers, etc. In addition, different applications might even call for different performance metrics.

We would like to explore these more richer settings in our future work.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:3

operate in the regime where n ≪ d . Two immediate consequences are: (1) to learn an accurate

model, the learner has to interact closely with those external workers, and such close interaction

gives the adversary more chances to foil the learning process; (2) identifying the adversarial workers

based on abnormality is highly challenging, as it becomes difficult to distinguish the statistical errors

from the adversarial errors when the sample sizes are small. In addition, due to the randomness of

the training data, the estimates computed at different rounds are highly dependent on each other.

See Section 1.1.1 for further explanation.

There have been attempts to robustify stochastic gradient descent (SGD) [2, 4] with different

focus from what we consider here. In particular, [4] assumes all the workers can access the whole

data sample. Similar to ours, the concurrent work [2] considers the scenario where data is generated

and stored in a distributed fashion at the workers. However, [2] assumes that in each iteration the

workers are able to use fresh data to compute the gradients. However, fresh data in each round

implies that the local sample size grows with time, which is not necessarily true in some applications.

The fresh data assumption is crucial in their analysis: with fresh data, conditioning on the current

model parameter estimator, the local gradients computed at different workers become independent,

and the existing analysis of robust mean estimation may suffice. In this work, we assume that the

sample size is fixed over time
2
, and the training data is stored in a distributed fashion [8, 38].

Contributions: In this work, we propose a robust gradient descent method that tolerates up to a

constant fraction of adversarial workers (i.e.,
q
m = O (1)) and converges to a statistical estimation

error O (
√
q/N +

√
d/N) in O (logN) communication rounds; whereas, the minimax-optimal error

rate in the failure-free and centralized setting is O (
√
d/N). 3 As long as q = O (d), our proposed

algorithm achieves the optimal error rate O (
√
d/N), matching the failure-free optimal error rate.

Our results are obtained under some technical assumptions that we hope to relax in the future.

Specifically, we assume that the population risk is strongly-convex. Nevertheless, we do allow the

empirical risk (sample version) to be non-convex.

On the technical front, to deal with the interplay of the randomness of the data and the iterative

updates of the model choice θ , we first establish the concentration of sample covariance matrix of

gradients uniformly4 at all possible model parameters; then we prove that our aggregated gradient,

as a function of θ , converges uniformly to the population gradient function ∇F (·). Similar uniform

concentration of sample covariance matrix has been derived in [7, Lemma 2.1] under the assumption

that the gradients are sub-gaussian. While sub-gaussian data distribution is commonly assumed

in statistical learning literature, the resulting gradients may be sub-exponential or even heavier

tailed. For example, in the simplest linear regression example, the gradients are sub-exponential

instead of sub-gaussian. Note that standard routine to bounding the spectral norm of the sample

covariance matrix is available, see [33, Theorem 5.44] and [1, Corollary 3.8] for example. However,

it turns out that using these existing results, the uniform concentration bound obtained is far

from being optimal. To this end, we develop a new concentration inequality for matrices with

i.i.d. sub-exponential column vectors. This new inequality leads to a near-optimal uniform bound.

Relaxing the distributional assumption from sub-gaussian to sub-exponential is highly nontrivial.

See [34, Section 1.3] and [1] for details. Our analysis framework developed in this work is not tied to

sub-exponential assumptions. With different gradient distributional assumptions such as bounded

second moment, one can follow our analysis roadmap to obtain different uniform concentration

2
Fixed sample size arises, for example, when the model training speed is significantly faster than the data generation speed.

3
See [37, Section 3.2] for a proof. Note that O (

√
d/N) is the minimax optimal estimation error rate without any additional

structure on the model parameter. When the model parameter has additional structure, such as sparsity, the

√
d factor can

possibly be improved.

4
See [26, 27] and reference therein for details about uniform convergence of functions.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:4 L. Su and J. Xu.

bounds for the sample covariance matrix of gradient vectors, which in turn implies different error

bounds to our robust gradient descent method.

Note that in our algorithm, we let each non-faulty worker compute the local gradient based on

the entire local sample (all n data points). Since n is small, the computational burdens of the workers

are reasonable. It has been demonstrated numerically in [18] that in the adversary-free setting,

there is a performance improvement when each worker performs a few epochs of SGD before the

model updates are aggregated. Whether there will be similar performance improvement in our

adversary-prone setting is unclear, and we would like to leave this direction for future exploration.

1.1 Comparison with Robustly Estimating a Finite-dimensional Mean Vector
Our work is closely related to high-dimensional robust mean estimation – a research area that has

been intensively studied [7, 9, 10, 19, 29]. High-dimensional
5
robust mean estimation focuses on

estimating the mean of a d-dimensional random vector from a contaminated dataset whose ϵ > 0

fraction of data is arbitrarily corrupted.

Our algorithm uses robust mean estimation – in particular, the procedure developed in [29] – as

a sub-routine to aggregate the gradients computed by the workers in each iteration. We provide

a way to leverage robust mean estimation primitive to design an optimization algorithm that is

resilient to adversarial system failures. Similar attempts were made in concurrent work [11, 16, 25].

In particular, [16] focuses on the linear or polynomial regression model, and [11, 25] consider a

general machine learning model similar to ours. The correctness of the robust gradient descent

method proposed in [25] relies on uniform approximation of the aggregated gradient to the true

population gradient [25, Def. 1]; however, only point-wise approximation bound is proved [25,

Lemma 1]. In contrast, we prove a high-probability, uniform approximation bound by assuming

the local gradients are sub-exponential (See Theorem 3.3). A similar uniform approximation bound

is proved in [11, Prop. B.5] with stronger assumptions. In fact, in proving [11, Prop. B.5], they

essentially assume the local gradients are bounded
6
by L′ in ℓ2 norm and restrict N ≥ q ≫ d2 (L′)2,

where L′ is the Lipschitz continuous parameter of local gradients which may scale polynomially

with N ,d . See Remark 3 for detailed comparisons.

1.1.1 Why uniform convergence? The existing analysis of robust mean estimation assumes that the

good data vectors are independently and identically distributed, and hence can only guarantee the

performance of the gradient estimation at a given θ . However, in our problem, we need to take into

account the fact that θt is updated iteratively based on the training data; due to the randomness of

the training data, though θ0 might be treated as given, {θt }t ≥1 are random. As {θt }t ≥1 are obtained
based on the same set of training data, they are highly dependent on each other. As a consequence,

conditioning θt (t ≥ 1), the gradients computed by the good workers are no longer i .i .d .. This is in
sharp contrast to [2].

To deal with this interdependency and unspecified behavior of adversarial workers, we instead

view each gradient as a function of model parameter θ , and aim to robustly estimate the mean

of the infinite-dimensional gradient function – the true population gradient function. This poses

significant challenges in proving the desired robustness guarantees and estimation error bounds. To

this end, we establish a uniform concentration of sample covariance matrix of gradient functions. To

get a near-optimal uniform concentration bound, we develop a new matrix concentration inequality.

5
The notion of “high-dimension” here does NOT refer to the setting where d ≫ N .

6
Recall that bounded random variables fall within the sub-gaussian family.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:5

1.2 Further Related Work
Recent years have witnessed a flurry of research on securing distributed machine learning al-

gorithms against adversarial attacks. Here we can only hope to cover a fraction of them we see

most relevant. See [2, 4, 7–10, 13, 31, 38] and references therein for more details. Both [4, 31]

considered a pure optimization framework and characterizations of statistical performance of the

learning outputs are left open; whereas [8] studied the same statistical learning framework as ours.

In particular, [8] proposed an algorithm that converges in logarithmic rounds to an estimation

error O (
√
dq/N) for q ≥ 1, which is suboptimal up to a multiplicative factor of

√
q. In the low

dimensional regime where d = O (1), the concurrent work [38] obtains an order-optimal error

rate based on coordinate-wise median and trimmed mean, but the dependency of error rate on

dimension d is highly suboptimal and is even inferior to the result in [8]. In this work, we focus on

the more general regime of model dimension d .

Notation. We use standard big O notations, e.g., for any sequences {an } and {bn }, an = O (bn) or
an ≲ bn if there is an absolute constant C > 0 such that an/bn ≤ C .

2 SYSTEMMODEL
Let X denote the input data generated from some unknown distribution P . Let Θ ⊂ Rd denote

the set of all possible model parameters. We consider a risk function f : X × Θ → R, where
f (x ,θ) measures the risk induced by a realization x of the data under the model parameter choice

θ . A classical example of the above statistical learning framework is linear regression, where

x = (w ,y) ∈ Rd−1 × R is the feature-response pair and f (x ,θ) = 1

2
(⟨w ,θ⟩ − y)2. The learner is

interested in learning θ ∗ which minimizes the population risk i.e.,

θ ∗ ∈ argmin

θ ∈Θ
F (θ) ≜ E

[
f (X ,θ)

]
(1)

– assuming that F (θ) ≜ E
[
f (X ,θ)

]
is well-defined for every θ ∈ Θ. The model choice θ ∗ is optimal

in the sense that it minimizes the expected risk to pay if it is used for prediction.

If the population risk F were known, then θ ∗ might be computed by solving the minimization

problem in (1). In statistical learning, however, the distribution P (thus the population risk F) is
typically unknown; instead, training data is available for learning θ ∗. Formally, we assume that

there exist N i.i.d. data points Xi
i.i.d.

∼ P in the decentralized learning system wherein the training

data is kept locally by data providers and cannot be accessed by the learner directly. The learner

can only request those providers to compute gradient-like quantities of their locally kept data, as is

the case in Federated Learning. We refer to those data providers as workers, as they can be viewed

as “recruited” by the learner. We assume there arem workers, and the N data points are distributed

evenly across them workers. Specifically, the index set [N] is partitioned intom subsets S j such
that |Sj | = N /m ≜ n, and Si ∩ Sj = ∅ for i , j. 7 Notably, n is often much smaller than the model

dimension d .
The learner communicates with the workers in synchronous communication rounds, but non-

faulty workers do not communicate with each other. We leave the asynchronous communication as

one future direction. We use the Byzantine fault model [20] to capture the unreliability and potential

malicious behaviors of the workers. It is assumed that up to q out of them workers suffer Byzantine

faults and thus behave arbitrarily and possibly maliciously. Those faulty workers are referred to as

Byzantine workers. The arbitrarily faulty behavior arises when the workers are reprogrammed by

the system adversary. We assume the learner knows the upper bound q – a standard assumption in

literature [7, 10, 29]. Nevertheless, an effective and efficient learning algorithm that does not call for

7
It would be interesting to consider more general data partitions, and we leave this as one future direction.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:6 L. Su and J. Xu.

the knowledge of q as input is highly desirable. The set of Byzantine workers is allowed to change
between communication rounds; the adversary can choose different sets of workers to control

across communication rounds. Byzantine workers are assumed to have complete knowledge of the
system, including the total number of workersm, all N data points over the whole system, the

programs that the workers are supposed to run, the program run by the learner, and the realization

of the random bits generated by the learner. Moreover, Byzantine workers can collude. Nevertheless,

when the adversary gives up the control of a worker, this worker recovers and becomes normal

immediately. Note that this mobile Byzantine fault model is more general than the most classic

Byzantine fault model, where the set of Byzantine workers is fixed throughout an execution.

3 OUR ALGORITHM ANDMAIN RESULTS
A standard approach to estimate θ ∗ in statistical learning is via empirical risk minimization. GivenN
independent copiesX1, · · · ,XN ofX , the empirical risk function is a random function overΘ defined

as (1/N)
∑N

i=1 f (Xi ,θ) for all θ ∈ Θ. By the functional law of large numbers, the empirical risk

function converges uniformly to the population risk function F (θ) in probability as sample sizeN →
∞.8 As a consequence, we expect the minimizer of the empirical risk function (which is random)

also converges to the population risk minimizer θ ∗ in probability. While it may be possible to secure

the empirical risk minimization using some “robust" versions of empirical risk functions [7, 31],

the characterizations of the estimation error are either unavailable or too loose. Moreover, in our

distributed setting, it is costly to transmit the local empirical risk functions. Similar observation is

made in [25]. In this paper, we take a different approach: Instead of robustifying the empirical risk

functions, we aim at robustifying the learning process. Specifically, we focus on securing the gradient
descent method against the interruption caused by the Byzantine workers during model training.

We focus on gradient descent as it is one of the most important and fundamental algorithms in

machine learning [3, 28]. At a high level, many machine learning problems are solved by minimizing

certain appropriate risk (cost) function using gradient descent [23].

Recall that ∇F (θt−1) is the gradient of the population risk at θt−1, η is some fixed stepsize, and θ0
is the given initial guess of θ ∗. For the perfect gradient descent method, i.e.,

θt = θt−1 − η × ∇F (θt−1), (2)

to converge exponentially fast, the following standard assumption is often adopted [6].

Assumption 1. The population risk function F : Θ→ R isM-strongly convex, and differentiable
over Θ with L-Lipschitz gradient. That is, for all θ ,θ ′ ∈ Θ,

F (θ ′) ≥ F (θ) +
〈
∇F (θ), θ ′ − θ

〉
+
M

2

θ ′ − θ

22 ,

∇F (θ) − ∇F (θ ′)

2 ≤ L

θ − θ ′

2 .

Note that bothM and Lmay scale in d – the dimension of θ . Though we assume strong-convexity

of the population risk, the empirical risk can be highly non-convex. Detailed comments on strong

convexity assumption can be found in Remark 4.

Our approximate gradient descent method is given by Algorithm 1.

If worker j is non-faulty at round t , on receipt of θt−1, it computes its local gradient at θt−1 and
reports the computed gradient дj (θt−1) to the learner; if worker j is Byzantine faulty at round t , it

8
See [26, 27] and reference therein for details about uniform convergence of functions.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:7

Algorithm 1 Approximate Gradient Descent Method: Round t ≥ 1

The learner:
1: Initialization: Let θ0 be an arbitrary point in Θ. Let η = M

2L2 .

2: Broadcast the current model iterate θt−1 to all workers;

3: Wait to receive all the gradients reported by the m workers; Let дj (θt−1) denote the value

received from worker j.
If no message from worker j is received, set дj (θt−1) to be some arbitrary value;

4: Aggregate gradients: Pass the received gradients to a gradient aggregator R to obtain an

aggregated gradient G (θt−1), i.e.,

G (θt−1) ← R (д1 (θt−1), · · · ,дj (θt−1), · · · ,дm (θt−1)). (3)

5: Update: θt ← θt−1 − η ×G (θt−1);

Worker j:
1: On receipt of θt−1, compute the gradient at θt−1, i.e.,

1

n
∑

i ∈Sj ∇f (Xi ,θt−1);

2: Send
1

n
∑

i ∈Sj ∇f (Xi ,θt−1) back to the learner;

reports an arbitrary value to the learner. Formally,

дj (θt−1) =



1

n
∑

i ∈Sj ∇f (Xi ,θt−1), if j is non-faulty at round t ;

⋆, otherwise,

where ⋆ denotes an arbitrary value. Notably, the Byzantine workers might use all the information

of the system to determine what value to report. The learner aggregates the received gradients

via a gradient aggregator R (an algorithmic function) to obtain an approximate gradient (line 4 of

Algorithm 1).

We use a gradient aggregator that originates from robust mean estimation [29]. For ease of

exposition, we postpone the presentation of this gradient aggregator after stating our main results.

3.1 Main Results
To characterize the statistical estimation error rate of our proposed algorithm, we adopt some

assumptions. Similar assumptions are made in [8] and [38]. We illustrate our results by applying

them to the classical linear regression and logistic regression problems in Section 5.

Thoughwe successfully relax the distributional assumption from sub-gaussian to sub-exponential,

no evidence so far hints that no further relaxation is possible. In fact, our analysis framework

developed in this work is not tied to sub-exponential assumptions. With different gradient dis-

tributional assumptions such as bounded second moment, one can follow our analysis roadmap

(Lemma 2) to obtain different uniform concentration bounds for the sample covariance matrix

of gradient vectors, which in turn implies different error bounds to our robust gradient descent

method. Detailed comments on our distributional assumptions can be found in Remark 5.

The concurrent work [11] attempts to prove uniform approximation bounds under bounded

second moment assumption. However, their proof, in its current form, only holds for sub-gaussian

distributions. See the proof of [11, Prop B.5] for details. More technical comparisons with the

concurrent papers [11, 25] can be found in Remark 3.

Let Sd−1 =
{
v ∈ Rd : ∥v ∥

2
= 1

}
denote the unit Euclidean sphere.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:8 L. Su and J. Xu.

Assumption 2. The sample gradient at the optimal model parameter θ ∗, i.e., ∇f (X ,θ ∗), is sub-
exponential with constants (σ1,α1), i.e., for every unit vector v ∈ Sd−1,

E
[
exp (λ⟨∇f (X ,θ ∗),v⟩)

]
≤ eσ

2

1
λ2/2, ∀|λ | ≤

1

α1
.

We further assume the Lipschitz continuity of the sample gradient functions.

Assumption 3. There exists an L′ such that

∇f (X ,θ) − ∇f (X ,θ ′)

2 ≤ L′

θ − θ ′

2 ∀ θ ,θ ′ ∈ Θ.

For applications where Assumption 3 does not hold deterministically, it suffices to have Assump-

tion 3 hold with high probability for all training data. Notably, L′ may be much larger than L and

even scale polynomially in N and d . However, L′ will affect our results only by logarithmic factors

logL′.
Next define the gradient difference function

h(X ,θ) = ∇f (X ,θ) − ∇f (X ,θ ∗) − (∇F (θ) − ∇F (θ ∗)) . (4)

Note thath(X ,θ)/ ∥θ − θ ∗∥
2
characterizes the change rate of f (X ,θ)−∇F (θ) from f (X ,θ ∗)−∇F (θ ∗);

hence it can be viewed as a local Lipschitz parameter with respect to θ ∗.

Assumption 4. The local Lipschitz parameter h(X ,θ)/ ∥θ − θ ∗∥
2
is sub-exponential with constants

(σ2,α2), i.e.., for every θ ∈ Θ and v ∈ Sd−1,

E

[
exp

(
λ⟨h(X ,θ),v⟩

∥θ − θ ∗∥

)]
≤ eσ

2

2
λ2/2, ∀|λ | ≤

1

α2
.

Notably, Assumption 4 assumes a concentration of the local Lipschitz parameter with respect to

θ ∗, instead of a global Lipschitz parameter.

Again, our analysis may not be tied to sub-exponential assumptions. Now we are ready to present

our main results.

Theorem 3.1. Suppose Assumptions 1–4 hold. Assume that log(L + L′) = O (log(Nd)) and Θ ⊂
{θ : ∥θ − θ ∗∥

2
≤ r } for some positive parameter r such that log r = O (log(Nd)). Suppose that

N ≥ cd2 log8 (Nd)) and N ≥ cq for a sufficiently large constant c , and that 4q ≤ m ≤ e
√
d . Further

assume that M ≥ 1. Then there exists a gradient aggregator R such that with probability at least
1 − 3e−

√
d , the iterates {θt } given by Algorithm 1 satisfy

θt − θ ∗

2 ≲
(
1 −

M2

16L2

)t

θ0 − θ ∗

2 +

√
q

N
+

√
d

N
.

Note that in Theorem 3.1, the Lipschitz parameters L,L′, and the size of the search space r are
allowed to scale even polynomially in N and d . The estimation errorO (

√
q/N +

√
d/N) in Theorem

3.1 significantly improves the previous results (O (
√
dq/N) for q ≥ 1) [8]. Recall that even in the

failure-free and centralized setting the minimax-optimal error rate isO (
√
d/N). Thus, an immediate

consequence of Theorem 3.1 is that as long as q = O (d), our proposed algorithm achieves the

optimal error rate O (
√
d/N). The sample complexity N ≥ cd2 log8 (Nd) appears to be suboptimal

at first glance. However, it turns out that under sub-exponential distributional assumption, if we

rely on uniform concentration of the sample covariance matrices, this sample complexity is order

optimal up to logarithmic factors. See Remark 2 for details.

Remark 1. One concurrent work [38] uses coordinate-wise median and trimmed mean and obtains
an estimation error rd (q/(m

√
n) + 1/

√
N) up to logarithmic factors – noting that the radius of the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:9

model parameter space r is typically on the order of
√
d . This error rate is shown to be order-optimal

in the low dimensional regime where d = O (1) [38], but turns out to scale poorly in dimension d .

As an important ingredient of our proof of Theorem 3.1, we establish a uniform concentration

of the sample covariance matrix of gradients. Recall that in our problem local sample gradients

1

n
∑

i ∈Sj∇f (Xi ,θ)’s are sub-exponential random vectors. Standard routine to bounding the spectral

norm of the sample covariance matrix is available, see [33, Theorem 5.44] and [1, Corollary 3.8] for

example. However, it turns out that using these existing results, the uniform concentration bound

obtained is far from being optimal. To this end, we develop a new concentration inequality for

matrices with i.i.d. sub-exponential column vectors. As can be seen later, this new inequality leads

to a near-optimal uniform bound.

Theorem 3.2. LetA be a d×mmatrix whose columnsAj are independent and identically distributed
sub-exponential, zero-mean random vectors in Rd with parameters (σ ,α). Assume that

σ/α = Ω(1). (5)

Then with probability at least 1 − δ ,

∥A∥
2
≤ c

(
σ
√
m + σϕ

(
d + log

1

δ

)
+ αϕ2

(
d + log

1

δ

))
,

where c is a universal positive constant and ϕ (x) : R→ R is a function given by ϕ (x) =
√
x log3/2 (x).

If A has sub-Gaussian columns, i.e., α = 0, then the upper bound in Theorem 3.2 matches

the sub-Gaussian matrix concentration inequality [35][Theorem 5.39] up to logarithmic factors.

If σ ,α = Θ(1) and log(1/δ) = d , Theorem 3.2 implies that with probability at least 1 − e−d ,
∥A∥

2
≲
√
m + d log3 d , which is tight up to logarithmic factors; whereas the analogous bound

implied by standard concentration inequality [1, Corollary 3.8] is on the order of

√
md + d . See

Remark 10 in Section 4.1 for details.

With the performance guarantee of our robust aggregator R (formally stated in the next subsec-

tion) and Theorem 3.2, it can be shown that the approximate gradients used in the robust gradient

descent update (Algorithm 1 with the chosen robust aggregator R) are good uniformly over θ ∈ Θ.

Theorem 3.3. Suppose Assumptions 1–4 hold. Assume that log(L + L′) = O (log(Nd)) and Θ ⊂
{θ : ∥θ − θ ∗∥

2
≤ r } for some positive parameter r such that log r = O (log(Nd)). Suppose N ≥

cd2 log8 (Nd)) for a sufficiently large constant c and m ≤ e
√
d . Let G (θ) (for each θ ∈ Θ) be the

aggregated gradient returned by Algorithm 2. Then with probability at least 1 − 3e−
√
d ,

∥G (θ) − ∇F (θ)∥
2
≲ *

,

√
q

N
+

√
d

N
log

2 (Nd)+
-

θ − θ ∗

2

+

√
q

N
+

√
d

N

holds for all θ ∈ Θ.

Remark 2. Theorem 3.3 requires the total sample size N ≳ d2 (ignoring the logarithmic factors),
which is due to our sub-exponential assumption of local Lipschitz parameter h(X ,θ)/ ∥θ − θ ∗∥

2
. This

sample size requirement N ≳ d2 is inevitable as can be seen from the linear regression example. (cf.
Remark 11). If instead h(X ,θ)/ ∥θ − θ ∗∥

2
is assumed to be sub-Gaussian, then N ≳ d suffices.

Remark 3. The robust gradient estimation has also been studied in two concurrent papers [11, 25]
for m = N . Under an ϵ-contamination model with ϵ = q/N , [25, Lemma 1] proves a point-wise

approximation bound to ∇F (θ) for a given θ , which scales as
√
q/N + (d/N)3/8 + q1/4

√
d/N up

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:10 L. Su and J. Xu.

to logarithmic factors. In contrast, a uniform approximation bound similar to ours is proved in [11,
Prop B.5]. However, their bound only holds under the stringent condition q ≫ d2 (L′)2, where L′ is the
Lipschitz continuity parameter of the sample gradient function given in Assumption 3. Note that L′

may scale polynomially in N ,d . For instance, in the standard linear regression model, L′ = Ω(d) (See
Lemma 5.1). In fact, [11, Prop B.5] assumes that

∇f (X ,θ) − ∇F (θ)

2 is bounded by L′ and hence the
proof follows from a straightforward application of Hoeffding’s inequality plus an ϵ-net argument.
In contrast, with Assumption 4, we obtain a tighter uniform approximation bound via the new

matrix concentration inequality given in Theorem 3.2.

Remark 4 (Strongly-convex assumption). We next explain the strong convexity assumption
assumed in our paper. First, we clarify that we only require the population risk to be strongly-convex,
while the empirical risk (sample version) could be highly non-convex. Second, we point out that it is
possible to enforce the strong convexity of the population risk by introducing proper regularization.
For example, we add an extra ℓ2 norm regularization to the quadratic loss in ridge regression. Thirdly,
while our results do not directly apply to settings where the population risk is not strongly convex, our
results are still important for the following two-fold reasons: (1) while many learning problems are
highly non-convex globally, they sometimes satisfy certain restricted strong convexity properties (the
Hessian matrix are strictly positive definite in certain regions or directions around the optimal model
parameter) [24] and thus gradient descent schemes are still able to converge to the optimal model
parameter [21]. Therefore, our robust gradient descent results can still be applied to these settings; (2)
It is possible to extend our results to non-convex settings by combining our robust gradient descent
methods with proper saddle-points escaping schemes; such extension has been pursued recently in a
follow-up work [39].

Remark 5. Finally, we explain the sub-exponential assumption on the gradient vectors. First, while
sub-gaussian data distribution is commonly assumed in statistical learning literature, the resulting
gradients may be sub-exponential, as we illustrated in the simple linear regression example. Loosely
speaking, this is due to the fact that the gradients may involve x2 term, which is sub-exponential
even if x is sub-Gaussian. Similar phenomenon also occurs in logistic regression. Thus, it is important
to consider sub-exponential or even heavier-tailed gradient distribution when we try to robustify
a learning procedure such as gradient descent. Second, our analysis framework developed in this
work is not tied to sub-exponential assumptions. With different gradient distributional assumptions
such as bounded second moment, one can follow our analysis roadmap (Lemma 2) to obtain different
uniform concentration bounds for the sample covariance matrix of gradient vectors which in turn
implies different error bounds to our robust gradient descent method. Thirdly, certain distributional
assumptions are inevitable to some extent, in order to show the learning procedures perform well on
the average case beyond the worst case guarantees [35].

3.2 Robust Gradient Aggregator
In this subsection, we present the robust gradient aggregator R used in Algorithm 1. We present

the aggregator in the setup of robust mean estimation.

Let S =
{
y1, · · · ,ym

}
be the true sample. Define µS =

1

m
∑m

i=1 yi as the sample mean on S. Let{
ŷ1, · · · ,ŷm

}
⊆ Rd be the observed sample, which is obtained fromS by adversarially corrupting up

to q = ϵm data points. We use an iterative filtering algorithm proposed in [29], formally presented in

Algorithm 2. At a high level, by solving (6) and (7) for a saddle point (W ,U), Algorithm 2 iteratively

finds a direction (given by U ∗) along which all data points are spread out the most, and filters

away data points which have large residual errors projected along this direction (given by (8)). See

Appendix C for detailed discussions.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:11

Algorithm 2 Iterative Filtering for Robust Mean Estimation [29]

Input: Sample

{
ŷ1, · · · ,ŷm

}
⊆ Rd , 1 − α ≜ ϵ ∈ [0, 1

4
), and σ > 0.

Initialization: A ← {1, · · · ,m}, ci ← 1 and τi ← 0 for all i ∈ A.

1: while true do
2: ForW ∈ R |A |×|A | andU ∈ Rd×d , define a cost functionψ : (W ,U) → R as:

ψ (W ,U) =
∑
i ∈A

ci
(
ŷi −

∑
j ∈A

ŷjWji
)⊤
U

(
ŷi −

∑
j ∈A

ŷjWji
)
.

LetW ∗
be a minimizer to the following convex program:

min

0≤Wji ≤
4−α

α (2+α)m∑
j∈AWji=1

max

U ⪰0
Tr(U)≤1

ψ (W ,U) (6)

andU ∗ be a maximizer to the following convex program:

max

U ⪰0
Tr(U)≤1

min

0≤Wji ≤
4−α

α (2+α)m∑
j∈AWji=1

ψ (W ,U) (7)

3: For i ∈ A,

τi ←
(
ŷi −

∑
j ∈A

ŷjW
∗
ji

)⊤
U ∗

(
ŷi −

∑
j ∈A

ŷjW
∗
ji

)
. (8)

4: if
∑

i ∈A ciτi > 8mσ 2 then
5: For i ∈ A, ci ←

(
1 −

τi
τmax

)
ci ,where τmax = maxi ∈A τi .

6: A ← A/
{
i : ci ≤

1

2

}
.

7: else
8: Break while–loop.
9: end if
10: end while
11: return µ̂ = 1

|A |

∑
i ∈A ŷi .

Given the corrupted sample

{
ŷ1, · · · ,ŷm

}
, ϵ , and σ , Algorithm 2 deterministically outputs an

estimate µ̂ that differs from the true sample mean by at most a bounded distance, formally stated in

Lemma 3.4.

Lemma 3.4. [29] Suppose that

1

m

∑
i ∈S

(yi − µS) (yi − µS)
⊤

2
≤ σ 2. (9)

Then for q/m = ϵ ≤ 1

4
, Algorithm 2 outputs a parameter µ̂ such that

µ̂ − µS

2 = O (σ
√
ϵ). (10)

Condition (9) ensures that the uncorrupted data points yi ’s are well concentrated around the

sample mean µS in every direction. If there are large residual errors found by Step 3 of Algorithm

2, they are likely caused by the corrupted data points rather than the good data points.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:12 L. Su and J. Xu.

Remark 6. Note that condition (9) is slightly different from that in [29]: the summation is taken
over the entire true sample S rather than a subset of sample. We make this modification in order to
include the regime q/m = o(1). For completeness, we present the proof of Lemma 3.4 in Appendix C.

Also, the termination of Algorithm 2 requires the knowledge of σ ; however, in the setup of statistical
learning, this might further call for the knowledge of θ ∗, which is not practical. Considering this, we
have an alternative termination condition which does not need to know any parameter other than ϵ .
See Appendix C.3 for details.

Formally, we use Algorithm 2 as our robust gradient aggregator R with inputs

ŷ1 (θ) = д1 (θ), · · · , ŷm (θ) = дm (θ),

where д1 (θ), · · · ,дm (θ) are the local gradient functions computed by them workers, among which

up to q reported gradient functions may not be the true local gradient functions. The truem local

gradient functions are given by

y1 (θ) =
1

n
∑

i ∈S1
∇f (Xi ,θ), · · · , ym (θ) = 1

n
∑

i ∈Sm
∇f (Xi ,θ). (11)

– recalling that |Sj | = n =
N
m for each j ∈ [m]. The true sample mean µS (θ) is

µS (θ) =
1

m

m∑
j=1

yj (θ) =
1

N

N∑
i=1

∇f (Xi ,θ), (12)

and the population mean µ (θ) is ∇F (θ).
Note that other robust mean estimation algorithms given in [10, 19] might also suffice for our

purpose, and we would like to explore these different robust gradient aggregation schemes in the

future.

4 MAIN ANALYSIS
Before presenting our main analysis, we briefly discuss two important implications of Lemma 3.4

in the robust mean estimation setup.

Remark 7. In Lemma 3.4, the estimation error bound (10) is in terms of

µ̂ − µS

2. Let µ be the
true mean of the unknown underlying distribution. We can easily deduce an estimation error bound in
terms of

µ̂ − µ

2 from the following triangle inequality

µ̂ − µ

2 ≤

µ̂ − µS

2 +

µS − µ

2 = O
(
σ
√
ϵ
)
+

µS − µ

2 .

Thus, to characterize the estimation error

µ̂ − µ

2, it is enough to control the spectral norm of the true
sample covariance matrix

1

m
∑

i ∈S (yi − µS) (yi − µS)
⊤

2 and the deviation of the empirical average

µS − µ

2 – the latter of which is standard.

Remark 8. Note that

1

m

∑
i ∈S

(yi − µS) (yi − µS)
⊤

2
=

1

m

([
y1, · · · ,ym

]
− µS1⊤m

) ([
y1, · · · ,ym

]
− µS1Tm

)⊤

2
=

1

m

[
y1, · · · ,ym

]
− µS1⊤m

2

2

≤
1

m

(

[y1, · · · ,ym]
− µ1⊤m

2 +
√
m

µ − µS

2

)
2

,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:13

where 1m ∈ Rm is an all-ones vector. Therefore, to derive σ in condition (9), it is enough to bound

µ − µS

2 and 1√

m

[
y1, · · · ,ym

]
− µ1⊤m

2.

Back to our statistical learning problem, as discussed in Remarks 7 and 8, to guarantee that the

aggregated gradient is close to the true gradient uniformly over all θ ∈ Θ, it suffices to bound

1

N
∑N

i=1∇f (Xi ,θ) − ∇F (θ)

2 (13)

and

1

√
m

[
1

n
∑

i ∈S1∇f (Xi ,θ) − ∇F (θ), · · · ,

1

n
∑

i ∈Sm∇f (Xi ,θ) − ∇F (θ)
]

 (14)

uniformly over all θ ∈ Θ. Getting a uniform bound to (13) involves standard concentration of sum

of i.i.d. random vectors and is relatively easy. The main challenge is to uniformly bound (14), for

which we develop a (nearly tight) matrix concentration inequality.

4.1 New Matrix Concentration Inequality: Theorem 3.2 and its Proof
The aim of this subsection is to present our main technical tool to derive a tight uniform bound

to (14). This subsection is independent from the rest of the paper and can be skipped at the first

reading.

For any fixed θ , the matrix in (14) is of independent columns; standard routine to bound (14)

point-wise is available, see [33, Theorem 5.44] and [1, Corollary 3.8] for example. To get a uniform

concentration result, we can use ϵ–net argument to extend the concentration of a fixed θ to uniform

over all θ ∈ Θ. Nevertheless, using these standard matrix concentration results, the uniform

concentration bound obtained is far from being optimal, as we explain next.

The following theorem is, to the best of our knowledge, a state-of-the-art concentration inequality

for matrices with sub-exponential columns [1, Corollary 3.8].

Theorem 4.1. Let A be a d ×m matrix whose columns Aj are i.i.d., zero-mean, sub-exponential
random vectors in Rd with the scaling parameters σ and α . Assume that σ ,α = O (1) andm ≤ e

√
d .

There are absolute positive constants C and c such that for every K ≥ 1, with probability at least
1 − e−cK

√
d ,

∥A∥
2
≤ CK

(√
m +

√
d
)
.

Note that assumingm ≤ e
√
d
only loses minimal generality in the high-dimensional regime. The

above theorem is tight up to constant factors when the tail probability is on the order of e−
√
d
, i.e.,

K = Θ(1), see [1, Remark 3.7] for a proof. However, in our problem, to guarantee a uniform bound to

(14) via an ϵ–net argument, we need a tail probability on the order of e−d , i.e., K ≈
√
d . In this case,

Theorem 4.1 yields an upper bound on the order of

√
md + d . Using matrix Bernstein’s inequality

given by [33, Theorem 5.44] instead, we can obtain an alternative upper boundO (
√
m +d3/2). Both

of these two upper bounds turn out to be loose. To this end, we develop a new matrix concentration

inequality, proving a nearly-tight upper bound on the order of

√
m + d up to logarithmic factors.

A key step in deriving a concentration inequality for matrices with sub-exponential random

vectors is to obtain a large deviation inequality for the sum of independent random variables

whose tails decay slower than sub-exponential random variables. Note that in this case, the moment

generating function may not exist and thus we cannot follow the standard approach to obtain a

large deviation inequality by invoking the Chernoff bound. To circumvent this, we partition the

support of a real-valued random variable Y into countably many finite segments, and write Y as

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:14 L. Su and J. Xu.

a summation of component random variables, each of which is supported on its corresponding

segment. Due to the fact that each segment is of finite length, we can apply Bennett’s inequality for

bounded random variables (cf. Lemma A.1). Then we take a union bound to arrive at a concentration

result of the original Y . Some additional care is needed in choosing the partition. Our proof is

inspired by Proposition 2.1.9 and Excercise 2.1.7 in [32].

Lemma 4.2. Let Y be a random variable whose tail probability satisfies

P {|Y | ≥ t } ≤ exp (−E (t)) ,

where E (t) : R+ → [0,∞] is a non-decreasing function. Suppose that

E (t)/t is monotone in t , (15)

and there exists t0 ≥ e2 such that for all t ≥ t0 and all k with 4(k + 1)2ek ≥ t ,

E (ek−1) ≥ 2 (2k + 4 log(k + 1) + log 2 − log t) . (16)

Let Y1, · · · ,Ym bem independent copies of Y . If E (t)/t is non-decreasing, then

P
{���
∑m

j=1Yj −mE [Y]
��� ≥ mt

}

≤ 2 log(mt) exp

(
−

m

4(log(mt) + 1)2
E

(
t

4e log2 t

))
+ exp

(
−
1

2

E
(mt

e

))
; (17)

if E (t)/t is non-increasing, then

P
{���
∑m

j=1Yj −mE [Y]
��� ≥ mt

}

≤ 2 log(mt) exp

(
−

1

4e (log(mt) + 1)2
E

(mt

e

))
+ exp

(
−
1

2

E
(mt

e

))
. (18)

Remark 9. To illustrate the upper bound (17), let us consider the following special cases.
Case 1: Suppose Y is sub-Gaussian. In this case, E (t) = ct2 for a universal constant c > 0. Thus,

there exists a universal constant t0 ≥ e2 such that both (16) and (15) hold. Then (17) gives the desired
sub-Gaussian tail bound e−Ω(mt 2) up to logarithmic factors in the exponent.
Case 2: Suppose Y is sub-exponential. In this case, E (t) = ct for a universal constant c . Thus, there

exists t0 ≥ e2 that only depends on c such that both (16) and (15) hold. Then (17) gives the desired
sub-exponential tail bound e−Ω(mt) up to logarithmic factors in the exponent.

Case 3: SupposeY = Z 2, whereZ is sub-exponential. In this case, E (t) = c
√
t for a universal constant

c > 0. Thus, there exists t0 ≥ e2 that only depends on c such that both (16) and (15) hold. Then (18)

gives a tail bound e−Ω(
√
mt) up to logarithmic factors in the exponent.

Despite the fact that Lemma 4.2 is loose up to logarithmic factors compared to the standard

sub-gaussian and sub-exponential random variables, Lemma 4.2 applies to much larger family than

the sub-gaussian distributions, and requires much less structure on the distributions. In particular,

Lemma 4.2 does not require the existence of moment generating function.

The proof of Lemma 4.2 can be found in Appendix A. Lemma 4.2 is our key machinery to

obtain the concentration inequality for matrices with i.i.d. sub-exponential random vectors given

in Theorem 3.2. We restate the theorem below for ease of reference.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:15

Theorem (Theorem 3.2). LetA be ad×mmatrix whose columnsAj are independent and identically
distributed sub-exponential, zero-mean random vectors in Rd with parameters (σ ,α). Assume that

σ/α = Ω(1). (19)

Then with probability at least 1 − δ ,

∥A∥
2
≤ c

(
σ
√
m + σϕ

(
d + log

1

δ

)
+ αϕ2

(
d + log

1

δ

))
,

where c is a universal positive constant and ϕ (x) : R→ R is a function given by ϕ (x) =
√
x log3/2 (x).

Remark 10. We discuss two consequences of Theorem 3.2.
Suppose α = 0. In this case, A has sub-Gaussian columns, and Theorem 3.2 implies that

∥A∥
2
≲ σ *

,

√
m +

√
d + log

1

δ
log

3/2
(
d + log

1

δ

)
+
-
,

which matches the sub-Gaussian matrix concentration inequality [35, Theorem 5.39] up to logarithmic
factors.

Suppose σ ,α = Θ(1), and log(1/δ) = d . In this case, we get that with probability at least 1 − e−d ,

∥A∥
2
≲
√
m + d log3 d implied by Theorem 3.2 , (20)

whereas the analogous bound implied by Theorem 4.1 is on the order of
√
md + d . Using matrix

Bernstein’s inequality given by [33, Theorem 5.44] instead, we can obtain an alternative upper bound
O (
√
m + d3/2). The upper bound (20) is tight up to logarithmic factors; see Appendix B for a proof.

The proof of Theorem 3.2 also uses the following standard concentration inequality for sum of

independent sub-exponential random variables. In particular, we use this concentration inequality

to get a concentration bound at θ ∗.

Lemma 4.3. [36, Proposition 2.2] Let Y1, . . . ,Ym denote a sequence of independent random variables,
where Yj ’s are sub-exponential with scaling parameters (σj ,α j) and mean 0. Then

∑m
j=1 Yj is sub-

exponential with scaling parameters (σ ,α), where σ 2 =
∑m

j=1 σ
2

j and α = max1≤j≤m α j . Moreover,

P



m∑
j=1

Yj ≥ t


≤



exp

(
− t 2

2σ 2

)
if 0 ≤ t ≤ σ 2/α ;

exp

(
− t

2α

)
o.w.

The following lemma gives an upper bound to the spectral norm of the covariance matrix of a

sub-exponential random vector.

Lemma 4.4. LetY ∈ Rd denote a zero-mean, sub-exponential random vector with scaling parameters
(σ ,α), and Σ denote its covariance matrix Σ = E

[
YY⊤

]
. Then

∥Σ∥
2
≤ 4σ 2 + 16α2.

Proof. First recall that

∥Σ∥
2
= sup

v ∈Sd−1
v⊤Σv = sup

v ∈Sd−1
v⊤E

[
YY⊤

]
v = sup

v ∈Sd−1
E
[
⟨Y ,v⟩2

]
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:16 L. Su and J. Xu.

For each unit vector v , from [35, Exercise 1.2.3], we have

E
[
⟨Y ,v⟩2

]
=

∫ ∞

0

2t P {|⟨Y ,v⟩| ≥ t }dt

≤

∫ ∞

0

4t exp

(
−
1

2

min

{
t2

σ 2
,
t

α

})
dt

≤ 4σ 2 + 16α2. (21)

Note that the above upper bound is independent of v . The lemma follows by combining the last

two displayed equations. □

Now, we are ready to present the proof of Theorem 3.2.

Proof of Theorem 3.2. Recall Σ = E
[
A1A

⊤
1

]
. Then

∥A∥2
2
=

AA

⊤

2 ≤

AA

⊤ −mΣ

2 +m ∥Σ∥2 .

In view of Lemma 4.4, we have ∥Σ∥
2
≤ 4σ 2 + 16α2

. It remains to bound

AA⊤ −mΣ

2 . Note that

AA
⊤ −mΣ

2 = sup

v ∈Sd−1

���v
⊤

(
AA⊤ −mΣ

)
v ���

= sup

v ∈Sd−1

�������

m∑
j=1

(〈
Aj ,v

〉
2

− E
[〈
Aj ,v

〉
2

]) ������� .
Fix a v ∈ Sd−1. Note that

〈
Aj ,v

〉
is zero-mean sub-exponential random variable with parameter

(σ ,α). For j = 1, · · · ,m, define

Yj =
〈
Aj ,v

〉
2

/σ 2. (22)

It follows from Lemma 4.3 that

P
{
|Yj | ≥ t

}
= P

{���
〈
Aj ,v

〉��� ≥ σ √t} ≤ 2 exp

(
−min

{
t

2

,
σ
√
t

2α

})
,

We apply Lemma 4.2 to Y1, · · · ,Ym with

E (t) = min

{
t

2

,
σ
√
t

2α

}
− log 2,

which is non-decreasing in t . By assumption σ/α = Ω(1), it follows that E (t) scales as
√
t in t .

Thus there exists t0 ≥ e2 such that (16) holds. In addition, E (t)/t is non-increasing. Therefore, (18)
in Lemma 4.2 applies, i.e., for all t ≥ t0,

P



�������

m∑
j=1

(
Yj − E

[
Yj
]) ������� ≥ mt




≤ 2 log(mt) exp

(
−

1

4e log2 (emt)
E

(mt

e

))
+ exp

(
−
1

2

E
(mt

e

))
≤ 4 log(mt) exp

(
−

1

4e log2 (emt)
E

(mt

e

))
. (23)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:17

Next, we apply ϵ-net argument. Let N1

4

be the
1

4
–net of the unit sphere Sd−1. From [33, Lemma

5.2], we know that
���N1

4

��� ≤ 9
d . In addition, it follows from [33, Lemma 5.4] that

AA
⊤ − Σ

2 ≤ 2 sup

v ∈N 1

4

�������

m∑
j=1

(〈
Aj ,v

〉
2

− E
[〈
Aj ,v

〉
2

]) ������� .
Hence,

P
{

AA

⊤ − Σ

2 ≥ 2σ 2mt
}

≤ P


sup

v ∈N 1

4

�������

m∑
j=1

(〈
Aj ,v

〉
2

− E
[〈
Aj ,v

〉
2

]) ������� ≥ σ 2mt



≤
���N1

4

���P



�������

m∑
j=1

(〈
Aj ,v

〉
2

− E
[〈
Aj ,v

〉
2

]) ������� ≥ σ 2mt



≤ 9
dP




�������

m∑
j=1

(
Yj − E

[
Yj
]) ������� ≥ mt




by definition of Yj in (22)

≤ exp

(
−

1

4e log2 (emt)
E

(mt

e

)
+ log 4 + log log(mt) + d log 9

)
,

where the last inequality holds by (23). To complete the proof, we need to choosemt so that the
right hand side of the last inequality is smaller than δ . In other words, we need to find x ≥ mt0
such that

1

4e log2 (ex)
E (x/e) − log logx ≥ log

4

δ
+ d log 9 ≜ a.

One such x is given by

x = c

(
a log3 a +

α2

σ 2
a2 log6 a +m

)
,

where c is a sufficiently large constant. Therefore, we choose

mt = c

((
d + log

1

δ

)
log

3

(
d + log

1

δ

)
+
α2

σ 2

(
d + log

1

δ

)2
log

6

(
d + log

1

δ

)
+m

)
.

The theorem follows by taking the square root ofmt . □

4.2 Proof of Theorem 3.3
With Lemma 3.4 and Theorem 3.2, we are ready to prove Theorem 3.3. Recall that we need to bound

(13) and (14) uniformly for all θ ∈ Θ. Bounding (13) uniformly is relatively easy and has been done

in previous work [8, Proposition 3.8].

Proposition 4.5. [8, Proposition 3.8] Consider the same setup as Theorem 3.3. Assume that N =
Ω(d log(Nd)). Then with probability at least 1 − e−d ,

1

N

N∑
i=1

∇f (Xi ,θ) − ∇F (θ)

2
≲ ∆2

θ − θ ∗

2 + ∆1, ∀ θ ∈ Θ,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:18 L. Su and J. Xu.

where

∆1 ≜

√
d

N
, and ∆2 ≜

√
d log(Nd)

N
.

It remains to bound (14) uniformly over all θ ∈ Θ. For notational convenience, let

G (XS ,θ) ≜
1

√
m

[
1

n
∑

i ∈S1∇f (Xi ,θ) − ∇F (θ), · · · ,

1

n
∑

i ∈Sm∇f (Xi ,θ) − ∇F (θ)
]
. (24)

Proposition 4.6. Consider the same setup as Theorem 3.3. With probability at least 1 − 2e−
√
d , for

all θ ∈ Θ

G (XS ,θ
∗)

2 ≲ ∆3 (25)

G (XS ,θ) −G (XS ,θ
∗)

2 ≲ ∆4

θ − θ ∗

2 +
1

√
n
, (26)

where

∆3 ≜
1

√
n
+

√
d

N
,

∆4 ≜
1

√
n
+

1

√
N
ϕ

(
2d + d log

(
1 + r

√
n(L + L′)

))
+

1

√
Nn

ϕ2
(
2d + d log

(
1 + r

√
n(L + L′)

))
,

and ϕ (x) =
√
x log3/2 (x). It follows from triangle inequality that

∥G (XS ,θ)∥2 ≲ ∆4

θ − θ ∗

2 + ∆3, ∀θ ∈ Θ.

Remark 11. The uniform upper bound ∆4 in (26) depends linearly ind (ignoring logarithmic factors).
Such linear dependency is inevitable as can be seen from the standard linear regression model given in
Section 5. In this setting, ∇f (Xi ,θ) = wiw

⊤
i (θ − θ

∗) −wiζi and ∇F (θ) = θ − θ ∗, wherewi
i.i.d.
∼ N (0, I)

and ζi
i.i.d.
∼ N (0,1) independent ofwi ’s. For simplicity, assume n = 1 andm = N . Then

sup

θ ∈Sd−1

G (XS ,θ) −G (XS ,θ

∗)

2

≥ sup

θ ∈Sd−1

1

√
N

(w1w
⊤
1
− I) (θ − θ ∗)

2

=
1

√
N

(
∥w1∥

2

2
− 1

)

θ − θ ∗

2
= OP

(
d
√
N

)

θ − θ ∗

2 ,

where OP

(
d√
N

)
∥θ − θ ∗∥

2
denotes O

(
d√
N

)
∥θ − θ ∗∥

2
holds with high probability. The first equality

follows by choosing θ − θ ∗ parallel to w1, and the last equality holds by the concentration of χ 2

distribution.

Proof of Proposition 4.6. We prove the two bounds in (26) individually.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:19

Bounding ∥G (XS ,θ
∗)∥

2
: It follows from Assumption 2 that the columns of G (XS ,θ

∗) are i.i.d.
sub-exponential random vectors inRd with mean 0 and scaling parameters σ1/

√
nm and α1/(n

√
m),

whereσ1 andα1 are two absolute constants. Therefore, the columns of the scaledmatrix

√
N G (XS ,θ

∗)
are i.i.d. sub-exponential random vectors Rd with mean 0 and scaling parameters σ1 and α1/

√
n –

recalling that N = nm. Applying Theorem 4.1 to A =
√
N G (XS ,θ

∗), we get that with probability

at least 1 − e−
√
d ,

G (XS ,θ
∗)

2 =

1

√
N
∥A∥

2
≲

1

√
N

(√
m +

√
d
)
=

1

√
n
+

√
d

N
. (27)

Bounding ∥G (XS ,θ) −G (XS ,θ
∗)∥

2
for a fixed θ ∈ Θ: For notational convenience, define

H (XS ,θ) ≜ G (XS ,θ) −G (XS ,θ
∗)

=
1

√
m



1

n

∑
i ∈S1

h(Xi ,θ), · · · ,
1

n

∑
i ∈Sm

h(Xi ,θ)


, (28)

where recall from (4) that the gradient difference function h(X , ·) is defined as

h(X ,θ) = ∇f (X ,θ) − ∇f (X ,θ ∗) − (∇F (θ) − ∇F (θ ∗)) .

It follows from Assumption 4 that the columns of H (XS ,θ)/ ∥θ − θ
∗∥

2
are i.i.d. sub-exponential

random vectors in Rd with mean 0 and scaling parameters σ2/
√
nm and α2/(n

√
m), where σ2 and

α2 are two absolute constants. Recall that N = nm. Applying Theorem 3.2 to H (XS ,θ)/ ∥θ − θ
∗∥

2
,

we know that for any fixed θ , with probability at least 1 − δ ,

∥H (XS ,θ)∥2

≲

(
σ2
√
n
+

σ2
√
N
ϕ

(
d + log

1

δ

)
+

α2
√
Nn

ϕ2
(
d + log

1

δ

))

θ − θ ∗

2

≲

(
1

√
n
+

1

√
N
ϕ

(
d + log

1

δ

)
+

1

√
Nn

ϕ2
(
d + log

1

δ

))

θ − θ ∗

2 , (29)

where we used ϕ (x) =
√
x log3/2 (x), σ2 = O (1), and α2 = O (1).

ϵ-net argument: We apply ϵ-net argument to extend the point convergence in (29) to the uniform

convergence over Θ. In particular, let Nϵ0 be an ϵ0-cover of Θ = {θ : ∥θ − θ ∗∥
2
≤ r } with

ϵ0 =
1

√
n(L + L′)

.

By [33, Lemma 5.2], we have

log
��Nϵ0

�� ≤ d log (1 + 2r/ϵ0) = d log
(
1 + 2r

√
n(L + L′)

)
.

By (29) and the union bound, we get that with probability at least 1 − δ , for all θ ∈ Nϵ0 ,

∥H (XS ,θ)∥2 ≲

θ − θ ∗

2
(

1

√
n
+

1

√
N
ϕ

(
d + log

��Nϵ0
��

δ

)
+

1

√
Nn

ϕ2
(
d + log

��Nϵ0
��

δ

))
. (30)

So far, we have shown the uniform convergence over net Nϵ0 . Next, we extend this uniform

convergence to the entire set Θ.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:20 L. Su and J. Xu.

For any θ ∈ Θ, there exists a θk ∈ Nϵ0 such that ∥θ − θk ∥2 ≤ ϵ0. By triangle inequality,

∥H (XS ,θ)∥2 ≤ ∥H (XS ,θk)∥2 + ∥H (XS ,θ) − H (XS ,θk)∥2 .

Note that

∥H (XS ,θ) − H (XS ,θk)∥2

≤ ∥H (XS ,θ) − H (XS ,θk)∥F

(a)
≤

1

n
max

1≤j≤m

∑
i ∈Sj

(h(Xi ,θ) − h(Xi ,θk))

2
(b)
≤ (L + L′) ∥θ − θk ∥2 ≤ (L + L′)ϵ0 =

1

√
n
, (31)

where (a) follows because the Frobenius norm ∥A∥2
F
=

∑
j ∥Aj ∥

2 ≤ mmaxj ∥Aj ∥
2
; (b) holds because

1

n

∑
i ∈Sj

(h(Xi ,θ) − h(Xi ,θk))

2
≤

1

n

∑
i ∈Sj

∥h(Xi ,θ) − h(Xi ,θk)∥2 ≤ (L + L′) ∥θ − θk ∥2 ,

in view of Assumption 1 and Assumption 3.

Combining (30) and (31), we have that with probability at least 1 − δ , for any θ ∈ Θ,

∥H (XS ,θ)∥2 ≤ ∥H (XS ,θk)∥2 +
1

√
n

≲

θ − θ ∗

2
(

1

√
n
+

1

√
N
ϕ

(
d + log

��Nϵ0
��

δ

)
+

1

√
Nn

ϕ2
(
d + log

��Nϵ0
��

δ

))
+

1

√
n
.

Choosing δ = e−d , we get that with probability at least 1 − e−d , for all θ ∈ Θ,

∥H (XS ,θ)∥2

≲

θ − θ ∗

2
(

1

√
n
+

1

√
N
ϕ

(
2d + d log

(
1 + r

√
n(L + L′)

))
+

1

√
Nn

ϕ2
(
2d + d log

(
1 + r

√
n(L + L′)

)))
+

1

√
n
. (32)

Putting all pieces together. Combing (27) and (32), we conclude Proposition 4.6.

□

Finish the proof of Theorem 3.3:
Let E1 and E2 denote the two events on which the conclusions in Proposition 4.5 and Proposition 4.6

hold, respectively. It follows from Proposition 4.5 and Proposition 4.6 that P {E1 ∩ E2} ≥ 1− 3e−
√
d
.

Recall that we use Algorithm 2 as our robust gradient aggregator R with input ŷj (θ) given by the

local gradient function дj (θ) at worker j . We will apply Lemma 3.4 with yj (θ) =
1

n
∑

i ∈Sj
∇f (Xi ,θ)

as per (11). Then the true mean µ = ∇F (θ) and the true sample mean µS =
1

N
∑N

i=1∇f (Xi ,θ) as per
(12).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:21

On event E1 ∩ E2, in view of Remark 8, for each θ ∈ Θ, condition (9) in Lemma 3.4 is satisfied

with

σ = (∆4 + ∆2)

θ − θ ∗

2 + ∆1 + ∆3, (33)

where ∆i ’s are given in Proposition 4.5 and Proposition 4.6.

Therefore, in view of Remark 7, it follows from Lemma 3.4 that for each θ ∈ Θ, the output G (θ)
of the gradient aggregator R satisfies

∥G (θ) − ∇F (θ)∥
2
≲

√
q

m

[
(∆4 + ∆2)

θ − θ ∗

2 + ∆1 + ∆3

]
+ ∆2

θ − θ ∗

2 + ∆1

≲

(√
q

m
∆4 + ∆2

)

θ − θ ∗

2 +

√
q

m
∆3 + ∆1.

Recall that ϕ (x) =
√
x log3/2 (x), log(L + L′) = O (log(Nd)), Θ ⊂ {θ : ∥θ − θ ∗∥

2
≤ r } for some

positive parameter r such that log r = O (log(Nd)), and that N = Ω(d2 log8 (Nd)). Then,

∆4 =
1

√
n
+

1

√
N
ϕ

(
2d + d log

(
1 + r

√
n(L + L′)

))
+

1

√
Nn

ϕ2
(
2d + d log

(
1 + r

√
n(L + L′)

))
(a)
≲

1

√
n
+

√
d

N
log

2 (Nd) +
1

√
n
≲

1

√
n
+

√
d

N
log

2 (Nd),

where in (a) we used the assumption N = Ω(d2 log8 (Nd)).
Combining the last two displayed equations together with the expressions of ∆1,∆2,∆3 in

Proposition 4.5 and Proposition 4.6, we get that for each θ ∈ Θ,

∥G (θ) − ∇F (θ)∥
2

≲ *
,

√
q

N
+

√
qd

mN
log

2 (Nd) +

√
d log(Nd)

N
+
-

θ − θ ∗

2

+

√
q

N
+

√
qd

mN
+

√
d

N

≲ *
,

√
q

N
+

√
d

N
log

2 (Nd)+
-

θ − θ ∗

2 +

√
q

N
+

√
d

N
,

completing the proof of Theorem 3.3.

4.3 Proof of Theorem 3.1
Proof. From Theorem 3.3, we know that there exists a constant c0 such that with probability at

least 1 − 3e−
√
d
, for all θ ∈ Θ,

∥G (θ) − ∇F (θ)∥
2

≤ c0 *
,

√
q

N
+

√
d

N
log

2 (Nd)+
-

θ − θ ∗

2 + c0 *

,

√
q

N
+

√
d

N
+
-
. (34)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:22 L. Su and J. Xu.

Thus, with probability at least 1 − 3e−
√
d
, we have that for every t ≥ 1,

θt − θ ∗

2 =

θt−1 − ηG (θt−1) − θ
∗

2

=

θt−1 − η∇F (θt−1) − θ ∗ + η (∇F (θt−1) −G (θt−1))

2
≤

θt−1 − η∇F (θt−1) − θ ∗

2 + η ∥ (∇F (θt−1) −G (θt−1))∥2

≤

√
1 −

M2

4L2

θt−1 − θ ∗

2 + η ∥ (∇F (θt−1) −G (θt−1))∥2

≤ ρ

θt−1 − θ ∗

2 + c0
M

2L2
*
,

√
q

N
+

√
d

N
+
-
, (35)

where the second inequality follows from the standard convergence analysis of perfect gradient

descent, see, e.g., [8, Lemma 3.2]; the last inequality follows from (34), η = M/(2L2), and

ρ ≜

√
1 −

M2

4L2
+ c0

M

2L2
*
,

√
q

N
+

√
d

N
log

2 (Nd)+
-
.

Then applying a standard telescoping argument to (35) yields that

θt − θ ∗

2 ≤ ρt

θ0 − θ ∗

2 +
c0M

2L2 (1 − ρ)
*
,

√
q

N
+

√
d

N
+
-
. (36)

There exists a constant c such that if N ≥ cd2 log8 (Nd) and N ≥ cq, then

c0 *
,

√
q

N
+

√
d

N
log

2 (Nd)+
-
≤

1

8

.

Consequently,

ρ ≤

√
1 −

M2

4L2
+

M

16L2
≤ 1 −

M2

8L2
+

M

16L2
≤ 1 −

M2

16L2
,

where the last inequality follows from the assumption thatM ≥ 1. Combining the last displayed

equation with (36) yields that

θt − θ ∗

2 ≤
(
1 −

M2

16L2

)t

θ0 − θ ∗

2 + 8c0 *

,

√
q

N
+

√
d

N
+
-
,

completing the proof of Theorem 3.1.

□

5 APPLICATIONS TO LINEAR REGRESSION AND LOGISTIC REGRESSION
In this section, we illustrate our general results by applying them to the classical linear regression

and logistic regression problems.

5.1 Application to Linear Regression
Let Xi = (wi ,yi) ∈ R

d × R denote the input data and define the risk function f (Xi ,θ) =
1

2
(⟨wi ,θ⟩ − yi)

2 . For simplicity, we assume that yi is indeed generated from a linear model:

yi = ⟨wi ,θ
∗⟩ + ζi ,

where θ ∗ is an unknown truemodel parameter,wi ∼ N (0, I) is the covariate vector whose covariance
matrix is assumed to be identity, and ζi ∼ N (0,1) is i.i.d. additive Gaussian noise independent of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:23

wi ’s. Intuitively, the inner product ⟨wi ,θ
∗⟩ can be viewed as a linear “measurement" of θ ∗ – the

signal; and ζi is the additive noise.
The population risk function F is given by

F (θ) ≜ E
[
f (X ,θ)

]
= E

[
1

2

(⟨w ,θ⟩ − y)2
]

= E
[
1

2

(⟨w ,θ⟩ − ⟨w ,θ ∗⟩ − ζ)2
]
=

1

2

∥θ − θ ∗∥2
2
+
1

2

,

for which θ ∗ is indeed the unique minimum. The population gradient function is ∇θ F (θ) = θ − θ
∗
.

It is easy to see that the population risk function F is L-Lipschitz continuous with L = 1, and

M-strongly convex withM = 1. Hence, Assumption 1 is satisfied withM = L = 1; and the stepsize

η = M/(2L2) = 1/2.
For a given random sample X = (w ,y), the associated random gradient is given by

∇f (X ,θ) = w (⟨w ,θ⟩ − y) = w⟨w ,θ − θ ∗⟩ −wζ ,

wherew ∼ N (0, I) and ζ ∼ N (0,1) that is independent ofw .

The following lemma verifies that Assumption 2–Assumption 4 are satisfied with appropriate

parameters.

Lemma 5.1. Under the linear regression model, the sample gradient function ∇f (X , ·) satisfies
(1) Assumption 2 with σ1 =

√
2 and α1 =

√
2,

(2) and Assumption 4 with σ2 =
√
8 and α2 = 8.

Moreover, with probability 1 − e−d , Assumption 3 holds with L′ = 3d + 2 logN + 2
√
d (d + logN)

for all {∇f (Xi , ·)}
N
i=1.

Proof. Claims (1) and (2) have been proved in Lemma 4.1 [8]. It remains to prove the last claim.

Under the linear regression model

∇f (X ,θ) − ∇f (X ,θ ′)

2 =

ww

⊤ (θ − θ ′)

2 ≤ ∥w ∥
2

2

θ − θ ′

2 .

Hence, it suffices to show

P
{

N
max

i=1
∥wi ∥

2

2
≥ 3d + 2 logN + 2

√
d (d + logN)

}
≤ e−d . (37)

Note that for each i ∈ [N], ∥wi ∥
2

2
∼ χ 2 (d). Using the following tail bound:

P
{
χ 2 (d) ≥ d + 2

√
dt + 2t

}
≤ e−t

with t = d + logN , we get that

P
{
∥wi ∥

2

2
≥ 3d + 2 logN + 2

√
d (d + logN)

}
≤

1

N
e−d .

Then the desired (37) follows by the union bound. □

As an immediate corollary of Theorem 3.1, our Byzantine-resilient Gradient Descent method

can robustly solve the linear regression problem exponentially fast with high probability.

Corollary 5.2 (Linear regression). Under the aforementioned least-squares model for linear
regression, assume Θ ⊂ {θ : ∥θ − θ ∗∥ ≤ r } for r > 0 such that log r = O (log(Nd)). Suppose that
N ≥ cd2 log8 (Nd)) and N ≥ cq for a sufficiently large constant c , and thatm ≤ e

√
d . Then with

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:24 L. Su and J. Xu.

probability at least 1− 3e−
√
d , the iterates {θt } given by Algorithm 1 with Robust Gradient Aggregator

Algorithm 2 satisify

θt − θ ∗

2 ≲
(
15

16

)t

θ0 − θ ∗

2 +

√
q

N
+

√
d

N
, ∀t ≥ 0.

5.2 Application to Logistic Regression
Here we consider the binary logistic regression problem [14, Section 4.4], where we assume that yi
is generated as follows:

yi
i.i.d.

∼ Bern

(
1

1 + e−w
⊤
i θ
∗

)
,

where θ ∗ ∈ Rd is an unknown true model parameter, wi ∼ N (0,σ 2Id) is the observed feature

vector, and yi ∈ {0,1} is the observed class label. Intuitively, logistric regression tries to model the

log likelihood ratio

log

P
{
yi = 1|wi

}
P

{
yi = 0|wi

}
as a linear functionw⊤i θ ofwi . Let Xi = (wi ,y1) ∈ R

d × {0,1} denote the input data and define the

risk function f (Xi ,θ) as the negative log likelihood function

f (Xi ,θ) = − logP
{
yi | wi ; θ

}
= −1{yi=1} log

1

1 + e−w
⊤
i θ
− 1{yi=0} log

e−w
⊤
i θ

1 + e−w
⊤
i θ

= (1 − yi)w
⊤
i θ + log

(
1 + e−w

⊤
i θ

)
.

It follows that the population risk function F is given by

F (θ) ≜ E
[
f (X ,θ)

]
= Ew∼N (0,σ 2Id)



e−w
⊤θ ∗

1 + e−w⊤θ ∗
w⊤θ + log

(
1 + e−w

⊤θ
) .

The population gradient function is given by

∇θ F (θ) = Ew∼N (0,σ 2Id)


w *
,

e−w
⊤θ ∗

1 + e−w⊤θ ∗
−

e−w
⊤θ

1 + e−w⊤θ
+
-


.

The population Hessian function is given by

∇2θ F (θ) = Ew∼N (0,σ 2Id)

[
ww⊤

1 + ew⊤θ

]
.

It can be seen that the population Hessian function is strictly positive definite and hence F (θ) is
strictly convex for which θ ∗ is indeed the unique minimum. Moreover, for a given random sample

X = (w ,y), the associated random gradient is given by

∇f (X ,θ) = w

(1 − y) −

e−w
⊤θ

1 + e−w⊤θ


.

When σ is small and θ is restricted within a ball of small radius, then w⊤θ ∼ N (0,σ 2∥θ ∥2
2
) is

typically small. In this case, we can approximate e−w
⊤θ /(1 + e−w

⊤θ) by its first-order Taylor series

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:25

1/2 −w⊤θ/4. As a consequence,

∇f (X ,θ) ≈ w
[
1

2

− y +
1

4

w⊤θ
]
,

which resembles the gradient vector in the simple linear regression.

6 SUMMARY AND FUTURE DIRECTIONS
This present paper intersects two main areas of research: fault-tolerant distributed computing

and statistical machine learning. In particular, we consider a machine learning scenario where a

model is trained in a distributed but unsecured environment. Armed with a robust mean estimation

primitive, we secure the gradient descent method against adversarial interruptions, even in high

dimensions. Our secured gradient descent converges to the true model parameter exponentially

fast up to an estimation error O (
√
q/N +

√
d/N) – matching the minimax-optimal error rate in

the failure-free setting as long as the number of faulty workers q = O (d). A key ingredient in our

analysis is a uniform concentration of the sample covariance matrix of gradient functions.

There are many interesting future directions to explore, and we list a few as follows.

• We have shown the optimal error rate is O (
√
d/N) when q = O (d). However, the optimal

error rate remains elusive when q ≫ d ≫ 1.

• The present paper assumes the population risk function F (θ) is convex. Inmany contemporary

machine learning applications, the population risk function is often non-convex. It would

be interesting to extend our results to the non-convex setting. A crucial question is how to

escape saddle points with robustly aggregated gradients. This direction has been recently

pursued in [39].

• It would be interesting to see how the choice of robust mean estimation building block affects

the performance of the stochastic optimization algorithm in terms of computation, estimation

error, probability error, etc.

• Note that in this work, we consider full gradient descent under which each worker computes

the local gradient based on the entire local sample (all n data points). Since n is small, the

computational burdens of the workers are reasonable. It has been demonstrated numerically

in [18] that in the adversary-free setting, there is a performance improvement when each

worker performs a few epochs of SGD before the model updates are aggregated. Whether

there will be similar performance improvement in our adversary-prone setting is unclear.

• So far, we consider synchronous distributed systems, wherein the learner communicates

with the workers in synchronous communication rounds. It would be interesting to see how

asynchrony affects the learning performance.

• We assume each worker reports the entire gradient vector in each round. Some applications

may call for even more communication-efficient algorithms. It would be interesting to see if,

rather than the entire gradient vector, it suffices for each worker to report partial gradient

vector in each round.

A PROOF OF LEMMA 4.2
We first quote a classical concentration inequality for sum of independent, bounded random

variables.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:26 L. Su and J. Xu.

Lemma A.1 (Bennett’s ineqality). Let Y1, · · · ,Ym be independent random variables. Assume
that ���Yj − E

[
Yj
] ��� ≤ B almost surely for every j. Then for any t > 0, we have

P



m∑
j=1

(Yj − E
[
Yj
]
) ≥ t



≤ exp

(
−
σ 2

B2
· h

(Bt
σ 2

))
,

where σ 2 =
∑m

j=1 var(Yj) is the variance of the sum, and

h(u) = (1 + u) log(1 + u) − u .

Proof of Lemma 4.2. We use the idea of truncation. In this proof, we adopt the convention

that
1

0
= +∞.

For each copy j = 1, · · · ,m, we partition Yj into countably many pieces as follows: Let

Yj,0 = Yj1{ |Yj | ≤1}
Yj,k = Yj1{ek−1≤ |Yj | ≤ek } , for k = 1,2, . . .

It is easy to see that

Yj =
∞∑
k=0

Yj,k , for j = 1, · · · ,m.

Let S =
∑m

j=1 Yj . We have

S =
m∑
j=1

Yj =
m∑
j=1

*
,

∞∑
k=0

Yj,k+
-
=

∞∑
k=0

m∑
j=1

Yj,k =
∞∑
k=0

Sk ,

where Sk ≜
∑m

j=1 Yj,k , for k = 0,1, · · · . Thus,

P



�������

m∑
j=1

Yj −mE [Y]

�������
> mt



= P {|S − E [S]| > mt }

= P



������

∞∑
k=0

(Sk − E [Sk])
������
> mt



.

To bound P
{���
∑m

j=1 Yj −mE [Y]
��� > mt

}
for a given t , our plan is to find a sequence of tk (which

depends on t) such that

{|S − E [S]| > mt } ⊆ ∪∞k=0 {|Sk − E [Sk]| > mtk } , (38)

and

P {|Sk − E [Sk]| > mtk }

is small enough to apply the union bound over all k .
In this proof, we choose tk =

t
2(k+1)2 for k = 0,1, · · · . It is easy to see that (38) holds.

Next, we bound P {|Sk − E [Sk]| > mtk } for each k . For given t ≥ t0, define

k0 ≜ inf

{
k ∈ Z : 4ek (k + 1)2 ≥ t

}
. (39)

We are particularly interested in the setting when t ≥ t0 ≥ e2, which implies that

1 ≤ k0 ≤ log t − 1, (40)

noting that 4e log t−1 (log t − 1 + 1)2 ≥ t .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:27

Case 1: 0 ≤ k ≤ k0 − 1. It is easy to see that when t ≥ t0 ≥ e2, k0 ≥ 1. Thus, case 1 is well posed.

As per the definition of (39), for all 0 ≤ k ≤ k0 − 1, it holds that 4e
k (k + 1)2 < t . That is,

2ek <
t

2(k + 1)2
= tk . (41)

On the other hand, by construction of Yj,k we have deterministically

���Yj,k − E
[
Yj,k

] ��� ≤ 2ek , for all k . (42)

Thus

|Sk − E [Sk]| =

�������

m∑
j=1

Yj,k − E



m∑
j=1

Yj,k



�������

≤

m∑
j=1

���Yj,k − E
[
Yj,k

] ��� ≤ 2mek for all k,

i.e.,

P
{
|Sk − E [Sk]| > 2mek

}
= 0 for all k .

By (41), we have that when 0 ≤ k ≤ k0 − 1,

P {|Sk − E [Sk]| > mtk } ≤ P
{
|Sk − E [Sk]| > 2mek

}
= 0. (43)

Case 2: k0 ≤ k ≤ log(mt). For each k in this range, we will apply Bennett’s inequality given

in Lemma A.1.

From (42), we know that for any fixedk , the random variable
���Yj,k − E

[
Yj,k

] ��� ≤ 2ek . The variance

of Yj,k can be bounded as follows: for k ≥ 1

var(Yj,k) ≤ E
[
Y 2

j,k

]

≤ e2kP
{���Yj

��� ≥ ek−1
}

≤ e2k exp
(
−E

(
ek−1

))
. (44)

For notational convenience, define

σ 2

k ≜ e2k exp
(
−E (ek−1)

)
. (45)

To see that σ 2

k is well-defined, recall that we adopt the convention that
1

0
= ∞ and exp (−∞) = 0.

For each k in this case, i.e., k0 ≤ k ≤ log(mt), by Lemma A.1, we get that

P {|Sk − E [Sk]| ≥ mtk }

= P



�������

m∑
j=1

(Yj,k − E
[
Yj,k

]
)

�������
≥ mtk




≤ 2 exp
*
,
−

∑m
j=1 var(Yj,k)

e2(k+1)
· h *

,

e (k+1)mtk∑m
j=1 var(Yj,k)

+
-
+
-
,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:28 L. Su and J. Xu.

Note that when u > 0, it holds that h(u) ≥ u log(u/e), so we have that

P {|Sk − E [Sk]| ≥ mtk }

≤ 2 exp
*
,
−

∑m
j=1 var(Yj,k)

e2(k+1)
·

e (k+1)mtk∑m
j=1 var(Yj,k)

log
*
,

e (k+1)mtk
e
∑m

j=1 var(Yj,k)
+
-
+
-

= 2 exp
*
,
−

mtk

e (k+1)
log

*
,

ekmtk∑m
j=1 var(Yj,k)

+
-
+
-

≤ 2 exp
*
,
−

mtk

e (k+1)
log

*
,

ektk

σ 2

k

+
-
+
-
, (46)

where the last inequality follows from the fact that

∑m
j=1 var(Yj,k) ≤ mσ 2

k . We proceed to bound

log

(
ek tk
σ 2

k

)
using the assumption (16):

log
*
,

ektk

σ 2

k

+
-
= log

*.
,

ekt

2(k + 1)2e2k exp
(
−E

(
ek−1

)) +/
-

= log
*.
,

t

2(k + 1)2ek exp
(
−E

(
ek−1

)) +/
-

= log t −
(
log 2 + 2 log(k + 1) + k − E

(
ek−1

))
= E (ek−1) − (log 2 + 2 log(k + 1) + k − log t)

(a)
≥

1

2

E (ek−1) + (2k + 4 log(k + 1) + log 2 − log t)

− (log 2 + 2 log(k + 1) + k − log t)

≥
1

2

E (ek−1) + 2 log(k + 1) + k, (47)

where inequality (a) holds due to the assumption (16). Combining the last displayed equation with

(46) yields

P {|Sk − E [Sk]| ≥ mtk }

≤ 2 exp

(
−

mtk

2e (k+1)
E (ek−1)

)
= 2 exp

(
−

mt

4(k + 1)2e (k+1)
E (ek−1)

)
≤ 2 exp

(
−

mt

4(log(mt) + 1)2e (k+1)
E (ek−1)

)
, (48)

where the last inequality holds because in the case under consideration, k0 ≤ k ≤ log(mt). To
proceed, we use the monotonicity assumption of E (t)/t . If E (t)/t is non-decreasing (increasing),

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:29

we can bound (48) as

P {|Sk − E [Sk]| ≥ mtk }

(a)
≤ 2 exp

(
−

mt

4(log(mt) + 1)2e (k0+1)
E (ek0−1)

)
(b)
≤ 2 exp

(
−

mt

4(log(mt) + 1)2t
E

(
t

4e (k0 + 1)2

))
(c)
≤ 2 exp

(
−

m

4(log(mt) + 1)2
E

(
t

4e log2 t

))
, (49)

where (a) holds because k0 ≤ k ≤ log(mt); (b) holds because k0 ≤ log t − 1, 4ek0 (k0 + 1)
2 ≥ t , and

that E (·) is non-decreasing; (c) follows from k0 ≤ log t − 1, and that E (·) is non-decreasing.
If E (t)/t is non-increasing, we can bound (48) as

P {|Sk − E [Sk]| ≥ mtk }

≤ 2 exp

(
−

mt

4(log(mt) + 1)2e log(mt)+1
E (e log(mt)−1)

)
= 2 exp

(
−

1

4e (log(mt) + 1)2
E

(mt

e

))
. (50)

Case 3: k ≥ log(mt). In this case, we use the Chebyshev’s inequality:

P {|Sk − E [Sk]| ≥ mtk } ≤
σ 2

k

tk
= exp

*
,
− log

tk

σ 2

k

+
-

(a)
≤

1

(k + 1)2
exp

(
−
1

2

E (ek−1)
)

≤
1

(k + 1)2
exp

(
−
1

2

E
(mt

e

))
, (51)

where (a) follows from (47); the last inequality follows from the fact that E (u) is increasing (non-
decreasing) in u.

For a fix t , summing over all k ∈ N, we have

P



�������

m∑
j=1

Yj −mE [Y]

�������
≥ mt




≤

∞∑
k=0

P {|Sk − E [Sk]| ≥ mtk }

=

k0−1∑
k=0

P {|Sk − E [Sk]| ≥ mtk } +

⌊log(mt)⌋∑
k=k0

P {|Sk − E [Sk]| ≥ mtk }

+

∞∑
⌈log(mt)⌉

P {|Sk − E [Sk]| ≥ mtk }

≤ 0 + exp

(
−
1

2

E
(mt

e

))
+

⌊log(mt)⌋∑
k=k0

P {|Sk − E [Sk]| ≥ mtk } .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:30 L. Su and J. Xu.

Therefore, we have that if E (t)/t is non-decreasing,

P



�������

m∑
j=1

Yj −mE [Y]

�������
≥ mt




≤ 2 log(mt) exp

(
−

m

4(log(mt) + 1)2
E

(
t

4e log2 t

))
+ exp

(
−
1

2

E
(mt

e

))
;

if E (t)/t is non-increasing,

P



�������

m∑
j=1

Yj −mE [Y]

�������
≥ mt




≤ 2 log(mt) exp

(
−

1

4e (log(mt) + 1)2
E

(mt

e

))
+ exp

(
−
1

2

E
(mt

e

))
.

□

B TIGHTNESS OF UPPER BOUND (20)
To see the upper bound (20) is tight up to logarithmic factors, consider an example, where Aj ’s are

i.i.d. isotropic Laplace distributionwith the density function given by f (x) =
∏d

i=1

[
(1/
√
2) exp

(
−
√
2xi

)]
for x ∈ Rd . In this case, note that

{
∥A∥

2
≥ max{

√
m/2,d }

}
⊇



|A11 | ≥ d and

m∑
j=1

A2

2j ≥ m/2


.

Since

P {|A11 | ≥ d } =

∫
|t | ≥d

1

√
2

exp

(
−
√
2t

)
dt = exp

(
−
√
2d

)
,

and by Chebyshev’s inequality,

P



m∑
j=1

A2

2j ≥ m/2


≥ 1 −O (1/m) ≥

1

2

form suffciently large, and A11 is independent of

∑m
j=1A

2

2j , it follows that

P
{
∥A∥

2
≥ max{

√
m/2,d }

}
≥ P



|A11 | ≥ d and

m∑
j=1

A2

2j ≥ m/2



≥
1

2

exp

(
−
√
2d

)
.

C ROBUST MEAN ESTIMATION
Robust gradient aggregation is closely related to robust mean estimation, formally stated next.

Definition C.1 (Robust mean estimation). Let S =
{
y1, · · · ,ym

}
be a sample of sizem, wherein

each of the data pointyi is generated independently from an unknown distribution. Among thosem
data points, up to q = ϵm of them may be adversarially corrupted. Let {ŷ1, · · · ,ŷm } be the observed

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:31

sample. The goal is to estimate the true mean of the unknown distribution when only corrupted

sample {ŷ1, · · · ,ŷm } is accessible.

The adversarially corrupted data may affect the mean estimation in the following two ways:

(i) extreme magnitudes and/or (ii) extreme directions. The adversarial magnitudes are relatively

easy to “detected” and removed. For instance, a simple trimming/pruning procedure may suffice [9,

Section 4.3.1]. Dealing with adversarially extreme directions is more challenging.

If the true sample mean/center were known, then those adversarially extreme directions would be

“identified” by finding the eigenvectors corresponding to large eigenvalues of the sample covariance

matrix; hence the corrupted data points would be filtered away by projecting along these extremre

directions. However, the true sample mean/center is unknown in reality. It turns out that we can

approximate the center by representing each data point by sufficiently many other data points

evenly, as per Step 2 of Algorithm 2.

To gain some intuition on how it works, let us first consider the ideal settingwhere the data sample

is corruption-free, i.e., all the data points are generated from the same underlying distribution. If

the spectral norm of the sample covariance matrix is bounded, then we expect these data points

are well concentrated around the sample mean and hence "similar" to each other.

When up to an ϵ fraction of the data sample is adversarially corrupted, as long as ϵ is small

enough, there still exists a large collection of uncorrupted data points that are close to the true

sample mean and similar to each other. Thus, each of them can be approximately represented as

a convex combination of sufficiently many other data points so that the convex coefficients are

approximately uniform over this collection of data. Hence, the corrupted data is more responsible for

the approximation error of representation. Thus, the direction which maximizes the approximation

error of representation is likely to the adversarially extreme direction.

The Step 2 of Algorithm 2 works precisely along this idea. In particular, (6) aims to find good

center approximation through representation, while (7) aims to find the extreme direction. By

solving (6) and (7) for a saddle point (W ,U), Algorithm 2 iteratively finds a direction (given byU ∗)
along which all data points are spread out the most, and filters away data points which have large

residual errors projected along this direction (given by (8)).

For completeness, next we present the proof of Lemma 3.4– the robustness guarantee of Algorithm

2.

For ease of exposition, in the sequel, we let

α ≜ 1 − ϵ and σ̃ 2 = 2σ 2.

We first need a minimax identity between the min-max problem (6) and max-min problem (7).

ForW ∈ R |A |×|A | andU ∈ Rd×d , recall the functionψ : (W ,U) → R defined as:

ψ (W ,U) =
∑
i ∈A

ci
*.
,
ŷi −

∑
j ∈A

ŷjWji
+/
-

⊤

U *.
,
ŷi −

∑
j ∈A

ŷjWji
+/
-
.

Also, letW denote the set of all column stochastic matricesW ∈ R |A |×|A | such that 0 ≤Wji ≤
4−α

α (2+α)m , andU denote the set of all positive semi-definite matricesU ∈ Rd×d such that Tr(U) ≤ 1.

Then the min-max program (6) can be rewritten as

W ∗ ∈ arg min

W ∈W
max

U ∈U
ψ (W ,U)

= arg min

W ∈W

∑
i ∈A

ci
(
ŷi −

∑
j ∈A

ŷjWji
) (
ŷi −

∑
j ∈A

ŷjWji
)⊤

 (52)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:32 L. Su and J. Xu.

and the max-min program (7) can be rewritten as

U ∗ ∈ arg max

U ∈U
min

W ∈W
ψ (W ,U).

Note thatψ (W ,U) is convex inW for a fixedU and concave (in fact linear) inU for a fixedW . By

von Neumann’s minimax theorem, we have

min

W ∈W
max

U ∈U
ψ (W ,U) = max

U ∈U
min

W ∈W
ψ (W ,U) = ψ (W ∗,U ∗).

Moreover, (W ∗,U ∗) is a saddle point, i.e.,

W ∗ ∈ arg min

W ∈W
ψ (W ,U ∗), (53)

U ∗ ∈ arg max

U ∈U
ψ (W ∗,U). (54)

The saddle point properties (53) and (54) are crucial to prove Lemma 3.4.

Moreover, by condition (9), the underlying true sample S (of size m) satisfies the following

condition:

1

m

m∑
i=1

(yi − µS) (yi − µS)
⊤

2
≤ σ 2,

where µS =
1

m
∑m

i=1 yi . Recall that up to q points in S are corrupted. Let S0 ⊆ S be a subset of

uncorrupted subset of S of sizem − q = (1 − ϵ)m = αm. Notably, since q is only an upper bound

on the number of corrupted data points, the choice of subset S0 may not be unique. Nevertheless,

for any choice of subset S0, the following holds:

1

|S0 |

∑
i ∈S0

(yi − µS) (yi − µS)
⊤

2

=
1

|S0 |

∑
i ∈S0

(yi − µS) (yi − µS)
⊤

2

≤
1

|S0 |

m∑
i=1

(yi − µS) (yi − µS)
⊤

2
≤

1

α
σ 2 ≤ 2σ 2, (55)

where the last inequality follows because by assumption, α = 1 − ϵ ≥ 3

4
≥ 1

2
.

As commented in Subsection 3.2, Algorithm 2 terminates withinm iterations. For ease of exposi-

tion, we use t = 1,2, · · · to denote the iteration number. We use ci (t), τi (t), and A (t) to denote the

quantities of interest at iteration t . Note that weights ci and set A may be updated throughout an

iteration. Therefore, we use A ′(t) and c ′i (t) to denote the updated quantities at the end of iteration

t . Note that c ′i (t − 1) = ci (t) and A
′(t − 1) = A (t).

C.1 Two auxiliary lemmas
We first show that when Algorithm 2 terminates, most of data points in S0 are remained in A.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:33

Lemma C.2. For every iteration t ≥ 1 in the while–loop of Algorithm 2,∑
i ∈S0∩A (t)

ci (t)τi (t) ≤ αmσ̃ 2
(56)

∑
i ∈S0

(1 − ci (t)) ≤
α

4

m∑
i=1

(1 − ci (t)) (57)

|S0 ∩ A (t) | ≥
α (2 + α)m

4 − α
. (58)

Intuitively, Lemma C.2 says that in every iteration: (1) the summation of the projected residual

error over the non-corrupted data is small; (2) the weights of non-corrupted data points are reduced

by a relatively small amount; (3) and more importantly, most non-corrupted data points are not

removed.

Proof of Lemma C.2. The proof is by induction on (57) and (58). Note that the induction hy-

potheses do not include (56). Recall that we use t = 1, · · · to denote the iteration number in the

while–loop.

Base case: t = 1. Note that A (1) = [m], and ci (1) = 1 for all i ∈ A (1). Therefore, (57) and (58)

hold for t = 1 trivially.

Induction Step: Suppose (57) and (58) hold for t , and the while– has not terminate at iteration t .
We aim to show (57) and (58) hold for t + 1.

We first prove (56) holds for t . Recall that

τi (t) =
*.
,
yi −

∑
j ∈A (t)

ŷjWji (t)
+/
-

⊤

U (t) *.
,
yi −

∑
j ∈A (t)

ŷjWji (t)
+/
-
,

whereW (t) is a minimizer to (6) and U (t) is a maximizer to (7) at iteration t , respectively. Since
(W (t),U (t)) is a saddle point, it follows from (53) thatW (t) ∈ argminW ∈W ψ (W ,U (t)). Moreover,

this minimization is decoupled over all data points in A (t) and hence each column ofW (t) is
optimized independently. Therefore, by lettingW∗i (t) denote the column ofW (t) corresponding to

i ∈ A (t), we have

W∗i (t) ∈ argmin

w

*.
,
yi −

∑
j ∈A (t)

ŷjw j
+/
-

⊤

U (t) *.
,
yi −

∑
j ∈A (t)

ŷjw j
+/
-

s. t.

∑
j ∈A (t)

w j = 1

0 ≤ w j ≤
4 − α

α (2 + α)m
. (59)

Let w̃ ∈ R |A (t) |
be the column stochastic vector such that

w̃ j ≜
1{j ∈S0∩A (t) }

|S0 ∩ A (t) |
, ∀ j ∈ A (t).

By the induction hypothesis, w̃ is feasible to (59). Let YA (t) ∈ R
d×n

be the matrix with ŷi with
i ∈ A (t) as columns. Moreover,

YA (t)w̃ =
∑

j ∈A (t)

ŷjw̃ j =
1

|S0 ∩ A (t) |

∑
j ∈S0∩A (t)

yj ≜ µS0∩A (t) .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:34 L. Su and J. Xu.

Thus, we have ∑
i ∈S0∩A (t)

ci (t)τi (t)

(a)
≤

∑
i ∈S0∩A (t)

ci (t) (yi − µS0∩A (t))
⊤U (t)

(
yi − µS0∩A (t)

)
(b)
≤

∑
i ∈S0∩A (t)

(yi − µS0∩A (t))
⊤U (t)

(
yi − µS0∩A (t)

)
(c)
≤

∑
i ∈S0∩A (t)

(yi − µS)
⊤U (t) (yi − µS)

≤
∑
i ∈S0

(yi − µS)
⊤U (t) (yi − µS)

(d)
≤ Tr (U (t))

∑
i ∈S0

(yi − µS) (yi − µS)
⊤

2
(e)
≤ αmσ̃ 2,

where (a) holds by the optimality ofW∗i (t) to (59); (b) holds because ci (t) ≤ 1 and U (t) ⪰ 0; (c)
holds because

µS0∩A (t) =
1

|S0 ∩ A (t) |

∑
i ∈S0∩A (t)

yi

is a minimizer of the quadratic form∑
i ∈S0∩A (t)

(yi − u)
⊤U (t) (yi − u) ,

as a function of u; (d) holds because |⟨A,B⟩| ≤ ∥A∥
2
∥B∥∗, where ∥B∥∗ is the sum of singlular

values of B and ∥B∥∗ = Tr(B) when B ⪰ 0; (e) follows by (55) and the facts that |S0 | ≤ αm and

Tr(U (t)) = 1.

Next we prove (57) and (58). Since by induction hypothesis the while–loop has not terminate at

iteration t , it follows that ∑
i ∈A (t)

ci (t)τi (t) > 4mσ̃ 2. (60)

Note that the weights of the data points that do not lie in A (t) are not updated in iteration t , i.e.,
c ′i (t) = ci (t) for i < A (t). As a consequence, we have∑

i ∈S0

(
1 − c ′i (t)

)
=

∑
i ∈S0

(1 − ci (t)) +
∑

i ∈S0∩A (t)

(
ci (t) − c

′
i (t)

)
≤
α

4

m∑
i=1

(1 − ci (t)) +
1

τmax (t)

∑
i ∈S0∩A (t)

τi (t)ci (t), (61)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:35

where the last inequality follows from induction hypothesis. Furthermore, we have

1

τmax (t)

∑
i ∈S0∩A (t)

τi (t)ci (t)
(a)
≤

1

τmax (t)
αmσ̃ 2

(b)
<

α

4τmax (t)

∑
i ∈A (t)

τi (t)ci (t),

where (a) holds because we have shown that (56) holds for t ; (b) follows from (60).

Thus, (61) can be further bounded as∑
i ∈S0

(
1 − c ′i (t)

)
≤
α

4

m∑
i=1

(1 − ci (t)) +
α

4τmax (t)

∑
i ∈A (t)

τi (t)ci (t)

=
α

4

*.
,

∑
i<A (t)

(1 − ci (t)) +
∑

i ∈A (t)

(1 − ci (t)) +
1

τmax (t)

∑
i ∈A (t)

τi (t)ci (t)
+/
-

=
α

4

*.
,

∑
i<A (t)

(1 − c ′i (t)) +
∑

i ∈A (t)

(
1 −

(
1 −

τi (t)

τmax (t)

)
ci (t)

)
+/
-

=
α

4

m∑
i=1

(1 − c ′i (t)),

proving (57) for t + 1. We rewrite (57) for t + 1 as∑
i ∈S0

(
1 − c ′i (t)

)
≤

α

4 − α

∑
i<S0

(
1 − c ′i (t)

)
.

One the one hand, we have ∑
i<S0

(
1 − c ′i (t)

)
≤ |Sc

0
| ≤ (1 − α)m.

On the other hand, ∑
i ∈S0

(
1 − c ′i (t)

)
≥

∑
i ∈S0\A′ (t)

(
1 − c ′i (t)

)
≥

1

2

��S0 \ A ′(t)�� ,

where the last inequality holds from the fact that c ′i (t) ≤ 1/2 for all i < A ′(t) – by the data removal

criterion in Algorithm 2. Combining the last three displayed equations, we get that

��S0 \ A ′(t)�� ≤
2α (1 − α)

4 − α
m,

proving (57) for t + 1. The proof of Lemma C.2 is complete. □

LetW be the minimizer of (6) when the while–loop terminates. LetW1 be the result of zeroing

out all singular values ofW that are greater than 0.9.

Lemma C.3. The matrixW0 = (W −W1) (I −W1)
−1 is a column stochastic matrix, and the rank of

the weight matrixW0 is one.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:36 L. Su and J. Xu.

Remark 12. Let XA ⊆ Rd×|A | be the data matrix with columns being the data points in A. Let
Z = XAW0. SinceW0 is rank one, all the |A| columns in the matrix Z are identical. Denote

Z =
[
µ̃, · · · , µ̃

]
. (62)

Then µ̃ is a weighted average of the points in A.

Proof. We first show thatW0 is a column stochastic matrix:

1⊤W0 = 1⊤ (W −W1) (I −W1)
−1 (a)
= (1⊤ − 1⊤W1) (I −W1)

−1

= 1⊤ (I −W1) (I −W1)
−1 = 1⊤,

where (a) follows becauseW is column stochastic.

Next we show that rank ofW0 is one. From (6), we know that ∥W ∥2
F
≤ 4−α

α (2+α) . To see this,

∥W ∥2
F
=

∑
i,j ∈A

W 2

ji

≤
∑
i,j ∈A

(
Wji · max

i,j ∈A
Wji

)

≤
*.
,

∑
i,j ∈A

Wji
+/
-

4 − α

α (2 + α)m

≤
4 − α

α (2 + α)
.

When α ≥ 3

4
,

4 − α

α (2 + α)
≤

52

33

< 2 × 0.92.

Hence, at most one singular value ofW can be greater than 0.9. Moreover, sinceW is column

stochastic, its largest singular value is at least 1. Thus,W −W1 is of rank one. As a consequence,

W0 is of rank one. □

C.2 Proof of Lemma 3.4
Proof. Recall that our goal is to show

µS − µ̂

2 = O (σ
√
1 − α),

where µ̂ = 1

|A |

∑
i ∈A ŷi is the algorithm output. RecallYA ⊆ R

d×|A |
is the data matrix with columns

being the data points in A. In view of Remark 12, columns of Z = YAW0 are identical and denoted

by µ̃. Our proof is divided into two steps:

Step 1: We first show that points in A are clustered around the center µ̃. In addition, by (58) in

Lemma C.2, the set A mainly consists of uncorrupted data. As a consequence, we are able to show

that

µ̂ =
1

|A|

∑
i ∈A

ŷi ≈
1

|S0 ∩ A|

∑
i ∈S0∩A

ŷi =
1

|S0 ∩ A|

∑
i ∈S0∩A

yi . (63)

Step 2: By (55), points in S0 are clustered around the center µS . In addition, by (58) in Lemma

C.2, most of the points in S0 have been preserved. Thus we are able to show that

µS =
1

m

m∑
i=1

yi ≈
1

|S0 ∩ A|

∑
i ∈S0∩A

yi . (64)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:37

Putting these two pieces together, the proof of Lemma 3.4 is complete.

Step 1: We show (63).
When the while–loop terminates, in view of (52), we have

YA (I −W)diag
{
(cA)

1

2

}

2 ≤ 2

√
mσ̃ ., (65)

where diag
{
(cA)

1

2

}
is the diagonal matrix with diagonal entries given by {c1/2i }i ∈A .We will show

that ŷi ≈ µ̃ for all i ∈ A. For this purpose, it is enough to show ∥YA − Z ∥2 is small:

YA − µ̃1
T

2 = ∥YA − Z ∥2
= ∥YA − YAW0∥2

=

YA (I −W1) (I −W1)

−1 − YA (W −W1) (I −W1)
−1

2

=

YA (I −W) (I −W1)

−1

2
≤ ∥YA (I −W)∥

2

(I −W1)
−1

2

(a)
≤ ∥YA (I −W)∥

2
× 10

(b)
≤ 10

√
2

YA (I −W)diag

{
(cA)

1

2

}

2
(c)
≤ 20

√
2mσ̃ ,

where (a) holds because the largest singular value ofW1 is at most 0.9; (b) holds because ci ≥
1

2
for

all i ∈ A; (c) follows from (65).

Fix any 0 < ϵ ′ < 1/2. Let T ⊆ A such that |T | ≥ (1 − ϵ ′) |A|. We have

1

|T |

∑
i ∈T

ŷi − µ̂

2

=

1

|T |

∑
i ∈T

ŷi −
1

|A|

∑
i ∈A

ŷi

2

=

1

|T |

∑
i ∈T

(ŷi − µ̃) −
1

|A|

∑
i ∈A

(ŷi − µ̃)

2

=

(
1

|T |
−

1

|A|

) ∑
i ∈T

(ŷi − µ̃) −
1

|A|

∑
i ∈A/T

(ŷi − µ̃)

2
(a)
≤
|A| − |T |

|T ||A|

[YA − Z]T 1

2 +

1

|A|

[YA − Z]A/T 1

2

=

(
|A| − |T |
√
|T | |A|

+

√
|A/T |

|A|

)
∥YA − Z ∥2

≤ 80

√
2σ̃
√
ϵ ′, (66)

where [YA − Z]T denotes the submatrix of YA − Z – restricting to columns in T , and 1 ∈ R |T | ;
the last inequality holds because ϵ ′ < 1/2 and

|A| ≥ |A ∩ S0 | ≥
α (2 + α)

4 − α
m.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:38 L. Su and J. Xu.

Note that

α (2 + α)

4 − α
≥ 1 −

5

3

(1 − α) ⇔ (α − 1)2 ≥ 0.

Thus, |A − A ∩ S0 | ≤
5

3
(1 − α)m. Choosing T = A ∩ S0, we obtain

µS0∩A − µ̂

2 ≤ 80

√
2σ̃

√
5(1 − α)/3 ≤ 160σ̃

√
1 − α = O (σ̃

√
1 − α). (67)

Step 2: We show (64). The proof of (64) is similar to that of (63).

Recall that µS =
1

m
∑m

i=1 yi and that

µS0∩A =
1

|S0 ∩ A|

∑
i ∈S0∩A

yi .

We have

µS − µS0∩A

2 =

µS −

1

|A ∩ S0 |

∑
i ∈S0∩A

yi

2

=

1

|A ∩ S0 |

∑
i ∈A∩S0

(yi − µS)

2
=

1

|A ∩ S0 |

[YA∩S0 − µS]1

2

≤

√
|S0 |

√
|A ∩ S0 |

σ̃

≤

√
4 − α

α (2 + α)

√
1 − ασ̃ ≤

√
2(1 − α)σ̃ .

□

C.3 Alternative Termination Condition of Algorithm 2
Recall that the termination of Algorithm 2 relies on the knowledge of σ . Since σ depends on

∥θ − θ ∗∥
2
according to (33) in our robust gradient aggregation setting, the learner needs to know a

priori ∥θ − θ ∗∥
2
for all θ , which may not be possible. Nevertheless, it turns out that the termination

condition of Algorithm 2 can be replaced by checking the cardinality of set |A|, formally stated as

follows:

If

�����
A \

{
i :

(
1 −

τi
τmax

)
ci ≤

1

2

}����� ≥ α (2 + α)m

4 − α
,

we update ci ←
(
1 −

τi
τmax

)
ci and remove

{
i : ci ≤

1

2

}
fromA; otherwise, we break thewhile–loop.

Similar to the original Algorithm 2, in the modified Algorithm 2, in each iteration of the while–
loop at least one point will be removed. Thus, the modified Algorithm 2 terminates in at mostm
iterations. We next prove the conclusion of Lemma 3.4 still holds after this modification.

Suppose the modified Algorithm 2 terminates at iteration t∗. By the modified code we know

|A (t∗) | ≥ α (2+α)m
4−α ; otherwise, the algorithm terminates earlier than t∗. By the termination condition,

we also know that

�����
A (t∗) −

{
i :

(
1 −

τi
τmax

)
ci ≤

1

2

}����� < α (2 + α)m

4 − α
. (68)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

Distributed Statistical Machine Learning in Adversarial Settings 12:39

Claim 1. There exists an iteration t ′ ≤ t∗ such that∑
i ∈A (t ′)

ci (t
′)τi (t

′) ≤ 8mσ 2.

Proof. We prove by contradiction. Suppose∑
i ∈A (t)

ci (t)τi (t) > 8mσ 2, ∀t ≤ t∗. (69)

Note that the modified Algorithm 2 and the original Algorithm 2 differ only in their termination

conditions. Recall that the original termination condition is only used in the proof of Lemma C.2

to conclude that (60) holds when the while-loop does not terminate. Thus, under the hypothesis

(given in the last displayed equation), Lemma C.2 still holds. It follows that

�����
A (t∗) −

{
i :

(
1 −

τi
τmax

)
ci ≤

1

2

}�����
≥
�����
S0 ∩

(
A (t∗) −

{
i :

(
1 −

τi
τmax

)
ci ≤

1

2

}) �����
≥
α (2 + α)m

4 − α
,

which leads to a contradiction. □

Since A (t) is monotone decreasing, it follows that A (t∗) ⊆ A (t ′). Moreover,

��A (t∗)�� ≥
α (2 + α)m

4 − α
≥
α (2 + α)

4 − α
��A (t ′)�� ≥

(
1 −

5

3

(1 − α)
)
��A (t ′)�� .

By (66), we know

1

|A (t∗) |

∑
i ∈A (t ∗)

ŷi −
1

|A (t ′) |

∑
i ∈A (t ′)

ŷi

2

≤ 80

√
2σ̃

√
5

3

(1 − α) = O (σ
√
1 − α).

From Lemma 3.4, we know

1

|A (t ′) |

∑
i ∈A (t ′)

ŷi − µS

2
= O (σ

√
1 − α).

Combining the last two displayed equations, we have

1

|A (t∗) |

∑
i ∈A (t ∗)

ŷi − µS

2
= O (σ

√
1 − α).

ACKNOWLEDGMENTS
L. Su was supported in part by the NSF Science & Technology Center for Science of Information

Grant CCF-0939370. J. Xu was supported in part by the NSF Grant CCF-1755960.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

12:40 L. Su and J. Xu.

REFERENCES
[1] Radosław Adamczak, Alexander Litvak, Alain Pajor, and Nicole Tomczak-Jaegermann. 2010. Quantitative estimates of

the convergence of the empirical covariance matrix in log-concave ensembles. Journal of the American Mathematical
Society 23, 2 (2010), 535–561.

[2] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. 2018. Byzantine Stochastic Gradient Descent. arXiv preprint
arXiv:1803.08917 (2018).

[3] Dimitri P Bertsekas and Athena Scientific. 2015. Convex optimization algorithms. Athena Scientific Belmont.

[4] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. 2017. Byzantine-Tolerant Machine Learning.

arXiv preprint arXiv:1703.02757 (2017).

[5] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. 2011. Distributed optimization and

statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning 3,

1 (2011), 1–122.

[6] Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge university press.

[7] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. 2017. Learning from Untrusted Data. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017). ACM, New York, NY, USA, 47–60.

https://doi.org/10.1145/3055399.3055491

[8] Yudong Chen, Lili Su, and Jiaming Xu. 2017. Distributed Statistical Machine Learning in Adversarial Settings:

Byzantine Gradient Descent. Proc. ACM Meas. Anal. Comput. Syst. 1, 2, Article 44 (Dec. 2017), 25 pages. https:

//doi.org/10.1145/3154503

[9] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. 2016. Robust Estimators in High Dimensions

without the Computational Intractability. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS). 655–664. https://doi.org/10.1109/FOCS.2016.85

[10] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and Alistair Stewart. 2017. Being Robust

(in High Dimensions) Can Be Practical. CoRR abs/1703.00893 (2017). arXiv:1703.00893 http://arxiv.org/abs/1703.00893

[11] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Jacob Steinhardt, and Alistair Stewart. 2018. Sever: A

Robust Meta-Algorithm for Stochastic Optimization. arXiv preprint arXiv:1803.02815 (2018).
[12] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. 2014. Privacy Aware Learning. J. ACM 61, 6, Article 38

(Dec. 2014), 57 pages. https://doi.org/10.1145/2666468

[13] Jiashi Feng, Huan Xu, and Shie Mannor. 2014. Distributed Robust Learning. arXiv preprint arXiv:1409.5937 (2014).

[14] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer Series in Statistics.

[15] Peter J Huber. 2011. Robust statistics. In International Encyclopedia of Statistical Science. Springer, 1248–1251.
[16] Adam Klivans, Pravesh K Kothari, and Raghu Meka. 2018. Efficient Algorithms for Outlier-Robust Regression. arXiv

preprint arXiv:1803.03241 (2018).
[17] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. 2015. Federated optimization: Distributed optimization

beyond the datacenter. arXiv preprint arXiv:1511.03575 (2015).
[18] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha Suresh, and Dave Bacon. 2016.

Federated Learning: Strategies for Improving Communication Efficiency. In NIPS Workshop on Private Multi-Party
Machine Learning. https://arxiv.org/abs/1610.05492

[19] Kevin A Lai, Anup B Rao, and Santosh Vempala. 2016. Agnostic estimation of mean and covariance. In Foundations of
Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on. IEEE, 665–674.

[20] Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[21] Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin ChenâĂą. 2017. Implicit Regularization in Nonconvex Statistical

Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion and Blind Deconvolution.

arXiv preprint arXiv:1711.10467 (2017).

[22] Brendan McMahan and Daniel Ramage. 2017. Federated Learning: Collaborative Machine Learning without Centralized

Training Data. https://research.googleblog.com/2017/04/federated-learning-collaborative.html. (April 2017). Accessed:

2017-04-06.

[23] Song Mei, Yu Bai, and Andrea Montanari. 2016. The landscape of empirical risk for non-convex losses. arXiv preprint
arXiv:1607.06534 (2016).

[24] Sahand Negahban and Martin J Wainwright. 2011. Restricted strong convexity and weighted matrix completion:

Optimal bounds with noise. Journal of Machine Learning Research 13, 1 (2011), 1665–1697.

[25] Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep Ravikumar. 2018. Robust estimation via robust

gradient estimation. arXiv preprint arXiv:1802.06485 (2018).
[26] Maxim Raginsky. [n. d.]. ECE 543: Statistical Learning Theory Bruce Hajek. ([n. d.]).

[27] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding machine learning: From theory to algorithms. Cambridge

university press.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

https://doi.org/10.1145/3055399.3055491
https://doi.org/10.1145/3154503
https://doi.org/10.1145/3154503
https://doi.org/10.1109/FOCS.2016.85
http://arxiv.org/abs/1703.00893
http://arxiv.org/abs/1703.00893
https://doi.org/10.1145/2666468
https://arxiv.org/abs/1610.05492
https://research.googleblog.com/2017/04/federated-learning-collaborative.html

Distributed Statistical Machine Learning in Adversarial Settings 12:41

[28] Alex Smola and SVN Vishwanathan. 2008. Introduction to machine learning. Cambridge University, UK 32 (2008), 34.

[29] Jacob Steinhardt, Moses Charikar, and Gregory Valiant. 2018. Resilience: A Criterion for Learning in the Presence of

Arbitrary Outliers. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018) (Leibniz International
Proceedings in Informatics (LIPIcs)), Anna R. Karlin (Ed.), Vol. 94. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

Dagstuhl, Germany, 45:1–45:21. https://doi.org/10.4230/LIPIcs.ITCS.2018.45

[30] Lili Su. 2017. Defending distributed systems against adversarial attacks: Consensus, consensus-based learning, and
statistical learning. Ph.D. Dissertation. University of Illinois at Urbana-Champaign.

[31] Lili Su and Nitin H. Vaidya. 2016. Fault-Tolerant Multi-Agent Optimization: Optimal Iterative Distributed Algorithms.

In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing (PODC ’16). ACM, New York, NY,

USA, 425–434. https://doi.org/10.1145/2933057.2933105

[32] T. Tao. 2012. Topics in random matrix theory. American Mathematical Society, Providence, RI, USA.

[33] Roman Vershynin. 2010. Introduction to the non-asymptotic analysis of randommatrices. arXiv preprint arXiv:1011.3027
(2010).

[34] Roman Vershynin. 2012. How close is the sample covariance matrix to the actual covariance matrix? Journal of
Theoretical Probability 25, 3 (2012), 655–686.

[35] Roman Vershynin. 2018. High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge

university press.

[36] Martin Wainwright. 2015. Basic tail and concentration bounds. URl: https://www. stat. berkeley.
edu/.../Chap2_TailBounds_Jan22_2015. pdf (visited on 12/31/2017) (2015).

[37] Yihong Wu. 2017. Lecture Notes on Information-theoretic Methods For High-dimensional Statistics. (April 2017).

http://www.stat.yale.edu/ yw562/teaching/it-stats.pdf.

[38] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. 2018. Byzantine-Robust Distributed Learning:

Towards Optimal Statistical Rates. arXiv preprint arXiv:1803.01498 (2018).
[39] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. 2018. Defending Against Saddle Point Attack in

Byzantine-Robust Distributed Learning. arXiv preprint arXiv:1806.05358 (2018).
[40] Yuchen Zhang, John C. Duchi, and Martin J. Wainwright. 2013. Communication-Efficient Algorithms for Statistical

Optimization. Journal of Machine Learning Research 14 (2013), 3321–3363. http://jmlr.org/papers/v14/zhang13b.html

Received December 2018; revised January 2019; accepted February 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 12. Publication date: March 2019.

https://doi.org/10.4230/LIPIcs.ITCS.2018.45
https://doi.org/10.1145/2933057.2933105
http://jmlr.org/papers/v14/zhang13b.html

	Abstract
	1 Introduction
	1.1 Comparison with Robustly Estimating a Finite-dimensional Mean Vector
	1.2 Further Related Work

	2 System Model
	3 Our Algorithm and Main Results
	3.1 Main Results
	3.2 Robust Gradient Aggregator

	4 Main Analysis
	4.1 New Matrix Concentration Inequality: Theorem 3.2 and its Proof
	4.2 Proof of Theorem 3.3
	4.3 Proof of Theorem 3.1

	5 Applications to Linear Regression and Logistic Regression
	5.1 Application to Linear Regression
	5.2 Application to Logistic Regression

	6 Summary and Future Directions
	A Proof of Lemma 4.2
	B Tightness of Upper Bound (20)
	C Robust Mean Estimation
	C.1 Two auxiliary lemmas
	C.2 Proof of Lemma 3.4
	C.3 Alternative Termination Condition of Algorithm 2

	Acknowledgments
	References

