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We consider multi-armed bandit problems in social groups wherein each individual has bounded memory

and shares the common goal of learning the best arm/option. We say an individual learns the best option if

eventually (as t → ∞) it pulls only the arm with the highest expected reward. While this goal is provably

impossible for an isolated individual due to bounded memory, we show that, in social groups, this goal can

be achieved easily with the aid of social persuasion (i.e., communication) as long as the communication

networks/graphs satisfy some mild conditions. In this work, we model and analyze a type of learning dynamics

which are well-observed in social groups. Specifically, under the learning dynamics of interest, an individual

sequentially decides on which arm to pull next based on not only its private reward feedback but also the

suggestion provided by a randomly chosen neighbor. To deal with the interplay between the randomness in

the rewards and in the social interaction, we employ the mean-field approximation method. Considering the

possibility that the individuals in the networks may not be exchangeable when the communication networks

are not cliques, we go beyond the classic mean-field techniques and apply a refined version of mean-field

approximation:

• Using coupling we show that, if the communication graph is connected and is either regular or has

doubly-stochastic degree-weighted adjacency matrix, with probability→ 1 as the social group size

N → ∞, every individual in the social group learns the best option.

• If the minimum degree of the graph diverges as N → ∞, over an arbitrary but given finite time horizon,

the sample paths describing the opinion evolutions of the individuals are asymptotically independent.

In addition, the proportions of the population with different opinions converge to the unique solution

of a system of ODEs. Interestingly, the obtained system of ODEs are invariant to the structures of the

communication graphs. In the solution of the obtained ODEs, the proportion of the population holding

the correct opinion converges to 1 exponentially fast in time.

Notably, our results hold even if the communication graphs are highly sparse.

CCS Concepts: • Human-centered computing→ Collaborative and social computing; Social recom-
mendation; • Theory of computation→ Multi-agent learning; Social networks;
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1 INTRODUCTION
Individuals often need to make a sequence of decisions among a fixed finite set of options (alterna-

tives), whose rewards/payoffs can be regarded as stochastic, for example:

• Human society: In many economic situations, individuals need to make a sequence of deci-

sions among multiple options, such as when purchasing perishable products [5] and when

designing financial portfolios [34]. In the former case, the options can be the product of the

same kind from different sellers. In the latter, the options are different possible portfolios.

• Social insect colonies: Foraging and house-hunting are two fundamental problems in social

insect colonies, and both of them have inspired counterpart algorithms in robotics [29].

During foraging, each ant/bee repeatedly refines its foraging areas to improve harvesting

efficiency. House-hunting refers to the collective decision process in which the entire social

group collectively identifies a high-quality site to immigrate to. For the success of house-

hunting, individuals repeatedly scout and evaluate multiple candidate sites, and exchange

information with each other to reach a collective decision.

Many of these sequential decision problems can be cast as multi-armed bandit problems [1, 9, 25].
These have been studied intensively in the centralized setting, where there is only one player

in the system, under different notions of performance metrics such as pseudo-regret, expected

regret, simple regret, etc. [1, 9, 9, 25, 26, 31]. Specifically, a K-armed bandit problem is defined

by the reward processes of individual arms/options

(
Rk,i : i ∈ Z+

)
for k = 1, · · · ,K , where Rk,i is

the reward of the i–th pull of arm k . At each stage, a player chooses one arm to pull and obtains

some observable payoff/reward generated by the chosen arm. In the most basic formulation the

reward process

(
Rk,i : i ∈ Z+

)
of each option is stochastic and successive pulls of arm k yield

i .i .d . rewards Rk,1,Rk,2, · · · . Both asymptotically optimal algorithms and efficient finite-time order

optimal algorithms have been proposed [1, 9, 31, 33]. These algorithms typically have some non-

trivial requirements on individuals’ memorization capabilities. For example, upper confidence

bound (UCB) algorithm requires an individual to memorize the cumulative rewards of each arm he

has obtained so far, the number of pulls of each arm, and the total number of pulls [1, 31]. Although

this is not a memory-demanding requirement, nevertheless, this requirement cannot be perfectly

fulfilled even by humans, let alone by social insects, due to bounded rationality of humans, and

limited memory and inaccurate computation of social insects. In human society, when a customer

is making a purchase decision of perishable products, he may recall only the brand of product that

he is satisfied with in his most recent purchase. Similarly, in ant colonies, during house-hunting,

an ant can memorize only a few recently visited sites.

In this paper, we capture the above memory constraints by assuming an individual has only

bounded/finite memory. The problem of multi-armed bandits with finite memory constraint has
been proposed by Robbins [31] and attracted some research attention [13, 14, 36]. The subtleties

and pitfalls in making a good definition of memory were not identified until Cover’s work [13, 14].

We use the memory assumptions specified in [13], which require that an individual’s history be

summarized by a finite-valued memory. The detailed description of this notion of memory can be

found in Section 3. We say an individual learns the best option if eventually (as t → ∞) it pulls
only the arm with the highest expected reward.

For an isolated individual, learning the best option is provably impossible [13].
1
Nevertheless,

successful learning is still often observed in social groups such as human society [5], social insect

colonies [28] and swarm robotics [29]. This may be because in social groups individuals inevitably

interact with others. In particular, in social groups individuals are able to, and tend to, take advantage

1
A less restricted memory constraint – stochastic fading memory – is considered in [43], wherein similar negative results

when memory decays fast are obtained.
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Collaboratively Learning with Bounded Local Memory 11:3

of others’ experience through observing their neighbors [2, 30]. Intuitively, it appears that as a

result of this social interaction, the memory of each individual is “amplified”, and this amplified
shared memory is sufficient for the entire social group to collaboratively learn the best option.

Approach and key contributions: In this paper, we rigorously show that the above intuition is

correct with a focus on the impact of the graph structures on the performance of collaboratively

learning. We study the learning dynamics wherein an individual updates its local opinion about

which arm is more likely to give a reward based on not only its private reward feedback but also

the suggestions provided by randomly chosen neighbors. Concretely, we assume time is continuous

and each individual has an independent Poisson clock with common rate. The Poisson clocks model

is very natural and has been widely used [20, 24, 32, 35]. When an individual’s local clock ticks, it

attempts to perform an update immediately via two steps:

(1) Sampling: If the individual does not have any preference over the K arms yet, then:
(a) With probability µ ∈ [0,1], the individual pulls one of the K arms uniformly at random

(uniform sampling).

(b) With probability 1 − µ, the individual chooses one neighbor uniformly at random, and

pulls the arm suggested by the chosen neighbor (peer recommendation); pulls no arm if

the chosen neighbor does not have any preference over the K arms yet.

else The individual chooses one neighbor uniformly at random, and pulls the arm suggested

by the chosen neighbor (peer recommendation); pulls no arm if the chosen neighbor does

not have any preference over the K arms yet.

(2) Adopting: If a reward is obtained by pulling the chosen arm, then the individual updates

its preference to this arm.

Note that if the awake individual pulls no arm, it will not get a reward; thus, its preference is

unchanged. Formal description can be found in Section 3.

Remark 1.1. Although pulling no arm seems counterintuitive from the exploitation prospective, in

this paper, we focus on pure exploration, i.e., our algorithm is designed to learn which is the best

arm. Thus, we focus on restrictions relevant to the learning dynamics such as the local memory to

store information, the rate at which agents can communicate among themselves, and the underlying

neighboring graph.

Our learning dynamics are similar to those studied in [12] but with the following key differences:

(1) We consider general communication graphs; in contrast, only cliques are considered in [12].

(2) We consider continuous-time and asynchronous dynamics, whereas in [12] all individuals are

required to make update simultaneously. (3) Under our learning rules, with high probability, every

individual learns the best option; whereas in [12], the proportions of the population with the wrong

opinions are bounded away from zero as long as µ > 0. These differences are fundamental and

require completely new analysis.

A key analytical challenge of our learning dynamics is to deal with the interplay of the randomness

in the rewards and that in the social interaction. Comparing to the case when the communication

graphs are cliques, this interplay is significantly complicated by the lack of exchangeability among

the individuals on general communication graphs. Observing this, we go beyond the classic mean-

field techniques and apply a refined version of mean-field approximation:

• We show that if the communication graph is connected and is either regular or has doubly-

stochastic degree-weighted adjacency matrix, with probability→ 1 as the social group size

N → ∞, every individual in the social group learns the best option with local memory of

O (K ) states.
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For any fixed N , we couple the evolutions of the number of the individuals with the correct

opinion with a standard biased random walk, whose success probability is well-understood.

• If the minimum degree of the graph diverges as N → ∞, over an arbitrary but given finite

time horizon, the sample paths describing the opinion evolutions of the individuals are

asymptotically independent. In addition, the proportions of the population with different

opinions converge to the unique solution of a system of ODEs. Interestingly, the obtained

system of ODEs are invariant to the structures of the communication graphs. In the solution

of the obtained ODEs, the proportion of the population holding the correct opinion converges

to 1 exponentially fast in time.

The key challenge in the analysis of general graphs is that due to the lack of exchangeability,

one needs to keep track of the opinion evolution of each individual. This complicates the

state description of the system.

Notably, our results hold even if the communication graphs are highly sparse.

It is easy to see that the time needed for the entire social group to learn the best option scales

poorly in N – as the entire social group cannot learn the best option until every individual wakes

up at least once. Fortunately, it turns out that in many applications such as social insect colonies, it

suffices to know the convergence rate until a sufficiently large fraction of the population have the

correct opinion; this can be obtained by exploring the transient system behaviors.

2 RELATEDWORK
• Multi-armed bandits with bounded memory: Multi-armed bandits with finite memory

has been proposed by Robbins [31] in the special setting where the bandit has only two arms.

The goal there is to maximize the long-run proportion of heads obtained which is more relaxed

than to identify the best arm asymptotically. Efforts have been made to extend and improve

the results in the seminal work [31]. Cover [14] constructed a time-dependent deterministic

allocation rule with two arms, which is shown to be asymptotically uniformly best among

the class of time-dependent finite memory rules. However, the implicit assumption is that

keeping track of time is costless. The subtleties and pitfalls in making a good definition of

memory was not notified until Cover’s work [14]. The finite-memory constraint defined by

Cover and Hellman in the work [13] is more relevant to our setting. It is shown in [13] that

the optimal value of the long-run proportion over all local update functions and all allocation

rules is bounded away from one, and approaches one only with local memory size goes to

infinity.

• Plurality consensus: Another line of work that is closely to our work is plurality consensus
[3, 4, 15, 18, 21]. Plurality consensus problem considers N agents each initially supporting an

option in {1,2, · · · ,K }, and the goal is to learn, in a distributed fashion, the option with the

largest initial support. The key differences between our problem and the plurality consensus

problem are: (1) In our problem, the objective is to learn the option that yields the highest

expected reward, not the most popular in the initial configuration. (2) In our problem, we

have two sources of randomness – the randomness in the rewards and the randomness in

social interaction – which interplay with each other; whereas in the plurality consensus we

only have randomness in the social interaction. (3) Plurality consensus relies crucially on

the initial configuration of the system; whereas in our problem, the system converges to the

right absorbing state even if the best arm is not the most popular one initially.

• Mean-field approximation: Mean-field approximation has been a powerful tool for

studying the behavior of large and complex stochastic models for a long time [23]. There

are many different variants of mean-field models; thus, share some non-trivial similarity

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 11. Publication date: March 2019.



Collaboratively Learning with Bounded Local Memory 11:5

[7, 17, 38, 41, 42]. In contrast to classic mean-field approximation where the nodes are ex-

changeable, as is the case with cliques, to the best of our knowledge, mean-field approximation

on general networks/graphs is less well-understood. Recent years have witness a flurry of

research on the mean-field approximation for queueing networks with general graphs. In

the context of resource pooling, Tsitsiklis and Xu [39] considered the scenario where the

servers and queues are connected through a bipartite graph. In the context of load balancing,

Mukherjee et al. [27] studied the join-the-shortest queue (JSQ) policy on general graphs, and

showed that this policy is optimal in some sense, as long as the expected degree diverges fast

enough as a function of the number of servers. Similarly, Budhiraja et al. [10] studied the

local power-of-d scheme on graphs, and showed that as long as the minimum degree of the

graph diverges, and the degree-weighted adjacency matrix of the graph is asymptotically

doubly-stochastic, the occupancy process converges to the same system of ODEs as that on

the complete graph.

• Propagation of chaos: In general, a powerful stepping stone to establishing mean-field

approximation results when the network/graph is not symmetric, is the asymptotic indepen-

dence of the local state of the agents in the graph (this is also called “propagation of chaos”).

This has been done in the context of weakly interacting particles [6], queueing systems

[8, 10, 40], and in other general systems [19, 37].

3 MODEL
In this section, we formalize the social group, the learning goal, and the notion of bounded memory,

describe the learning dynamics that we are interested in, and define a continuous-time Markov

chain.

Social group. A social group consists of N homogeneous individuals/agents that are connected

through an undirected graph GN =
(
[N ],EN

)
, where [N ] := {1, · · · ,N } and EN is a collection of

edges among [N ]. Each agent i ∈ [N ] has a set of neighbors V N
i . Let

DN
min

:= min

i ∈[N ]

���V
N
i
��� (1)

be the minimum degree ofGN . Let DN
be the diagonal matrix of degrees, andAN

be the adjacency

matrix. With a little abuse of terminology, we say graph GN is doubly-stochastic if the degree-

weighted adjacency matrix

(DN )−1AN

is doubly-stochastic. Equivalently, graph GN is doubly-stochastic if∑
j ∈V N

i

1

|V N
j |
=

∑
j ∈V N

i

1

|V N
i |
= 1, ∀ i ∈ [N ].

Learning goal. The agents in the social group want to collaboratively solve theK-armed stochastic

bandit problems, wherein the reward processes of the K arms/options are Bernoulli processes with

parameters p1, · · · ,pK . If arm ak is pulled at time t , then reward Rt ∼ Bern (pk ), i.e.,

Rt =



1, with probability pk ;

0, otherwise.

Initially the distribution parameters p1, · · · ,pK are unknown to any agent. We assume the arm

with the highest parameter pk is unique. Without loss of generality, let a1 be the unique best arm

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 11. Publication date: March 2019.



11:6 Lili Su, Martin Zubeldia, and Nancy Lynch

and p1 > p2 ≥ · · ·pK ≥ 0. Each agent has an independent Poisson clock
2
with common rate λ, and

attempts to pull an arm immediately when its local clock ticks. We say an agent learns the best

option if, as t → ∞, it pulls only the arm with the highest expected reward, i.e., a1.

Remark 3.1. Although we restrict ourselves to Bernoulli rewards, this can be easily extended to

more general stochastic rewards. For example, if the rewards are exponential random variables

with different means, and one wishes to learn the arm with the highest mean, one could transform

these exponential rewards into Bernoulli ones by considering the indicator that the reward is above

a fixed threshold. In that case, pk is the probability that the reward of the k-th arm falls above the

threshold.

Bounded memory. We assume that each agent has finite/bounded memory [13]. Measuring the

memory size in terms of states, as an alternative to bits, is rather standard in many natural dynamics

[13, 18]. We say an agent has a memory of sizem if its experience is completely summarized by an

m-valued variableM ∈ {0, · · · ,m − 1}. As a result of this, an agent sequentially decides on which

arm to pull next based on only (i) its memory state and (ii) the information it gets through social

interaction. The memory state may be updated with the restriction that only (a) the current memory

state, (b) the current choice of arm, and (c) the recently obtained reward, are used for determining

the new state. In the learning dynamics considered in this paper, it suffices to havem = K + 1.

Learning dynamics. In the learning dynamics under consideration, each agent keeps two vari-

ables:

• a local memory variable M that takes values in {0,1, · · · ,K }. If M = 0, the agent does not

have any preference over the K arms; if M = k ∈ {1, · · · ,K }, it means that tentatively the

agent prefers arm ak over others.

• an arm choice variable c that takes values in {0,1, · · · ,K } as well. If c = 0, the agent pulls no

arm; if c = k ∈ {1, · · · ,K }, the agent chooses arm ak to pull next.

Note thatM is the persistent memory while c is a temporary variable. There are a variety of choices

in initializingM , either deterministically or randomly. Our results account for different choices of

initialization. For the temporary variable c , initialize c = M .

When the clock at agent i ticks at time t , we say agent i obtains the memory refinement token.

With such a token, agent i refines its memoryM according to Algorithm 1 via a two-step procedure.

The first two if–else clauses describe how to choose an arm to pull next: If an agent does not have

any preference ( i.e.,M = 0), c is determined through a combination of uniform sampling and peer

recommendation; otherwise, c is completely determined by peer recommendation, see Section 1 for

the notions of uniform sampling and peer recommendation. Note that during peer recommendation,

if the chosen peer does not have any preference over the K arms yet, the memory of the awake

agent remains unchanged. The last if–else clause says that as long as the reward obtained by

pulling the arm is 1 (i.e., Rt = 1), thenM ← c; otherwise,M is unchanged.

A similar gossip model was used in [18]. In our model, different from [18], the reward information

arrives at the system on the fly.

System state. Due to the lack of exchangeability among agents, one needs to keep track of the

opinion evolution of each agent. For a given N , let XN (t ) ∈ {0,1}N×(K+1) denote the state of the
system at time t defined as

XN (t ) :=
(
XN

1
(t ), · · · ,XN

N (t )
)
, (2)

2
The Poisson clocks model is very natural and has been widely adopted for modeling [20, 24, 32, 35] natural dynamics.
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Algorithm 1: Collaborative Best Option Learning (at agent i)

Input: K , µ, and V N
i ;

Local variables:M ∈ {0,1, · · · ,K } and c ∈ {0,1, · · · ,K };
Initialize c = M ;

When local clock ticks:

if M = 0 then
With probability µ, set c to be one of the K arms uniformly at random;

With probability 1 − µ, c ← PeerRecommendation;

else
c ← PeerRecommendation;

if c = 0 then
Pull no arm;

else
Pull arm c;

if Rt = 1 then
M ← c;

else
M unchanged;

PeerRecommendation()

Choose one neighbor i ′ from V N
i uniformly at random;

returnM ′; %%M ′ is the memory state of i ′;

where

XN
i (t ) =

(
XN
i,0 (t ),X

N
i,1 (t ), · · · ,X

N
i,K (t )

)⊤
∈ {0,1}K+1 (3)

represents agent i’s opinion at time t with

XN
i,k (t ) = 1, and XN

i,k ′ (t ) = 0,∀k ′ , k

ifM = k at agent i at time t , i.e., the memory state of agent i at time t is k . Intuitively, ifXN
i,k (t ) = 1,

we say agent i prefers arm ak at time t . Here the vectors under discussion are column vectors. Note

that each state x is a N × (K + 1) matrix of entries either 0 or 1, and for each row i ∈ [N ], the

entries sum up to 1. Throughout the process, XN
i,k (t ) is “fluctuating” between 0 and 1 as the local

clock ticks.

Under Algorithm 1, the evolution of the state XN (·) is a continuous-time Markov chain with the

following transition rates. For all i ∈ [N ], and for all k = 1, . . . ,K , we have

qx,x+eik−ei0 = λpk
*..
,

µ

K
+ (1 − µ )

1

|V N
i |

∑
ℓ∈V N

i

1{xℓ,k=1}
+//
-
1{xi,0=1} ,

qx,x+eik−ei j = λpk
*..
,

1

|V N
i |

∑
ℓ∈V N

i

1{xℓ,k=1}
+//
-
1{xi,j=1} , ∀ j , k,
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where eik is the unit matrix with a single one in position (i,k ), and zeros elsewhere. Here,qx,x+eik−ei0
is the transition rate for agent i to switch from no arm preference to preferring arm ak , and
qx,x+eik−ei j is the transition rate for agent i to switch from preferring arm aj to preferring arm

ak . Furthermore, the Markov chain XN (·) admits the following sample path construction. For all

i ∈ [N ] and for all k = 0, . . . ,K , we have

XN
i,k (t ) = XN

i,k (0) +

∫
[0,K )×[0,t ]

(
1{X N

i,k (s
− )=0

}1{y∈CN ,+
i,k (s− )

} − 1{X N
i,k (s

− )=1
}1{y∈CN ,−

i,k (s− )
}
)
Ni (dy,ds ),

where XN
i,k (0) is the initial condition of XN

i,k (t ), Ni is a two-dimensional Poisson process of rate λ

over the set [0,K ) × [0,∞), and

CN ,+
i,0 (t ) := ∅,

CN ,+
i,k (t ) :=


k − 1, k − 1 +

µpk
K

1{X N
i,0 (t )=1

} +
(
1 − µ1{X N

i,0 (t )=1
}
)

1

|V N
i |

∑
ℓ∈V N

i

pk1{X N
ℓ,k (t )=1

}+//
-
,

CN ,−
i,0 (t ) :=

K⋃
j=1


j − 1, j − 1 +

µpj

K
+ (1 − µ )

1

|V N
i |

∑
ℓ∈V N

i

pj1{X N
ℓ,j (t )=1

}+//
-
,

CN ,−
i,k (t ) :=

K⋃
j=1
j,k


j − 1, j − 1 +

1

|V N
i |

∑
ℓ∈V N

i

pj1{X N
ℓ,j (t )=1

}+//
-
.

This sample path construction is adopted for technical reasons, since it significantly simplifies

the statements and proofs of the results on the transient system behaviors. Nevertheless, we now

provide some intuition for this construction.

Intuition of sample path construction. For i = 1, . . . ,N , the two-dimensional Poisson process

Ni (dy,ds ) of rate λ drives the changes in opinion of the i-th agent, where the second coordinate rep-

resents time and the first coordinate is an auxiliary parameter. In particular, note thatNi ([0,K],ds )
is a Poisson process of rate Kλ in time and, conditioned on being an event at time s ,Ni (dy, {s}) is a
uniform probability measure over the interval [0,K] independent from the measures associated to

other events. We use the second coordinate to determine the time at which the opinion of the i-th
agent (given by XN (·)) may change its state, and the first coordinate to determine how it changes

(if it changes at all).

Remark 3.2. Recall that the Poisson clock of each agent has rate λ (which is K times slower than the

rate of Ni ([0,K],ds )), which is compensated by thinning the faster process. This this thinning has

the effect of making the probability of each transition (given that there is an event in the process

Ni ([0,K],ds )) K times smaller than they would be with the Poisson clock of rate λ.

Suppose that there is an event with coordinates (y,s ) in Ni , and that agent i had opinion k right

before time s (i.e., we haveXN
i,k (s

−) = 1 andXN
i,j (s

−) = 0, for all j , k). Then, the i-th agent changes

its opinion from k to k ′ , k (i.e., we have XN
i,k ′ (s ) = 1 and XN

i,j (s
−) = 0, for all j , k ′) if and only if

y ∈ CN ,+
i,k ′ . If k = 0, this jump happens with probability

1

K



µpk ′

K
+ (1 − µ )

1

|V N
i |

∑
ℓ∈V N

i

pk ′1{
X N

ℓ,k′ (t )=1
}

,
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which is 1/K times the sum of two terms: one is the probability of pulling an arm at random (µ),
times the probability of choosing k ′ (1/K), times the probability of success (pk ′); the other one is
the probability of asking a neighbor for its opinion (1 − µ), times the probability of success (pk ′).
Note that the probability is exactly K times smaller than the probability of this transition when

there is a tick in the local Poisson clock of an agent, which is a consequence of our underlying

thinning. On the other hand, if k , 0, this jump happens with probability

1

K



1

|V N
i |

∑
ℓ∈V N

i

pk ′1{
X N

ℓ,k′ (t )=1
}

,

which is the fraction of neighbors with opinion k ′, times the probability of success pk ′ , times 1/K .
Once again, this probability is K times smaller than it would be, which is a consequence of our

underlying thinning.

4 MAIN RESULTS
In this section, we present the main results regarding learnability – the probability that the entire

social group learns the best option – (subsection 4.1), and regarding the transient of opinion

evolution before reaching a consensus (subsection 4.2). Furthermore, in subsection 4.3 we highlight

the differences and similarities between the assumptions for the two types of results.

4.1 Learnability
For k = 0, . . . ,K , let

ZN
k (t ) :=

N∑
i=1

XN
i,k (t )

be the number of agents that prefer arm ak at time t . We define the success event EN as:

EN ≜
{
every agent eventually learns the best option

}
=

{
lim

t→∞
ZN
1
(t ) = N

}
. (4)

Given the transition rates of the Markov chain XN (·), we have that, for k = 0, · · · ,K , the process
ZN
k (·) jumps upwards with rate

N∑
i=1

1{X N
i,k (t )=0

}λpk
*..
,

µ

K
1{X N

i,0 (t )=1
} +

(
1 − µ1{X N

i,0 (t )=1
}
)

1

DN
i

∑
j ∈V N

i

1{
X N
j,k (t )=1

}+//
-
,

and downwards with rate

N∑
i=1

1{X N
i,k (t )=1

}λ
*..
,

µ

K
1{X N

i,0 (t )=1
} +

(
1 − µ1{X N

i,0 (t )=1
}
)

1

DN
i

∑
j ∈V N

i

∑
k ′:1≤k ′≤K,&k ′,k

1{
X N
j,k′ (t )=1

}pk ′+//
-
.

It is easy to see that ZN
k (t ) = N is an absorbing state of the Markov chainXN (·), for all k = 1, . . . ,K .

For ease of exposition, we first consider the simplified scenario wherein the memory states of the

individuals are initialized deterministically, and there exists a positive fraction of agents with the

correct opinion – initially preferring the arm a1 (i.e., the best arm). It turns out that the probability

that eventually every agent pulls only arm a1 increases exponentially with N . This is formalized in

the following result.
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11:10 Lili Su, Martin Zubeldia, and Nancy Lynch

Theorem 4.1. Suppose that the graph GN is connected, and suppose that ZN
1
(0) ≥ c0N for some

c0 ∈ (0,1].
• If GN is regular, then, for any µ ∈ [0,1], we have

P
(
EN

)
≥ 1 −

(
p1
p2

)−c0N
.

• If GN is doubly-stochastic, i.e., if∑
j ∈V N

i

1

|V N
j |
= 1, ∀ i ∈ [N ],

then, for any µ ∈ [0,1 − p2/p1], we have

P
(
EN

)
≥ 1 − *

,

(1 − µ +
µ
K )p1

p2
+
-

−c0N

.

The proof consists in coupling the process ZN
1
(·) with a smaller but simpler biased random walk,

and using classical results on biased random walk to lower bound the probability of hitting N . The

proof is deferred to Appendix A.

Remark 4.2. Intuitively, in a doubly-stochastic graph the “outflow” of agents equals the “inflow” of

agents.
3
In particular, every regular graph is also doubly-stochastic.

Note that Theorem 4.1 says that the probability of “every agent eventually learns the best option”

grows to 1 exponentially fast as the group size N increases. In order to maximize the lower bound

in Theorem 4.1, we can simply choose µ = 0 – removing the uniform sampling. However, as we

will show next, it is crucial to have µ > 0 when ZN
1
(0) = 0.

Generalizations. In Theorem 4.1 we restrict our attention to initial conditions where a positive

proportion of agents prefer arm a1. This result can be easily generalized to include initial conditions

where ZN
1
(0) = 0 and ZN

0
(0) ≥ c0N , for some c0 ∈ (0,1]. The key to this generalization is the

following lemma.

Lemma 4.3. Suppose that ZN
0
(0) ≥ c0N for some c0 ∈ (0,1], and that µ > 0. Then, for anyC ∈ (0,1),

we have

P
(
ZN
1

(
1

λ

)
≥ (1 −C )

µc0p1
eK

N
)
≥ 1 − exp *

,
−2

(
Cµc0p1
eK

)
2

N +
-
.

The intuition behind Lemma 4.3 is that when t is sufficiently small, successful memory state

updates of the agents that initially have no preference over the K arms mainly rely on uniform

sampling rather than peer recommendation. Thus, successful memory updates of those agents are

likely to be independent of each other, and have some nice concentration properties. We justify this

intuition in Appendix A.2.

Using Lemma 4.3, we can couple our original random walk and a standard random walk at time

1

λ , and obtain an exponential learnability result analogous to Theorem 4.1.

Furthermore, we can generalize Theorem 4.1 and Lemma 4.3 for the case where the initial

conditions {XN
i (0)}i ∈[N ] are i.i.d. with respect to a fixed distribution q = (q0,q1, . . . ,qK ).

3
In fact, this assumption is one of the standard assumptions on reaching average consensus.
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Lemma 4.4. Suppose that {XN
i (0)}i ∈[N ] are i.i.d. with respect to a fixed distribution q =

(q0,q1, . . . ,qK ), with q0 + q1 > 0. Then, for every C ∈ (0,1), we have

P
(
ZN
0
(0) + ZN

1
(0) ≥ (1 −C ) (q0 + q1)N

)
≥ 1 − exp

(
− 2C2 (q0 + q1)

2N
)
.

The proof is a simple application of Hoeffding’s inequality, and is omitted.

Remark 4.5. Although the results in this section require strict regularity conditions on all con-

nectivity graphs (i.e., for all N ), these could be loosened to asymptotic regularity conditions with

appropriate concentration bounds. However, this only complicates the analysis and we believe that

it does not further illustrate the regularity requirements of these results.

4.2 Transient System Behaviors
In addition to learnability, it is also important to characterize the transient behavior of our learning

dynamics, i.e., at a given time t , what fraction of agents are preferring the best arm, the second

best arm, etc. This is because in applications such as biology, chemistry, and networking, knowing

the trajectories of the dynamics of interests usually provide fundamental insights on those systems.

This subsection is devoted to characterizing this transient system behaviors in the case where the

number of agents is very large. In this case, we will show that the dynamics are largely independent

of the graph structure, as long as some mild conditions are satisfied.

First, we will establish a local approximation result. For i ∈ [N ], and for k = 0, . . . ,K , we define
the coupled processes

Xi,k (t ) = XN
i,k (0) +

∫
[0,K )×[0,t ]

(
1{Xi,k (s− )=0}1

{
y∈C+i,k (s

− )
} − 1{Xi,k (s− )=1}1

{
y∈C−i,k (s

− )
}
)
Ni (dy,ds ). (5)

where

C+i,0 (t ) := ∅,

C+i,k (t ) :=
[
k − 1, k − 1 +

µpk
K

1{Xi,0 (t )=1} + pk
(
1 − µ1{Xi,0 (t )=1}

)
P

(
Xi,k (t ) = 1

))
, ∀k ≥ 1,

C−i,0 (t ) :=
K⋃
j=1

[
j − 1, j − 1 +

µpj

K
+ (1 − µ )pjP

(
Xi,j (t ) = 1

))
,

C−i,k (t ) :=
K⋃
j=1
j,k

[
j − 1, j − 1 + pjP

(
Xi,j (t ) = 1

) )
, ∀k ≥ 1.

Note that the processes XN (·) and X (·) are coupled through the initial conditions X (0) = XN (0)

and through the underlying Poisson processes Ni (they are all the same). However, unlike CN ,−
i,k (t )

andCN ,+
i,k (t ), the setsC−i,k (t ) andC

+
i,k (t ) only depend on the local state. This corresponds to a setting

where an agent, instead of asking a neighbor for its state, it draws a new state (independent from

the states of its neighbors), according to the distribution

(
P

(
Xi,0 (t ) = 1

)
, . . . ,P

(
Xi,K (t ) = 1

) )
.

We now show that, if the minimum degree of the graph GN is large enough, and if the initial

conditions are i.i.d., then the coordinate processes {XN
i (·)}i ∈[N ] can be approximated by the i.i.d.

coordinate processes {Xi (·)}i ∈[N ] defined above. This is formalized in the following result.

Theorem 4.6. Fix some time T > 0. Suppose that the initial conditions {XN
i (0)}i ∈[N ] are i.i.d. with

respect to a fixed distribution q = (q0, . . . ,qK ), such that P(XN
i,k (0) = 1) = qk , for all k = 0, . . . ,K ,
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11:12 Lili Su, Martin Zubeldia, and Nancy Lynch

and for all i ∈ [N ]. Then

max

i ∈[N ]

E

sup

0≤t ≤T

K∑
k=0

(
XN
i,k (t ) −Xi,k (t )

)
2


≤

16(4 + λ)λKT (K + 1)√
DN
min

exp

(
48(4 + λ)λ(K + 1)T

)
.

The proof is deferred to Appendix B.

Remark 4.7. Theorem 4.6 states that, for DN
min large enough, the coordinate processes {XN

i (·)}i ∈[N ]

can be approximated by the i.i.d. coordinate processes {Xi (·)}i ∈[N ]. In particular, if DN
min → ∞, this

implies that the original coordinate processes are asymptotically independent.

Using this local approximation result and i.i.d. processes, we establish a convergence result on

ZN
k (t ). For any given N , and for k = 0, . . . ,K , let

YN
k (t ) :=

1

N
ZN
k (t ) =

1

N

N∑
i=1

XN
i,k (t )

be the fraction of agents that prefer arm ak at time t . 4 We will show that over any fixed finite time

horizon [0,T ], YN (·) =
(
YN
0
(·), . . . ,YN

K (·)
)
converges uniformly to the unique

5
solution y (·) of the

following ODEs.

ẏ0 (t ) = −y0 (t )λ
µ

K

K∑
j=1

pj − y0 (t )λ
K∑
j=1

(1 − µ )pjyj (t ), (6)

ẏk (t ) = y0 (t )λ
µ

K
pk + yk (t )λ

*.
,
(1 − µ )pky0 (t ) +

K∑
j=1

(pk − pj )yj (t )
+/
-
,

∀k ≥ 1. (7)

This convergence result is formalized in the following theorem.

Theorem 4.8. Fix some time T > 0. Suppose that the initial conditions {XN
i (0)}i ∈[N ] are i.i.d. with

respect to a fixed distribution q = (q0, . . . ,qK ), such that P(XN
i,k (0) = 1) = qk , for all k = 0, . . . ,K ,

and for all i ∈ [N ]. Furthermore, suppose that

lim

N→∞
DN
min
= ∞.

Then,

lim

N→∞
E

sup

0≤t ≤T

K∑
k=0

(
YN
k (t ) − yk (t )

)
2


= 0,

where y (t ) is the solution to the ODEs defined by equations (6) and (7) with initial condition y (0) = q.

The proof is deferred to Appendix C.

This theorem implies that, for N large enough, the process YN (t ) closely tracks a deterministic

and smooth trajectory. We will illustrate this via a simulation result at the end of this subsection.

Such approximations are desired because the analysis of an ODEs system is relatively easier than

that of the original stochastic system. Indeed, in a great variety of fields, such as biology, epidemic

theory, physics, and chemistry [23], differential equations are used directly to model themacroscopic
4
Recall that we say an agent prefers arm ak at time t is its memory state is M = k at time t .

5
The uniqueness follows from the fact that the drift is a simple polynomial.
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level system dynamics that are arguably caused by the microscopic level agents interactions in the

system.

Remark 4.9. Note that Theorem 4.8 concerns the asymptotic aggregate behavior of the agents, which

is unaffected by the behavior of a vanishingly small fraction of them. As a result, the assumptions

on i.i.d. initial conditions and on diverging minimum degree need not hold for every node. It can be

checked that as long as the assumptions hold for a fraction of agentsCN withCN /N → 1, Theorem

4.8 still holds.

Note that the above ODE system is similar to the antisymmetric Lotka-Volterra equation [22]

with µ = 0. The Lotka-Volterra equation is a typical replicator dynamics, where if yk (0) = 0 for

some k , it remains to be zero throughout the entire process. In contrast, even when y1 (0) = 0, the

solution of our ODE system converges exponentially fast to (0,1,0, . . . ,0) in time as long as µ > 0

and y0 (0) > 0.

Theorem 4.10. Let y be the solution of the ODEs in (6) and (7). We have the following.
• Suppose y1 (0) > 0. Then, we have

y1 (t ) ≥ 1 −
1

y1 (0)
1−y1 (0)

exp (Rt ) + 1
, ∀ t ≥ 0,

where
R = λ ×min

{(
1 − µ +

µ

K

)
p1, p1 − p2

}
.

• Suppose y1 (0) = 0 and y0 (0) > 0. Then, for every c ∈ (0,1), we have

y1 (t ) ≥ 1 −
1

(1−c )y0 (0)
K−(1−c )y0 (0)

exp (R (t − tc )) + 1
, ∀ t ≥ t̄c ,

where

t̄c ≜
log

1

c

λ
µ
K

∑K
i=1 pi

.

The proof of the second part involves showing that at time t̄c , we have y1 (t̄c ) ≥
(1−c )y0 (0)

K , and

then obtaining a suitable lower bound that holds from that point going forward. The proof of the

first part is a special case with t̄c = 0. The proof is in Appendix D.

An immediate corollary of the previous theorem is the asymptotic convergence of the trajectories

to the desired state.

Corollary 4.11. Let y be the solution of the ODEs in (6) and (7) with y0 (0) +y1 (0) > 0. We have that

lim

t→∞
y (t ) = (0,1,0, . . . ,0) .

The results in Theorems 4.8, 4.10, and Corollary 4.11 are illustrated in Figure 1, where some

typical sample paths are drawn. Here, we choose N = 200, K = 2, λ = 1, µ = 0.2, p1 = 0.8, p2 = 0.4,
and initial conditionsYN = (1,0, · · · ,0) (i.e., every agent starts with no preference over the arms). In

Figure 1, each of the component in YN
goes to their corresponding equilibrium states exponentially

fast. In particular, these typical sample paths have two slightly different behaviors stages: At the

first stage, YN
1
(t ) and YN

2
(t ) both increase up to the point where YN

1
(t ) + YN

2
(t ) ≈ 1 – noting

that YN
2
(t ) grows much slower than YN

1
(t ). At the second stage, until entering their equilibrium

states, YN
1
(t ) is increasing and YN

2
(t ) is decreasing. More importantly, YN

0
,YN

1
, and YN

2
track their

corresponding deterministic and smooth trajectories, which converge to the desired (0,1, · · · ,0) in
time.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 11. Publication date: March 2019.



11:14 Lili Su, Martin Zubeldia, and Nancy Lynch

Fig. 1. Simulation with N = 200, λ = 1, µ = 0.2, p1 = 0.8, p2 = 0.4, and initial condition (1,0,0).

4.3 Learnability vs transient and interchange of limits
Recall that, for the learnability results in subsection 4.1, we need the graphGN to be connected and

either doubly-stochastic or regular, and we need the initial conditions be such thatZN
0
(0)+ZN

1
(0) >

cN (holds either deterministically or with high probability) for some positive constant c > 0. Under

these conditions, we have

lim

N→∞
lim

t→∞
YN
1
(t ) = lim

N→∞
1EN = 1.

Moreover, for the transient approximation result and the convergence to the best state presented in

subsection 4.2, we need the graphGN to have diverging minimum degree, and i.i.d. initial conditions

with q0 + q1 > 0. Under these conditions, we have

lim

t→∞
lim

N→∞
YN
1
(t ) = lim

t→∞
y1 (t ) = 1.

When we have all the assumptions at the same time, we can interchange the order of these limits.

This is depicted in the commutative diagram of Figure 2.

On the other hand, the fact that we have different assumptions is not an artifact of our analysis,

but it stems from fundamental differences in the dynamics. This is shown in the following examples.

Example 1. LetGN be the circular graph with N agents. Suppose that the initial condition is such

that there are N /2 agents that prefer arm a1 and N /2 agents that prefer arm a2. Then, Theorem 4.1

states that the probability that all agents eventually learn the best arm converges to 1 exponentially

fast in N . However, if the initial condition is such that all agents prefer arm a1 are all next to
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1EN
Thm. 4.1

N → ∞

Eq. (4)

t → ∞

YN
1
(t )

Cor. 4.11

t → ∞

y1 (t )
Thm. 4.8

N → ∞

1

Fig. 2. Interchange of limits.

each other, then there are only 4 agents that have a neighbor with a different preferred arm than

theirs (the two pair of agents in the boundary of preferred arms). It can be checked that ZN
1
(·) is a

birth-death process with birth rate 2λp1 and death rate 2λp2. As a result, the approximation result

given by Theorem 4.8 does not hold. Not only the transient is now linear instead of exponential,

but the speed of convergence to the best arm is N times slower.

Example 2. Let GN be the graph consisting of N / log log(N ) connected components consisting

of complete graphs with log log(N ) agents. If the initial conditions are i.i.d. with q0 + q1 > 0, then

Theorem 4.8 holds and we have the usual exponential convergence to the desired state. However, if

qi > 0 for some i > 1, it can be checked that all agents in at least one connected component will

prefer arm ai , with high probability. Since those agents will prefer arm ai for all time, not all agents

will eventually learn the best arm, with high probability.

Finally, the assumption on the diverging minimum degree in Theorem 4.8 is necessary in order

to have local processes {XN
i (·)}i ∈[N ] that are asymptotically independent. Indeed, if there was a

uniform upper bound on the minimum degree, there would be at least one agent with uniformly

bounded degree. For those agents, the probability of interacting with any given neighbor in any

given interval of time [0,T ] would be uniformly lower bounded.

Without this asymptotic independence, we are unable to obtain the aggregate behavior of the

system, and thus we are unable to check whether the absence of the assumption on the minimum

degree is necessary for the conclusions of Theorem 4.8 to hold.

5 CONCLUDING REMARKS
We studied the collaborative multi-armed bandit problems in social groups wherein each agent

suffers finite memory constraint [13]. In contrast to isolated agents [13] for whom learning the best

option is impossible, we showed that with the aid of social persuasion even if the communication

graphs can be highly sparse, the probability of collaboratively learning the best option goes to 1

exponentially fast in N . We also characterized the transient system behaviors. In particular, we

showed that if the minimum degree of the graph diverges as N → ∞, sample paths describing

the opinion evolutions of the individuals are asymptotically independent. Additionally, over an

arbitrary but given finite time horizon, the proportions of population with different opinions

converge to the unique solution of a system of ODEs that are invariant to the structures of the

communication graphs. In the solution of the obtained ODEs, the proportion of the population

holding the correct opinion converges to 1 exponentially fast in time. The key challenge in the

analysis of general graphs is that due to the lack of exchangeability, one needs to keep track of the

opinion evolution of each individual. This complicates the state description of the system.
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A PROOF OF THEOREM 4.1
The main idea in proving Theorem 4.1 is to couple the process ZN

1
(·) with a standard biased random

walk whose probability of hitting N (i.e., success probability) is well understood.

Despite the fact that the N × (K + 1)-dimensional Markov chainXN (·) is hard to directly analyze,
the evolution of the number of agents with the correct opinion (i.e., preferring the best arm a1)
ZN
1
(·) has the following nice property.

Lemma A.1. Suppose thatGN is connected and doubly-stochastic. If there is a jump in ZN
1
(·) at time

t , the probability of moving upwards is lower bounded as

P
(
ZN
1
(t ) = ZN

1
(t−) + 1

���� Z
N
1
(t ) , ZN

1
(t−)

)
≥

p1 (1 − µ ) +
µ
K p1

p1 (1 − µ ) +
µ
K p1 + p2

.

In addition, if GN is regular, then

P
(
ZN
1
(t ) = ZN

1
(t−) + 1

���� Z
N
1
(t ) , ZN

1
(t−)

)
≥

p1
p1 + p2

.

We prove this lemma in Appendix A.1.

Let

{Tl }l ≥1 ≜
{
t ≥ 0 : ZN

1
(t ) , ZN

1
(t−)

}

be the set of random times when there is a jump in the process ZN
1
(·). Without loss of generality, we

assume that T1 ≤ T2 ≤ · · · . Note that the set {Tl }l ≥1 might be finite since XN (·) might be absorbed

after a finite number of jumps. For notational convenience, denote the random walk

W (l ) ≜ ZN
1
(Tl ).
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Clearly,W (·) is a random walk that represents the evolution of the number of agents with the

correct opinion (i.e., preferring the best arm a1). Thus, E
N
can be rewritten as

EN =
{
lim

l→∞
W (l ) = N

}
.

It follows from Lemma A.1 that

P
(
W (l + 1) =W (l ) + 1 ��� the (l + 1)-st jump of ZN

1
(·) exists

)
≥




p1
p1+p2
, if GN is regular,

p1 (1−µ )+
µ
K p1

p1 (1−µ )+
µ
K p1+p2

, if GN is doubly-stochastic.

When GN is regular, the random walkW (·) is biased towards moving upwards. When GN is only

doubly-stochastic, we need to have µ ≤ 1 − p2/p1 in order to guarantee thatW (·) is also biased

towards moving upwards.

Consider the standard random walk

(
Ŵ (l ) : l ∈ Z+

)
such that if Ŵ (l ) = 0 or Ŵ (l ) = N , then

Ŵ (l + 1) = Ŵ (l ); otherwise,

Ŵ (l + 1) =



Ŵ (l ) + 1 with probability p∗;

Ŵ (l ) − 1 with probability 1 − p∗,
(8)

where

p∗ =



p1
p1+p2
, if GN is regular;

p1 (1−µ )+
µ
K p1

p1 (1−µ )+
µ
K p1+p2

, if GN is doubly-stochastic.

From [20, Chapter 4.2], we know that for any z0 ∈ Z+,

P
(
lim

l→∞
Ŵ (l ) = N

���� Ŵ (0) = z0

)
≥ 1 −

(
1 − p∗

p∗

)−z0
.

Intuitively, the original random walkW (l ) has a higher tendency to move one step up (if possible)

than that of the standard random walk (8). Thus, starting at the same position, the original random

walk has a higher chance to be absorbed at position N than that of the standard random walk.

Thus,

P
(
lim

l→∞
W (l ) = N

���� W (0) = z0

)
≥ P

(
lim

l→∞
Ŵ (l ) = N

���� Ŵ (0) = z0

)
≥ 1 −

(
1 − p∗

p∗

)−z0
.

We conclude Theorem 4.1 by choosing z0 ≥ c0N .

A.1 Proof of Lemma A.1
The proof of Lemma A.1 uses the following proposition.

Proposition 1. Suppose that GN is doubly-stochastic. Then for any subset S of [N ], it holds that∑
i ∈S

1

|V N
i |

∑
j ∈V N

i

1{j<S} =
∑
i<S

1

|V N
i |

∑
j ∈V N

i

1{j ∈S} .

Remark A.2. Proposition 1 says that ifGN is doubly-stochastic, for any set S ⊆ [N ] in graphGN ,

the “flow” out of set S equals the “flow” into set S.
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Proof of Proposition 1. When S = ∅ or S = [N ], it is easy to see that∑
i ∈S

1

|V N
i |

∑
j ∈V N

i

1{j<S} = 0 =
∑
i<S

1

|V N
i |

∑
j ∈V N

i

1{j ∈S} .

For the more general subset of S we have∑
i ∈S

1

|V N
i |

∑
j ∈V N

i

1{j<S} =
N∑
i=1

1

|V N
i |

∑
j ∈V N

i

1{j<S} −
∑
i<S

1

|V N
i |

∑
j ∈V N

i

(
1 − 1{j ∈S}

)

=
∑
i<S

1

|V N
i |

∑
j ∈V N

i

1{j ∈S} +
N∑
i=1

1

|V N
i |

∑
j ∈V N

i

1{j<S} −
∑
i<S

1

|V N
i |

∑
j ∈V N

i

1.

To finish the proof, it remains to show that

N∑
i=1

1

|V N
i |

∑
j ∈V N

i

1{j<S} =
∑
i<S

1

|V N
i |

∑
j ∈V N

i

1. (9)

The RHS of (9) can be written as∑
i<S

1

|V N
i |

∑
j ∈V N

i

1 =
∑
i<S

1

(a)
=

∑
i<S

∑
j ∈V N

i

1

|V N
j |

=

N∑
i=1

N∑
j=1

1{i<S}1{(i,j )∈E }
1

|V N
j |
. (10)

where (a) follows from the fact that GN is doubly-stochastic. The LHS of (9) can be written as

N∑
i=1

1

|V N
i |

∑
j ∈V N

i

1{j<S} =
N∑
i=1

N∑
j=1

1{(i,j )∈EN }
1

|V N
i |

1{j<S}

=

N∑
j=1

N∑
i=1

1{(j,i )∈EN }
1

|V N
j |

1{i<S},

proving (9).

□

Now we are ready to prove Lemma A.1.

Proof of Lemma A.1. At any time t , if there is a jump in ZN
1
(t ), it must be true that

ZN
1
(t−) , N , and ZN

1
(t−) + ZN

0
(t−) > 0. (11)

Note that it is possible that ZN
0
(t−) = N . Let S (t−), A (t−) and B (t−) be a partition of set [N ]

such that:

• Let S (t−) denote the set of agents that currently prefer arm a1, i.e.,

S (t−) :=
{
i ∈ [N ] : XN

i,1 (t−) = 1

}
.

• Let A (t−) denote the set of agents that currently have no preference over the K arms, i.e.,

A (t−) :=
{
i ∈ [N ] : XN

i,0 (t−) = 1

}
.
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• Let B (t−) := [N ] − S (t−) − A (t−), i.e.,

B (t−) :=


i ∈ [N ] :

K∑
k=2

XN
i,k (t−) = 1



.

Note that |S (t−) | = ZN
1
(t−), |A (t−) | = ZN

0
(t−), and |B (t−) | =

∑K
k=2 Z

N
k (t−).

The upwards drift of ZN
1
(t−) can be written as

λp1
µ

K
|A (t−) | + (1 − µ ) λp1

∑
i ∈A (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } + λp1
∑

i ∈B (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } . (12)

Similarly, the downwards drift of ZN
1
(t−) can be written as

λ
∑

i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

K∑
k=2

1{
X N
j,k (t−)=1

}pk ≤ λp2
∑

i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

K∑
k=2

1{
X N
j,k (t−)=1

}

= λp2
∑

i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈B (t−) } . (13)

We consider two cases: (1) there are no links between S (t−) and B (t−), and (2) there is a link

between S (t−) and B (t−).

Case 1: Suppose that there are no links between S (t−) and B (t−). In this case, it holds that∑
i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈B (t−) } = 0. (14)

By (13), the downwards drift of ZN
1
(t−) is zero. The upwards drift of ZN

1
(t−) can be written as

λp1
µ

K
|A (t−) | + (1 − µ ) λp1

∑
i ∈A (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } .

Suppose that A (t−) = ∅. By (14) and the fact that GN is connected, we know that either

|S (t−) | = 0 or |S (t−) | = N , contradicting (11). Thus, A (t−) , ∅. So, the upwards drift of ZN
1
(t−)

is nonzero. Therefore, by [20, Proposition 4.10], we have

P
(
ZN
1
(t ) = ZN

1
(t−) + 1 ��� Z

N
1
(t ) , ZN

1
(t−)

)
= 1.

Case 2: Suppose that there exists a link between S (t−) and B (t−). Thus,∑
i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈B (t−) } > 0. (15)

We consider two sub-cases:

Case 2-1: ∑
i ∈B (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } ≥
∑

i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈B (t−) };

Case 2-2: ∑
i ∈B (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } <
∑

i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈B (t−) } .
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Note that when GN is a regular graph, case 2-1 always holds. To see this, let GN be D-regular,
where D ≥ 1. We have∑

i ∈B (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } =
1

D

N∑
i=1

N∑
j=1

1{(i,j )∈EN }1{i ∈B (t−) }1{j ∈S (t−) }

=
∑

i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈B (t−) } .

Henceforth, we consider general doubly-stochastic graphs.

Case 2-1: Suppose that∑
i ∈B (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } ≥
∑

i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈B (t−) } . (16)

The downward drift in (13) can be bounded as

λ
∑

i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

K∑
k=2

1{
X N
j,k (t−)=1

}pk ≤ λp2
∑

i ∈B (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } .

Thus, the total rate of moving away from state ZN
1
(t−) is upper bounded as

λp1
µ

K
|A (t−) | + (1 − µ ) λp1

∑
i ∈A (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } + λ(p1 + p2)
∑

i ∈B (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } .

(17)

Thus, we have

P
(
ZN
1
(t ) = ZN

1
(t−) + 1 ��� Z

N
1
(t ) , ZN

1
(t−)

)
≥

Eq. (12)

Eq. (17)

≥
p1

p1 + p2
.

Case 2-2: Suppose that∑
i ∈B (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } <
∑

i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈B (t−) } . (18)

By Proposition 1, we have∑
i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈B (t−) } +
∑

i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈A (t−) }

=
∑

i ∈B (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } +
∑

i ∈A (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } .

Rearrange the terms, we get∑
i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈B (t−) } −
∑

i ∈B (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) }

=
∑

i ∈A (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } −
∑

i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈A (t−) } . (19)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 11. Publication date: March 2019.



11:22 Lili Su, Martin Zubeldia, and Nancy Lynch

Thus, we further bound the downward drift in (13) as

λp2
∑

i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈B (t−) } = λp2
∑

i ∈B (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) }

+ λp2
*..
,

∑
i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈B (t−) } −
∑

i ∈B (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) }
+//
-

(a)
= λp2

∑
i ∈B (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) }

+ λp2
*..
,

∑
i ∈A (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } −
∑

i ∈S (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈A (t−) }
+//
-

≤ λp2
*..
,

∑
i ∈B (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } +
∑

i ∈A (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) }
+//
-
,

where equality (a) follows from (19). Thus, the total rate of moving away from state is ZN
1
(t−) is

upper bounded as

λp1
µ

K
|A (t−) | + λ ((1 − µ ) p1 + p2)

∑
i ∈A (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } + λ(p1 + p2)
∑

i ∈B (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } .

(20)

So we get

P
(
ZN
1
(t ) = ZN

1
(t−) + 1 ��� Z

N
1
(t ) , ZN

1
(t−)

)
≥

Eq. (12)

Eq. (20)

.

Note that

µ

K
|A (t−) | =

µ

K

∑
i ∈A (t−)

1

|V N
i |

∑
j ∈V N

i

1 ≥
µ

K

∑
i ∈A (t−)

1

|V N
i |

∑
j ∈V N

i

1{j ∈S (t−) } ≥ 0. (21)

Thus,

P
(
ZN
1
(t ) = ZN

1
(t−) + 1 ��� Z

N
1
(t ) , ZN

1
(t−)

)
≥

µ
K p1 + (1 − µ ) p1

µ
K p1 + (1 − µ ) p1 + p2

.

Putting all the cases together, we conclude Lemma A.1. □

A.2 Proof of Lemma 4.3
For a given time tc and for each i = 1, · · · ,N , let

Li (tc ) = 1{X N
i,0 (0)=1 & agent i wakes up only once in [0, tc ] & Mi (tc ) = 1

} , (22)

whereMi (tc ) is the memory of agent i at time tc . Since an agent wakes up whenever its Poisson

clock ticks and the Poisson clocks are independent among agents, it holds that Li (tc ),∀ i = 1, · · · ,N
are independent. In addition, by symmetry, Li (tc ),∀ i = 1, · · · ,N are identically distributed. We

have

E [Li (tc )] ≥ (tcλ) exp(−tcλ)
µ

K
c0p1. (23)
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Choosing tc =
1

λ , by Hoeffding’s inequality, we have

P *
,

N∑
i=1

Li

(
1

λ

)
≤ (1 −C )

µc0p1
eK

N +
-
≤ exp

*
,
−2

(
Cµc0p1
eK

)
2

N +
-
.

In addition, we know ZN
1

(
1

λ

)
≥

∑N
i=1 Li

(
1

λ

)
. Thus,

P
(
ZN
1

(
1

λ

)
≤ (1 −C )

µc0p1
eK

N
)
≤ exp

*
,
−2

(
Cµc0p1
eK

)
2

N +
-
.

B PROOF OF THEOREM 4.6
The proof follows the same line of argument as in [11] and [6]. Since

E

sup

0≤t ≤T

K∑
k=0

(
XN
i,k (t ) −Xi,k (t )

)
2


≤

K∑
k=0

E

[
sup

0≤t ≤T

(
XN
i,k (t ) −Xi,k (t )

)
2

]
,

we just need to show that the right hand side converges to zero. For k ≥ 0, using that XN
i,k (0) =

Xi,k (0), we have

sup

0≤t ≤T

(
XN
i,k (t ) −Xi,k (t )

)
2

≤ 2 sup

0≤t ≤T

*..
,

∫
[0,K )×[0,t ]

(
1{X N

i,k (s
− )=0

}1{y∈CN ,+
i,k (s− )

} − 1{Xi,k (s− )=0}1
{
y∈C+i,k (s

− )
}
)
Ni (dy,ds )

+//
-

2

+ 2 sup

0≤t ≤T

*..
,

∫
[0,K )×[0,t ]

(
1{X N

i,k (s
− )=1

}1{y∈CN ,−
i,k (s− )

} − 1{Xi,k (s− )=1}1
{
y∈C−i,k (s

− )
}
)
Ni (dy,ds )

+//
-

2

≤ 4 sup

0≤t ≤T

*..
,

∫
[0,K )×[0,t ]

(
1{X N

i,k (s
− )=0

} − 1{Xi,k (s− )=0}

)
1{y∈CN ,+

i,k (s− )
}Ni (dy,ds )

+//
-

2

+ 4 sup

0≤t ≤T

*..
,

∫
[0,K )×[0,t ]

1{Xi,k (s− )=0}

(
1{y∈CN ,+

i,k (s− )
} − 1{y∈C+i,k (s− )

}
)
Ni (dy,ds )

+//
-

2

+ 4 sup

0≤t ≤T

*..
,

∫
[0,K )×[0,t ]

(
1{X N

i,k (s
− )=1

} − 1{Xi,k (s− )=1}

)
1{y∈CN ,−

i,k (s− )
}Ni (dy,ds )

+//
-

2

+ 4 sup

0≤t ≤T

*..
,

∫
[0,K )×[0,t ]

1{Xi,k (s− )=1}

(
1{y∈CN ,−

i,k (s− )
} − 1{y∈C−i,k (s− )

}
)
Ni (dy,ds )

+//
-

2

. (24)
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We bound the terms above individually. For the first one, we have

sup

0≤t ≤T

*..
,

∫
[0,K )×[0,t ]

(
1{X N

i,k (s
− )=0

} − 1{Xi,k (s− )=0}

)
1{y∈CN ,+

i,k (s )
}Ni (dy,ds )

+//
-

2

= sup

0≤t ≤T

*..
,

∫
[0,K )×[0,t ]

(
1{X N

i,k (s
− )=0

} − 1{Xi,k (s− )=0}

)
1{y∈CN ,+

i,k (s )
} (Ni (dy,ds ) − λdyds + λdyds )

+//
-

2

≤ 2 sup

0≤t ≤T

*..
,

∫
[0,K )×[0,t ]

(
1{X N

i,k (s
− )=0

} − 1{Xi,k (s− )=0}

)
1{y∈CN ,+

i,k (s− )
} (Ni (dy,ds ) − λdyds )

+//
-

2

+ 2λ2 sup

0≤t ≤T

*..
,

∫
[0,K )×[0,t ]

(
1{X N

i,k (s )=0
} − 1{Xi,k (s )=0}

)
1{y∈CN ,+

i,k (s )
}dyds

+//
-

2

. (25)

Note that the process∫
[0,K )×[0,t ]

(
1{X N

i,k (s
− )=0

} − 1{Xi,k (s− )=0}

)
1{y∈CN ,+

i,k (s− )
} (Ni (dy,ds ) − λdyds )

is a martingale (part 2 of Lemma 1.12 in [16]). Then, Doob’s inequality yields

E


sup

0≤t ≤T

*..
,

∫
[0,K )×[0,t ]

(
1{X N

i,k (s
− )=0

} − 1{Xi,k (s− )=0}

)
1{y∈CN ,+

i,k (s− )
} (Ni (dy,ds ) − λdyds )

+//
-

2

≤ 4E



*..
,

∫
[0,K )×[0,T ]

(
1{X N

i,k (s
− )=0

} − 1{Xi,k (s− )=0}

)
1{y∈CN ,+

i,k (s− )
} (Ni (dy,ds ) − λdyds )

+//
-

2

Furthermore, we have (part 3 of Lemma 1.12 in [16])

E



*..
,

∫
[0,K )×[0,T ]

(
1{X N

i,k (s
− )=0

} − 1{Xi,k (s− )=0}

)
1{y∈CN ,+

i,k (s− )
} (Ni (dy,ds ) − λdyds )

+//
-

2

= λE



∫
[0,K )×[0,T ]

((
1{X N

i,k (s )=0
} − 1{Xi,k (s )=0}

)
1{y∈CN ,+

i,k (s )
}
)
2

dyds



≤ λE

[∫ T

0

(
1{X N

i,k (s )=0
} − 1{Xi,k (s )=0}

)
2

ds

]

= λE

[∫ T

0

(
XN
i,k (s ) −Xi,k (s )

)
2

ds

]
,
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where the inequality comes from the fact that

∫ K
0

1{y∈CN ,+
i,k (s )

}dy ≤ 1 for all s ≥ 0. By Tonelli’s

theorem we have

E

[∫ T

0

(
XN
i,k (s ) −Xi,k (s )

)
2

ds

]
=

∫ T

0

E
[(
XN
i,k (s ) −Xi,k (s )

)
2

]
ds,

and thus the first term in Equation (25) is upper bounded by

8λ

∫ T

0

E
[(
XN
i,k (s ) −Xi,k (s )

)
2

]
ds . (26)

On the other hand, since

∫ K
0

1{y∈CN ,+
i,k (s )

}dy ≤ 1 for all s ≥ 0, we have

E


sup

0≤t ≤T

*..
,

∫
[0,K )×[0,t ]

(
1{X N

i,k (s )=0
} − 1{Xi,k (s )=0}

)
1{y∈CN ,+

i,k (s )
}dyds

+//
-

2

≤ E


sup

0≤t ≤T

*..
,

∫
[0,K )×[0,t ]

����1
{
X N
i,k (s )=0

} − 1{Xi,k (s )=0}
���� 1

{
y∈CN ,+

i,k (s )
}dyds

+//
-

2

≤ E

sup

0≤t ≤T

(∫ t

0

����1
{
X N
i,k (s )=0

} − 1{Xi,k (s )=0}
����ds

)
2
.

Furthermore, Jensen’s inequality yields

E

sup

0≤t ≤T

(∫ t

0

����1
{
X N
i,k (s )=0

} − 1{Xi,k (s )=0}
����ds

)
2
≤ E

[
sup

0≤t ≤T

∫ t

0

(
1{X N

i,k (s )=0
} − 1{Xi,k (s )=0}

)
2

ds

]

≤ E

[∫ T

0

(
XN
i,k (s ) −Xi,k (s )

)
2

ds

]

=

∫ T

0

E
[(
XN
i,k (s ) −Xi,k (s )

)
2

]
ds,

where we used Tonelli’s theorem in the last equality. Thus, the second term in Equation (25) is

upper bounded by

2λ2
∫ T

0

E
[(
XN
i,k (s ) −Xi,k (s )

)
2

]
ds .

Combining this with Equation (26), we obtain that the first term in Equation (24) is upper bounded

by

8(4 + λ)λ

∫ T

0

E
[(
XN
i,k (s ) −Xi,k (s )

)
2

]
ds

≤ 8(4 + λ)λ

∫ T

0

E

[
sup

0≤u≤s

(
XN
i,k (u) −Xi,k (u)

)
2

]
ds

≤ 8(4 + λ)λ

∫ T

0

max

i ∈[N ]

K∑
j=0

E

[
sup

0≤u≤s

(
XN
i,j (u) −Xi,j (u)

)
2

]
ds . (27)

Moreover, the same argument yields the same upper bound for the third term in Equation (24).
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For the fourth term in Equation (24), an analogous argument yields the upper bound

8(4 + λ)λ

∫ T

0

E



∫
[0,K )

(
1{y∈CN ,−

i,k (s )
} − 1{y∈C−i,k (s )

}
)
2

dy


ds . (28)

Let us define the sets

C̃−i,0 (t ) :=
K⋃
j=1


j − 1, j − 1 +

µpj

K
+ (1 − µ )

1

|V N
i |

∑
ℓ∈V N

i

pj1{Xℓ,j (t )=1}
+//
-
,

C̃−i,k (t ) :=
K⋃
j=1
j,k


j − 1, j − 1 +

1

|V N
i |

∑
ℓ∈V N

i

pj1{Xℓ,j (t )=1}
+//
-
, ∀k ≥ 1.

We have

E



∫
[0,K )

(
1{y∈CN ,−

i,k (s )
} − 1{y∈C−i,k (s )

}
)
2

dy



≤ E



∫
[0,K )

(
1{y∈CN ,−

i,k (s )
} − 1{y∈C̃−i,k (s )

} + 1{y∈C̃−i,k (s )
} − 1{y∈C−i,k (s )

}
)
2

dy



≤ 2E



∫
[0,K )

(
1{y∈CN ,−

i,k (s )
} − 1{y∈C̃−i,k (s )

}
)
2

dy +

∫
[0,K )

(
1{y∈C̃−i,k (s )

} − 1{y∈C−i,k (s )
}
)
2

dy


. (29)

For the first term, we have

E



∫
[0,K )

(
1{y∈CN ,−

i,k (s )
} − 1{y∈C̃−i,k (s )

}
)
2

dy


≤ E



K∑
j=1
j,k

1

|V N
i |

�������

|V N
i |∑

ℓ=1

pj

(
1{

X N
iℓ,j

(s )=1
} − 1{Xiℓ,j (s )=1

}
) �������


≤ E



K∑
j=1
j,k

1

|V N
i |

|V N
i |∑

ℓ=1

�����
1{

X N
iℓ,j

(s )=1
} − 1{Xiℓ,j (s )=1

}
�����



= E



K∑
j=1
j,k

1

|V N
i |

|V N
i |∑

ℓ=1

(
XN
iℓ,j (s ) −Xiℓ,j (s )

)
2



≤ max

i ∈[N ]

E



K∑
j=0

(
XN
i,j (s ) −Xi,j (s )

)
2


. (30)
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For the second term, we have

E



∫
[0,K )

(
1{y∈C̃−i,k (s )

} − 1{y∈C−i,k (s )
}
)
2

dy


= E



K∑
j=1
j,k

1

|V N
i |

�������

|V N
i |∑

ℓ=1

pj

(
1{Xiℓ,j (s )=1

} − P
(
Xi,j (s ) = 1

) ) �������


=

K∑
j=1
j,k

1

|V N
i |
E



�������

|V N
i |∑

ℓ=1

pj

(
1{Xiℓ,j (s )=1

} − P
(
Xi,j (s ) = 1

) ) �������


≤

K∑
j=1
j,k

1

|V N
i |
E



�������

|V N
i |∑

ℓ=1

(
1{Xiℓ,j (s )=1

} − P
(
Xi,j (s ) = 1

) ) �������

.

By Jensen’s inequality, we have

K∑
j=1
j,k

1

|V N
i |
E



�������

|V N
i |∑

ℓ=1

(
1{Xiℓ,j (s )=1

} − P
(
Xi,j (s ) = 1

) ) �������


≤

K∑
j=1
j,k

1

|V N
i |

*..
,
E



*.
,

|V N
i |∑

ℓ=1

(
1{Xiℓ,j (s )=1

} − P
(
Xi,j (s ) = 1

) )+/
-

2

+//
-

1

2

.

Since the initial conditions {Xi (0)}i ∈[N ] are i.i.d., {Xi (s )}i ∈[N ] are also i.i.d., for all s ≥ 0. Thus

K∑
j=1
j,k

1

|V N
i |

*..
,
E



*.
,

|V N
i |∑

ℓ=1

(
1{Xiℓ,j (s )=1

} − P
(
Xi,j (s ) = 1

) )+/
-

2

+//
-

1

2

=

K∑
j=1
j,k

1

|V N
i |

*.
,
E



|V N
i |∑

ℓ=1

(
1{Xiℓ,j (s )=1

} − P
(
Xi,j (s ) = 1

))2
+/
-

1

2

=

K∑
j=1
j,k

1

|V N
i |

(
|V N
i |E

[(
1{X1,j (s )=1} − P

(
X1,j (s ) = 1

))
2

]) 1

2

=

K∑
j=1
j,k

1√
|V N
i |

(
E
[(
1{X1,j (s )=1} − P

(
X1,j (s ) = 1

))
2

]) 1

2

≤
K − 1√
|V N
i |
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Combining this with equations (28)–(30) we obtain that the fourth term in Equation (24) is upper

bounded by

16(4 + λ)λ

∫ T

0

*..
,
max

i ∈[N ]

K∑
j=0

E

[(
XN
i,j (s ) −Xi,j (s )

)
2

]
+

K − 1√
|V N
i |

+//
-
ds

≤ 16(4 + λ)λ

∫ T

0

*..
,
max

i ∈[N ]

K∑
j=0

E

[
sup

0≤u≤s

(
XN
i,j (u) −Xi,j (u)

)
2

]
+

K − 1√
|V N
i |

+//
-
ds . (31)

Moreover, an analogous argument yields the upper bound

16(4 + λ)λ

∫ T

0

*..
,
max

i ∈[N ]

K∑
j=0

E

[
sup

0≤u≤s

(
XN
i,j (u) −Xi,j (u)

)
2

]
+

1√
|V N
i |

+//
-
ds (32)

for the second term in Equation (24).

Finally, combining equations (27), (31), and (32), and substituting in Equation (24), we have that

E

[
sup

0≤t ≤T

���X
N
i,k (t ) −Xi,k (t )

���
2

]

≤ 48(4 + λ)λ

∫ T

0

*.
,
max

i ∈[N ]

K∑
j=0

E

[
sup

0≤u≤s

(
XN
i,j (u) −Xi,j (u)

)
2

]
+/
-
ds +

16(4 + λ)λKT√
|V N
i |

,

for all k ≥ 0. It follows that

max

i ∈[N ]

K∑
k=0

E

[
sup

0≤t ≤T

���X
N
i,k (t ) −Xi,k (t )

���
2

]

≤ 48(4 + λ)λ(K + 1)

∫ T

0

*
,
max

i ∈[N ]

K∑
k=0

E

[
sup

0≤u≤s

(
XN
i,k (u) −Xi,k (u)

)
2

]
+
-
ds

+
16(4 + λ)λKT (K + 1)√

DN
min

.

Applying Gronwall’s inequality, we obtain

max

i ∈[N ]

K∑
k=0

E

[
sup

0≤t ≤T

���X
N
i,k (t ) −Xi,k (t )

���
2

]
≤

16(4 + λ)λKT (K + 1)√
DN
min

exp

(
48(4 + λ)λ(K + 1)T

)
,

which concludes the proof.

C PROOF OF THEOREM 4.8
Let us define the function η : [0,T ]→ [0,1]K+1, such that

ηk (t ) := E
[
X1,k (t )

]
, (33)
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for all t ∈ [0,T ], and for all k = 0, . . . ,K , where X1 (·) is as in (5), with initial distribution y. Recall
that

YN
k (t ) =

1

N

N∑
i=1

XN
i,k (t ),

for all k = 0, . . . ,N . Since

������

1

N

N∑
i=1

XN
i,k (t ) − ηk (t )

������
≤ 1,

we have

E


sup

0≤t ≤T

K∑
k=0

*
,

1

N

N∑
i=1

XN
i,k (t ) − ηk (t )

+
-

2
≤ E


sup

0≤t ≤T

K∑
k=0

������

1

N

N∑
i=1

XN
i,k (t ) − ηk (t )

������


.

Furthermore,

E

sup

0≤t ≤T

K∑
k=0

������

1

N

N∑
i=1

XN
i,k (t ) − ηk (t )

������



= E

sup

0≤t ≤T

K∑
k=0

������

1

N

N∑
i=1

XN
i,k (t ) −Xi,k (t ) +Xi,k (t ) − ηk (t )

������



≤ E

sup

0≤t ≤T

K∑
k=0

������

1

N

N∑
i=1

XN
i,k (t ) −Xi,k (t )

������
+

������

1

N

N∑
i=1

Xi,k (t ) − ηk (t )
������



≤ E

sup

0≤t ≤T

K∑
k=0

������

1

N

N∑
i=1

XN
i,k (t ) −Xi,k (t )

������


+ E


sup

0≤t ≤T

K∑
k=0

������

1

N

N∑
i=1

Xi,k (t ) − ηk (t )
������


. (34)

We first show that the second term converges to zero. Since

sup

0≤t ≤T

K∑
k=0

������

1

N

N∑
i=1

Xi,k (t ) − yk (t )
������
≤ 2,

the Dominated Convergence Theorem implies that

lim

N→∞
E

sup

0≤t ≤T

K∑
k=0

������

1

N

N∑
i=1

Xi,k (t ) − ηk (t )
������


= E


lim

N→∞
sup

0≤t ≤T

K∑
k=0

������

1

N

N∑
i=1

Xi,k (t ) − ηk (t )
������


.

Furthermore, since the initial conditions of the processes Xi (·) are i.i.d., then the whole processes

are also i.i.d. by construction. Combining this with the fact that

E
[
Xi,k (t )

]
= ηk (t ),

for all k = 0, . . . ,K , i ∈ [N ], and t ∈ [0,T ], and using standard arguments like in [17, 38], it can be

shown that

lim

N→∞
sup

0≤t ≤T

K∑
k=0

������

1

N

N∑
i=1

Xi,k (t ) − ηk (t )
������
= 0, a.s .,

and thus

E

lim

N→∞
sup

0≤t ≤T

K∑
k=0

������

1

N

N∑
i=1

Xi,k (t ) − ηk (t )
������


= 0.
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For the first term in Equation (34), we have

E

sup

0≤t ≤T

K∑
k=0

������

1

N

N∑
i=1

XN
i,k (t ) −Xi,k (t )

������


≤ E


sup

0≤t ≤T

1

N

N∑
i=1

K∑
k=0

���X
N
i,k (t ) −Xi,k (t )

���


≤
1

N

N∑
i=1

E

sup

0≤t ≤T

K∑
k=0

���X
N
i,k (t ) −Xi,k (t )

���


≤ max

i ∈[N ]

E

sup

0≤t ≤T

K∑
k=0

���X
N
i,k (t ) −Xi,k (t )

���

.

Since

���X
N
i,k (t ) −Xi,k (t )

��� =
(
XN
i,k (t ) −Xi,k (t )

)
2

,

and

lim

N→∞
DN
min
= ∞,

Theorem 4.6 implies that

lim

N→∞
max

i ∈[N ]

E

sup

0≤t ≤T

K∑
k=0

���X
N
i,k (t ) −Xi,k (t )

���

= 0,

and thus the first term in Equation (34) also converges to 0.

The rest of the proof is devoted to showing that η is the solution of the ODE defined by equations

(6) and (7), with initial condition q. Since ηk (0) = E
[
XN

1,k (0)
]
= qk , we have that

ηk (t ) = E
[
XN

1,k (0)
]
+ E



∫
[0,K )×[0,t ]

(
1{X1,k (s− )=0}1

{
y∈C+

1,k (s
− )
} − 1{X1,k (s− )=1}1

{
y∈C−

1,k (s
− )
}
)
N1 (dy,ds )



= qk + E



∫
[0,K )×[0,t ]

(
1{X1,k (s )=0}1

{
y∈C+

1,k (s )
} − 1{X1,k (s )=1}1

{
y∈C−

1,k (s )
}
)
λdyds



+ E



∫
[0,K )×[0,t ]

(
1{X1,k (s− )=0}1

{
y∈C+

1,k (s
− )
} − 1{X1,k (s− )=1}1

{
y∈C−

1,k (s
− )
}
) (
N1 (dy,ds ) − λdyds

) .
Since the term inside the second expectation is a martingale that starts at 0 (part 2 of Lemma 1.12

in [? ]), Doob’s optional stopping theorem implies that its expectation is equal to 0 as well. As a

result, we have that

ηk (t ) = qk + E



∫
[0,K )×[0,t ]

(
1{X1,k (s )=0}1

{
y∈C+

1,k (s )
} − 1{X1,k (s )=1}1

{
y∈C−

1,k (s )
}
)
λdyds



= qk + λ

∫
[0,K )×[0,t ]

(
E
[
1{X1,k (s )=0}1

{
y∈C+

1,k (s )
}
]
− E

[
1{X1,k (s )=1}1

{
y∈C−

1,k (s )
}
])

dyds,
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where in the last equality we used Fubini’s theorem. For k = 0, we have

η0 (t ) = q0 − λ

∫
[0,K )×[0,t ]

E
[
1{X1,0 (s )=1}

]
1{y∈C−

1,0 (s )
}dyds,

= q0 − λ

∫ t

0

η0 (s )
K∑
j=1

pj

( µ
K
+ (1 − µ )ηj (s )

)
ds . (35)

For k ≥ 1, we have

ηk (t ) = qk + λ

∫
[0,K )×[0,t ]

(
E
[(
1 − 1{X1,k (s )=1}

)
1{y∈C+

1,k (s )
}
]
− E

[
1{X1,k (s )=1}

]
1{y∈C−

1,k (s )
}
)
dyds,

= qk + λ

∫ t

0

pk

( µ
K
η0 (s ) +

(
1 − µη0 (s )

)
ηk (s )

)
− pkηk (s )

2 − ηk (s )
K∑
j=1
j,k

pjηj (s )ds

= qk + λ

∫ t

0

*.
,
(1 − µ )pkη0 (s ) +

K∑
j=1

(pk − pj )ηj (s )
+/
-
ηk (s ) + η0 (s )

µ

K
pkds, (36)

where the last equality comes from simple algebraic manipulation of the expressions. Combining

equations (35) and (36) we conclude that η(·) is the solution to the ODE defined by equations (6)

and (7), with initial condition q.

D PROOF OF THEOREM 4.10
We only prove the second case. The first one is just a special case of the proof.

We start by bounding the convergence rate ofy0. Our first characterizationmay be loose. However,

we can use this loose bound to more refined characterization of the convergence rate of y1. From
(6), we have

ẏ0 (t ) = −y0 (t )λ
µ

K

K∑
k ′=1

pk ′ − y0 (t )λ
K∑

k ′=1

(1 − µ )pk ′yk ′ (t )] ≤ −y0 (t )λ
µ

K

K∑
k ′=1

pk ′ . (37)

Then, Gronwall’s inequality implies

y0 (t ) ≤ y0 (0) exp


− *
,
λ
µ

K

K∑
k=1

pk+
-
t


. (38)

Although the bound in (38) is only for one entry of y, it can help us to get a convergence rate for

y1. Note that, at time

t̄c =
log

1

c

λ
µ
K

∑K
k=1 pk

,

we have

y0 (t̄c ) ≤ y0 (0)c .

By (7), we know that

y1 (t̄c ) ≥
y0 (0) (1 − c )

K
.
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On the other hand, from (6), we have

ẏ1 (t ) = y0 (t )λ
µ

K
p1 + λ *

,
(1 − µ )p1y0 (t ) +

K∑
k=1

(p1 − pk )yk (t )+
-
y1 (t )

≥ y0 (t )y1 (t )λ
µ

K
p1 + λ *

,
(1 − µ )p1y0 (t ) + (p1 − p2)

K∑
k=2

yk (t )+
-
y1 (t )

= λ *
,

(
1 − µ +

µ

K

)
p1y0 (t ) + (p1 − p2)

K∑
k=2

yk (t )+
-
y1 (t )

≥ λ ·min

{(
1 − µ +

µ

K

)
p1,p1 − p2

}
*
,
y0 (t ) +

K∑
k=2

yk (t )+
-
y1 (t )

= λ ·min

{(
1 − µ +

µ

K

)
p1,p1 − p2

}
(1 − y1 (t ))y1 (t ). (39)

Let us define

R ≜ λmin

{(
1 − µ +

µ

K

)
p1,p1 − p2

}
,

and let z1 be an auxiliary ODE equation such that

ż1 = R (1 − z1) z1, (40)

with

z1 (0) ≜ y1 (t̄c ) ≥
y0 (0) (1 − c )

K
. (41)

It can be shown that for all t ∈ [t̄c ,∞),

y1 (t̄c + t ) ≥ z1 (t ). (42)

Thus, the convergence rate of z1 provides a lower bound of the convergence rate of the original

ODE system. Note that z1 is an autonomous and separable. Thus, we have

z1 (t ) = 1 −
1

z1 (0)
1−z1 (0)

exp

(
Rt

)
+ 1

≥ 1 −
1

y0 (0) (1−c )
K−y0 (0) (1−c )

exp

(
Rt

)
+ 1
,

where the last inequality follows from (41). By (42), we know that y1 (t̄c + t ) ≥ z1 (t ). Therefore, we
conclude that

y1 (t ) ≥ 1 −
1

y0 (0) (1−c )
K−y0 (0) (1−c )

exp

[
R (t − tc )

]
+ 1
,

for all t ≥ t̄c .
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