
Distributed Degree Splitting, Edge Coloring, and Orientations ∗

Mohsen Ghaffari
MIT

ghaffari@mit.edu

Hsin-Hao Su
MIT

hsinhao@mit.edu

Abstract

We study a family of closely-related distributed graph
problems, which we call degree splitting, where roughly
speaking the objective is to partition (or orient) the
edges such that each node’s degree is split almost
uniformly. Our findings lead to answers for a number of
problems, a sampling of which includes:

• We present a poly log n round deterministic algo-
rithm for (2∆−1)·(1+o(1))-edge-coloring, where ∆
denotes the maximum degree. Modulo the 1 + o(1)
factor, this settles one of the long-standing open
problems of the area from the 1990’s (see e.g.
Panconesi and Srinivasan [PODC’92]). Indeed, a
weaker requirement of (2∆ − 1) · poly log ∆-edge-
coloring in poly log n rounds was asked for in the
4th open question in the Distributed Graph Color-
ing book by Barenboim and Elkin.

• We show that sinkless orientation—i.e., orienting
edges such that each node has at least one out-
going edge—on ∆-regular graphs can be solved in
O(log∆ log n) rounds randomized and in O(log∆ n)
rounds deterministically. These prove the corre-
sponding lower bounds by Brandt et al. [STOC’16]
and Chang, Kopelowitz, and Pettie [FOCS’16] to
be tight. Moreover, these show that sinkless orien-
tation exhibits an exponential separation between
its randomized and deterministic complexities, akin
to the results of Chang et al. for ∆-coloring ∆-
regular trees.

• We present a randomized O(log4 n) round algo-
rithm for orienting a-arboricity graphs with maxi-
mum out-degree a(1 + ε). This can be also turned
into a decomposition into a(1 + ε) forests when
a = Ω(log n) and into a(1 + ε) pseduo-forests when
a = o(log n). Obtaining an efficient distributed de-
composition into less than 2a forests was stated as
the 10th open problem in the book by Barenboim
and Elkin.

∗This research was supported by NSF Award Numbers CCF-
1461559 , CCF-0939370, CCF-1217506, and NSF BIO-1455983.
Furthermore, the first author was also supported in part by a
Simons award (no. 318723).

1 Introduction & Related Work

Graph symmetry breaking problems form one of the
central subareas of distributed algorithms, and they
have received extensive attention over the last three
decades. See the book by Barenboim and Elkin [BE13]
for an instructive survey. In this paper, we revisit some
of the classical problems of this area, as well as some
newer ones which have received attention only recently.
The common denominator of the problems we consider
is that they all revolve around a seemingly rudimen-
tary edge symmetry-breaking task, which we refer to
as degree-splitting, and discuss shortly. Degree splitting
turns out to capture a core challenge in several prob-
lems, and the techniques we develop for it allow us to
address a number of seemingly independent problems.

Throughout, we work with the standard distributed
model called LOCAL, due to Linial [Lin92]: The network
is abstracted as a graph G = (V,E). There is one
processor on each vertex, which initially knows only
its neighbors. Per round, each processor can send one
message of unbounded size to each of its neighbors.

1.1 Degree Splitting and Edge Coloring We
start our discussion of degree splitting with the clas-
sical edge-coloring problem, as these two problems have
a simple and clear relation. One basic version of degree
splitting is as follows:

Undirected Degree Splitting: Given a graph
with maximum degree ∆, color each edge red or
blue such that each node has at most ∆(1 + ε)/2
edges in each color, for a small ε ≥ 0.

To understand the connection to edge-coloring, imagine
an ideal world—though not always feasible—where ev-
erything is fair and one could always have a perfect split,
i.e., with ε = 0. Then, by a recursion of depth log ∆ of
degree-splittings, we would get to a setting where edges
are colored in 2log ∆ = ∆ colors, and each node has at
most 1 edge of each color. That is a proper ∆ edge-
coloring.

But that is too good to be true! Not every graph
admits a ∆-edge-coloring1, and not every graph admits
a perfect degree-split. Take K3 for instance. But almost
perfect splits exist, with ε = 2/∆. Here is one way
of getting them: Add a dummy node and connect it
to all odd degree nodes; then take an Eulerian tour
and color its edges red and blue in alternating order.
The same guarantee also follows from the Discrepancy
Theory result of Beck and Fiala [BF81]—which is in fact
far more general2.

We present distributed algorithms for computing
almost perfect degree-splits. As Eulerian tours cannot
be computed distributedly, our methods are vastly
different from the above. As formalized in Theorem 3.3,
we present a randomized algorithm that achieves an
almost-perfect split with per-color degree at most ∆/2+
1 in poly(∆ log n) rounds. However, as far as we know,
this result itself does not lead to an improvement in any
of the well-studied distributed problems. Instead, as
formalized in Theorem 3.1, we present a deterministic
algorithm that in poly log n rounds produces a degree-
split with ε = 1/ logc n, for a desirably large constant
c ≥ 2, in graphs of max-degree ∆ = Ω(poly log n). This
immediately leads to an improvement for edge-coloring:

Theorem 1.1. There is a deterministic poly log n-
round algorithm for (2∆− 1)(1 + o(1))-edge-coloring.

As Panconesi and Rizzi [PR01] state, four key prob-
lems of the area from the 1990’s were to find poly log n-
round deterministic algorithms for Maximal Indepen-
dent Set, (∆ + 1)-vertex-coloring, (2∆ − 1)-edge-
coloring, and Maximal Matching. To this day, only
the Maximal Matching problem is resolved, due to a
breakthrough of Hanckowiak, Karonski, and Panconesi
[HKP98,HKP01]. Theorem 1.1 almost settles the edge-
coloring problem, modulo the (1 + o(1)) factor. The
previously best-known number of required colors were

∆ ·2O(log ∆
log log ∆), due to Barenboim and Elkin [BE11], and

O(∆ log n), due to Czygrinow et al. [CHK01]. We in fact
present a simpler proof of the former via degree split-
tings in Section 3.1. As stated in the 4th open problem
of the Distributed Graph Coloring book by Barenboim
and Elkin [BE13, Section 11], even ∆ ·poly(log ∆)-edge-
coloring in poly log n rounds remained open.

In Section 3.5, we explain that mixing Theorem 1.1
with some other ideas also leads to a fast randomized
(2∆ − 1)(2 + o(1))-edge-coloring in O(poly(log log n))
rounds.

1Although, a (∆ + 1)-edge-coloring is guaranteed to always
exist, by Vizing’s theorem [Viz64].

2It follows from Beck-Fiala’s theorem that hypergraphs of rank
t—i.e., where each hyperedge has at most t vertices—admit a red-
blue hyperedge-coloring where each node has at most ∆/2 + t− 1
edges in each color.

1.2 Degree Splitting and Edge Orientations We
also consider the following natural variant of degree-
splitting:

Directed Degree Splitting: Given a graph with
maximum degree ∆, orient each edge such that
each node has in-degree and out-degree at most
(1 + ε)∆/2, for a small ε ≥ 0.

We note that in directed splitting, even in graphs
which admit perfect splits, computing them might be
unavoidably time-consuming—e.g., perfectly splitting
an n-node cycle would require Ω(n) rounds.

The directed degree splitting relates closely to Eu-
lerian Orientations, as the latter requires an orienta-
tion such that each node has the same in-degree and
out-degree. We note that on bipartite graphs (with the
bi-partition given), the directed and undirected degree-
slitting problems are equivalent. However, we are not
aware of a formal reduction between them in the general
case.

Despite that, we use more or less the same method-
ology as that of our undirected degree splitting to find
almost perfect directed splits: As formalized in Corol-
lary 4.1, we get an existentially best possible guarantee
of per-node out-degree and in-degree at most ∆/2 + 1
in poly(∆ log n) rounds randomized. More importantly,
as formalized in Theorem 4.1, we get a determinis-
tic algorithm that computes a degree splitting with
ε = 1/ logc n, for a desirably large constant c ≥ 2, in
graphs of max-degree ∆ = Ω(poly log n) in poly log n
rounds.

Sinkless Orientation and Its Refinements: One
related problem which has received attention recently
is sinkless orientation, where the objective is to orient
edges of a ∆-regular graph such that each node has out-
degree at least 1. Note that this is clearly a much
weaker requirement than that of the directed degree
splitting problem. Recently, Brandt et al. [BFH+16]
gave an elegant Ω(log∆ log n) round lower bound for
this problem, which was then extended by Chang et al.
[CKP16] to an Ω(log∆ n) lower bound for deterministic
algorithms. For this weaker orientation problem, we can
achieve much better round complexities, which match
the respective lower bounds.

Theorem 1.2. There is a randomized O(log∆ log n)-
round algorithm which solves sinkless orientation in all
∆-regular graphs, for ∆ ≥ 3, and in fact all graphs of
minimum degree at least ∆, with high probability. More-
over, the same problem has a deterministic O(log∆ n)-
round algorithm.

We can in fact guarantee a more balanced split in
almost the same running time: We show how to find

an orientation with per-node in-degree and out-degree
at most 5∆/6—that is, a directed degree split with ε =
2/3—in O(log log n) rounds randomized and O(log n)
rounds deterministically.

Brandt et al. [BFH+16] used sinkless orientation to
prove an Ω(log∆ log n) round lower bound on LOCAL-
algorithms for Lovasz Local Lemma (LLL). Since LLL
can provide much finer degree splits, studying these
stronger degree-splits might expose higher lower bounds
for LLL. Moreover, Chang et al. [CKP16] recently pre-
sented the first exponential separation between ran-
domized and deterministic distributed complexities, by
showing that ∆-vertex-coloring ∆-regular trees requires
Θ(log∆ log n) rounds randomized and Θ(log∆ n) rounds
deterministically. Theorem 1.2, in conjunction with the
aforementioned lower bounds, exhibits the same expo-
nential separation on sinkless orientation.

Low Out-Degree Orientations and Nash-
Williams Decompositions: An alternative way of
viewing the directed degree splitting problem is as
follows: it asks for an orientation that achieves a
maximum out-degree within a 1 + ε factor of what
is necessary, given the maximum degree. In this
regard, one can ask for a stronger guarantee: find an
orientation with maximum out-degree a(1 + ε), where a
is the arboricity of the graph. Clearly any orientation
of any graph with arboricity a admits an orientation
with out-degree at least a. Our methods allow us to
achieve such an approximation:

Theorem 1.3. There is a randomized O(poly log n/ε)-
round algorithm which orients a-arboricity graphs with
maximum out-degree at most a(1+ε). This is equivalent
with a decomposition into a(1 + ε) pseudo-forests. If
a = Ω(log n), we can turn this into a decomposition
into a(1 + ε) forests.

See Theorem 4.2 and Lemma 4.8 for the formal state-
ments. We note that efficient distributed orientation
with out-degree less than 2a had remained open. The
best previously known results were as follows: an orien-
tation with out-degree at most 2a in O(a log n) rounds
and an orientation with out-degree at most (2 + ε)a
in O(log n) rounds, both due to Barenboim and Elkin
[BE10]. The same authors state the closely-related
problem of efficient distributed decomposition into less
than 2a forests as the 10th open problem in their book
[BE13, Section 11].

1.3 Other Related Work Related Work on De-
gree Splitting: Degree splitting was first considered
by Israeli and Shiloach [IS86] in the parallel algorithms
model—a.k.a. PRAM—as a subroutine for computing
a maximal matching. Their method for computing the
split relies on finding an Eulerian cycle of the graph

and 2-coloring its edges in alternating order. We note
that a number of other work in the PRAM model,
e.g., [KS87], also used degree splittings but all relying on
Eulerian cycles. Unfortunately, Eulerian cycles cannot
be computed using distributed algorithms (with sublin-
ear complexity). Hence, these methods cannot extend
to our setting. Our approach is quite different, and it is
morally much closer to the classic ideas of augmenting
paths and blocking-flows in the maximum flow prob-
lem [EK72,Din].

However, there is an ingenious line of work that
comes close to distributedly computing degree splits.
Inspired by the parallel maximal matching algorithm of
Israeli and Shiloach [IS86], Hanckowiak, Karonski, and
Panconesi [HKP98, HKP01] used a clever relaxation of
the degree splitting to distributedly compute a maximal
matching in poly log n rounds deterministically. Their
relaxation allows a small but non-negligible fraction δ >
0 of nodes to have an unfair split, even possibly having
all of their edges in one color. This relaxation is indeed
essential to their method. While for Maximal Matching
this relaxation is good enough, it becomes too costly
for the other problems, e.g., the number of required
colors in edge-coloring blows up by an O(log n) factor,
as Czygrinow et al. [CHK01] show. In this regard, one
can view our degree-splitting results as a qualitative
improvement on those of [HKP98, HKP01], as we do
not need the relaxation of admitting some unbalanced
nodes. However, we pay for this refinement and our
round-complexity ends up being a higher poly log n.

Related Work on Edge Coloring: Edge coloring
is one of the classical distributed problems and it has
been studied extensively over the years. There is a
clear dichotomy between randomized and deterministic
algorithms for this problem, and we review the results
in these two categories.

First, we review the deterministic results. Pan-
conesi and Rizzi provide an O(∆+log∗ n) algorithm for
(2∆ − 1)-edge-coloring. This complexity was recently
improved by Barenboim [Bar15] to O(∆3/4 log ∆ +

log∗ n) and subsequently to O(∆1/2 log5/2 ∆ + log∗ n)
by Fraigniaud, Heinrich, and Kosowski [FHK16]. Both
these results work indeed for the harder problem of
(∆ + 1)-vertex coloring. However, these complexities
can be much larger than poly log n. The best known
number of required colors for poly log n-round algo-

rithms remained at ∆ · 2O(log ∆
log log ∆), due to Barenboim

and Elkin [BE11], and O(∆ log n), due to Czygrinow
et al. [CHK01]. See also [BE13, Chapter 8 & Chapter
11.1].

Now, we review the randomized results. The clas-
sical O(log n) round randomized Maximal Independent
Set algorithm of Luby [Lub86] leads to a randomized
O(log n)-round (2∆ − 1)-edge coloring. This round

complexity was improved to O(log ∆) + eO(
√

log logn) by
Barenboim et al. [BEPS16]. This was further improved

to just 2O(
√

log logn) by Elkin, Pettie, and Su [EPS15].
In the randomized world, there are also algorithms for
finding colorings with smaller number of colors. Pan-
conesi and Srinivasan [PS97] give the first such result.
Dubhashi, Grable and Panconesi [DGP98] later improve
this to (1 + ε)∆-edge-coloring in O(log n) rounds, when

∆ = Ω(log1+Ω(1) n). This was later refined and ex-
tended to graphs of degree ∆ ≥ C0, for a constant C0

depending on ε. The final work in this track is by Elkin,
Pettie, and Su [EPS15] which improves the complexity

to O(log∗∆ ·max{1, logn
∆1−o(1) }).

Related Work on Orientations: Distributed low
out-degree orientation of low-arboricity graphs was first
studied by Barenboim et al. [BE10] and the same re-
sults have been used in a few subsequent works. This
orientation was then turned into a forest decomposition
which subsequently lead to sublinear-time algorithms
for maximal independent set, vertex coloring, edge col-
oring and maximal matching in graphs of low arboricity.
See [BE13, Chapter 4 & Chapter 11.3]. Sinkless orienta-
tion was recently introduced by Brandt et al. [BFH+16]
and studied also by Chang et al. [CKP16].

1.4 Our General Method In a Nutshell Our gen-
eral method follows a natural idea and it is inspired by
classical concepts from the maximum flow problem. Al-
though, as we soon see, to have an efficient algorithm,
particularly an efficient distributed algorithm and espe-
cially a deterministic one, various aspects require novel
techniques.

Let us consider directed degree splitting as our run-
ning example in discussing the methodology. Consider
an arbitrary orientation. In this orientation, some nodes
might have an out-degree (much) larger than in-degree
and some nodes might have a larger in-degree than out-
degree. Virtually, we can think of out-degree as the
commodity of our flow. This means that the first group
have excess flow and the second group have flow defi-
ciency. Naturally, we wish to transfer some flow from
the first group to the second to even things out. For
instance, if we find a directed path from the first group
to the second—i.e. what we usually call an augmenting
path—we can flip the direction of its edges, improving
the degrees on the two endpoints, but keeping them un-
changed in the middle nodes. We would continue doing
this until each node has about the same out-degree and
in-degree, at which point we have found our almost-
perfect degree split.

Finding an efficient distributed algorithm following
this idea necessitates a number of considerations and
novel techniques. First, we need the augmenting paths
to be short, as otherwise we cannot even find them dis-

tributedly. That issue is not hard, because as we will see
imperfect splits have relatively short augmenting paths.
Second, in a fast distributed algorithm, we cannot af-
ford to fix imbalanced nodes by using augmenting paths
one by one; we instead need to have many “disjoint”
short augmenting paths. Third, we need to find them
fast distributedly. These second and third issues are
much more crucial. We will show that imperfect splits
in fact have large sets of “disjoint” augmenting-paths.
However, finding such a set distributedly, and especially
doing it deterministically, will require quite some effort.
We leave those discussions to the technical sections.

Finally, we note that in some problems, we desire
much faster solutions, e.g., an O(log∆ log n) round
complexity in sinkless orientation. In these cases, our
general methodology provides some algorithm but not
quite matching the lower bound. There, we deviate
slightly from this flow augmenting mentality and use
some other ideas to optimize the complexity.

2 Sinkless Orientation

In this section, we present a simple O(log∆ log n) round
randomized algorithm for sinkless orientation in ∆-
regular graphs. This matches the Ω(log∆ log n) lower
bound presented by Brandt et al. [BFH+16]. As a com-
ponent of this result, we also present anO(log∆ n) round
deterministic algorithm for the same problem, which it-
self proves the corresponding Ω(log∆ n) lower bound of
Chang et al. [CKP16] to be tight. These results prove
Theorem 1.2. We first present an algorithm that works
assuming ∆ > 500. The extension to all cases with
∆ ≥ 3, to cases with irregularity, and also to a setting
where we desire a more balanced split of in-degree and
out-degree, are desribed in Section 2.2.

2.1 Sinkless Orientation for ∆-regular graphs
with ∆ > 500 Notice that if ∆ = Ω(log n), orienting
each edge randomly ensures that all nodes have at least
Θ(∆) outgoing edges, with high probability, which is a
sinkless orientation. The far more interesting case of
the problem is when ∆ = O(log n), and this is the focus
of this section.

The algorithm is composed of two parts: a random-
ized part, which shatters the graph thus leaving only
small components of polylogn size, and then a deter-
ministic part, which takes care of these remaining small
components. The random part will take O(1) rounds
and then the deterministic part will solve these remain-
ing polylogn-size components in O(log∆ log n) rounds,
hence leading to the overall randomized complexity of
O(log∆ log n). The deterministic part itself is a full
solution for n-node graphs with complexity O(log∆ n).
Next, we present these two parts.

2.1.1 The Randomized Part of the Algorithm
(Pre-Shattering) The randomized algorithm is quite
simple and it works as follow. Before presenting the
algorithm, we note that in the course or the algorithm,
we will allow half-edges, which are edges with only one
endpoint (which needs the edge to be outgoing).

Algorithm 1 Randomized Orientation

Mark each edge with probability 1
4
.

For each marked edge, orient it randomly with probability
1/2 for each direction.
For each node v, mark v as a bad node of the following
types according to these rules:

• Type I. If v has more than ∆/2 marked edges
incident to it.

• Type II. If v is not Type I but it has at least one
neighbor of Type I.

• Type III. If v is not Type I or Type II but it has no
outgoing marked edges.

Unmark all the edges incident to Type I nodes.
Orient unmarked edges which both of their endpoints are
good nodes arbitrarily.
Consider unmarked edges with exactly one good endpoint
as a half-edge only attached to the bad-node.
Run the deterministic algorithm on the components in-
duced by the bad nodes and their edges or half-edges.

Fact 2.1. After Algorithm 1, each node is incident to
at least ∆/2 unmarked edges.

Proof. Node of type I get all their ∆ edges unmarked.
Each other node has at most ∆/2 marked edges incident
to it, by definition.

Fact 2.2. After Algorithm 1, if the unmarked edges
are oriented in a way such that all bad nodes have at
least one outgoing unmarked edge, then the orientation
is sinkless.

Proof. If a node is bad, then by the assumption it will
have at least one outgoing unmarked edge. Otherwise,
it must have at least one outgoing marked edge by the
definition of Type III.

In Section 2.2.1, we show the deterministic algo-
rithm can be used orient the unmarked edges if the
number of unmarked edges incident to each node is be-
tween ∆/2 and ∆. In the following we show that with
high probability, each connected component induced by
bad nodes has size O(∆2 log n) = poly log n. Therefore,
the deterministic algorithm solves these remaining com-
ponents, where each remaining node has at least ∆/2
edges or half-edges, in O(log∆ log n) rounds.

Let TI(v) and TIII(v) denote the events that v is
Type I or Type III, respectively.

Lemma 2.1. For any v ∈ G, Pr(TI(v)) ≤ exp(−∆/12).

Proof. Let X denote the number of edges incident to
v. We have E[X] = ∆/4. By a Chernoff Bound,
Pr(X > ∆/2) ≤ exp(−∆/12).

Lemma 2.2. For any v ∈ G, Pr(TIII(v)) ≤
exp(−∆/8).

Proof. The probability that an edge is marked and
oriented toward v is 1/8. Therefore, the probability
that no edges are marked and oriented toward v is
(1− 1/8)∆ ≤ exp(−∆/8).

Let dist(u, v) denote the distance between u and
v in G. If dist(u, v) ≥ 2, then it is clearly that the
event TI(u) (or TIII(u)) and TI(v) (or TIII(v)) are
independent. Let V ′ be the set of nodes that are Type I
or Type III. Define dist(X, v) = minu∈X dist(u, v). Let
E2,4 = {uv | 2 ≤ dist(u, v) ≤ 4} denote the set of edges
whose endpoints have distance between 2 and 4. Let
Nk(u) = {x | dist(x, u) ≤ k} be the set of nodes within
distance k to u.

Lemma 2.3. Let C be a connected component induced
by the bad nodes. Then, there exists S ⊆ V ′ ∩ C such
that |S| ≥ |C|/∆2 and (S,E2,4) is connected.

Proof. We will construct S step by step. First notice
that V ′ ∩ C must be non-empty, since a Type II node
must be adjacent to a Type I node, which must be
in V ′ ∩ C. Let u ∈ V ′ ∩ C. Initially, Let S = {u}.
Now we will show how to extend S by adding one node
z ∈ (V ′∩C)\S into it provided that |S| < |C|/∆2, and
z is connected to some node in S with an edge in E2,4.

Suppose that |S| < |C|/∆2, then there exists a
node w in C \ S such that dist(S,w) = 3, since the
2-neighborhood of S can only span at most |S|(1 + ∆ +
∆ · (∆− 1)) ≤ |S|∆2 nodes and C is connected. If w is
Type I or Type III, then w ∈ V ′ ∩ C and we can add
w to S. Otherwise, it is Type II, which implies it has a
neighbor z of Type I. We must have 2 ≤ dist(u, z) ≤ 4.
Thus, we can add z to S.

Therefore, given a connected component C induced
the bad nodes, we can find a tree T in (V ′∩C,E2,4) such
that |T | ≥ |C|/∆2. Next we show that any sufficient
large tree are not likely to occur, which implies no big
bad components exist.

Lemma 2.4. The probability that any tree T with
T ⊆ (V ′, E2,4) and |T | = Ω(log n) exists is at most
1/poly(n).

Proof. Let T be any tree such that T ⊆ (V ′, E2,4)
and |T | = t. The probability that a node in T
is marked as Type I and Type III (thus in V ′) is

at most exp(−∆/12) by Lemma 2.1 and Lemma 2.2.
Therefore, the probability that T occurs is at most
exp(−t · ∆/12), since the events TI(u) (or TIII(u))
are independent among the nodes u ∈ T . The total
possible number of such trees is at most 4tn(∆4)t−1.
By union bounding the possible trees, the probability
that any tree in (V ′, E2,4) of size t occur is at most
n · (4∆4 · exp(−∆/12))t. For ∆ ≥ 500, this is at
most n · e−t. Thus, the probability that any tree
in (V ′, E2,4) of size at least 10 logn exists is at most
(1/n9) ·

∑∞
i=0 e

−i = 1/ poly(n).

Corollary 2.1. The probability that any connected
component induced by the bad nodes has size of
Ω(∆2 log n) is at most 1/ poly(n).

Proof. If there exists a bad connected component C
with size Ω(∆2 log n), then by Lemma 2.3, there exists
S ⊂ V ′ ∩ C such that |S| = Ω(log n) and (S,E2,4)
is connected. Therefore, a tree T in (V ′, E2,4) occurs
with |T | = Ω(logn), which happens with probability
1/poly(n) by Lemma 2.4.

2.2 Generalization to Irregular Graphs with
Min-Degree d ≥ 3, and Refinements In the pre-
vious subsection, we presented an O(log∆ log n) sin-
kless orientation algorithm for ∆-regular graphs with
∆ > 500. Here, we extend the result to a irregular
graphs with min-degree d ≥ 3, with round complexity
becoming O(logd log n). We also show how to achieve
a more refined directed degree split in almost the same
running time.

First let us deal with irregular graphs with min-
degree d > 500.

Lemma 2.5. There is a randomized algorithm that com-
putes a sinkless orientation of graphs of minimum degree
d ≥ 500 in O(logd log n) rounds.

Proof. We transform graph G into a d-regular structure
H, which is essentially a graph but allowing edges with
only one endpoint, which we call half-edges. For each
node v ∈ G with degree d′ > d, remove v and instead
add bd′/dc copy-nodes, assign d of edges of v to each of
these copy-nodes, and mark the remaining edges. We
do not need those marked edges to be oriented outwards
from v (or its copy-nodes). If an edge is marked
by both of its end-points, drop it. Otherwise, think
of it simply as a half-edge, having only one endpoint
which may wish to have this edge outgoing. Now, the
graph is transformed into a new structure where each
node is incident on exactly d edges or half-edges. A
sinkless orientation of this structure can be compute
using Lemma 2.8.

We now explain how to extend the algorithm to cases
where min-degree is d ∈ [3, 500].

Lemma 2.6. There is a randomized algorithm that com-
putes a sinkless orientation of graphs of minimum degree
d ∈ [3, 500] in O(log log n) rounds.

Proof. Let c be a small constant such that (d− 1)c/2 >
500. First, we find an orientation for all edges which are
in cycles of length up to 3c, in O(1) rounds. This can
be done easily using the method of Section 2.2.1. This
already takes care of giving an outgoing edge to nodes
which are incident on these edges. We next handle the
rest of the nodes.

By means of the method of the previous paragraph,
we can assume without loss of generality that the graph
is d-regular, albeit possibly having half-edges. Note that
this step cannot introduce a cycle of length less than 3c.
Now, compute a Maximal c-Independent Set S, on the
graph while ignoring the half-edges. This can be done
in O(dc + log∗ n) = O(log∗ n) rounds using standard
algorithms. Then, cluster nodes by letting each node
join the cluster of the closest node in S, while breaking
ties arbitrarily. Since we have no cycle of length less
than 3c, each cluster is a tree of depth at least c/2
and with at least (d − 1)c/2 > 500 edges connecting to
other clusters, and each two clusters are connected by at
most 1 edge. We now think of contracting each cluster
into one node. Communications on this contracted
graph can be simulated with a constant running time
overhead as each cluster has constant diameter. Since
each two clusters are connected with at most 1 edge
and as each cluster has at least 500 edges connecting
to other clusters, the graph after this contraction is a
simple graph with each node incident on at least 500
edges or half-edges. We can now orient this graph
using the method of Lemma 2.5 in O(log log n) rounds.
At the end, each contracted cluster has at least one
outgoing edge. We can then orient the edges inside the
cluster towards this outgoing edge, hence ensuring that
all other nodes of the cluster also have out-degree at
least 1.

Lemma 2.7. There is a randomized algorithm that,
for a desirably small constant δ > 0 and sufficiently
large constant C, computes an orientation of ∆-regular
graphs with ∆ ≥ C in O(log∆ log n) rounds which guar-
antees a lower bound of (1/6+δ)∆ on the in-degree and
out-degree of each node, with high probability3.

Proof. We here simply sketch the necessary changes for
obtaining this result. In the randomized algorithm of
Section 2.1.1, mark each edge with probability 1/3− δ,
for a small constant δ, and redefine type I bad nodes as
those with more than ∆/3 marked edges. Also, redefine

3We have not tried to optimize the constants or to extend the
result to irregular graphs. We believe that both should be possible
without too much more effort.

type III bad nodes to be those which are not type I
or type II but still have less than (1/6 − δ)∆ incoming
marked edges or less than (1/6− δ)∆ outgoing marked
edges. It is easy to go over the analysis of this algorithm
and see that bad components will induce components of
size at most poly log n, with high probability. Moreover,
nodes that are not bad (and thus also not bad type III)
already have at least (1/6− δ)∆ incoming edges and at
least (1/6− δ)∆ outgoing edges.

Now we turn to the deterministic algorithm that
is to be run on these bad nodes, each of which is
incident on at least 2∆/3 unmarked edges. Now, replace
each of these bad nodes v with d∆/6e copy-nodes, and
assign 4 edges of v to each of its copies. Leave the
remaining edges as half-edges, connected only to the
other endpoint. Now we are dealing with a graph H
where each node is incident on 4 edges or half-edges.
We will compute a sinkless and sourceless orientation
of H, hence ensuring that each node of G has at least
(1/6 − δ)∆ incoming edges and at least (1/6 − δ)∆
outgoing edges.

First, compute a sinkless orientation of H using
the deterministic algorithm of Section 2.2.1. It is easy
to see that in this orientation, all nodes have at least
one outgoing edge and at least one incoming edge,
except for long nodes which are at maximal distance
from short nodes. These long nodes then have only
an outgoing edge, but the rest of their edges were
oriented arbitrarily. We fix these arbitrary orientations
to give these long-nodes also at least one outgoing edge,
hence making the overall orientation of H sinkless and
sourceless. Let us call those long nodes at maximal
distance from short nodes leaves. Each leaf v has one
of its edges, one of those that go closer to short nodes,
oriented outwards. If v has any other edge to a non-
leaf node, orient that edge inwards, hence giving v also
an incoming edge and solving its case. Each remaining
leaf v has 4 − 1 = 3 edges, which are either half-edges,
or they connect to non-leaf nodes. Take the graph
induced by the remaining leaves and these remaining
edges, orient it sinkless by repeating the deterministic
orientation algorithm, and then flip all of these edges.
That ensures each of these remaining leaves to also have
at least one incoming edge, hence giving us the desired
sinkless and sourceless orientation of H.

2.2.1 The Deterministic Part of the Algorithm
(Post-Shattering) Consider an N -node graph where
each node is incident on at least d ≥ 3 edges or half-
edges. We explain how to find a sinkless orientation of
this graph in O(logdN) rounds deterministically. Note
that when plugging this subroutine in the algorithm of
the previous section, we will have N = poly log n and
d ≥ ∆/2. Hence, this deterministic piece would work in
O(log∆ log n) rounds.

The Deterministic Algorithm: Orient half-edges
outwards from their single endpoint. For the edges, do
as follows: Uniquely identify cycles by appending the ids
of the related edges. For each cycle, define its preferred
orientation by taking the smallest id edge from the lower
id node to the higher id node, and then following this
direction through the whole cycle. Call a cycle short if
it has at most 2 logd−1N + 1 edges. Call an edge short
if it is in at least one short cycle. First, orient each
short edge e consistent with the preferred orientation of
the smallest id short cycle that contains e. Call a node
short if it is incident on at least one short edge, or on a
half-edge, and long otherwise. Then, for each long node
v, let u be one neighbor of v who is closer to short nodes
(compared to v). Then orient this edge as v → u.

Lemma 2.8. For any d ≥ 3, this deterministic algo-
rithm works in O(logdN) rounds on any N -node graph
where each node is incident on at least d edges or half-
edges, and it orients these edges or half-edges such that
each node has out-degree at least 1.

Proof. Regarding the time complexity, notice that each
half-edge is oriented immediately and each short edge
can find its orientation in O(logd−1N) = O(logdN)
rounds. Hence, in O(logd−1N) rounds, we have all short
edges oriented. We argue that orienting edges for long
nodes can also be done in O(logd−1N) rounds because
each such node has distance at most O(logd−1N) to
some short node. More concretely, we argue that each
node has either a half-edge or a short cycle within its
logd−1N neighborhood. This is true because otherwise,
the BFS tree of depth logd−1N rooted at this node
would have minimum degree d and depth logd−1N .
Such a tree necessarily has more than N nodes, which
would be a contradiction.

We next argue that each node has out-degree at
least 1. The argument for long nodes is easy as they
are oriented towards the short cycles. The argument
for nodes incident on half-edges is also trivial. The key
part is to argue that in the orientation of short edges,
despite the fact that different short edges act according
to possibly different short cycles, each short node has
out-degree at least 1. For that, consider a short node v,
consider all the short edges incident on it, and let C be
the smallest id short cycle which contains at least one of
these edges. Suppose that C has edges e1 = (v, u1) and
e2 = (v, u2) incident on v. If e1 is oriented as v → u1,
we are done. Suppose e1 is oriented as u1 → v. We
claim that then it must be the case that e2 is oriented
as v → u2, which would finish the proof. This claim
is true because the only reason for e2 to be oriented in
the opposite direction is if e2 is a part of short cycle C ′

which has an id smaller than that of C. However, that
would be in contradiction with the choice of C.

3 Edge-Coloring via Undirected Degree
Splitting

In this section, we explain a method for (2∆− 1) · (1 +
o(1))-edge coloring graphs with maximum degree ∆,
based on degree splitting. As a formalized restatement
of Theorem 1.1, we get:

Theorem 3.1. There is a deterministic distributed al-
gorithm that computes a (2 + ε)∆-edge coloring of any
graph with maximum degree ∆, in O(log11 n/ε3) rounds.

We note that, coarser degree splittings can also be
used to obtain much simpler algorithms for edge color-
ing. Particularly, in Section 3.1, we explain a much sim-
pler method for edge-coloring that matches the bounds
of Barenboim and Elkin [BE11]. However, to get Theo-
rem 3.1, we need to have an almost perfect split, partic-
ularly the loss in each degree-splitting iteration should
be at most a 1+1/poly log n. This would allow us to say
that even after log n iterations, the overall loss is neg-
ligible. In Section 3.2 and Section 3.3, we explain how
to achieve this fine degree splitting. We first explain
in Section 3.2 how to split graphs of maximum degree
at most poly log n into two spanning subgraphs, each
with maximum degree almost half the previous maxi-
mum degree. Then, in Section 3.3, we explain how to
lift this solution to graphs of higher degree, and how
to use that to obtain the claimed edge-coloring result.
In Section 3.4, we give a randomized algorithm that is
capable of achieving the best possible split. Finally, in
Section 3.5, we show how to combine the graph shatter-
ing technique and our deterministic algorithm to obtain
a faster randomized edge-coloring algorithm.

3.1 Edge-Coloring via Coarse-grained Degree
Splitting In this subsection, we explain a deterministic
distributed edge-coloring algorithm based on a trivial
and crude degree splitting. Interestingly, this simple
approach already matches the state of art for very fast
algorithms. More concretely, it provides a considerably
simpler method for edge-coloring that matches the
bounds of Barenboim and Elkin [BE11]. See also [BE13,
Chapter 8].

The Algorithm: Let x be a free parameter. The
algorithm is recursive, we explain one level of recursion.
Consider graph G, and suppose its maximum degree is
∆. If ∆ = O(x), compute and output a (2∆ − 1) edge
coloring of G in O(x+log∗ n) rounds, using the classical
algorithm of Panconesi and Rizzi [PR01]. Suppose
∆ = Ω(x). Let each node split itself into d∆/xe copy-
nodes, and partition its edges between these copy-nodes
such that each copy-node is incident on at most x edges.
Call this new graph H. Note that H has maximum
degree at most x. Use the algorithm of Panconesi and
Rizzi [PR01] to find a (2x − 1) edge coloring of H, in

O(x+ log∗ n) rounds. This coloring provides a (2x− 1)
coloring of edges of G such that in each color class,
there are at most d∆/xe edges incident on each node.
That is, we have partitioned G into 2x − 1 graphs G1,
. . . , G2x−1, each with per-node degree at most d∆/xe.
Now recursively run the procedure on each of these
subgraphs.

Lemma 3.1. The algorithm works in O((x +
log∗ n) log ∆/ log x) rounds and produces a
21+log ∆/ log x∆ edge coloring.

Proof. In each iteration, the maximum degree goes
down by an x factor. Thus, log ∆/ log x recursions
suffice. Each recursion level takes O(x+ log∗ n) rounds,
which means we use O((x+ log∗ n) log ∆/ log x) rounds
in total. To bound the number of colors, let us consider
the summation of the maximum degrees in different
subgraphs. Since at the end each subgraph will be
colored with about 2 factor of its max degree colors,
modulo the 2 factor, this summation is an upper bound
on the number of used colors. In each iteration, we lose
at most a 2 factor in this summation, because we split
a graph of maximum degree d into 2x − 1 subgraphs
each of maximum degree at most d/x. Hence, after
log ∆/ log x recursions, we use 21+log ∆/ log x∆ colors.

The next corollary shows that by setting x appropri-
ately, we can reconstruct the edge-coloring results of
Barenboim and Elkin [BE11]. See also [BE13, Theorem
8.14].

Corollary 3.1. Consider a graph G = (V,E), and let
ε > 0 be an arbitrarily small constant.

(1) An O(∆)-edge-coloring of G can be computed in
O(∆ε + log∗ n) time.

(2) A ∆1+o(1)-edge-coloring of G can be computed in

O((log ∆)1+ε + log∗ n · log ∆
log log ∆) time.

(3) An O(∆1+ε)-edge-coloring of G can be computed in
O(log∗ n · log ∆) time.

Proof. Respectively use x = ∆ε, x = logε ∆, or x =
21/ε, in Lemma 3.1.

3.2 Deterministic Undirected Degree Splitting
for Low-Degree Graphs We say a red-blue edge
coloring is t-balanced, if there are at most t red edges
and at most t blue edges incident to each node. We
show the following result:

Lemma 3.2. Given a graph G with maximum degree
d, a b(1 + ε)d/2c-balanced coloring can be obtained in
O((d2 log5 n)/ε) rounds provided that (4 log1.5m)/d <
ε < 1.

(a) Before the augmentation. (b) After the augmentation.

Figure 1: t = 4 and v1v2v3v4 forms an augmenting path.

Given a t-balanced coloring with t > b(1 + ε)d/2c,
we show how to improve the coloring to a (t − 1)-
balanced coloring. Then we iterate t from d to b(1 +
ε)d/2c+ 1.

Label a node blue if it has t or t − 1 blue edges
incident to it. Label a node red if it has t or t − 1 red
edges incident to it. Note that a node can either be red
or blue, but it cannot be both, since t > b(1 + ε)d/2c.
A node is a source if it is incident to exactly t red edges
or t blue edges. Let S be the set of all source nodes.
An alternating path v1 . . . vk is a path that satisfies the
following:

1. v1 ∈ S.

2. vi and vi+1 alternate between red and blue for
1 ≤ i ≤ k − 2.

3. Edge vivi+1 is colored the same with the label of vi
for 1 ≤ i ≤ k − 1.

An augmenting path is an alternating path with an
additional condition:

4. vk is unlabeled or labeled the same as vk−1.

Suppose there is an augmenting path that starts at
v1. Without loss of generality, suppose that v1 is blue,
v1v2 is blue, v2 is red, v2v3 is red, etc. By augmenting
along the augmenting path, we recolor v1v2 with red,
v2v3 with blue, etc. The number of red/blue edges
incident to v2, v3, . . . vk−1 remain the same after the
augmentation. The number of blue edges incident to
v1 decreases by 1. If k is even, then vk−1vk was blue.
When we recolor vk−1vk in red, the number of red edges
incident to vk increases by 1. Since vk is not labelled red
by (4.), after the increment, the number of red edges is
still at most t−1. Therefore, the number of source nodes
decreases by 1. If k is odd, then a similar argument
applies. See Figure 1 for an illustration.

Thus, given an augmenting path, we can decrease
the number of source nodes by 1. By finding the
augmenting paths repeatedly, we can eliminate all the
sources, and so the graph becomes (t − 1)-balanced.
However, to reduce the number of sources efficiently, we

need to do multiple augmentations in parallel. There-
fore, we find a set of almost edge-disjoint augmenting
paths, as described below.

Finding Many Almost Edge-Disjoint Augment-
ing Paths:

Definition 3.1. (Ordered Disjointness) We say
two paths v1 . . . vk and v′1 . . . v

′
k′ are ordered disjoint if

there does not exist 1 ≤ i < k and 1 ≤ j < k such that
the ordered pair (vi, vi+1) and (v′j , v

′
j+1) are the same.

A set of almost edge-disjoint augmenting paths, |S|,
is a set of augmenting paths with the following property
(see Figure 2a for an example):

1. The first nodes of the augmenting paths in S are
distinct.

2. For any two augmenting paths in S, they are
ordered disjoint.

The second property actually characterizes the
edge-disjointness property among the paths except
on the last edge. Indeed, suppose that (vi, vi+1)
and (v′j , v

′
j+1) denote the same edge vivi+1 (that is,

{vi, vi+1} = {v′j , v′j+1}). Then vi and v′j must have been
labeled the same color with the edge vivi+1 by defini-
tion of an augmenting path. Moreover, since vi 6= v′j ,
we must have vi = v′j+1 and v′j = vi+1. This implies
that vi and vi+1 are labeled the same color and so are
v′j and v′j+1. Therefore, v1 . . . vi+1 and v′1 . . . v

′
j+1 must

be augmenting paths, which implies that vivi+1 is their
last edge.

The augmenting paths may share the same last
node. Augmenting along more than one augmenting
paths of the same last node may increase the red/blue
degree of it to more than t − 1, creating new sources.
However, if each such node accepts only one path that
ends at it and we only augment the accepted paths, then
the red/blue degrees can only increase to at most t− 1.
Since we know that there can be at most d paths in |S|
that end at the same node, if we find Ω(|S|) augmenting
paths, at least 1/d fraction of them can be augmented.
Thus, the sources can be reduced to (1− Ω(1/d)) · |S|.

(a) A set of almost edge-disjoint augmenting paths. S
is the set of sources. The 4 augmenting paths are abcf ,
defc, gdhim, and jklm. Note that cf is included in both
abcf and defc, as their last edge.

(b) A pseudo-tree rooted at s with 4 leaves. The numbers
on the edges denote their depth in the pseudo-tree. Each
leaf corresponds to an alternating path from s to it.

Figure 2: A set of almost edge-disjoint augmenting path and a pseudo-tree.

In the rest of this subsection we show how to find
Ω(|S|) almost edge-disjoint augmenting paths determin-
istically with the restriction that (4 log1.5m)/d < ε < 1.
In Section 3.4 we show how to find Ω(|S|) almost edge-
disjoint augmenting paths randomly but without the
restriction that εd = Ω(log n).

Technical Overview: Corollary 3.2 in Section 3.4
shows that there exists a set of |S| almost edge-disjoint
augmenting paths of length O(log n/ε). Moreover, the
cardinality of any maximal set of almost edge-disjoint
augmenting paths of length O(log n/ε) is |S|. This
implies in the sequential setting we can find such a set of
paths greedily. Similar to the approach in [LPSP15] by
Lokter et al., in Section 3.4, we show it can be found in
the distributed setting randomly by simulating Luby’s
maximal independent set algorithm on a super-graph.
However, finding a maximal set of (almost) edge-disjoint
augmenting paths deterministically is more challenging
technically. Fortunately, in this problem, we have the
property that if we build a search tree from a source to
search for an augmenting path, the search tree expands
very quickly. This property allows us to build (almost)
edge-disjoint search trees from different sources such
that they are still able to expand quickly. Note that
our algorithm and analysis below is independent of that
in Section 3.4.

The deterministic algorithm is described in Algo-
rithm 2. The main idea is to grow a tree-like structure
from each s ∈ S simultaneously. We call these pseudo-
trees (See Figure 2b for an example). In a pseudo-tree,
each edge is associated with 0,1, or 2 children edges, who
are the adjacent edges. Each edge except those who are
adjacent to s have exactly one parent edge. The edges
without children are leaves. Also, the structure does
not contain a cycle. That is, if we view each edge as a

node, then the pseudo-tree is a collection of rooted trees
whose roots are the edges incident to s. Thus, there is
an unique path from s to each leaf. We require each
such path to be an alternating path.

When we grow the pseudo-trees Ts and Ts′ from dif-
ferent sources s and s′, we require that any alternating
paths v1 . . . vk from Ts and v′1 . . . v

′
k′ from Ts′ are ordered

disjoint. This ensures that if we extract an augmenting
path from each of the pseudo-trees, they will be almost
edge-disjoint.

To grow the pseudo-trees simultaneously, each
source s ∈ S maintain a set of tokens. Initially, there is
only one token starting at each source s ∈ S. Then, they
split as they travel. The edges traveled by the tokens
from s form a pseudo-tree of s. In each step, the tokens
at each node request for the edges to grow the pseudo-
trees. Because of the ordered disjointness property, each
edge uv can be assigned only once to the tokens at u
and once to the tokens at v. In our algorithm, each
request of the token will be granted either 1 edge or 2
edges. Those who got 1 edge will travel along the edge.
Those who got 2 edges will split into two tokens. Then
each edge will be traveled by one of the token. We will
assign the edges properly so that a large fraction of the
pseudo-trees will grow exponentially.

Define L1 = 1 and Li+1 = 2d3Li/4e. Algorithm 2
consists of multiple levels. At level i, an active source
s maintains Li tokens. The goal is for d3Li/4e tokens
of s to split into two tokens, so the number of tokens
becomes Li+1 = 2d3Li/4e (discard the rest). Once a
token splits into two, they will pause until the next level.
We will show that a large fraction of sources achieve the
goal in each level.

Each level has h steps. In each step j of level i, the
active tokens are assigned either 1 or 2 edges. If a node

Algorithm 2 Finding Almost Edge-Disjoint Augmenting Paths(S)

Each source s ∈ S create a token located at s.
for level i = 1, 2, . . . , log1.5m do

For each node u, set its budget, budget(u), to be b(2t− d− 2)/ log1.5mc.
for step j = 1, 2, . . . , h, where h = d(16/3) log2

1.5m/εe do
Each active token requests for edge assignment at its current node.
For each node u, min(#request, budget(u)) requests will be granted two tokens, others one edge. Each red (blue)

node assign unused, distinct red (blue) edges to tokens. Update budget(u).
if a token has been assigned one edge then

Travel along the edge.
else . The token has been assigned two edges.

Split into two tokens. Then each token take one of the edge and travel along it.
Deactivate the tokens.

For each source:
if a path from the source to one of its tokens forms an augmenting path then

Deactivate all the tokens from s and save the augmenting path.
else if it has less than Li+1 then

Mark s as failure and remove s from S and deactivate all the tokens.
else if it has at least Li+1 then

Discard the tokens so that it has exactly Li+1 tokens.
Set the Li+1 tokens to be active.

has more budget than the number of requesting tokens,
then every token on it is given 2 edges. Otherwise, the
node is allowed to assign budget(u) tokens 2 edge; other
tokens get 1 edge.

Now we bound the number of requests at u by
d − t + 1. First note that the requests happen only
at the labelled nodes, since if a token reaches an
unlabelled node then an augmenting has been found.
W.l.o.g. assume u is blue. There are two cases. If
u has exactly t − 1 blue edges, then there is at most
d − t + 1 red edges incident to it. If a token enters
through one of the blue edges then the augmenting
path must have been found and so the token will be
deactivated. Therefore, those who are requesting must
enter u through red edges. Thus, the number of requests
is at most d − t + 1. If u has exactly t blue edges,
then there is at most d− t red edges incident to it. By
the same argument, the number of requests is at most
d − t. However, since u ∈ S, an additional token has
been created at u initially. In any case, the number of
requests at u is bounded d− t+ 1.

The intuition of why each token can split without
traveling too far is that because the number of edges
that can be assigned is at least t − 1, the average
number of edges that can be assigned to each request is
(t − 1)/(d − t + 1) = 1 + Ω(ε), since t > b(1 + ε)d/2c.
Therefore, intuitively, it seems possible for each pseudo-
tree to grow by an 1+Ω(ε) factor in each step. However,
since 1+Ω(ε) is not even an integer, it is not clear what
it means to have each token to split into 1+Ω(ε) tokens.
Instead, our analysis shows that most tokens will split
into two after Õ(1/ε) steps.

We use budget(u) to control how many edges can a
node assign in each level. Suppose that we assign 1 edge
to all the d − t + 1 requests first, then the number of
unused blue edges is at least t−1−(d−t+1) = 2t−d−2.
These edges can be used to grant 2t − d − 2 tokens 1
additional edge. We divide the budget across all the
log1.5m levels, so each level has b(2t− d− 2)/ log1.5mc
budget. We say a token did not successfully split, if
it has not been granted two edges during the h steps.
We say a source failed if less than 3/4 fraction of their
tokens sucessfully split. Given the budget, we show that
the number of failure sources in each level is bounded.
If a source did not fail or did not found an augmenting
path yet, then we say it is active.

Lemma 3.3. Suppose that (4 log1.5m)/d < ε < 1. Let
Si denote the set of active sources at the beginning of
level i and let Fi be the set of failure sources during
level i. We have |Fi| ≤ |Si|/(2 log1.5m).

Proof. First, call a token unlucky if it has not been
successfully split after the h steps. Otherwise, we say
a token is lucky (either an augmenting path has been
found or the token has successfully split.) Consider a
bipartite multi-graph where the left nodes X denote the
unlucky tokens and the right nodes Y denote the lucky
tokens. Add an edge between an unlucky token x and
a lucky token y, if y’s split prevents x to split on one
of its h steps. Note that in case x traveled through the
same node multiple times, multiple edges can be added
between the same pair of nodes.

Observe that the degree of a left node is exactly
h · b(2t− d− 2)/ log1.5mc. The number of edges in the
bipartite graph is h · |X| · b(2t− d− 2)/ log1.5mc. Also,

the degree of each right node is at most d− t+ 1, as the
number of requests at each node is at most d − t + 1.
Therefore,

|Y | ≥ h · |X| · b(2t− d− 2)/ log1.5mc/(d− t+ 1)

≥ |X| · h
d
·
⌊
εd− 2

log1.5m

⌋
t ≥ b(1 + ε)d/2c+ 1

≥ |X| · h
d
·
(

εd

2 log1.5m

)
εd ≥ 4 log1.5m and when log1.5m ≥ 2

≥ |X| · (8/3) log1.5m h ≥ (16/3) log2
1.5m/ε

Therefore,

|Si| · Li
= |X|+ |Y |
≥ |X| · (1 + (4/3) log1.5m)

≥ |Fi| ·
(

3

4
Li

)
· (1 + (4/3) log1.5m)

≥ |Fi| ·
(

3

4
Li

)
·
(

8

3
log1.5m

)
Thus, |Fi| ≤ |Si|/(2 log1.5m).

Lemma 3.4. Let Ai ⊆ Si \ Fi denote the set of sources
that successfully find an augmenting path during level i.
|
⋃
iAi| ≥ |S|/2.

Proof. Notice that Si+1 = Si \ (Ai ∪Fi). First we claim
that |

⋃
i Fi| ≤ |S|/2. Since |Fi| ≤ |Si|/(2 log1.5m) ≤

|S|/(2 log1.5m), we have
∑
i |Fi| ≤ |S|/2. Now we show

that every source x ∈ S \
⋃
i Fi must be in one of

Ai. Suppose to the contrary, there exists x ∈ S such
that x ∈ Slog1.5 m \ (Alog1.5 m ∪ Flog1.5 m). Consider the
edges travel by the tokens of x. At level i, since it has
successfully advanced to level i+1, it must have traveled
at least Li+1 edges. The total number of edges traveled

by the tokens of x is
∑log1.5 m
i=1 Li+1 > (3/2)log1.5 m = m.

A contradiction occurs.

In Algorithm 2, level i takes O(i · h) rounds, since
the length of the path spanned by the tokens from the
source is O(i · h) and they have to communicate with
the source at the end of the level. Therefore, the total

number of rounds of Algorithm 2 is O(
∑log1.5 m
i=1 i · h) =

O(h log2
1.5m) = O((log4 n)/ε).

Proof. [Proof of Lemma 3.2] Given a t-balanced color-
ing, we can improve it to a (t− 1)-balanced coloring by
calling Algorithm 2 repeatedly. By Lemma 3.4, each in-
vocation of Algorithm 2 finds |S|/2 almost edge-disjoint
augmenting paths from distinct sources. Of those |S|/2
augmenting paths, at least 1/d fraction will be accepted

and augmented, since there can be at most d paths
ending with the same node. Therefore, the source re-
duces by a 1/(2d) fraction for each invocation. Since
|S| ≤ n, after O(d log n) invocations, we have obtained
a (t − 1)-balanced coloring. If we iterate t from d to
b(1 + ε)d/2c− 1, we obtain a b(1 + ε)d/2c-balanced col-
oring. The total number of invocation of Algorithm 2 is
O(d2 log n). Thus, the running time is O((d2 log5 n)/ε).

3.3 Deterministic Undirected Degree Splitting
for High-Degree Graphs Suppose that the input is
a graph with maximum degree ∆. In this case, if we
apply Lemma 3.2 directly, it takes Õ(∆2/ε) rounds to
get a b(1 + ε)∆/2c-balanced coloring. Here, we show a
method which removes the dependency on ∆.

Theorem 3.2. Suppose that ∆ ≥ d32 log1.5m/ε
2e,

then a b(1 + ε)∆/2c-balanced coloring can be obtained
in O((log7 n)/ε3) rounds.

Proof. Let ε′ = ε/2 and d = d4 log1.5m/ε
′e. Thus, we

have ∆ ≥ 2d/ε′. First, obtain G′ as follows: For each
node u, split it into d∆/de copy-nodes and divide evenly
the edges adjacent to u between the copy-nodes such
that each copy-node, except possibly one, has degree
d. Since ε′d ≥ 4 log1.5m, we can apply Lemma 3.2
to get a get a b(1 + ε′)d/2c-balanced coloring in G′

in O((d′ log5 n)/ε′) = O((log7 n)/ε3) rounds. Then, we
merge the copy-nodes back. Then, for each node of G,
the number of incident edges of each color is bounded
by:⌊

(1 + ε′)d

2

⌋
·
⌈

∆

d

⌉
≤ (1 + ε′)d

2
·
(

∆

d
+ 1

)
≤ ∆

2
· (1 + ε′) + d

≤ ∆

2
·
(

1 + ε′ +
2d

∆

)
≤ ∆

2
· (1 + ε) ∆ ≥ 2d/ε′

Since the number of colors must be an integer, it is a
b(1 + ε)∆/2c-balanced coloring.

Proof. [Proof of Theorem 3.1]
Let ε′ = ε/(2 log2 ∆) and ∆0 = ∆. Suppose

that ∆0 ≤ d32 log1.5m/ε
′2e, we can use Panconesi and

Rizzi’s algorithm [PR01] that runs in O(∆0 + log∗ n)
rounds to get (2∆0 − 1)-edge coloring. Otherwise, we
apply Theorem 3.2 to get a b(1 + ε′)∆/2c-balanced
coloring. For the subgraph consists of red edges and
the subgraph consists of blue edges, we recursively apply
this procedure on both of them in parallel with a new
maximum degree ∆i+1 = b(1 + ε′)∆i/2c. Let t be the
level where the recursion halts. That is, t is the smallest
integer such that ∆t ≤ d32 log1.5m/ε

′2e. The recursion
will stop at level t, where we will apply Panconesi and
Rizzi’s algorithm to get an (2∆t − 1)-edge coloring on

each subgraph. Since the number of subgraphs at level
t is 2t, the total number of color used is

(2∆t − 1) · 2t ≤ 2 · (1 + ε′)t∆

≤ 2∆ + 4tε′∆

(1 + x)n ≤ 1 + 2nx for 0 ≤ nx ≤ 1

≤ (1 + 2tε′) · 2∆

≤ (1 + ε) · 2∆ t ≤ log2 ∆

We apply the balanced coloring procedure for
O(log ∆) rounds, each takes O(log10 n/ε3) rounds by
Theorem 3.2. At the last level, Panconesi and Rizzi’s
algorithm takes O(∆k+log∗ n) = O(log n/ε′2+log∗ n) =
O(log3 n/ε2) rounds. Therefore, the total number
rounds is: O(log11 n/ε3).

3.4 Randomized Undirected Degree Splitting
In this subsection, we give a randomized distributed
algorithm for obtaining a d(1+ε)∆/2e-balanced coloring
where 0 < ε < 1 in O(∆2 log4 n/ε2) rounds. Note that
this allows one to obtain a d(∆+1)/2e-balanced coloring
in O(poly(log n,∆)) rounds. Also note that the change
from floor in the previous sections to ceiling is necessary.
Consider when ∆ = 2 and ε = 1/2. Obtaining a 1-
balanced coloring is impossible in an odd cycle. In the
previous sections, the restriction that ε∆ = Ω(log n)
avoided this problem.

Theorem 3.3. Given a graph G with maximum degree
∆, a d(1 + ε)∆/2e-balanced coloring can be obtained in
O(∆2 log4 n/ε2) for 0 < ε < 1.

We use the same approach with that in the previous
sections. Given a t-balanced coloring, we show how
to improve the coloring to a (t − 1)-balanced coloring.
Then we iterate t from ∆ to d(1 + ε)∆/2e + 1. The
only difference is that we show how to find a set of
almost edge-disjoint augmenting paths of size Ω(|S|) in
O(poly(log n, ε−1)) rounds without the restriction that
ε∆ = Ω(log n).

The following lemma can be used to show that the
size of any maximal set of almost edge-disjoint short
augmenting paths is |S|.

Lemma 3.5. Let P ′ be a set of almost edge-disjoint
augmenting paths. If s is not a source of an augmenting
path in P ′, then an augmenting path P from s of length
at most O(log n/ε) exists and P ′ ∪ P is also a set of
almost edge-disjoint augmenting paths.

Proof. Grow a tree from s such that the path from s to
the leaves are alternating paths. In each step, each leaf
grows by adding all the edges that have the same color
with it. Three cases may occur when a leaf tries to add
an edge that does not intersect with any paths in P ′.

If the endpoint of an edge is an unvisited node
(i.e. the node is not in the tree) with the opposite color,
then it will be added to the tree. If the endpoint of
an edge is a node with the same color or an unlabelled
node, then an augmenting path is found. Otherwise, if
the endpoint is a visited node, we will ignore it.

There are two cases when a leaf u tries to add an
edge uv that intersects with some path Q ∈ P ′. If u
comes before v in Q, then we will not add v to the
tree and ignore it. If v comes before u in Q, then it
must be the case that u and v are labeled the same
color. Therefore, uv is the last edge of Q and an
augmenting path P has been found from s. Therefore,
any augmenting path found during this process must be
almost edge-disjoint from P.

Suppose that an augmenting path has not been
found and T ′ is the tree after growing T by one level.
We show that |T ′| ≥ (1 + ε)|T |. First, note that each
node u ∈ T is not the last node of any path Q in P. Let
G′ = G \ P be the graph obtained by deleting all the
edges in P from G. Let indegH(u) denote the number of
incident edges to u with the opposite color in a subgraph
H. Let outdegH(u) denote the number of incident edges
to u with the same color in H. We claim that for any
u ∈ T , outdegG′(u)− indegG′(u) ≥ 2t− 2− d.

Note that since u is a labelled node, we have
outdegG(u) ≥ t − 1, indegG(u) ≤ d − t + 1 and so
outdegG(u) − indegG(u) ≥ 2t − 2 − d. Suppose that
u in not the first node of any paths in P, then both
indeg u and outdeg(u) decreases by 1 when we delete the
path from G. This implies outdegG′(u)− indegG′(u) ≥
2t − 2 − d. On the other hand, if u is the first node
of some path in P, then u must be a source. In this
case, deleting the path decreases outdeg(u) by 1. Also,
since u is a source, outdegG(u) − indegG(u) ≥ 2t − d
Therefore, outdegG′(u) − indegG′(u) ≥ outdegG(u) −
1− indegG(u) ≥ 2t− 1− d.

For each edge uv where u, v ∈ T , it must be the case
that u and v are colored differently. Otherwise, an aug-
menting path would have been found. Therefore, there
must be at least

∑
u∈T (outdegG′(u) − indegG′(u)) ≥

|T |·(2t−2−d) ≥ |T |·(2(d(1+ε)d/2e+1)−2−d) ≥ ε|T |·d
edges going outside of T . Since the maximum degree is
d, the number of nodes added must be at least ε|T |.
Therefore, |T ′| ≥ (1 + ε)|T |. After O((log n)/ε) lev-
els, the tree would grow to contain more than n nodes.
Therefore, an augmenting path must have been found
before this happens.

Corollary 3.2. The size of any maximal set of almost
edge-disjoint augmenting paths of length O(log n/ε) is
|S|.

Proof. If P is a maximal set of almost edge-disjoint
augmenting paths of length O(log n/ε) with cardinality
less than |S|, then there is a source s ∈ S that does

not appear in P. We can apply Lemma 3.5 to add
an augmenting path of length O(log n/ε) to P without
violating the maximality condition.

Lemma 3.6. A maximal set of almost edge-disjoint aug-
menting paths of length at most l can be found in
O(l2 log n) rounds.

Proof. We construct a super-graph G where each node
in G denotes an augmenting path of length at most l.
Two nodes P1 and P2 are connected if they are not
ordered disjoint or if they share the same source. A
maximal independent set (MIS) in G corresponds to a
maximal set of almost edge-disjoint augmenting paths
of length at most l in G.

To simulate the computation on G, we let each
source s ∈ S to be responsible for the nodes whose
corresponding augmenting path start at s. Then, one
round of communication in G can be simulated in O(l)
rounds. The total number of nodes in G is O(nl).
Therefore, Luby’s MIS algorithm takes O(log(nl)) =
O(l log n) rounds in G. Since each round in G can be
simulated in O(l) rounds, the number of rounds needed
to simulate Luby’s algorithm is O(l2 log n).

By setting l = O(log n/ε), we can find |S| al-
most edge-disjoint augmenting paths in O(log3 n/ε2)
rounds. Then, at least 1/∆ fraction of the paths can
be augmented, since there are at most ∆ augmenting
paths could end at the same node and one of them
will be augmented. Therefore, since the number of
sources is at most n, after O(∆ log n) iterations, all
the sources are saturated. Also, since we iterate t
from ∆ to d(1 + ε)∆/2e, the total number of rounds
is O(∆2 log4 n/ε2).

3.5 Randomized Edge Coloring In this subsec-
tion, we show how to obtain a faster randomized
edge-coloring algorithm using (4 + ε)∆ colors, in
poly(log log n) rounds. This is by combining the graph
shattering technique with our deterministic algorithm.
For ∆ ∈ [poly(log log n), logn

poly(log logn)], this is faster

than the O(
√

∆ log ∆)-round O(∆)-edge-coloring that
follows from the work of Barenboim [Bar15], and

the O(log∗∆ ·max{1, logn
∆1−o(1) })-round ((1 + ε)∆)-edge-

coloring result of Elkin, Pettie, and Su [EPS15].

Theorem 3.4. Given a graph G and 0 < ε < 1, a (4 +
ε)∆-edge coloring can be obtained in O((log11 log n)/ε3)
rounds.

Proof. First we will assume that ∆ = O(log2 n). Since
for ∆ = Ω(log2 n), by using Elkin et al.’s algorithm
[EPS15, Theorem 2.1], a (1 + o(1))∆-edge-coloring can
be obtained in O(log∗ n) rounds. Let ε′ = ε/4. We will

divide the (4 + ε)∆ colors into two sets C1 and C2 with
an equal size, so each set consists of 2(1 + ε′)∆ colors.

Pre-shattering: Let x = ε′2∆/(18 log ∆). First
we partition the edges randomly to form subgraphs
G1, G2, . . . Gx. The expected degree of each node u in
Gi is at most ∆/x = (18 log ∆)/ε′2. By Chernoff Bound,

Pr(degGi
(u) ≥ (1 + ε′)∆/x) ≤ e−ε

′2(18 log ∆)/(3ε′2) ≤
(1/∆)6. For v ∈ G, we mark v as a Type I node if there
exists 1 ≤ i ≤ x, such that degGi

(u) ≥ (1 + ε′)∆/x. By
an union bound over 1 ≤ i ≤ x, the probability that v
is Type I is at most x · (1/∆)6 ≤ 1/∆5.

If u ∈ G is a not Type I node but it is adjacent to
a Type I node, then it is a Type II node. Type I nodes
and Type II nodes are the bad nodes. Let B be the set
of bad nodes and V ′ be the set of Type I nodes.

Post-shattering: First note that every subgraph
Gi[V \V ′] has maximum degree bounded by (1+ε′)∆/x.
We divide the colors in C1 evenly into Ci1, C12, . . . , C1x

so that each has size 2(1+ε′)∆/x. We will run Panconesi
and Rizzi’s algorithm [PR01] to get a 2(1+ ε′)∆/x-edge
coloring in O(∆/x+ log∗ n) = O((log ∆)/ε2 + log∗ n) =
O((log log n)/ε2) rounds on each Gi[V \ V ′] in parallel
with the color set C1i.

Now the uncolored edges must be the ones that
are adjacent to V ′. Since B = N(V ′) ∪ V ′, all the
uncolored edges must be in G[B]. Similar to the analysis
of sinkless orientation in Section 2, we will show that
each component in G[B] has their size bounded by
polylog(n). Then, we will apply our determinisitic
algorithm on each component with the color set C2.

Let dist(u, v) denote the distance between u and v
in G. If dist(u, v) ≥ 2, then it is clearly that the event
u becomes Type I and the event v becomes Type I are
independent. Let E2,4 = {uv | 2 ≤ dist(u, v) ≤ 4}
denote the set of edges whose endpoints have distance
between 2 and 4.

Lemma 3.7. Let C be a connected components in G[B].
Then, there exists S ⊆ V ′ ∩ C such that |S| ≥ |C|/∆2

and (S,E2,4) is connected.

Proof. The proof is exactly the same with that of
Lemma 2.3 except that now we are omitting Type III
nodes.

Lemma 3.8. The probability that any tree T with
T ⊆ (V ′, E2,4) and |T | = Ω(log n) exists is at most
1/ poly(n).

Proof. Let T be a tree such that T ⊆ (V ′, E2,4) and
|T | = t. The probability that a node in T is marked
as Type I is at most 1/∆5. Therefore, the probability
that T occurs is at most 1/∆5t, since the events each
node in T becomes Type I are independent. The total
possible number of such trees is at most 4tn(∆4)t−1. By

an union bound over all possible trees, the probability
that any tree in (V ′, E2,4) of size t occur is at most
n · (4∆4 · (1/∆5))t. For ∆ ≥ 4e, this is at most n · e−t.
By summing over t ≥ 10 log n, the probability that
any tree in (V ′, E2,4) of size at least 10 log n is at least
(1/n9) ·

∑∞
i=0 e

−i = 1/ poly(n).

Therefore, if C is a connected compnent in G[B]
of size Ω(∆2 log n). Then by Lemma 3.7, there exists
a set of vertices S ⊆ V ′ ∩ C with |S| = Ω(log n)
and (S,E2,4) is connected. Take a spanning tree T
of the graph (S,E2,4). Since |T | = Ω(log n), by
Lemma 3.8, the probability that |T | exists is at most
1/ poly(n). Therefore, we conclude that the probability
|C| = Ω(∆2 log n) is at most 1/ poly(n).

Since ∆ = O(log2 n), each component has size at
most O(log3 n). Now we will run our deterministic
(2 + ε′)∆-edge coloring using colors in C2 on each of
the component. By Theorem 3.1, the running time is
O((log11 log n)/ε3).

4 Directed Degree Splitting

In this section, we consider the problem of orienting
the edges such that the out-degree and in-degree of
each node are both upper bounded by D, for any given
D ≥ d(∆ + 1)/2e. The following lemma allows us to
focus on only the out-degree side of the problem, and
then extend it to both out-degree and in-degree:

Lemma 4.1. Let D ≥ d(∆ + 1)/2e. Let G be a graph
with an arbitrary orientation. Suppose that A is a
distributed algorithm that orients G into G′ such that
the out-degree of each node is at most D in T rounds
with the following property: For each u, outdegG′(u) ≥
min(outdegG(u), D). Then in O(T) rounds, G can be
oriented such that both the in-degree and the out-degree
of each node is at most D.

Proof. First run A on G to obtain an orientation with
out-degree at most D, say the resulting graph is G1.
Then, we reverse each edge in G1 to obtain G2. G2 is
a graph such that the in-degree of each node is at most
D. Now, run A on G2 to obtain G3. If the in-degree of
a node u in G2 is at most D, then

indegG3
(u) = deg(u)− outdegG3

(u)

≤ deg(u)−min(outdegG2
(u), D)

by the property of A

≤ deg(u)−min(deg(u)−D,D)

indegG2
(u) ≤ D

≤ deg(u)− (deg(u)−D) = D

D > ∆/2 and deg(u) ≤ ∆

Therefore, the in-degree of every node is still at most D
in G3.

By Lemma 4.1, it suffices to develop algorithms that
orient the graph such that each node’s out-degree is
bounded by D, with the stated additional property. Our
augmentation-based approach satisfies this property,
because we only decrease the out-degree in nodes with
out-degree at least D + 1.

For deterministic algorithms, we will use the same
approach as in Section 3. Recall that in Section 3 we
assumed that a t-balanced coloring is given, and we
showed how to improve it to a (t−1)-balanced coloring.
Similarly, here we assume that we have an orientation
with the out-degree of each node upper bounded by
t. We use the same approach to improve it to an
orientation with the out-degree of each node upper
bounded by t − 1. The outer-loop will iterate t from
∆ to D + 1.

The definition of an augmenting path is much more
straightforward here. An augmenting path is just a
directed path that starts from a node with out-degree
equals to t and ends at a node with outdegree at most
t − 2. We augment along a path by reversing the
orientation of each edge. After we augmented along
an augmenting path, the out-degree of the first node
decreased by 1 and the out-degree of the last node
increased by 1. All the other nodes remain to have the
same out-degree. Since t > D, we will not decrease the
out-degree of a node with out-degree at most D. This
satisfies the property stated in Lemma 4.1.

Let S be the source nodes, which are the nodes
with out-degree t. Similar to Section 3, we will find a
set of Ω(|S|) edge-disjoint augmenting paths from dis-
tinct sources in S here. However, the singularity that
appeared in Section 3 where the last edges of augment-
ing paths in a set of almost edge-disjoint augmenting
paths may overlap do not appear here. We just need to
find a set of edge-disjoint augmenting path. By repeat-
ing the same arguments as in Section 3, we can obtain
the analogues of Lemma 3.2 and Theorem 3.2, which we
state without proofs.

Lemma 4.2. Given a graph G with maximum degree d,
an orientation where the out-degree and the in-degree of
each node is at most b(1 + ε)d/2c can be obtained in
O((d2 log5 n)/ε) rounds provided that (4 log1.5m)/d <
ε < 1.

Theorem 4.1. Suppose that ∆ ≥ d32 log1.5m/ε
2e,

then an orientation where the out-degree and the in-
degree of each node is at most b(1 + ε)∆/2c can be ob-
tained in O((log7 n)/ε3) rounds.

4.1 Randomized Directed Degree Splitting and
Graphs with Bounded Arboricity In this subsec-
tion, we show how to obtain an orientation with the
out-degree of each node bounded by d(1 + ε)ae for any
0 < ε < 1 in graphs with arboricity bounded by a.

Theorem 4.2. There is a randomized distributed algo-
rithm that in O(log4 n/ε3) rounds, produces an orienta-
tion of a-arboricity graphs with per-node out-degree at
most d(1 + ε)ae, for any 0 < ε < 1.

Notice that by setting ε = 1/a, we get an orientation
with per-node out-degree at most a+ 1 in O(a3 log4 n)
rounds. Moreover, notice that each graph with max-
imum degree ∆ has arboricity a ≤ ∆/2. Hence, the
above theorem already supplies an orientation with per-
node out-degree at most d(1 + ε)∆/2e, in O(log4 n/ε3)
rounds, which can again be made a much finer ori-
entation with out-degree at most d(∆ + 1)/2e, in
O(∆3 log4 n) rounds, by setting ε = 1/∆. Moreover,
our algorithm is again augmentation-based and it sat-
isfies the properties in Lemma 4.1, which can be used
to satisfy the reqirement on both the in-degree and the
out-degree of each node.

Corollary 4.1. Given a graph G with maximum de-
gree ∆, an orientation where the in-degree and the out-
degree of each node is bounded by d(1 + ε)∆/2e can be
obtained in O(log4 n/ε3) for 0 < ε < 1.

Note that in comparision with our randomized
algorithm stated in Theorem 3.3 of Section 3.4, we have
removed the dependency on ∆ in the running time. This
is because in Section 3.4 there is a singularity on the
augmenting paths who intersects on the last edge. Here,
the structure of the augmenting paths is the same with
the flow networks. This allows us to apply the known
techniques such as the arguments of blocking-flows.

We now explain our method for achieving Theo-
rem 4.2. Let G0 be a directed graph obtained by orient-
ing the original graph arbitrarily. Let D = d(1 + ε)ae.
Define an augmenting path to be a directed path start-
ing from a node with out-degree at least D + 1 and
ends at a node with out-degree at most D− 1. By aug-
menting along an augmenting path, we flip all the edges
to the reverse direction. After the augmentation, the
out-degree of the starting node decreased by 1 and the
out-degree of the ending node increased by 1.

Define G′0 to be a directed graph by adding a
source node s and a sink node t to G0. Also, add
outdegG0

(u)−D edges from s to every node with degree
at least D + 1 and add D − outdegG0

(u) edges from
every node with degree at most D − 1 to t. Now
we will do multiple augmentations on G′0 to obtain
G′1 . . . G

′
l. Define Gi to be G′i \ {s, t}. First note that

distG′0(s, t) ≥ 3. In step i, we will find a maximal set
of edge-disjoint paths of length 3 + i from s to t in G′i
and augment along them to obtain G′i+1. The standard
blocking-flow type argument shows that the distance
from s to t increases after the augmentation.

Lemma 4.3. distG′i(s, t) ≥ 3 + i for 0 ≤ i ≤ l.

Proof. We will show by induction that distG′i(s, t) ≥
3 + i. When i = 0, it is true that distG′0(s, t) ≥ 3.
Suppose that it is true that distG′i(s, t) ≥ 3+i. Consider
G′i+1. Let P be a maximal set of paths of length 3 + i
from s to t in G′i. If P is non-empty, then all paths in
it must have length 3 + i and so they are the shortest
paths.

First we show that distG′i+1
(x, t) ≥ distG′i(x, t)

for every x by induction on distG′i(x, t). For a node
x with distG′i(x, t) = 1, it is obviously true that
distG′i+1

(x, t) ≥ 1 since x 6= t. Suppose that it is true

that distG′i+1
(x, t) ≥ distG′i(x, t) for all distG′i(x, t) < k.

For a node x with distG′i(x, t) = k, suppose that there
is a path P of length at most k − 1 from x to t in
G′i+1. Then it must be the case that P intersects with
some path in P. Let uv be the first edge in P that
has a non-empty intersection with a path (say, Q) in P.
Without loss of generality, assume that distG′i(u, t) =
distG′i(v, t) + 1. We have:

distQ(s, u) + distQ(v, t) = 3 + (i− 1)(4.1)

distP (x, v) + distP (u, t) = k − 2(4.2)

If distP (x, v) + distQ(v, t) ≤ k − 1, then it implies
that distG′i(x, t) ≤ k − 1 and a contradiction occurs.
Otherwise, distP (x, v) + distQ(v, t) ≥ k − 2, we have

distQ(s, u) + distQ(u, t) = distQ(s, u) + distG′i(u, t)

≤ distQ(s, u) + distG′i+1
(u, t)

by induction hypothesis

≤ distQ(s, u) + distP (u, t)

≤ 3 + (i− 1).

by (4.1) and (4.2)

This contradicts with that distQ(s, t) = 3+i. Therefore,
we have distG′i+1

(x, t) ≥ distG′i(x, t) for all x. Now

suppose to the contrary that a path P ′ from s to t with
length at most 3 + i exists in G′i+1. If P ′ does not
intersect with any paths in P, then it must have length
d and so it must have been included in P. Otherwise,
P ′ must intersect with some edge of the paths in P.
Suppose that u′v′ is the first edge P ′ has a non-empty
intersection with and u′v′ ∈ Q′ ∈ P. Without loss of
generality, assume that distG′i(u

′, t) = distG′i+1
(v′, t)+1.

We have:

distQ′(s, u
′) + distQ′(v

′, t) = 3 + (i− 1)(4.3)

distP ′(s, v
′) + distP ′(u

′, t) ≤ 3 + i(4.4)

If distP ′(s, v
′) + distQ′(v

′, t) ≤ 3 + (i − 1), then
distG′i(s, t) ≤ 3 + (i − 1), a contradiction occurs. Oth-

erwise, we have distP ′(s, v
′) + distQ′(v

′, t) ≥ 3 + i and

distQ′(s, u
′) + distQ′(u

′, t)

= distQ′(s, u
′) + distG′i(u

′, t)

≤ distQ′(s, u
′) + distG′i+1

(u′, t)

≤ distQ′(s, u
′) + distP ′(u

′, t)

≤ 3 + (i− 1) by (4.3) and (4.4)

This contradicts with that distQ′(s, t) = 3 + i. There-
fore, we must have distG′i+1

(s, t) ≥ 3 + (i+ 1)

Lemma 4.4. Let Si denote the set of node with out-
degree at least D + 1 in Gi and Ti denote the set of
node with out-degree at most D − 1 in Gi. We have
Si+1 ⊆ Si and Ti+1 ⊆ Ti.

Proof. Let P be the set of shortest path from s to t
in G′i. Each P ∈ P must contain exactly one node
in Si as the second node, since P is a shortest path.
Similarly, P must contain exactly one node in Ti as the
second to the last node. Therefore, augmenting along
P can only decrease the out-degree of the node in Si
by 1 and increase the out-degree of Ti by 1 in Gi. The
out-degrees of other nodes remain the same. Therefore,
it is impossible to create new nodes with out-degree at
least D+1 or new nodes with out-degree at most D−1.

Lemma 4.5. No augmenting path of length at most l
exists in Gl.

Proof. By Lemma 4.3, we have distG′l(s, t) ≥ l + 3.
Suppose that P is an augmenting path with length at
most l in Gl. Let x and y be the starting node and the
ending node of P . Since the out-degree of x in Gl is at
least D+ 1, by Lemma 4.4, the out-degree of x in G0 is
also at least D+ 1. This implies outdegG0

(x)−D edges
have been added from s to x. Since the out-degree of
x is the same in G′0, . . . G

′
l and the out-degree of x in

Gl is at least D + 1, it must be the case that there is
at least one edge going from s to x in G′l. Similarly, it
must be the case that there is at least one edge going
from y to t in G′l. This implies P can be extended to a
direct path sP t of length l+ 2 in G′l, which contradicts
with the fact distG′l(s, t) ≥ l + 3.

Therefore, no augmenting path of length at most l
exists in Gl. However, by setting l = Ω((log n)/ε), this
contradicts with the following lemma.

Lemma 4.6. Let G be a directed graph. Let D =
d(1 + ε)ae, where a is the arboricity. Suppose that the
out-degree of u is at least D + 1, then an augmenting
path from u of length O((log n)/ε) exists.

Proof. Let Bi be the set of all nodes reachable from u
by directed paths of length i. We show by induction

that |Bi| ≥ (1 + ε)i−1, unless Bi includes a node of
out-degree less than t in which case, we have found an
augmenting path of length i. The base case i = 0 is
trivial asB0 = {u}. For the inductive step, suppose that
all nodes in Bi have out-degree at least D ≥ (1 + ε)a.
Then, Bi is incident on at least |Bi| ·D outgoing edges.
Since all these edges have both their endpoints in Bi+1,
and as Bi+1 has at most a|Bi+1| edges by definition of
arboricity, we get that |Bi+1| ≥ D

a |Bi| ≥ (1 + ε) · |Bi| ≥
(1 + ε) · (1 + ε)i−1 = (1 + ε)i. Now, since this growth

cannot continue beyond h = log1+ε n = O(logn
ε) hops,

as that would exhaust the graph, we get that there must
be a node of out-degree less than D within h hops, i.e.,
an augmenting path of length at most h = O(logn

ε).

Lemma 4.7. Suppose the current graph is Gi. Then,
Gi+1 can be computed in O(i2 log n) round.

Proof. Recall that G′i+1 is obtained by augmenting
along a maximal set of edge-disjoint paths from s to
t of length 2 + i in G′i. We consider the supergraph
G, where each node denotes a path from s to t in G′i of
length 2+ i. An edge is added between two nodes, if the
corresponding paths intersects at some edges. Then, a
maximal independent set (MIS) in G corresponds to a
maximal set of edge-disjoint paths from s to t of length
i in G′i.

We will show how to how to simulate the computa-
tion of the MIS in G when the underlying network is Gi.
Let Si denote the set of nodes with out-degree at least
D + 1 in Gi. Each node x ∈ Si is responsible for the
paths from s to t of length 2 + i whose second node is x
(the first node is s). Therefore, each node in G is taken
care by some node x ∈ Si. One round of communication
between an edge in G can be simulated in O(i) rounds
in Gi, since the length of the paths is 2 + i. Since the
number of paths of length 2 + i is at most n2+i, Luby’s
MIS algorithm takes O(log n2+i) = O(i log n) rounds. It
takes O(i) rounds to simulate a round in G. Therefore,
the running time is O(i2 log n).

The total running time is
∑l
i=1O(i2 log n) =

O(log4 n/ε3).

Turning Low Out-Degree Orientations to Forest
Decomposition: Above, we explained a method for
obtaining an orientation with out-degree a(1 + ε). This
is immediately a decomposition of the edges into a(1+ε)
pseudo-forests. Recall that a pseudo-forest is a graph
where each connected component is a pseudo-tree, that
is a tree with the exception of having at most one
more edge, which creates one cycle. If we let each
node number its at most a(1 + ε) out-going edges by
numbers 1, 2, . . . , a(1 + ε) uniquely, then the edges of
each number form a pseudo-forest, as they form a graph
with per-node out-degree at most 1. For practically all

the distributed applications that we are aware of, graphs
with out-degree 1 are as good as trees. However, from an
aesthetic viewpoint, having a decomposition into actual
forests would be much nicer. We next explain a method
for decomposing into forests in high-arboricity graphs.
Indeed, the decomposition will have an extra property
which might be quite useful in the distributed context:

Lemma 4.8. There is a randomized O(log n)-round al-
gorithm that for graphs of arboricity a = Ω(log n/ε2),
transforms orientations with out-degree at most a(1+ε)
to an edge-decomposition into a(1+8ε) forests, with high
probability. Moreover, except for O(ε) fractions of the
forests, each connected component in the other forests
is merely a star-graph, that is, a tree with diameter 2.

Proof. We first randomly build a(1 + ε) primary forests
such that each node v has at most 3εa of its outgoing
edges not put in these forests. We then put these left-
over edges into 7εa additional forests, hence getting a
decomposition into a(1 + 8ε) forests. The connected
components of the primary forests will be stars.

First, notice that some nodes might have out-degree
less than a(1 + ε). For simplicity, we first remove this
imperfection, by giving each node v with out-degree dv
exactly a(1 + ε)dv outgoing edges that go to dummy
nodes. These dummy nodes are just simulated by v and
no other actual node will need to interact with them.
Now, each real node has out-degree a(1 + ε). Once we
have the forest decomposition, we will drop these edges
going to the dummy nodes.

Call each real node v active in each of the primary
a(1+ε) forests with probability q = 1−ε

1+ε independently.

Given that a = Ω(log n/ε2), by a Chernoff bound, the
number of active forests in each node is a number in
[a(1− 2ε), a], with high probability.

Now, we find the outgoing edges of each node in
each of its active forests. For each forest i and each
node v, we will find an outgoing edge of v that goes to
a neighbor u who is not active in forest i (or a dummy
neighbor u). We claim that node v can find a collection
of such edges, one for each of its active forests, with high
probability, given that a = Ω(log n). The argument
is as follows: we will find these edges for the active
forests of v greedily, and one by one. In each step,
when looking for an edge for forest i, there are at least
aε outgoing edges of v remaining. This is because v has
a(1 + ε) outgoing edges and we only find edges for at
most a active forests. Now each of the endpoints of these
remaining outgoing edges is active in the current forest
i with probability q = 1−ε

1+ε . Hence, with probability at

least 1− (1−ε
1+ε)aε ≥ 1− 1/poly(n), at least one of these

outgoing neighbors is not active in forest i. We assign
the outgoing edge to that neighbor to forest i. Also,
notice that this process can be done in just 1 round,

by each node informing its incoming neighbors of its
active forests, and then each node v picking its outgoing
edges for its active forests. At the end, we have created
a(1+ε) forests, where indeed each connected component
is a star.

What remains for each node is at most 3εa outgoing
edges. These can be put in 7εa additional forests in
O(log n) rounds, by a method of Barenboim and Elkin
[BE10]. Hence, we have our desired decomposition into
a(1 + 8ε) forests.

References

[Bar15] Leonid Barenboim. Deterministic (∆ + 1)-coloring
in sublinear (in ∆) time in static, dynamic and faulty
networks. In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing, PODC ’15,
pages 345–354, New York, NY, USA, 2015. ACM.

[BE10] Leonid Barenboim and Michael Elkin. Sublogarith-
mic distributed mis algorithm for sparse graphs using
nash-williams decomposition. Distributed Computing,
22(5-6):363–379, 2010.

[BE11] Leonid Barenboim and Michael Elkin. Distributed
deterministic edge coloring using bounded neighbor-
hood independence. In the Proc. of the Int’l Symp. on
Princ. of Dist. Comp. (PODC), pages 129–138, 2011.

[BE13] Leonid Barenboim and Michael Elkin. Distributed
graph coloring: Fundamentals and recent develop-
ments. Synthesis Lectures on Distributed Computing
Theory, 4(1):1–171, 2013.

[BEPS16] Leonid Barenboim, Michael Elkin, Seth Pettie,
and Johannes Schneider. The locality of distributed
symmetry breaking. J. ACM, 63(3):20:1–20:45, 2016.

[BF81] József Beck and Tibor Fiala. integer-making theo-
rems. Discrete Applied Mathematics, 3(1):1–8, 1981.

[BFH+16] Sebastian Brandt, Orr Fischer, Juho Hirvonen,
Barbara Keller, Tuomo Lempiäinen, Joel Rybicki,
Jukka Suomela, and Jara Uitto. A lower bound for the
distributed lovász local lemma. In Proc. of the Symp.
on Theory of Comp. (STOC), pages 479–488, 2016.

[CHK01] Andrzej Czygrinow, M Hańćkowiak, and
M Karoński. Distributed O(∆ logn)-edge-coloring
algorithm. In European Symposium on Algorithms,
pages 345–355. Springer, 2001.

[CKP16] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie.
An exponential separation between randomized and
deterministic complexity in the local model. In Proc.
of the Symp. on Found. of Comp. Sci. (FOCS), page
to appear, 2016.

[DGP98] Devdatt Dubhashi, David A Grable, and Alessan-
dro Panconesi. Near-optimal, distributed edge colour-
ing via the nibble method. Theoretical Computer Sci-
ence, 203(2):225–251, 1998.

[Din] EA Dinic. Algorithm for solution of a problem of
maximum flow in a network with power estimation,
soviet math. doll. 11 (5), 1277-1280,(1970). English
translation by RF. Rinehart.

[EK72] Jack Edmonds and Richard M Karp. Theoretical
improvements in algorithmic efficiency for network flow
problems. Journal of the ACM (JACM), 19(2):248–
264, 1972.

[EPS15] Michael Elkin, Seth Pettie, and Hsin-Hao Su.
(2∆ − 1)-edge-coloring is much easier than maximal
matching in the distributed setting. In Symp. on Dis-
crete Algorithms (SODA), pages 355–370. SIAM, 2015.

[FHK16] Pierre Fraigniaud, Marc Heinrich, and Adrian
Kosowski. Local conflict coloring. In Proc. of the
Symp. on Found. of Comp. Sci. (FOCS), pages to
appear, arXiv:1511.01287, 2016.

[HKP98] Michal Hanckowiak, Michal Karonski, and
Alessandro Panconesi. On the distributed complexity
of computing maximal matchings. In Pro. of ACM-
SIAM Symp. on Disc. Alg. (SODA), pages 219–225,
1998.

[HKP01] Michal Hanckowiak, Michal Karonski, and
Alessandro Panconesi. On the distributed complexity
of computing maximal matchings. SIAM Journal on
Discrete Mathematics, 15(1):41–57, 2001.

[IS86] Amos Israeli and Yossi Shiloach. An improved paral-
lel algorithm for maximal matching. Information Pro-

cessing Letters, 22(2):57–60, 1986.
[KS87] Howard J Karloff and David B Shmoys. Efficient

parallel algorithms for edge coloring problems. Journal
of Algorithms, 8(1):39–52, 1987.

[Lin92] Nathan Linial. Locality in distributed graph algo-
rithms. SIAM Journal on Computing, 21(1):193–201,
1992.

[LPSP15] Z. Lotker, B. Patt-Shamir, and S. Pettie. Im-
proved distributed approximate matching. J. ACM,
62, 2015. Article 38.

[Lub86] Michael Luby. A simple parallel algorithm for the
maximal independent set problem. SIAM journal on
computing, 15(4):1036–1053, 1986.

[PR01] Alessandro Panconesi and Romeo Rizzi. Some sim-
ple distributed algorithms for sparse networks. Dis-
tributed computing, 14(2):97–100, 2001.

[PS97] Alessandro Panconesi and Aravind Srinivasan. Ran-
domized distributed edge coloring via an extension
of the chernoff–hoeffding bounds. SIAM Journal on
Computing, 26(2):350–368, 1997.

[Viz64] Vadim G Vizing. On an estimate of the chromatic
class of a p-graph. Diskret. Analiz, 3(7):25–30, 1964.

	Introduction & Related Work
	Degree Splitting and Edge Coloring
	Degree Splitting and Edge Orientations
	Other Related Work
	Our General Method In a Nutshell

	Sinkless Orientation
	Sinkless Orientation for -regular graphs with >500
	The Randomized Part of the Algorithm (Pre-Shattering)

	Generalization to Irregular Graphs with Min-Degree d 3, and Refinements
	The Deterministic Part of the Algorithm (Post-Shattering)

	Edge-Coloring via Undirected Degree Splitting
	Edge-Coloring via Coarse-grained Degree Splitting
	Deterministic Undirected Degree Splitting for Low-Degree Graphs
	Deterministic Undirected Degree Splitting for High-Degree Graphs
	Randomized Undirected Degree Splitting
	Randomized Edge Coloring

	Directed Degree Splitting
	Randomized Directed Degree Splitting and Graphs with Bounded Arboricity

