
Simulation and Evaluation of the Reactive Virtual Node Layer

by

Mike Spindel
B.S., Massachusetts Institute of Technology (2007)

Submitted to the Department of Electrical Engineering and Computer Science
in partial ful�llment of the requirements for the degree of

Master of Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2008

© Mike Spindel, MMVIII. All rights reserved.

�e author hereby grants to MIT permission to reproduce and distribute publicly paper and
electronic copies of this thesis document in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 28, 2008

Certi�ed by .
Nancy Lynch

Professor of Electrical Engineering and Computer Science
�esis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

Simulation and Evaluation of the Reactive Virtual Node Layer

by

Mike Spindel

Submitted to the Department of Electrical Engineering and Computer Science
on May 28, 2008, in partial ful�llment of the

requirements for the degree of
Master of Engineering

Abstract
Developing so�ware in a wireless, ad hoc environment is an intrinsically di�cult problem. One way to mit-
igate it is to add an abstraction layer between the so�ware and the individual mobile devices. �is thesis
describes one such abstraction, the Reactive Virtual Node (RVN) Layer [1, 2, 3, 4], as well as a new simula-
tion framework written in Python. Additionally, this thesis uses the simulator to characterize an RVN-based
routing service for multihop mobile ad hoc networks. �e performance of the routing service is compared to
the Ad hoc On-Demand Distance Vector routing protocol, as well as a greedy geographic routing protocol.

�esis Supervisor: Nancy Lynch
Title: Professor of Electrical Engineering and Computer Science

2

Acknowledgments

�is thesis would have never been written without the help and support of many, many people. I would like

to take a moment to thank some of the people that helped make it happen.

First, I would like to thank Nancy Lynch for hiring me as a UROP years ago, for introducing me to virtual

nodes, and for providing invaluable editing and support throughout the entire thesis writing process.

I would also like to thank the rest of the �eory of Distributed Systems group. In particular, I would like

to thank Calvin Newport for his feedback on this thesis and his help while working on the VN simulator.

My parents have been extremely supportive and patient throughout this entire process, and their encour-

agement has been invaluable to me.

Additionally, I would like to thank everyone who has asked me, “Are you done yet?” over the last few

months. Without you, I may have never actually �nished.

3

Contents

1 Introduction 9

1.1 Virtual Infrastructure . 10

1.2 Ad hoc Routing . 11

1.3 Organization . 13

2 �e Reactive Virtual Node Layer 14

2.1 Physical Model . 14

2.2 Regions . 15

2.2.1 De�nitions . 15

2.3 Virtual Broadcast . 15

2.4 Client Nodes . 16

2.5 Reactive Virtual Nodes . 16

3 Simulation 18

3.1 Overview . 18

3.1.1 �e Pending Event Set . 18

3.1.2 Physical Model . 22

3.1.3 Networking Model . 23

3.2 �e Virtual Node Emulator . 25

3.2.1 Consistency Manager . 25

3.2.2 Message Ordering . 27

3.2.3 Leadership Manager . 27

3.2.4 State Transfer Manager . 29

4

3.2.5 Application Interface . 29

3.2.6 Client Interface . 30

4 Using the Simulator 32

4.1 Visualization . 32

4.1.1 Implementation . 33

4.1.2 Usage . 34

4.2 Tutorial: Examining Virtual Node Overhead . 35

4.2.1 Specifying a Scenario . 36

4.2.2 Con�guring the Simulation . 37

4.2.3 Writing the RVN Application . 39

4.2.4 Running the Simulation . 39

5 Point to Point Routing in Ad-Hoc Networks 41

5.1 Routing with the RVN Layer . 41

5.1.1 Geocast . 41

5.1.2 Client Location Tracking . 42

5.1.3 Client-to-Client Routing . 43

5.1.4 Implementation Notes . 43

5.1.5 Virtual Node Overhead and Performance . 44

5.1.6 Routing Performance . 47

5.2 Ad hoc On-Demand Distance Vector . 52

5.2.1 Implementation Notes . 53

5.2.2 Performance . 54

5.3 Greedy Geographic Routing . 56

5.3.1 Implementation Notes . 56

5.3.2 Performance . 57

5.4 Performance Comparison . 58

6 Conclusion 61

6.1 Contributions . 61

6.2 Evaluation . 62

5

6.3 Future Work . 63

6.3.1 Simulator Enhancements . 63

6.3.2 Visualizing Distributed Systems . 63

6.3.3 MANET Routing . 64

6

List of Figures

1-1 Virtual Stationary Automata. �e �gure on the le� shows the virtual layer. Rounded rectan-

gles represent virtual nodes and small circles represent client nodes. �e physical reality is

shown on the right: a number of mobile nodes move throughout the plane. 10

3-1 Event distributions from two representative simulations . 19

3-2 Calendar Queue vs. Sluggish Calendar Queue . 20

3-3 Event Set Performance . 22

3-4 �e Simulator Network Stack . 23

3-5 Simulator and VNE Architecture. �emultiplexing and wireless network layers are provided

by the simulator. 25

4-1 �is visualization is showing nodes as they execute a simple circle-forming algorithm. 33

4-2 �e visualization shows physical and virtual node state. Leading nodes are highlighted in

blue, and active virtual nodes are shown in gray. 34

5-1 Routing with virtual nodes . 42

5-2 RVN Failure Overhead. �ese plots show the mean results from �ve simulator runs using

independent mobility traces. Node velocity was evenly distributed between 0 and 20 m/s,

and each test was run for 1000 seconds. Figure 5-2c shows the average percentage of time that

regions were stable at various node densities. Figure 5-2d shows the corresponding frequency

distribution for 25 nodes. 46

7

5-3 RVN message overhead as a function of node density. For each pause time, these plots show

the mean values from �ve simulator runs using independent mobility traces. Node velocity

was evenly distributed between 0 and 20 m/s, and each test was run for 1000 seconds. �e

horizontal dotted line at 500 messages represents the maximum potential number of heart-

beat messages per region. 48

5-4 RVN Geocast Routing Performance. Each pause time corresponds to a single 1000 second,

simulation run using a �ve by �ve region, 400mby 400mgrid. Node velocity was distributed

between 0 and 20 m/s. Broadcast radius was set to 250 m. 50

5-5 RVN Client-to-Client Routing Performance. Each set of plots was generated from �ve, 15

second, simulation runs using a �ve by �ve region, 400 m by 400 m grid. Node velocity was

distributed between 0 and 20 m/s. Broadcast radius was set to 250 m. 51

5-6 �e Ad hoc On-Demand Distance Vector routing protocol . 52

5-7 AODV Routing Performance. �ese tests were run for 900 seconds, with nodes moving in a

1500 m x 300 m �eld. �e broadcast radius was set to 250 m. �e transmission delay was set

to 0.02 seconds. 55

5-8 �e greedy geographic routing algorithm always forwards messages to the neighbor nearest

the destination, as in (a). However, if every neighboring node is farther from the destination

than the current node, as shown in (b), the greedy heuristic fails. 56

5-9 Greedy Geographic Routing Performance . 57

8

Chapter 1

Introduction

PDAs and laptops are proli�c today, and cellular phones with WiFi support are becoming more common

all the time. However, the infrastructure necessary to connect them has limits. 802.11b access points are

rarely available outside of homes and businesses, and there are many places where it simply isn’t feasible or

economically sensible to install permanent equipment. One solution to this problem is to build networks

without using �xed infrastructure by allowing nodes to talk directly to each other.

�is sort of unplanned, peer-to-peer system is called a mobile ad-hoc network (MANET), and there is

no shortage of applications for them. Consider the problem of coordinating emergency responders: A�er a

natural disaster, e�ective communication systems are crucial to coordinating an e�ective response. Yet, ex-

isting infrastructure might be damaged or destroyed and constructing a new network can be prohibitively

time consuming. MANETs promise to dramatically reduce setup time in these situations.

�e same properties that make ad-hoc networks compelling for �rst responders make them well suited

to rapidly building community wireless networks. Mesh networks are already in widespread use for this

purpose. For example, the Freifunk [5] group in Germany and the Funkfeuer [6] group in Austria operate

large mesh networks. �e MIT Roofnet [7] project operates an unplanned mesh network in Cambridge,

and there are dozens of similar projects across the world. Several companies are actively building wire-

less networks using using ad-hoc technology. Meraki Inc. [8] is a spin-o� from the MIT Roofnet project.

Metrix Communications [9] o�ers similar services.

Applications for ad-hoc networks stretch beyond routing, as well. Consider a network of small radio-

enabled devices monitoring the environment. Ad hoc networks could coordinate automobiles, airplanes, or

even robots.

9

Yet, any project that uses ad-hoc networks has to deal with numerous challenges. �e underlying radio

network is unreliable. �e system needs to automatically con�gure itself and be robust against message loss.

�e composition of the network can change over time as nodes join and leave. Members of the network

might walk into an elevator or behind a tree. As a result, designing and verifying peer-to-peer algorithms

that run on ad-hoc networks is complicated and time-consuming.

1.1 Virtual Infrastructure

One strategy to make it easier to develop this kind of so�ware is to build a well-behaved abstraction layer

on top of the physical network. �e abstraction can shield the programmer from many of the di�culties in-

trinsic to working with ad-hoc networks. �is thesis is concerned with evaluating a particular abstraction:

the Reactive Virtual Node Layer.

�e Reactive Virtual Node (RVN) Layer builds on several other other virtual infrastructure designs.

Its �rst recognizable form was the GeoQuorums [10] approach to implementing atomic memory, which is

based on geographic “focal points” of mobile nodes that emulate the memory. GeoQuorums evolved into

a full-�edged abstraction for distributed computation called virtual mobile nodes (VMN) [1]. �e VMN

extends the focal point to an abstract node that can move on a �xed path and execute arbitrary algorithms.

�at approach was further extended in [2] to allow the virtual node to move in an autonomous manner. In

[4], the virtual node concept takes the form of a timed, stationary automata (VSA). Each VSA maps to a

speci�c geographic area and provides a near real-time clock.

Virtual Layer Physical Layer

Figure 1-1: Virtual Stationary Automata. �e �gure on the le� shows the virtual layer. Rounded rectangles
represent virtual nodes and small circles represent client nodes. �e physical reality is shown on the right:
A number of mobile nodes move throughout the plane.

10

Although these designs di�er in virtual node capabilities and implementation, they share a basic de-

composition into virtual and client nodes. Client nodes re�ect a client program run explicitly on the physi-

cal device. Client nodes are allowed to move freely and fail unpredictably. On the other hand, virtual nodes

re�ect a stable abstraction. �ey are de�ned by a particular geographical region (sometimes mobile, some-

times not) and are emulated by the physical devices inside the region using distributed algorithms such

that the state of the virtual node is robust against the failure of individual devices. Of course, the virtual

node can fail under certain conditions: If every physical device leaves its region, it necessarily loses state.

Furthermore, the virtual node can be unresponsive for short periods of time if a leading device leaves the

region without performing any kind of hando�.

�is thesis is focused on a simpli�ed variant of the VSA called the Reactive Virtual Node Layer [11].

Unlike the VSA, reactive nodes can transmit only in response to client messages and do not provide a clock.

�is simpli�cation is intended to make the virtual nodes easier to implement and easier to program.

�e reactive virtual node abstraction was initially implemented in Python and deployed on several iPaq

PDAs for testing. �e tests involved two basic applications: a counter and a simple tra�c light. �ese small

scale tests validated the implementation to some degree. Yet, they had a number of limitations. Namely,

there were too few iPaqs to get a good sense of the behavior of large networks. �e physical nature of the

iPaqs was also problematic because it was di�cult to construct and test a wide range of scenarios.

In order to test a larger number of nodes in a variety of di�erent scenarios, the existing virtual node

emulator (VNE) implementation was overhauled and modi�ed so that it could run in a simulated envi-

ronment. For convenience, the simulator 1 is also written in Python and provides an easy to use testbed for

mobile ad-hoc network systems.

1.2 Ad hoc Routing

In addition to presenting the simulator, this thesis investigates the properties of the Reactive Virtual Node

Layer by using it to implement a routing protocol for mobile ad-hoc networks.

Traditional routing protocols tend to fall into one of two categories: distance vector or link state.

In a distance vector protocol, routers broadcast the destinations they can reach to neighboring peers.

Each route has an associated cost metric, and each router uses information from its neighbors to build a

table, which maps every destination to the optimal next hop. One variation on this strategy, called path
1Up-to-date source code and documentation for the simulator and RVN framework can be found at https://carbide.mit.

edu/trac/.

11

vector routing, stores the entire path in the routing table rather than just the next hop. �is modi�cation

makes it much easier to avoid routing loops.

Link state protocols broadcast connectivity information (in other words, the state of each router’s links)

throughout the network. Each router maintains a picture of the network and runs a shortest path algorithm

to decide the optimal hop for each destination.

All of these approaches are re�ected in MANET protocols. However routing in MANETs is substan-

tially more di�cult than in typical wired networks, and the protocols re�ect the disparity. MANETs are

much more dynamic and they have to worry about limited power, limited channel capacity, and high la-

tency. �is means that traditional distance vector protocols have problems with routing loops and tradi-

tional link state protocols have trouble maintaining a current, coherent map across the entire network.

Dynamic-Sequenced Distance Vector (DSDV) [12] is a distance vector protocol that tags routes with se-

quence numbers in order to avoid routing loops. DSDV is a proactive protocol, which means that it actively

maintains complete routing tables at each router, even when nodes are not transmitting messages.

Proactive protocols bene�t from having a complete routing table available at all times, so there is no

latency associated with route lookup when a message is sent. Routing protocols for wired networks are typ-

ically proactive. However, in wireless networks, the cost of maintaining the table can overshadow the ben-

e�t. �is observation leads to reactive, or on-demand, protocols that postpone route discovery and main-

tenance until the route is actually needed. For example, Ad hoc On-Demand Distance Vector (AODV) [13]

is an on-demand variant of DSDV. Some protocols take a hybrid approach as well. For example the Zone

Routing Protocol (ZRP) [14] uses a proactive protocol to communicate between nearby nodes and an on-

demand protocol for distant ones.

Dynamic Source Routing (DSR) [15] is an on-demand, path vector protocol. As the name suggests,

messages are source routed, which means that each messages route is speci�ed in the message’s header,

which makes it easy to avoid routing loops.

Link state protocols are also used in MANET routing. Optimized Link State Routing (OLSR) [16] is a

proactive link state protocol that attempts to optimize for MANETs by minimizing the size of control mes-

sages and by minimizing the �ooding of control messages. OLSR is particularly notable because it is widely

used in community wireless projects.

Di�erent MANET protocols also vary the granularity of their routing schemes. �e protocols discussed

thus far route in terms of individual nodes. However, wireless networks lend themselves to other levels of

12

granularity as well. In particular, some protocols attempt to route in terms of a geographical location or a

physical trajectory.

Greedy Perimeter Stateless Routing (GPSR) [17] is a good example of a geographic routing protocol. It

attempts to route towards a physical location using a greedy policy - in other words, it sends a message to

the neighbor nearest the target location. When that is not possible, for example, when every neighboring

node is farther away from the destination than the current node, it activates a second transmission mode to

route around the perimeter.

Yet, the number of di�erent routing protocols continues to multiply. Why? �e problem is that none of

the available systems really meet the performance, scalability, or security requirements necessary for large

MANET deployments. Solving this problem requires research in a variety of directions, including better

radio technology, better MAC protocols, and better routing techniques.

�is thesis is concerned with optimizing along a particular axis: so�ware complexity. All of the rout-

ing protocols discussed above route at the level of physical nodes, which means that they inherit all of the

complexity intrinsic to managing an individual nodes connectivity. As MANET protocols evolve in terms

of performance, they are likely to become even more complicated. �is thesis proposes a solution: Use the

RVN Layer as the basis for a MANET routing algorithm.

1.3 Organization

In Chapter 2, I discuss the Reactive Virtual Node Layer in detail and describe the various assumptions that

it makes. In Chapter 3, I discuss the implementation of the simulator and the implementation of the Virtual

Node Emulator. In Chapter 4, I illustrate how to use the simulation environment by walking through how

to use the simulator to measure VN overhead. In Chapter 5, I use the simulator to test the compare the per-

formance of an RVN-based routing scheme, AODV, and a simple geographic routing scheme. I conclude in

Chapter 6.

13

Chapter 2

�e Reactive Virtual Node Layer

�e Reactive Virtual Node (RVN) Layer provides so�ware developers with a stable abstraction for pro-

gramming in MANETs. Rather than explicitly considering individual physical nodes, a programmer can

write so�ware for a stationary, reliable, virtual node. �ese nodes, called RVNs, are emulated by nearby

physical nodes. �is chapter begins by de�ning the physical model that the RVN Layer assumes, and it pro-

ceeds by describing and de�ning the roles of client and virtual nodes.

2.1 Physical Model

�e RVN Layer is intended to run on top of a variety of potentially di�erent physical devices. �is situation

is modelled as a �nite set Q = {q1, q2, ..., qpmax}, pmax ∈ Z+ of mobile timed input/output automata [18]

moving in the 2D plane. �e set P = [1, pmax] is the set of mobile node indices. Mobile nodes are allowed

to move arbitrarily. A node qp’s position is referred to as loc(p), and its speed is bounded by a constant

vmax .

Every node receives information about its current position and the global time every єsample time. Ev-

ery node has a local clock that proceeds at the rate of real time and is resynchronized every єsample time.

�is update service is intended to model the information provided by a GPS positioning system.

Physical nodes also have the ability to do essentially arbitrary computation. For the sake of simplicity,

I assume that all local computation does not take any time. �is assumption is reasonable given the type of

computation required by the algorithms under study: the power and time requirements will always to be

dominated by network activity. Nodes are allowed to su�er from stopping failures. Once a node stops, then

it halts all local computation and does not send any more messages.

14

Each mobile node has access to a broadcast service, P-bcast. Because the RVN Layer is intended to run

on top of a variety of devices in a variety of environments, it is not reasonable to assume a �xed transmis-

sion radius. Rather, every mobile node is allowed to have a di�erent broadcast range depending on both

geographical location and orientation: De�ne the set of functions trans_rp ∶ R2 × R2 → R on two coor-

dinates src and dst such that trans_rp(src, dst) is the maximum reliable transmission distance for node qp,

p ∈ P at position src toward position dst.

P-bcast guarantees two properties: reliable local delivery and integrity. Integrity guarantees that every

message received was previously broadcast. Reliable local delivery guarantees that every message broadcast

by a node will be received by every in-range node in a timely manner: Every message broadcast by node qp

will be received within d seconds by every node qq such that ∣loc(p) − loc(q)∣ ≤ trans_rp(loc(p), loc(q)) for

the entire transmission period.

2.2 Regions

A particular RVN is contained by its geographical region. A virtual node region is a geographical area hav-

ing the property that every radio in the region can reliably broadcast to, and receive data from, every other

radio in the region and neighboring regions.

�e location of virtual nodes and their corresponding regions is global knowledge.

2.2.1 De�nitions

�e set J consists of all region names.

�e function region ∶ R2 → J ∪ {regnil}maps a point to the corresponding region name. If a node is not

in any region, it returns the symbol regnil .

Let the function nbrs ∶ J → 2J return the set of all of a region’s neighbors. For all neighboring regions,

the following constraint must hold: for all node indices p in P, every point r such that region(r) = j, and

every point r′ such that region(r′) ∈ { j} ∪ nbrs(j), ∣r − r′∣ ≤ trans_rp(r) − 2єsample ⋅ vmax .

2.3 Virtual Broadcast

Clients and RVNs have access to an additional broadcast service, V-bcast, that provides additional guaran-

tees and capabilities on top of P-bcast. V-bcast allows clients and RVNs to broadcast to other nearby clients

and RVNs. V-bcast inherits the integrity property from P-bcast and has an analogous reliable local delivery

15

property: V-bcast guarantees that if a client or RVN in a region j broadcasts a message, then every client

and RVN in { j} ∪ nbrs(j) for the entire transmission period d will receive the message.

V-bcast provides two additional guarantees. V-bcast guarantees the inverse of reliable local delivery: If

a client is not in a region neighboring a broadcast it will not receive the message. V-bcast also guarantees

that messages will have a total ordering: All broadcast messages will be received by clients and RVNs in the

same order.

Since the virtual broadcast service has a maximum range bounded by the physical broadcast range

of every participating physical node, the size of regions and the choice of neighbors is constrained as de-

scribed in Section 2.2.1.

2.4 Client Nodes

Client nodes are the manifestation of physical nodes in the RVN abstraction. As such, the capabilities of a

client correspond very closely to those of a physical node. Clients are modelled as the set C = {c1, c2, ..., cpmax},

p ∈ P of timed input-output automata. Each client has access to the location of its host physical node. It also

has access to a real-time clock. However, a client can communicate only via the V-bcast service.

�is de�nition creates a one-to-one relationship between client nodes and physical nodes. Although

it makes conceptual sense to allow a single physical node to run multiple clients, the de�nition leaves the

ability out for the sake of simplicity. �is restriction does not result in a loss of generality because multiple

client programs can simply be merged into a single, monolithic program.

2.5 Reactive Virtual Nodes

An RVN v j is an event-driven automaton running in region j. RVNs are receive-event-driven, which means

that their operation is de�ned purely in terms of a msgReceived handler. When called with a received mes-

sage, the handler can arbitrarily change the RVN state and optionally return a set of messages to be broad-

cast with V-bcast. RVNs do not have any other external actions or mechanisms to change state. Notably,

RVNs do not have direct access to a clock.

Because an RVN is emulated by the physical nodes in its region, it is natural to understand an RVN’s

failure modes in terms of the behavior of physical nodes. In order to capture this in terms of the RVN Layer

abstraction, an RVNs failure modes are de�ned in terms of clients.

1. If there are no active clients in region j, the RVN v j has failed.

16

2. If an active client is continuously in a failed region j for at least trestart, then the RVN v j restarts.

17

Chapter 3

Simulation

3.1 Overview

�e simulator is divided into two parts: a lightweight, protocol-agnostic event simulator and the Virtual

Node Emulator (VNE) implementation. �e event simulator provides a number of services useful for simu-

lating simple ad-hoc networks. In particular, it provides a mobility system for simulated mobile nodes that

is compatible with standard ns-2 mobility traces, and it provides a broadcast medium simulation for trans-

mitting between nodes. �e medium can be con�gured to simulate an unreliable connection in which a

certain percentage of packets are dropped.

�e simulator provides a simple, process-oriented interface for simulated so�ware. �e simulated mo-

bile nodes simply run a set of “tasks” de�ned by a scenario �le. �e tasks are implemented using tasklets

in Stackless Python [19] – essentially coroutines – and an explicit event queue. In order to keep simulated

code as close to reality as possible, the simulator provides dynamically loadable classes that override com-

mon function calls with simulated analogues. For example, calls to time() return simulation time and calls

to sleep() reschedule a task during simulation.

3.1.1 �e Pending Event Set

Perhaps the heart of any discrete event simulator is the actual list of pending events. Di�erent protocols and

system con�gurations can generate dramatically di�erent event pro�les, and it is crucial that the event set

implementation e�ciently support a wide variety of di�erent distributions of timed event sequences.

�e problem is particularly aggravated by the virtual node layer. Figure 3-1a illustrates the character-

istic distribution of event times generated by VN routing simulations. �e VN framework is very process-

18

0 20 40 60 80 100

0
40

00
80

00
12

00
0

Time (s)

Pe
nd

in
g

Ev
en

ts
 (

ev
en

ts
)

(a) VNE Event Distribution

0 2 4 6 8 10 12

20
0

40
0

60
0

80
0

Time (s)

Pe
nd

in
g

Ev
en

ts
 (

ev
en

ts
)

(b) AODV Event Distribution

Figure 3-1: Event distributions from two representative simulations

heavy and has a number of di�erent polling loops, which leads to very large, very brief peaks of activity.

�is stands in contrast to other routing schemes. For example, Figure 3-1b was generated during an AODV

routing simulation. It shows chaotic behavior while routes are being established and periodic behavior dur-

ing normal operation. However, the AODV implementation is much less process-oriented, so the peaks are

much smaller.

A simulator event set needs to support three key operations: It must be able to queue new events, to

dequeue the earliest pending event, and to remove any particular event. In addition to these operations,

a good event set will be stable, in other words, two events scheduled for the same time will be dequeued in

the same order that they are enqueued. Although stability certainly is not required for simulation correct-

ness, it does make simulations easier to debug.

Pending event sets are su�ciently important that dozens of implementations are described in the liter-

ature. While developing this simulator, I tested three: A simple implementation built on Python heaps, the

calendar queue [20] implementation from ns-2, and an implementation of a sluggish calendar queue [21].

�e �rst event set is a binary heap backed by a Python list. Binary heaps support enqueue, dequeue,

19

and remove operations in O(log n) time, which means that they scale reasonably well to large sets. How-

ever, heaps are not intrinsically stable, and the events have to be annotated with an additional counter to

di�erentiate events scheduled at the same time. �e heap operations for this implementation are provided

by the heapq library that is distributed with Python. �e library is written using Python’s C API and is quite

fast.

�e design of the calendar queue, illustrated in Figure 3-2a, was inspired by the ubiquitous desk cal-

endar. In a desk calendar, events are scheduled by simply writing them on the page corresponding to the

appropriate day. �ere is a page for every day of the year, and if you need to schedule something for a future

year, you can note the year next to the event. �e computer equivalent of the desk calendar is an array of

linked lists. Each list represents a metaphorical “day” in the array. Events in the distant future are allowed to

wrap around. �e structure avoids excessive sorting, seeking, and any notion of an over�ow list.

Calendar queues support the standard event set operations in O(1) average time. However, in order to

prevent the lists for individual days from getting too long, the queue needs to resize itself periodically by

adjusting the length of days and years. Nonetheless, performance can su�er noticeably if events are heavily

clustered in just a few buckets.

�e calendar queue implementation that is tested here is derived from the ns-2 simulator. �e queue

is implemented in C++, and a thin wrapper was written using Python’s C API. It is important to note that

the performance �gures for this queue are not necessarily representative of the current version of ns-2. Al-

though the implementation tested here is standard in ns-2 version 2.32, the calendar queue was substan-

tially updated in ns-2 version 2.33.

Sluggish calendar queues are another data structure that attempts to provide performance superior to

standard calendar queues. �e design, illustrated in 3-2b, is inspired by the observation that most events

16.2 16.6 17.8 14.5

14.7

14.8

15.2

15.3

19.1

15.9

Next Year Current Year

0 1 2 3 4 5 6 7

(a) Calendar Queue

1.2

0 1 2 3

1.5 2 12.3

Calendar Buckets

Simple Queue

1.4

1.7

1.5 1.9 4.5 4.6

(b) Sluggish Calendar Queue

Figure 3-2: Calendar Queue vs. Sluggish Calendar Queue

20

in network simulations are enqueued in increasing order. Sluggish queues take advantage of this tendency

by integrating a basic list queue with a calendar queue. �e queue tries to add new events to the list �rst. If

the event does �t within three elements of either the front or back of the list, the list is moved into the cal-

endar queue and the new event is used to initialize the new list. �e upshot is that as long as the simulation

queues things in forward order, queue operations are performed only on the linked list. A bene�cial side

e�ect is that the structure tends to handle large bursts of events very e�ciently. �is queue is implemented

directly in C and uses a thin Python wrapper.

Each event set implementation was tested against the two event distributions in Figure 3-1. �e VN

sequence has roughly 300,000 operations split evenly between enqueue and dequeue, as well as a handful

of remove operations. �e AODV sequence has �ve million operations split evenly between enqueue and

dequeue.

Each implementation was tested by replaying these representative event sequences and timing the total

execution time. �e structures are implemented in either C or C++, but they are used in a Python simula-

tor. In order to understand the penalty imposed by the Python runtime, each event set was tested directly

in its native language and in Python. �e test sequences were loaded into memory prior to testing, but the

measurements intentionally include the cost of allocating memory for event handles. All measurements

were performed on a 2.4 GHz Intel Core 2 Duo. All of the Python tests were run with garbage collection

disabled and the Psyco JIT compiler enabled.

�e measurement results are collected in Figure 3-3, and the most dramatic result comes from the cal-

endar queue. It is nearly 20 times slower than the sluggish queue in the native tests and four times slower in

Python tests because the queue’s resize and seeking heuristics have trouble with the peaks generated by the

VN simulation. In general, the sluggish calendar queue shows the best, and most consistent, performance

of the event sets. However, the penalty imposed by the Python runtime renders the sluggish queue imple-

mentation almost indistinguishable from directly using heaps. Pro�ling the Python runtime revealed that

most of the di�erence was caused by the additional object allocation, the Python event loop, and Python

method dispatch.

�e result of this testing is that the sluggish calendar queue implementation is used by default. Because

the sluggish queue requires a C module to be compiled, it’s possible that it won’t be available. If the simu-

lator cannot �nd the sluggish queue module, it falls back on the stable heap implementation. �e perfor-

mance �gures also suggest that this is close to the best event set performance that can be achieved while

21

Sluggish Calendar Sluggish Calendar Stable
Heap

Raw
Heap

Queue Type

T
im

e
pe

r
O

pe
ra

ti
o

n
(µ

s/
o

p)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

vne
aodv

C Python

Figure 3-3: Event Set Performance

using the Python dispatch mechanism.

3.1.2 Physical Model

�e simulator’s channel and radio propagation models, such as they are, are lumped into a single module

called the BroadcastMedium and provide the following capabilities:

Transmission Radius It is possible to specify a maximum transmission radius for nodes.

Transmission Lag Transmission lag can be con�gured: �e simulator has provisions for specifying a con-

stant transmission lag for local and remote reception. It also has provisions for distributing remote

broadcast lag over a normal distribution.

Message Loss Message loss can be modelled probabilistically: the simulator is capable of simply dropping

a certain percentage of messages in transit. �e intention is to provide the ability to observe how a

protocol reacts to message loss without providing the (misleading) illusion that the observed drop

pattern is physically accurate.

�e BroadcastMedium also provides a convenient place to add other propagation related features. For

example, the simulator also implements a feature called the “Faraday cage” that allows a particular

mobile node to be cut o� from radio communication for a period of time.

22

Sim

BroadcastMedium

MobileNode

FaradayCage

DistanceFilter

TxLag

BroadcastSocket

sched_call

recv

MobileNode

BroadcastSocket

sock_recv

queue

send

sock_send

Figure 3-4: �e Simulator Network Stack

Notice that the simulator does not implement an antenna model or a detailed model of radio propaga-

tion. Nor does it incorporate a physically accurate channel model or any kind of collision modelling. How-

ever, the simulator architecture and language are intended to make these features straightforward to add.

�is design decision was primarily in�uenced by concerns about development time and the performance

cost implied by an interpreted language.

3.1.3 Networking Model

�e simulator networking stack, illustrated in Fig 3-4, is intended to balance simplicity and �exibility.

Messages, represented by arbitrary Python objects, are originated by MobileNode objects and passed

to the BroadcastMedium. �e BroadcastMedium performs the tests described in the previous section to

determine whether or not the message needs to be dropped. Next, a call to the BroadcastMedium’s recv

method is scheduled in the main simulator event queue. When the event is triggered, BroadcastMedium has

another chance to �lter the event before passing it back to in-range MobileNode objects.

By design, BroadcastMedium o�ers a simple and generic interface for message transmission. However,

it is not particularly pleasant to use directly from simulated so�ware. For this purpose, the simulator o�ers

a simpli�ed version of the BSD sockets interface, called BroadcastSocket.

In order to support IP routing protocols, AODV in particular, the simulator contains an extremely min-

23

imal IP stack. �e stack currently includes modules that perform port multiplexing with UDP and address-

ing with IP. �e implementation takes advantage of the fact that messages are just Python objects to avoid

serialization and deserialization performance penalties.

Listing 3.1 demonstrates the code necessary to instantiate a MobileNode with a simple IP stack. Al-

though the simulator provides convenient methods that can do much of this wiring for the user, this ex-

ample elucidates how the simulator threads necessary state among objects.

One of the organizing principles of the simulator implementation is the default instance. Typical usage

requires only one simulator object, and it would be tedious to always refer to it explicitly. Yet, sometimes,

for example when constructing unit tests, it is necessary to create additional instances. In order to accom-

modate both of these goals, the simulator provides default, module level instances of important classes. For

example, in Listing 3.1, sim.MobileNode(addr) creates a node in the context of the default Sim object.

Code Listing 3.1 (Instantiating a Mobile Node with a simple IP stack).

import sim, simsockets, aodv

def make_node(addr):
n = sim.MobileNode(addr) # Create a MobileNode
mac = simsockets.MacNull(n, addr) # Connect a MAC protocol to node n
ip = simsockets.IP(mac, addr) # Connect an IP interface to mac
udp = simsockets.UDP(ip) # Connect a UDP interface to ip

ip.route = aodv.Aodv(n, ip, udp) # Set the IP routing protocol to AODV
ip.protocols[simsockets.PROTO_UDP] = udp.queue # Set the UDP message handler

return (n, udp)

�e rest of the code listing wires together a simple IP stack. �e stack is composed of a MAC interface,

an IP interface, and a UDP interface. Addresses are represented as arbitrary Python objects. Although there

is nothing preventing a simulation from using proper IP or Ethernet addresses, it isn’t required. �is design

makes it easy to set up a quick simulation with integer node addresses. �e MacNull protocol is an empty

MAC protocol. It serves only to add an extra addressing layer to allow routing protocols to be accurately

expressed. When the MacNull object is instantiated, it is automatically connected to the MobileNode’s queue

method. Similar connections are made when the IP and UDP objects are instantiated. �e Aodv object en-

capsulated behavior for the AODV routing protocol. It’s speci�ed by setting the route �eld in the IP object.

�e IP protocol dispatch is controlled by the protocols dictionary.

24

3.2 �e Virtual Node Emulator

Consistency
Manager

VN
Application

Leadership
Manager

State
Transfer
Manager

Multiplexing

Virtual Node Emulation

CN
Application

Message Path
Method Call Wireless

Network

Client Node

Message
Ordering

Figure 3-5: Simulator and VNE Architecture. �e multiplexing and wireless network layers are provided by
the simulator.

�e Virtual Node Emulator (VNE) is the piece of so�ware that runs on each physical node to emulate

the RVN Layer.

�e core services of the VNE are divided into easily swappable modules, as illustrated in Figure 3-5.

�e three core management services abstract most of the functionality necessary to emulate a virtual node:

�e Leadership Manager provides a protocol to determine which physical device is “leading,” or speaking

for, a particular virtual node. �e State Transfer Manager synchronizes new devices with the current state

of the virtual node, and the Consistency Manager coordinates the other two services while watching for

communication anomalies and keeping the virtual node application synchronized with the other devices in

the region.

3.2.1 Consistency Manager

�e Consistency Manager 1 is responsible for coordinating the other system components and keeping the

state of the virtual node consistent across mobile nodes.

Its job starts when the mobile node enters a new region. �e Consistency Manager queries the Lead-

ership Manager, described in Section 3.2.3, to determine whether or not its node is leading by invoking its

amLeading()method. If the node turns out to be leading, it means that the virtual node had failed and lost
1Source code for the Consistency Manager is available at https://carbide.mit.edu/trac/vne/browser/trunk/code/

vne/services/consistency-shim.py.

25

its state. In response, the Consistency Manager sets the application to an initial state and enters normal op-

eration.

If the node is not leading, the next order of business is to acquire a current copy of the RVN state and

bring the emulator into sync with the other nodes emulating the RVN.�e actual state transfer process is

triggered by invoking the join()method on the State Transfer Manager. �e State Transfer Manager, de-

scribed in Section 3.2.4, returns two pieces of information: the current application state and the timestamp

last_msg from the last message processed by the leader.

However, the acquired state may be out of date by the time the Consistency Manager gets it. In order to

handle this, the Consistency Manager plays every message timestamped a�er last_msg back to the applica-

tion. At that point the application is up to date and the Consistency Manager can enter normal operation.

Once the Consistency Manager has the current RVN state, it informs the Leadership Manager by setting the

Leadership Manager’s has_state �eld to true.

In the case that there is message loss, it is possible for leadership management to return improperly. In

particular, it is possible for the Consistency Manager to believe that it is leading a freshly restarted virtual

node when it should not be. �is condition is detected by the Leadership Manager, which noti�es the Con-

sistency Manager by calling the method SorryILied(lying_service). When this method is invoked on

the Consistency Manager, the Consistency Manager resets its own internal state and re-runs the state trans-

fer protocol.

During normal operation, the Manager accepts incoming messages from the network and passes them

to the Message Ordering System, described in Section 3.2.2, via the add()method. Any messages broadcast

by non-neighboring regions are discarded at this point. �en the Manager invokes the Ordering system’s

deliver()method to check for any messages ready to be delivered to the application.

Messages are passed to the RVN application by passing them to the msgReceived(msg) handler. �e

application returns a list of response messages. If the node is leading, the responses are broadcast. Other-

wise, they are simply added to an array tx_log. In order to mitigate the impact of message loss, every node

listens for messages broadcast by the leader, and if a node overhears a message that is not in tx_log, it as-

sumes that it missed an incoming message and tells the State Transfer Manager to update the RVN state.

Additionally, if a node becomes leader a�er the previous leader has le�, it broadcasts all of the messages in

tx_log.

It’s important to understand that even though the Consistency Manager includes a variety of features

26

that add robustness in the presence of message loss, it does not provide any guarantees if message loss oc-

curs. In fact, if message loss is allowed, then it is possible for an RVN to transition into a wildly incorrect

state: For example, if a following node f misses every message broadcast by the leader l and some of the

messages broadcast by neighboring RVNs and l leaves the region or crashes, then f will have a fair shot

at becoming the new leader. Once f becomes leader, it will broadcast everything in tx_log. When other

nodes in the region receive these messages, they will automatically resynchronize with l into an incorrect

state.

3.2.2 Message Ordering

Although this implementation of the VN layer makes some very strong assumptions about local broad-

cast integrity, there are some aspects of reality that it cannot completely ignore. In particular, the possibility

that messages arrive out of order has to be considered by even the most trivial real-world deployment be-

cause messages arrive an order-of-magnitude sooner over local interfaces than over remote interfaces. �is

disparity means that nodes tend to receive local broadcasts before receiving remote broadcasts, even if the

remote message was broadcast �rst.

In order to deal with this problem, the VNE uses a simple total-ordering protocol 2 inspired by Lam-

port logical clocks [22]. �e ordering protocol seeks to guarantee that every node will process messages in

the same order given that they are received within d seconds.

Every message is timestamped with a triplet ⟨time, node_id, sequence_num⟩. Whenever a new message

is broadcast, the node sequence number is incremented by one, and the time �eld is set to the maximum of

the system time and the maximum received time plus one. Incoming messages are sorted by timestamp and

delivered a�er d seconds.

3.2.3 Leadership Manager

�e leadership management service 3 determines whether or not the VNE is actually leading the virtual

node.

�e current leadership management algorithm implemented in the VNE is a simple protocol based on

heartbeat messages and leadership requests. It does not make particular e�ort to ensure correctness in the

presence of signi�cant message loss, but is intended to work well enough for practical testing. �e imple-
2Source code for Ordering Service is available at https://carbide.mit.edu/trac/vne/browser/trunk/code/vne/

ordering.py.
3Source code for the Leadership Manager is available at https://carbide.mit.edu/trac/vne/browser/trunk/code/

code/vne/services/beat-leader.py.

27

mentation attempts to ful�ll the following properties under the assumption of no message loss:

1. �ere is precisely one leader in the region at a time.

2. If a node n becomes leader of a region, then either

(a) it successfully received the VN state from a prior leader, or

(b) there are no nodes in the region which possess the VN state.

When a node enters a new VN region, it waits a random period of time, w. If it receives either a heart-

beat or another leadership request during this period, it will begin following. Otherwise it will request

leadership by broadcasting a ⟨leadreq, region, application⟩message. If another node receives the request

and already believes that it is leading the region, then it immediately broadcasts a denial ⟨deny, region,

application, lead_time⟩. �e �eld lead_time contains the time that the node originally requested leadership,

as measured by the node’s local clock. Additionally, if the requesting node overhears any other requests, it

will also broadcast a denial. A�er waiting a su�cient period of time, the requesting node will consider itself

leader and begin broadcasting periodic ⟨heartbeat, region, application, lead_time⟩messages.

If two nodes both attempt to request leadership and subsequently both transmit deny messages, the

node that requested leadership �rst will win. �is decision is made based on the contents of the lead_time

�eld and ties are broken based on node names.

If the leading node crashes or leaves the region, then other nodes will stop receiving heartbeat mes-

sages. If a following node does not hear a heartbeat for more than HB_TIMEOUT = ALLOWED_LOSS∗

HEARTBEAT_INTERVAL seconds, then it will transmit a leadership request a�er a short, randomized delay

of up to MAX_DELAY seconds.

In order to ful�ll the second property, nodes that do not have the current RVN state are forced to wait

longer to request leadership than nodes that do have RVN state. �e actual process of obtaining RVN state

in a timely manner is detailed in Section 3.2.4. �ese delays ensure that if there are nodes in the region that

have the RVN state, then they will acquire leadership.

�ere are two groups of nodes that do not have RVN state but might attempt to acquire leadership:

nodes that have just entered the RVN region and nodes that have already entered the region and sent a re-

quest for the state. To prevent the �rst group from incorrectly acquiring leadership, the initial request delay

w is set to be greater than HB_TIMEOUT + MAX_DELAY. �is delay means that if there are any nodes already in

the region, they will attempt to claim leadership before a new node will. In order to prevent any node from

28

the second group from acquiring leadership, they are forced to wait an additional MAX_DELAY seconds af-

ter detecting that the leader le�. �is delay is governed by the has_state �eld, which is controlled by the

Consistency Manager.

3.2.4 State Transfer Manager

Unless a node’s Consistency Manager determines that it is leading an RVN region, then it will need to ac-

quire a copy of the current RVN state. �e Consistency Manager does this by calling join() on the State

Transfer Manager 4. �e current protocol is intended to be as simple as possible: A node broadcasts a join

request message and waits for a response with the current application state.

When a node wants a copy of the current state, it broadcasts a request ⟨join, region, application⟩. �e

message is tagged with the current virtual node region, and the name of the current virtual node applica-

tion. If the State Transfer Manager of the leading node hears the request, then it responds with a message

⟨joinack, region, application, state, last_msg⟩. �e response is tagged with the VN region and name, the

application state, and the timestamp of the last message that has been processed by the leader. �e repre-

sentation of the application state is application dependent.

Once the node receives a valid join response for its region, the transfer protocol returns state and last_msg

to the Consistency Manager.

3.2.5 Application Interface

An RVN application essentially describes a state machine that is driven by the Consistency Manager. �e

programming interface re�ects this view. �e interface that the RVN application has to conform to is fo-

cused on three things: allowing the Consistency Manager to explicitly control the RVN state, to pass infor-

mation about the current region to the RVN application, and to pass messages to the RVN application.

__init__(self, vn_map) is the application constructor. �e application is given a copy of the virtual node

map. At initialization, the RVN region can be considered to be None.

getState(self) must return the entire state of the application encoded as a binary string.

loadState(self, state) must set the application state to the speci�ed value. It must accept the same format

generated by getState().

reset(self) is invoked to return the application to an initial state.
4Source code for the State Transfer Manager is available at https://carbide.mit.edu/trac/vne/browser/trunk/code/

vne/services/join-shim.py.

29

regionChanged(self, region) is invoked when the host physical node changes regions. �e intention of

this call is simply to allow the RVN to store the current region in a convenient format. �is strategy

allows the RVN program to be self-contained and not have to rely on calling external APIs.

msgReceived(self, msg) is invoked whenever a new message has arrived for the virtual node. �e return

value is a list of response messages.

3.2.6 Client Interface

Clients are provided access to relevant VN information via their constructor. Each client is passed the name

of their mobile node, a map of virtual regions, and a locator object that provides an interface to the physical

position and the current region of the node.

�e VN map encapsulates information about the layout of VN regions on the �eld. It provides access to

a list of regions and can perform point location to determine which region a point is in. �e locator object

provides platform-independent access to a coordinate location.

If a client needs direct access to simulator internals, for example, the current mobile node object, it can

access them by directly importing the simulator namespace. �is type of direct access to simulator internals

is clearly outside of any abstraction, however this kind of simulator “magic” is frequently useful. For exam-

ple, it allows a client to look at the internal state of its physical node for debugging and testing purposes.

Client applications are allowed by the VN abstraction to send and receive messages to virtual nodes at

will. Moreover, they might involve complicated user interfaces or use other communication networks si-

multaneously with virtual broadcast, for example a “gateway” client might have an out-of-band connection

to the Internet. In order to allow a wide range of clients to take advantage of virtual nodes, the client API

needs to be application and programming style independent.

All client implementations need to inherit from the base client class VNClient, which provides acces-

sor functions for location information. Beyond that, the only requirement imposed on clients is that their

constructor accept certain parameters and that they implement a runmethod.

__init__(self, name, vn_map, locator) is the client constructor. Clients are given a copy of the virtual

node map, and a reference to a node Locator object.

run(self) de�nes the execution thread for of the client program.

One key piece of information that each client has access to is the mobile node’s current location. �e

30

VNE infrastructure makes this available via special Locator object, which has two properties, position

and region.

31

Chapter 4

Using the Simulator

�e goal of this chapter is to illustrate how to use the simulator to perform experiments with ad hoc net-

works. Where previous chapters discussed the simulator architecture and network models, this chapter will

focus on the simulator’s user interface. It will explain how to write scenario �les, con�gure the simulator,

generate mobility traces, visualize data, and use simulator toolchain.

4.1 Visualization

�ere are two work�ows that I frequently use while performing simulations. One strategy is to identify

interesting information prior to running the simulation and then tracking these aggregate statistics while

the simulation runs. Once the simulation is over, the collected information is written to logs that can be

directly analyzed. �is work�ow has two primary strengths: it doesn’t usually require signi�cant storage

space and post-simulation analysis is fast. Yet, it’s impossible to look at anything a�er the simulation except

for the data that was explicitly recorded. Although this limitation is always a nuisance, it isn’t necessarily

critical if simulation is fast enough.

�e other strategy is to record exhaustive information during the simulation and then use lots of cus-

tom scripts to extract data from these log �les. �is strategy is particularly useful when simulation is sig-

ni�cantly slower than extraction, which turns out to be the case fairly o�en when performing RVN simu-

lations with Python. However, it can be time consuming to write extraction scripts even with a good lan-

guage and framework. Furthermore, it’s easy to generate hundreds of megabytes, or even gigabytes, of mes-

sage logs and tra�c data in the normal course of running these simulations.

Both of these work�ows have particular strengths. Yet, both of them make it very di�cult to see the big

32

Figure 4-1: �is visualization is showing nodes as they execute a simple circle-forming algorithm.

picture. Because the researcher is limited to looking at a �xed set of aggregate statistics in the �rst case and

has to write custom scripts to extract information in the second, it’s very easy to su�er from tunnel vision.

One good strategy for getting a broader view of a simulation is to use a graphical view. Visualizations

have two distinct advantages over simple log �les: �ey can very concisely represent a huge amount of in-

formation and they don’t necessarily �lter that information based on the user’s preconceived notions. �e

latter trait is particularly important for debugging purposes. For example, if a handful of nodes “crashed”

during the simulation due to a rare bug, it might easily go unnoticed by looking only at numeric results.

However, if node status is represented visually, then the problem is trivial to observe.

�ese kinds of network visualization tools have been used before. For example, ns-2 comes with the

NAM [23] network animation tool for visualizing ad hoc network simulations. �e Python simulation

framework developed in this thesis includes a custom visualizer written in Java and designed to show RVN

and physical node states.

4.1.1 Implementation

�e visualizer (the Viz) is designed to operate on recorded traces of the simulator execution.

Internally, the Viz maintains a set of objects representing the state of physical and virtual nodes. When

33

Figure 4-2: �e visualization shows physical and virtual node state. Leading nodes are highlighted in blue,
and active virtual nodes are shown in gray.

the log �le is parsed, state changes are rei�ed as Event objects that are inserted, in order, into a vector. Dur-

ing visualization, the Viz simply plays the event vector and updates the visualization a�er each update. All

Event objects contain an undomethod, which allows the Viz to be played in reverse or to seek to any posi-

tion.

Information about node movement is also represented internally as a series of Events. �e simulator

is capable of embedding node position data into the log �le, and the Viz can read these positions. However,

this can lead to excessively large logs when used in long-running simulations. In order to deal with this, the

Viz supports reading node mobility information directly from the same ns-2 traces that were used to run

the simulation.

the Viz includes an embedded Python interpreter that accepts connections over a local socket. Al-

though the current version of the viz doesn’t implement a substantial amount of functionality in Python,

future versions will allow the user use Python to script di�erent visualization layers interactively.

4.1.2 Usage

the Viz is intended to be easy to use. To start, a user opens a log �le generated by the simulator and option-

ally speci�es a mobility trace. Once the log has been loaded, mobile node locations, states, and virtual node

34

regions are plotted on the screen, as shown in Figure 4.1.2.

In the default con�guration, mobile nodes are colorized according to their state:

Light Red nodes are in the process of requesting leadership of an RVN.

Dark Red nodes are currently leading an RVN.

Light Blue nodes are in the process of joining an RVN.

Dark Blue nodes have successfully joined an RVN but are not leading.

Gray nodes are not part of an RVN and have not started joining one.

�e visualization also displays the state of every RVN:

Gray regions represent active RVNs. An active RVN has a node acting as leader and participating in RVN

emulation.

White regions represent crashed RVNs. A crashed RVN is not capable of responding to messages or per-

forming computation.

Although the visualization is oriented toward RVN simulations, it works for others as well. Figure 4.1.1

shows a visualization of a simple motion coordination algorithm.

4.2 Tutorial: Examining Virtual Node Overhead

One of the best ways to get a feel for a new programming environment is to look at an example. �is chap-

ter walks through the steps involved in running a basic simulation using the RVN Layer. Perhaps the sim-

plest application of the simulator is to evaluate the message overhead associated with maintaining an RVN.

Because the overhead is largely independent of the particular RVN application, measuring it doesn’t require

writing very much code. �e experiment will set up a grid of RVNs with an empty RVN application and

measure the number of physical node messages.

Assembling an RVN experiment involves roughly three steps:

• Write the RVN and client applications.

• Write a script to drive the simulation.

35

• Con�gure the details of the simulation and generate a mobility trace.

None of these jobs depend on each other, but this section starts by looking at the scenario �le in order

to paint a picture of how the pieces �t together.

4.2.1 Specifying a Scenario

Scenario �les are Python scripts that drive the network simulator. �e script gains access to the simula-

tor by importing the appropriate modules. �e core simulator tools are contained in sim and RVN speci�c

methods are contained in vnesim. �e simulator network stack is in simsockets.

A typical scenario has a standard structure: import the simulator modules, parse a con�guration �le

into a Python dictionary, and then pass the con�guration to the simulator. �e scenario for this example,

scenario.py, is shown in Listing 4.1. It runs a simulation with the same mobility trace 20 times, incre-

menting the number of participating nodes by two between each run. Each run is written to a di�erent log

�le named a�er the number of nodes in the simulation.

Code Listing 4.1 (A Simulator Scenario File scenario.py).

1 import sim, vnesim
2
3 config = sim.parseConfig("vnodes.cfg")
4
5 for i in range(2, 41, 2): # 2, 4, 6, ..., 40
6 print "Run %d . . ." % i
7 sim.logging.file_name = "log-%d" % i
8 config[’mobile nodes’][’number’] = i
9
10 vnesim.go(config, 60) # Simulate for 60 seconds
11 sim.reset() # Reset for the next run

On line 1, the core simulator and RVN modules are imported. �en, on line 3, the simulator con�gu-

ration is parsed. Although it is considered good practice to keep simulation parameters in a separate �le, it

isn’t strictly required. Once parsed, the con�guration is simply a nested series of dictionaries and lists.

�e loop on line 5 varies the number of physical nodes in each simulation run. Line 7 explicitly sets the

name of the log �le used by the simulator. �is statement works because the module level name sim.logging

is aliased to the logging property on the default simulator instance. Line 8 uses the con�guration dictio-

nary to change the number of physical nodes in the simulation while leaving other parameters unchanged.

�e function go, invoked on line 8, runs an RVN simulation using the given con�guration for 60 seconds.

36

�is function is provided by the vnesimmodule and automatically creates the necessary MobileNode and

RVN objects. �e simulator is reset for the next run on line 11.

4.2.2 Con�guring the Simulation

In order to avoid cluttering the Python code with simulation speci�c details, most of the details should

be stored in an external �le. �e native format used by the simulator is YAML [24], a human-readable

markup language. When a simulator call explicitly asks for the name of a con�guration �le, the �le must

be in YAML. However, most calls only depend on the parsed dictionary structure, so the user is ultimately

free to choose his or her own format or to con�gure things inline.

Nonetheless, this example uses YAML. �ere are two principles that should make the YAML syntax

clear: Items followed by colons are keys in a dictionary and items preceded by a hyphen are entries in a list.

Numeric values are automatically parsed as Python numbers.

An RVN simulation coordinates several di�erent systems: the simulator itself, the various physical

nodes, the clients, the virtual nodes, and the VNE. Each of these modules has its own set con�guration op-

tions. �e combination of Listing 4.2, 4.3, 4.4, and 4.5 makes up the complete con�guration �le vnodes.cfg.

sim includes core simulator options, such as the name of log �les and seed values for the random number

generator. �is section also includes con�guration options for the physical model, for example, the

maximum transmission radius and the transmission delay.

Code Listing 4.2 (Simulator Con�guration).

sim:
medium:
recv lag:
bcast: 0.02 # Remote receive lag (s)
local: 0.001 # Local receive lag (s)
filter:
max_r: 150 # Maximum transmission distance (m)

mobile nodes con�gures the number of physical nodes in the simulation. �is section is where the mobil-

ity trace and client applications are speci�ed. �e client option is speci�ed as <path/to/file>.<class

name>.

Code Listing 4.3 (Mobile Node Con�guration).

37

mobile nodes:
number: 0 # Number of mobile nodes
client: # Path to client app
paths: paths # Mobility trace file name

virtual nodes sets up the RVN Layer. Con�guration is performed in two parts. First, all of the RVN appli-

cations in a simulation are listed. �en, the various RVN regions and corresponding RVN apps are

listed. �e region speci�er is used to describe the geometric shape of the RVN region. �e simulator

supports a variety of shapes. �is example uses the grid type to automatically create a four-by-four

grid of RVNs that stretches from (0, 200) to (200, 200). Grid squares are automatically named ap-

propriately.

Code Listing 4.4 (Virtual Node Con�guration).

virtual nodes:
applications:
- name: empty # Name of RVN app.
location: empty_app.EmptyApp # Path to RVN app

regions:
- spec: grid [(0, 200), (200, 200), (4, 4)] # Region specifier
neighbors: [] # List of neighboring regions
name: # Region name
apps: empty # List of RVNs in region

vne details of the RVN emulation algorithms can also be speci�ed. Each VNE service (leadership manage-

ment, consistency management, and state transfer) must be speci�ed in this section.

Code Listing 4.5 (VNE Con�guration).

vne:
services:
- location: beat-leader.LeaderElect
beat_period: 2
max_delay: 2
beat_miss_limit: 2
claim_period: 2
- location: join-shim.Join
timeout: 10
- location: consistency-shim.ConsistencyMgr
ordering_delay: 0.01

38

4.2.3 Writing the RVN Application

One of the reasons for choosing this example is that it doesn’t require a functional RVN application. Be-

cause RVN overhead is essentially independent of the actual application, an empty application serves the

purpose as well as any other. �e minimal application, call it empty_app.py is shown in Listing 4.6. Most of

the methods are empty. However, loadStatemust return a string, and msgReceivedmust return a list.

Code Listing 4.6 (empty_app.py, the minimal RVN application).

class EmptyApp:
def __init__(self, region, vnmap, state=None, mnode=None):
pass

def getState(self):
return ""

def loadState(self, state):
pass

def reset(self):
pass

def regionChanged(self, region):
pass

def msgReceived(self, msg):
return []

4.2.4 Running the Simulation

Running the simulation is simply a matter of running the scenario script. the simulator includes a Python

wrapper, sim.sh, to ensure that module include paths are set correctly.

Code Listing 4.7 (Running the simulation).

sim.sh scenario.py

�is process creates 20 �les named log-2 through log-40 that contain detailed traces of their respec-

tive simulation runs. In each log, every message transmission is recorded as a "sim <tab> tx" line in the log

�le. �is format is intended to be easy to parse using standard text manipulation tools. For example, in or-

der to measure the total number of broadcast messages in each simulation run, grep is su�cient:

39

Code Listing 4.8 (Counting messages with grep).

for i in ‘ls log*|sort +0.4 -n‘; do
grep ’sim tx’ \$i | wc -l >> values;
done;

�is chapter is intended to give the reader a taste of the simulator’s user interface. Detailed results from

a much more thorough version of this experiment can be found in Section 5.1.5.

40

Chapter 5

Point to Point Routing in Ad-Hoc Networks

In this chapter, I examine how to use the RVN Layer to route messages in a multihop ad hoc network. I

compare a simple RVN-based routing scheme to Ad hoc On-Demand Distance Vector (AODV) [13, 25]

routing and a greedy geographic routing algorithm.

5.1 Routing with the RVN Layer

�e routing services used to test the VNE are based on the algorithms developed in [3]: a virtual node to

virtual node broadcast service (geocast), a client location tracking service, and a client-to-client routing

service. Each of these three layers uses the others to provide a cohesive service. �e client tracking service

uses geocast to store client positions at a set of virtual nodes, and the client-to-client routing service uses

the client tracking service to determine where to �nd a client.

5.1.1 Geocast

�e Geocast 1 service sends messages from one virtual node to another. �e service is based on greedy DFS

and is illustrated in Figure 5-1. If an RVN receives a message destined for a di�erent RVN, the service for-

wards the message to the neighboring RVN that has the shortest Euclidean distance between its center and

the center of the destination region. If it does not receive an acknowledgement within RETRY_TIME seconds,

it will re-send the message via the second shortest path. �is procedure repeats itself until it has attempted

MAX_TRYS times, at which point delivery fails. MAX_TRYS controls the total number of transmission attempts.
1Source code for the Geocast Service is available at https://carbide.mit.edu/trac/vne/browser/trunk/code/apps/

geocast/vtov_app.py.

41

crashed

crashed

source

dest

hop 1

hop 2

Figure 5-1: Routing with virtual nodes

�us, for a grid of regions, it can range between one and eight: one will only attempt to transmit along the

shortest path and eight will attempt to transmit through every neighboring region.

Once a message reaches the destination RVN, the destination broadcasts an acknowledgement message,

found, which is rebroadcast by every RVN that forwarded the original message. �is scheme causes the

acknowledgement to propagate back to the original RVN.

In order to avoid routing loops, the Geocast service maintains a table of every message that it has broad-

cast. When the Geocast service receives a message that it has already forwarded, it simply ignores the mes-

sage. Old messages are removed from the table every MSG_TIMEOUT seconds.

RETRY_TIME is calculated as a function of the length of the shortest path between two virtual nodes:

2 ∗ HOP_DELAY ∗ (region_hops(src, dst) + 1). �is approximates the time necessary to send a message to

the destination and receive an acknowledgement. �e added value 1 was chosen to add a fudge factor of

one hop for both the forward route and the acknowledgement. For the purposes of these experiments,

MAX_TRYS was set to three because it corresponds to one quadrant (for example, N, NE, and E) on a grid

square.

5.1.2 Client Location Tracking

�e Client Location Tracking Service 2 allows a client or RVN to query the recent location of another client.

All clients periodically use the geocast service to send client locations to speci�c NUM_HOMES “home” virtual

nodes whose names are calculated by hashing the client name into the domain of RVN identi�ers. When
2Source code for the Client Location Tracking Service is available at https://carbide.mit.edu/trac/vne/browser/

trunk/code/apps/geocast/hls_app.py.

42

another node wants to determine where a client is, it geocasts a query to the client’s home locations, which

geocast back a response.

�e hashing code used by the Client Tracking Service is shown in Listing 5.1.

Code Listing 5.1.
rand = random.Random()
rand.seed(HASH_SEED)
homes = []
for i in xrange(PERM_COUNT):
homes.append(shuffle(list(vnmap.regions), rand)[:NUM_HOMES])

def hash_client(self, client, i):
try:
return homes[int(client) % len(homes)][i % p_f]
except ValueError:
return homes[hash(client) % len(homes)][i % p_f]

�e �rst �ve lines create an array homes of randomly generated permutations of RVN regions. Each list

is truncated to the total number of home locations that each client will have. �en, hash_client simply

indexes into the array using either the numerical value of the node, or Python’s built in hash function.

5.1.3 Client-to-Client Routing

�e Client-to-Client Routing Service 3 operates by combining Client Location and Geocast. When a client

wants to send a message, it tells the local RVN.�e RVN uses the Client Location Service to discover the

destination client’s current region. �e RVN then geocasts the message to the destination region. Finally,

the destination RVN delivers the message to the destination client. In order to maintain e�ciency, the

Routing Service caches results from the Client Location service for ROUTE_CACHE seconds.

�ese applications are well suited to evaluating the RVN layer. �ey are not trivial, but nor are they ex-

cessively complicated. �ey make good use of the layer’s assumptions and features. For example, the geocast

routing algorithm takes advantage of the fact that the geography of the virtual nodes is known and �xed.

�ese applications also open the door to examining the performance of composite services with respect to

di�erent virtual node parameters.

5.1.4 Implementation Notes

�e RVN routing scheme is implemented in the simulator as three di�erent RVN Layers. �is decision,

which was made due to the structure of the simulator, means that each part of the routing service poten-
3Source code for the Client-to-Client Routing Service is available at https://carbide.mit.edu/trac/vne/browser/

trunk/code/apps/geocast/route_app.py.

43

tially has di�erent leaders and fails at di�erent times. Although this design diverges from [3], it does not

substantially change the performance of the algorithms: the same physical nodes are running the same VN

applications.

One important implementation detail involves the translation of the routing algorithms in [3] from

the VSA model to the RVN model. �e most important di�erence between these models is that a VSA is

a timed automaton: a VSA’s state can evolve independently of message reception. Although this di�erence

is less relevant in a routing algorithm – most actions are clearly driven by receiving a message – some ac-

tivities like route expiry and route timeouts require this behavior. In order to approximate this ability, the

implementation introduces a special timeout client that runs on all nodes. �e timeout client periodically

broadcasts messages of the form ⟨timeout, time⟩. RVNs trigger any time-sensitive activities based on these

messages. Additionally, any RVN that requires an approximate clock can use the maximum timestamp

from all received timeout messages.

5.1.5 Virtual Node Overhead and Performance

�e overhead imposed by the RVN Layer is largely independent of the particular application. �e message

overhead imposed by the RVN layer is dominated by the component services of the VNE: leadership man-

agement and state transfer. Although some applications maintain more state than others, which leads to

larger state transfer messages, message overhead is primarily dependent on the mobility pattern followed by

physical nodes. �e leadership management protocol incurs overhead in two ways: it periodically broad-

casts heartbeat messages and a �urry of messages is involved in electing a new leader. Heartbeat messages

are essentially a constant overhead per active RVN, however new leader elections happen more o�en in

high mobility situations. �e join protocol incurs overhead whenever a node joins a region, which is di-

rectly associated with how much nodes are moving around

�e RVN layer also imposes overhead in terms of failure and performance penalties. RVNs can crash –

and su�er state loss – if every node in the region leaves or crashes. Additionally, an RVN can temporarily

pause in the case of a leadership change. �ese issues are also independent of the particular RVN and client

applications and depend on node mobility.

In order to measure the overhead generated by the RVN layer, I ran a series of tests using a �ve region

by �ve region, 400 m by 400 m grid. �e test was run at three node densities: 25, 50, and 100 nodes. �ese

levels correspond to one, two, and four average mobile nodes per RVN region. Node mobility was simu-

lated using the random waypoint model. �e physical broadcast radius was set to 250 m and the broadcast

44

delay was set to 0.02 seconds. Mobility traces were generated using the setdest tool distributed with ns-2.

For each density level, the waypoint pause time was varied from 100 to 900 seconds. Node velocity was

evenly distributed between zero and 20 m/s for all experiments. Each test was run for 1000 seconds using

�ve di�erent, randomly generated mobility patterns and the mean of results was taken.

�e tests examined both message overhead and failure rate. Message overhead was measured by count-

ing the number of messages of various types that were transmitted per region. Failure statistics measure

how o�en regions lost their state, how o�en they changed leaders, but retained state, and the percentage of

time that the region is stable. A stable region is a region that is working normally, that is, it has a leader with

state.

�e RVN failure overhead results are summarized in Figure 5-2. Figure 5-2c summarizes the story: it’s

quite clear that the percent of time that an RVN spends capable of performing useful work is essentially

independent of pause time. �is means that even in high mobility situations, it’s unlikely for an RVN to

completely lose state. However, the stable time is strongly dependent on node density. �is observation

suggests that RVNs can work well, as long as there are enough physical nodes to e�ectively replicate the

state.

�ese plots have several interesting features. Figure 5-2a shows that the number of leadership changes

per region increases with node density and Figure 5-2b shows the opposite: the number of state failures

declines as node density increases. �e fact that the number of state failures declines with increasing node

density should be intuitive: If there are more physical nodes participating, then there is more redundancy

and a lower chance that a region will ever be le� completely empty. �e fact that there are more regions that

are continually occupied drives the corresponding increase in the total number of leadership changes. �e

net e�ect is shown in Figure 5-2c: As the node density increases, the amount of time that the RVN Layer is

stable increases.

One counter-intuitive result in these plots is that the stable time, shown in Figure 5-2c, seems to be in-

dependent from the pause time. However, the 5-2d tells the real story: As the pause time increases, some

RVNs become much more stable. However, because the physical nodes don’t move as much, other RVNs

spend the entire simulation in a failed state.

Additionally, there is a clear kink in Figures 5-2a and 5-2b at 500 seconds: in both graphs, the respective

failure rate hits a low point and levels o�. �is kink is an artifact of the way that setdest generates mobility

traces. Unlike some tools, setdest will wait for the entire pause time before starting node movement. Be-

45

Pause Time (s)

Le
ad

er
sh

ip
 C

ha
ng

es
 p

er
 R

eg
io

n

100 200 300 400 500 600 700 800 900

0
2

4
6

8
10

100 Nodes
50 Nodes
25 Nodes

(a) RVN Leadership Changes

Pause Time (s)
St

at
e

Fa
ilu

re
s

pe
r

R
eg

io
n

100 200 300 400 500 600 700 800 900

0
2

4
6

8
10

100 Nodes
50 Nodes
25 Nodes

(b) RVN State Failures

Pause Time (s)

St
ab

le
 T

im
e

(%
)

100 200 300 400 500 600 700 800 900

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

100 Nodes
50 Nodes
25 Nodes

(c) RVN Stable Time

Stable Time (%)

0.0 0.2 0.4 0.6 0.8 1.0

100

Pa
us

e
T

im
e

(s
)

200

300

400

500

600

700

(d) Histograms of Stable Time vs. Pause Time for 25 nodes

Figure 5-2: RVN Failure Overhead. �ese plots show the mean results from �ve simulator runs using inde-
pendent mobility traces. Node velocity was evenly distributed between 0 and 20 m/s, and each test was run
for 1000 seconds. Figure 5-2c shows the average percentage of time that regions were stable at various node
densities. Figure 5-2d shows the corresponding frequency distribution for 25 nodes.

46

cause these simulations were run for 1000 seconds, this means that the nodes in any run with a pause time

of 500 seconds or more change positions only once.

�e RVNmessage overhead is illustrated in Figure 5-3. As should be expected, the heartbeat messages

that are broadcast by the leadership management service are the most numerous. �e number of heartbeat

messages is strongly correlated to the node density: �e higher the node density, the more stable the RVNs,

which means that a leader is more likely to be broadcasting a heartbeat. �e number of heartbeat messages

is also negatively correlated to the pause time for the same reason: RVNs are slightly more stable in low

mobility conditions.

Similar observations apply to leadership requests and state request (join) messages. �ey scale almost

linearly with node density because there are more region transitions, and they fall o� rapidly as mobility

decreases for the opposite reason. Note that join requests are much more common than leadership requests

in high mobility and high density settings. �is di�erence is caused because every single node that joins a

region needs the region state, but the vast majority will not have to request leadership.

5.1.6 Routing Performance

To test the performance of the RVN Geocast protocol, the following experiment was run: Ten virtual nodes

were chosen as senders and ten as receivers. Each sending region attempted to geocast a message to the cor-

responding receiving region once every �ve seconds. If either the sending or the receiving region crashed

during the simulation, a new region pair was chosen. �e simulation was run for 1000 seconds with the

same same mobility patterns, grid, and node parameters as in the RVN overhead experiments. Unlike the

overhead experiments, these �gures include the results of only a single run at each node density/mobility

level.

�e experiment results are summarized in Figure 5-4. �e results focus on two metrics: packet delivery

fraction and average message latency. �e packet delivery fraction is the percentage of packets that were

successfully routed from the source to the destination. �e average latency re�ects the average amount of

time that it took to deliver the messages.

At low node density, the packet delivery fraction, shown in Figure 5-4a, was low and hovered around 70

percent. Additionally, at low node density the delivery fraction seems to be wildly unstable – jumping from

20 percent at 700 seconds to 80 percent at 800 seconds. �e apparent instability is actually a high sensitiv-

ity to the initial node distribution. As shown in Figure 5-2d, as mobility decreases, there will be a relatively

small number of highly stable virtual nodes at the expense of a number of completely inactive nodes. �e

47

Pause Time (s)

M
es

sa
ge

s
pe

r
R

eg
io

n

0
30

60
90

12
0

100 200 300 400 500 600 700 800 900

28
0

34
0

40
0

46
0

52
0

Lead Req.
Heartbeat
Join

(a) 25 Nodes

Pause Time (s)
M

es
sa

ge
s

pe
r

R
eg

io
n

0
30

60
90

12
0

100 200 300 400 500 600 700 800 900

28
0

34
0

40
0

46
0

52
0

Lead Req.
Heartbeat
Join

(b) 50 Nodes

Pause Time (s)

M
es

sa
ge

s
pe

r
R

eg
io

n

0
30

60
90

12
0

100 200 300 400 500 600 700 800 900

28
0

34
0

40
0

46
0

52
0

Lead Req.
Heartbeat
Join

(c) 100 Nodes

Figure 5-3: RVN message overhead as a function of node density. For each pause time, these plots show
the mean values from �ve simulator runs using independent mobility traces. Node velocity was evenly
distributed between 0 and 20 m/s, and each test was run for 1000 seconds. �e horizontal dotted line at 500
messages represents the maximum potential number of heartbeat messages per region.

48

ability to route between randomly chosen locations is strongly dependent on the particular location of ac-

tive nodes. �e e�ect is much less pronounced with high mobility: Although regions fail more o�en, the

ability to route messages is much less dependent on initial conditions.

�is sensitivity shows up in the average latency as well. In Figure 5-4b, there is a huge spike at 700 sec-

onds. �is spike is primarily driven by a handful of regions that were just barely connected: Messages even-

tually arrived but only a�er taking a convoluted route through much of the network. A similar, but much

less pronounced problem causes the spike at 100 seconds in Figure 5-4c. Arguably, these messages should

have timed out, which would improve the average latency �gures at a small cost to the delivery fraction.

At moderate and high node density, the RVN Layer is much better behaved: When the Layer is essen-

tially stable, it tends to take slightly over 0.1 seconds to route between nodes. �is number corresponds to

an average of three hops. One of the problems with using the RVN Layer for routing is that it pays, at the

very least, a factor of two latency penalty because the message ordering system. �us, when the transmis-

sion delay is set to 0.02 seconds, communication between RVNs takes at least 0.04 seconds.

Measuring the performance of the Client-to-Client Routing Service was more di�cult. One of the most

problematic limitations of the Python simulator is its performance. Because simulating the Client-to-Client

Service is several times more involved than simulating Geocast by itself, the measurements are necessarily

limited. �is experiment randomly chooses ten pairs of nodes. One node is designated the sender and the

other node the receiver. �e simulation waited 20 seconds for the RVN and Client Location Service to sta-

bilize. �en, the sending nodes transmitted a message via the Client-to-Client Service twice a second. Mea-

surements were taken for 15 seconds. �is procedure was repeated for �ve node con�gurations at 25 and 50

total physical nodes. �e intention of this experiment is to understand the steady state characteristics of the

routing service at di�erent node densities.

�e results from the experiment are summarized in Figure 5-5. Much of the story from the Geocast

analysis is is clearly visible in these plots. At low node density, most messages are delivered promptly, but

many nodes have essentially zero connectivity. It’s important to remember that the simulation time in this

experiment is short enough that it �lters the extremely high latency messages that were visible in the Geo-

cast experiment. With a higher node density, nodes have much better connectivity and most messages are

delivered.

Notice that the average client-to-client latency is noticeably larger than the Geocast latency. �is is pri-

marily due to the cost of performing the client location prior to sending.

49

Pause time (s)

Pa
ck

et
 d

el
iv

er
y

fr
ac

ti
o

n

100 200 300 400 500 600 700 800 900

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

100 Nodes
50 Nodes
25 Nodes

(a) Delivery Fraction

Pause time (s)
La

te
nc

y
(s

)

100 200 300 400 500 600 700 800 900

0
20

40
60

(b) Latency – 25 Nodes

Pause time (s)

La
te

nc
y

(s
)

100 200 300 400 500 600 700 800 900

0
1

2
3

4
5

6

(c) Latency – 50 Nodes

Pause time (s)

La
te

nc
y

(s
)

100 200 300 400 500 600 700 800 900

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(d) Latency – 100 Nodes

Figure 5-4: RVN Geocast Routing Performance. Each pause time corresponds to a single 1000 second, sim-
ulation run using a �ve by �ve region, 400 m by 400 m grid. Node velocity was distributed between 0 and
20 m/s. Broadcast radius was set to 250 m.

50

Latency (s)

Fr
eq

ue
nc

y

0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75

0
25

50
75

10
0

12
5

(a) Latency – 25 nodes

Latency (s)
Fr

eq
ue

nc
y

0.00 0.75 1.50 2.25 3.00 3.75 4.50 5.25

0
50

15
0

25
0

35
0

45
0

55
0

65
0

(b) Latency – 50 Nodes

Delivery Fraction (%)

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

(c) Delivery Fraction – 25 Nodes

Delivery Fraction (%)

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

(d) Delivery Fraction – 50 Nodes

Figure 5-5: RVN Client-to-Client Routing Performance. Each set of plots was generated from �ve, 15 sec-
ond, simulation runs using a �ve by �ve region, 400 m by 400 m grid. Node velocity was distributed be-
tween 0 and 20 m/s. Broadcast radius was set to 250 m.

51

Source

Destination

Forward Route
Reverse Route

Figure 5-6: �e Ad hoc On-Demand Distance Vector routing protocol

5.2 Ad hoc On-Demand Distance Vector

In order to contextualize the performance results from the RVN Geocast and Client-to-Client Routing Ser-

vice, it’s necessary to compare them to another routing protocol. �is section considers the Ad hoc On-

Demand Distance Vector (AODV) routing protocol [13, 25]. AODV is a well-known and respected routing

protocol for MANETs. Unlike the other routing protocols examined in this chapter, AODV does not use

any form of geographic information. It is an on-demand protocol, which means that it does not actively

maintain its routing tables. Rather, a node must run a special route discovery algorithm when it needs to

send a message.

�e route discovery process, illustrated in Figure 5-6, uses a form of controlled �ooding. It begins when

a source node broadcasts a rreq message. Every node that receives the request performs two tasks: it cre-

ates a reverse route to the source of the request, and it re-broadcasts the route request. When the request

eventually reaches either the destination node or a node with a current route to the destination, a rrep

message is sent back to requesting node via the established reverse route. �is process of �ooding the net-

work in order to �nd a route is potentially costly. In order to control the process, AODV uses an expanding

ring search. �at is, it initially sends the rreq only to its neighbors. �en it �oods the rreq to every node

within two hops, and so on until it reaches the edge of the network.

One of the most important parts of a MANET routing protocol is route maintenance. How does the

52

protocol discover when a route is broken, and what does it do to �x it? AODV is able to take advantage of

a variety of di�erent strategies for detecting broken links. �e AODV standards document, RFC 3561 [25],

speci�es three that can be used individually or in combination: hello messages, link-layer feedback, and

passive acknowledgements. hello messages are broadcast periodically by a node to inform neighboring

nodes of its presence. Link-layer feedback takes advantage of the packet acknowledgements used by some

MAC protocols. “Passive acknowledgement” involves observing the channel to see if a neighboring node

forwards route requests when it should.

When a node running AODV discovers that one of its routes has failed, it sends an rerr message to

every neighboring node that was using the failed route.

AODV tags route replies with a destination sequence number. �e destination sequence number is gen-

erated by the route destination and included in all route replies. Every node increments its sequence num-

ber before originating a route discovery and before responding to an rreq. �e sequence number makes it

extremely clear which routes are more recent than others and allows AODV to avoid routing loops.

5.2.1 Implementation Notes

In order to obtain results that are comparable to the RVN system, I implemented AODV 4 using the same

Python simulator framework. �e AODV implementation is based on RFC 3561 [25]. Although my imple-

mentation is mostly compliant with the RFC, it leaves out some features that are not relevant to these tests.

�e RFC includes provisions for operating AODV over unidirectional links. �e RFC also allows a

node to attempt to repair a broken route locally. In this case, the node originates a new route request for

the broken route rather than propagating a route error. Neither of these optimizations are included in my

implementation. Additionally, it does not use link layer feedback or passive acknowledgements to detect

link failure. Rather, it relies entirely on hello messages. �is limitation does hurt performance in high mo-

bility situations. However, it’s not possible to implement properly because the simulator doesn’t implement

link layer acknowledgements.

My AODV implementation maintains the mapping between hardware addresses and IP addresses inter-

nally. It does not use a separate ARP protocol. �is is a relatively minor change, considering that AODV

necessarily receives a message from any node that it wants to unicast to, due to the way route discovery

works. �is change generally improves performance, because it avoids potential ARP resolution latency if

the ARP cache falls out of the sync with the AODV route cache.
4Source code for my AODV implementation is available at https://carbide.mit.edu/trac/vne/browser/trunk/code/

apps/aodv/aodv.py.

53

All message timeouts and broadcast rates are set to the default values speci�ed in the RFC. In particular,

hello messages are broadcast once a second, and route lifetimes are initialized to three seconds.

5.2.2 Performance

In order to provide a reference point for the results produced by this simulation model, I recreated experi-

ments from a previously published paper [26]. �ese tests use a 1500 m x 300 m �eld. �e broadcast range

is set to 250 m, the transmission delay to 0.02 seconds, and speed is uniformly distributed between 0 and

20 m/s. �ere are 50 nodes, 10 of which transmit �ve packets per second to another node. Source and desti-

nation nodes are chosen uniformly at random. �e simulation was run for 900 seconds and the pause time

was varied between 100 and 900 seconds, which means that the nodes are entirely stationary at the maxi-

mum pause time.

�e results of this test are illustrated in Figure 5-7, and essentially match the results found in [26]. AODV

�nds e�cient routes and has very low latency as long as the channel is uncongested. Because this simula-

tion does not model message collisions, the message latency shown in 5-7b is low. �e message overhead

measured in this experiment compares well with that in [26]. With low pause times, AODV is forced to

broadcast roughly one routing message for every data message. As pause time increases and link changes

decrease, message overhead approaches zero.

However, these results show a substantially degraded packet delivery rate at high node mobility, whereas

the results in [26] show nearly perfect delivery at high node mobility and low channel congestion. Per-

formance in these circumstances is primarily dependent on rapidly detecting and repairing broken links.

�e implementation of AODV in [26] uses link-layer feedback rather than hello messages to detect link

breaks, which likely accounts for the performance disparity.

54

Pause time (s)

Pa
ck

et
 d

el
iv

er
y

fr
ac

ti
o

n

100 200 300 400 500 600 700 800 900

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) AODV Delivery Fraction

Pause time (s)
La

te
nc

y
(s

)

100 200 300 400 500 600 700 800 900

0.
02

0.
04

0.
06

0.
08

0.
10

(b) AODV Delivery Latency

Pause time (s)

N
o

rm
al

iz
ed

 R
o

ut
in

g
O

ve
rh

ea
d

100 200 300 400 500 600 700 800 900

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

(c) AODV Routing Overhead (Excluding hello messages)

Figure 5-7: AODV Routing Performance. �ese tests were run for 900 seconds, with nodes moving in a
1500 m x 300 m �eld. �e broadcast radius was set to 250 m. �e transmission delay was set to 0.02 sec-
onds.

55

Destination

Source

(a)

Source

Destination

(b)

Figure 5-8: �e greedy geographic routing algorithm always forwards messages to the neighbor nearest the
destination, as in (a). However, if every neighboring node is farther from the destination than the current
node, as shown in (b), the greedy heuristic fails.

5.3 Greedy Geographic Routing

One of the interesting aspects of using the RVN Layer for routing is that it implies partial knowledge of

node positions. �e routing system doesn’t necessarily know where any individual physical node is, but it

does know the location of RVN. AODV, in contrast, doesn’t make any assumptions at all about geographical

layout. �is section examines the opposite extreme: routing with perfect knowledge of all node positions.

�e basic greedy geographic routing algorithm, illustrated in Figure 5-8a, is extremely simple. If a node

a wants to send a message to another node b, then a forwards the message to the neighbor that is closest to

node b. If all of node a’s neighbors are farther away from b than a, as illustrated in Figure 5-8b, then rout-

ing fails.

5.3.1 Implementation Notes

�e greedy geographic protocol implementation 5 is extremely simplistic. If greedy routing fails, the imple-

mentation supports two options: drop the message or bu�er the message for a con�gurable period of time.

It does not support perimeter routing modes in the style of GPSR. �is limitation doesn’t turn out to be a

problem in the experiments here. Furthermore, the implementation relies on simulator primitives in order

to determine the location of the destination node and of all neighboring nodes. �is implementation means

that there isn’t any measurable message overhead associated with maintaining the routing protocol.

Of the other routing protocols examined in this thesis, greedy geographic routing is most similar to the

RVN geocast. However, it has distinctly more information available and essentially zero message overhead.

56

Pause time (s)

Pa
ck

et
 d

el
iv

er
y

fr
ac

ti
o

n

100 200 300 400 500 600 700 800 900

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

Pause time (s)

La
te

nc
y

(s
)

100 200 300 400 500 600 700 800 900

0.
02

0.
04

0.
06

0.
08

0.
10

(b)

Figure 5-9: Greedy Geographic Routing Performance

5.3.2 Performance

Because this protocol relies on simulator primitives to determine the location of neighboring nodes, mes-

sage overhead isn’t an interesting metric because none exists. However, both the packet delivery fraction

and average latency have some meaning. �e packet delivery fraction will largely re�ect the probability that

a randomly chosen pair of nodes will have a valid greedy path between them. �e average message latency

will be a function of the average number of hops in that path.

In order to measure the performance of the greedy protocol, I used the same procedure as in measur-

ing the performance of AODV and the overhead of RVNs . Using 25 physical nodes, 10 nodes were ran-

domly designated senders and 10 were randomly designated receivers. Each node broadcast one message

per second of simulation time. Mobility was modelled using the same random waypoint traces as in the

RVN overhead experiments. Speed was uniformly between 0 and 20 m/s. �e physical broadcast radius

was set to 250 m and the broadcast delay was set to 0.02 seconds.

�e results are summarized in Figure 5.3.2. �e measurements show two things:

• If a reasonable number of nodes are evenly distributed in a square region, then a greedy path will

almost certainly exist between any two of them.

• Given a 400 m x 400 m square and a 250 m broadcast radius, this path will typically be three hops

long.
5Source code for the greedy geographic routing protocol is available at https://carbide.mit.edu/trac/vne/browser/

trunk/code/apps/georoute/georoute.py.

57

�e problem with these tests is that they are only looking at half of a routing protocol. Although the

greedy route metric looks good given a square region of evenly distributed nodes, it ignores the very hard

problem of e�ciently distributing the location of every node throughout the entire network. �is separa-

tion of concerns occurs cleanly in the Geocast protocol, because Geocast can rely on the Client Location

Service. �is greedy algorithm cannot use the same service, because it does not use the RVN Layer.

5.4 Performance Comparison

Of the routing protocols examined in this chapter, it seems clear that AODV performs the best. Unlike the

RVN routing protocols, it maintains low latency and reliable packet delivery in low density, high mobil-

ity conditions. �e implementation of AODV tested in this paper relies on hello messages to detect link

breaks, and these messages contribute to routing overhead. However, they can be removed by using link-

layer feedback for the same purpose. �is change would simultaneously improve the measured delivery

fraction for AODV in high mobility situations.

However, the RVN Layer routing protocols clearly demonstrate that the RVN Layer is a viable platform

for writing routing applications. As long as the layer itself is stable, the RVN routing protocols tended to

pay a small, multiplicative constant, penalty in terms of latency. Yet, the convenience that comes from hav-

ing access to the abstraction layer makes this overhead acceptable.

Although the greedy routing protocol looks very nice on paper, it is not a complete protocol and re-

lies on information that would not be available outside of a simulator. It is interesting to note that both the

greedy protocol and AODV show an average latency of 0.06 seconds, corresponding to an average hop

length of three. �e RVN Geocast, while running in a very stable network, has an average latency close to

0.12 seconds. Considering that individual hops between RVNs are twice as expensive as normal, its routes

tended to have roughly the same number of hops as other protocols.

Nonetheless, these results prompt more questions than they answer about routing with the RVN Layer.

�ere are a variety of avenues to further examine the performance characteristics of RVN routing proto-

cols and to compare them to conventional protocols. One of the key di�erences between RVN Geocast and

AODV is that the Geocast protocol was originally designed to be a very safe, self-stabilizing algorithm that

could recover from cases of extreme node failure. It uses end-to-end acknowledgements and allows every

virtual node along the path to retry communication along new routes. AODV, in contrast, does neither of

these things. One question to ask, is whether or not they add any bene�t? It seems likely that they improve

58

performance in the face of node failure and message loss. In order to test this, it would be interesting to

measure the performance di�erence between Geocast and AODV in the presence of node failure, message

loss, and other adversarial conditions.

It’s also important to remember, and would be interesting to investigate, that the Geocast presented in

this paper can be tuned di�erently. For example, it seems likely that a less careful approach would be much

faster. For example, one virtual node might pass messages to the neighboring node that is closest to the

destination, receive an immediate acknowledgement, and then wash its hands of the matter entirely. �is

send-and-forget approach has much more in common with AODV than the current Geocast implementa-

tion.

One of the other gaps in the set of experiments is in terms of mobility. Although the experiments here

tested a very wide range of pause times, none of the experiments isolated node velocity. Additionally, all of

the pause times were relatively large compared to to the broadcast message delay. It would be interesting to

see a comparison of Geocast to AODV with the pause time set to zero, that is, with constant node move-

ment. �is experiment would compare the speed at which AODV can build and repair routes to the speed

with which RVNs can deal with leadership changes and state loss.

�is implementation of Geocast has other quirks that should be investigated. One reason that the Geo-

cast latency appeared to be so large, is that it didn’t impose timeouts on a per-message basis. In some cases,

messages managed to spend a very long time bouncing around the network. �ey were eventually deliv-

ered, but only a�er the network had rearranged itself. It would be interesting to see what the overall latency

looks like if messages were forced to time out a�er a relatively short period of time.

�e precise source of the Client-to-Client Service’s performance problems also needs to be investigated

in greater detail. One potential reason for its problems is that it depends on the Client Location Service to

determine the location of the destination node. However, the Client Location Service necessarily queries

the client’s home region, even if the client itself is relatively nearby. AODV doesn’t su�er from this problem.

�e precise performance penalty caused by the extra delay should be measured.

It would also be interesting to quantify the di�erence between the way that AODV and the RVN Client-

to-Client Service reuse routing table information. Both routing protocols require a route discovery phase

– Geocast uses the Client Location Service and AODV �oods rreq messages – however the information

that they discover is valid for di�erent periods of time. �e results of a Client Location lookup are valid

until the client moves. However, AODV’s routing table information can break whenever any intermediate

59

node moves. AODV includes some optimizations to mitigate this e�ect. For example, it allows a node to

repair a broken link locally rather than propagating the error throughout the rest of the network. Yet, it is

not entirely clear how these di�erences manifest in terms of performance.

60

Chapter 6

Conclusion

�is thesis has presented a de�nition and an implementation of the Reactive Virtual Node Layer, a sim-

ulator for mobile ad hoc networks, and set of simulation results evaluating the performance of several

MANET routing protocols. In this chapter, I review the contributions of this thesis and conclude by sug-

gesting a variety of avenues for future research.

6.1 Contributions

�is thesis makes several contributions to the �eld of ad hoc network simulation and MANET routing. In

this thesis, I have:

• Presented a new network simulator that is written in Python and specialized for mobile ad hoc net-

works.

�is thesis introduced a new tool for simulating ad hoc networks. Unlike existing solutions, this tool

is primarily implemented in a highly dynamic language, which makes the simulator easy to develop

and removes the impedance mismatch between simulated so�ware and the simulator itself. Although

there is a substantial amount of work le� to do before the simulator is useful for large scale, physically

accurate simulations, it is immediately useful for prototyping routing algorithms and for performing

relatively small scale simulation.

• Developed a new visualization tool for simulated ad hoc networks

Most MANET simulation focuses on speci�c, quantitative measures of routing e�ciency. Yet, purely

quantitative measurements of complicated systems o�en risk missing the forest for the trees. �is

61

thesis presented a new visualization framework for understanding behavior in mobile ad hoc net-

works.

• De�ned the Reactive Virtual Node Layer

�is thesis presented a and de�ned a reactive virtual infrastructure abstraction, the Reactive Virtual

Node Layer.

• Provided a working implementation of the RVN Layer for simulation

One of the key contributions of this thesis is an actual implementation of the RVN Layer abstraction.

Although the implementation runs in simulation only, it opens the door to more practical research

with the abstraction.

• Compared the performance of three MANET routing protocols with simulation

�is thesis uses the RVN Layer implementation to simulate a VN routing algorithm. In order to bet-

ter understand the performance �gures, they are compared with two conventional routing schemes.

6.2 Evaluation

Although the Python simulator framework that is presented in this thesis is pleasant to use compared to

conventional network simulators and is very useful for prototyping network protocols, it has some signi�-

cant problems.

�e single most signi�cant failure is performance. It simply isn’t possible to gloss over the fact that its

performance is dismal. Even though switching between tasklets in Stackless Python is relatively cheap com-

pared to switching between real processes or kernel threads, the simulator implementation simply does it

too o�en. If this simulator is ever going to become a viable platform for anything but prototyping, it will

have to gain a better ability to replace context switches with simple method calls. Once that happens, the

constant factor slowdown due to using an interpreted language can be whittled away with careful optimiza-

tion.

Additionally, the original basis for analyzing simulation results, detailed log �les, turned out not to

work well; the context that would otherwise be available due to the program structure is missing from log

�les, which means that it’s necessary to write large, tedious programs that carefully recreate the missing

62

context. A more e�ective approach is to write a single statistics-collecting object that o�ers a simple inter-

face to the rest of the code. While the simulation is running, code can easily invoke methods on the statis-

tics object. Once the simulation is complete, the entire object should be serialized to a �le. Analysis is much

easier because the data remains in its most useful form.

6.3 Future Work

�is section proposes a number of potential avenues for extending the work that was presented in this the-

sis.

6.3.1 Simulator Enhancements

One of the serious limitations of the Python VNE implementation and the Python simulation framework

is simulation �delity. �e Python simulator makes development relatively easy, however it does not im-

plement detailed radio or channel models. In order to overcome some of these limitations, my work was

recently adapted by Jiang Wu. He implemented the VN framework using the ns-2 simulator [27] to evaluate

virtual nodes for solving address allocation in ad-hoc networks.

Nonetheless, it would be extremely bene�cial to combine the ease of use and development that comes

from a pure Python simulator with the �delity of detailed radio and channel models. �ese changes might

involve a substantial amount of work on two fronts: basic model implementation and performance opti-

mization. Python is a fantastic language for rapidly developing so�ware, and implementing a simple math-

ematical model of radio propagation should be straightforward. However, radio and channel models are

necessarily triggered frequently and are performance sensitive.

�ere are several potential solutions to this problem. One option is to simply wait for better Python

interpreters. Multiple projects are attempting to, for example, port the Python language to the Java Virtual

Machine or implement optimizing JIT compilers for the language. However, these projects are probably

going to take several years to mature signi�cantly. Another option would be to implement the models as

compiled extensions. �is second option has its own limitations. Even though Python extensions can be

quite fast, the penalty from calling out to the extension accumulates over the course of a long simulation.

6.3.2 Visualizing Distributed Systems

Although the current incarnation of the Viz is very useful for debugging virtual node applications and for

observing node behavior, its utility for visualizing arbitrary MANET so�ware is limited. �e viz doesn’t

really support custom graphic layers, and there isn’t any support for adding new sources of data.

63

�ere are a variety of features that I think would substantially improve the visualization. �ere should

be an easy to use system for writing custom visualizations that run in same context and can take advantage

of the RVN log �le parser. Furthermore, it would be nice if these custom layers could by written in Python.

Custom visualization layers should, presumably, be able to implement a user interface for dynamically in-

teracting with them as well.

�e visualization display itself could also use some improvements. One of the most important dimen-

sions in a process visualization is time. However, the Viz is only able to show a single moment in time at

once. One interesting avenue of development would be to improve the spatial mapping of time in MANET

visualization. For example, adding a small multiples display that shows the network at time t, t − 5, t − 10,

etc. would make it easier to see the evolution of the network over time.

6.3.3 MANET Routing

Although it seems clear that the RVN Layer is potentially useful for routing in MANETs, there is a substan-

tial amount of work that remains to be done. In addition to the experiments and protocol modi�cations

suggested in Section 5.4, there are at least two other avenues for future research:

6.3.3.1 Comparing Virtual Node Abstractions

�is thesis examined three di�erent protocols for routing in MANETs. However, it focused on only one

routing protocol that used the RVN Layer. Moreover, the protocol was originally designed to run on VSAs.

It would be interesting to see if a routing service that was designed from the ground up for an RVN could

achieve better performance.

�e implementation of the VN routing protocol used the Python RVN simulator also presented in this

thesis. One important question is whether or not the protocol would perform better if it was implemented

on a VSA, and if so, to what degree?

6.3.3.2 Comparing Routing Protocols

Point-to-point routing services can be cleanly decomposed into three tasks: locating the destination, es-

tablishing a route to the destination, and forwarding messages to the destination. AODV combines the

�rst two tasks, and RVN Geocast combines the last two. �us, there are other combinations that should

be tested. In particular it would be interesting to consider an RVN routing service that combines client lo-

cation and route establishment into a single phase.

Another open question stands in respect to understanding the interaction between traditional, node-

based protocols and virtual node systems. Does it make sense to implement part of a system using RVNs,

64

run a more traditional protocol on the client nodes, and let the traditional protocol query the VN Layer? If

one of the primary strengths of RVNs is that they are easy to program, then this strategy might be a reason-

able approach to prototyping distributed systems.

One simple protocol to test this approach with is the greedy geographic routing protocol: What hap-

pens when virtual nodes are used to run a location service and a simple, physical node-based protocol is

used to route messages? It seems likely that this combination could slightly increase routing performance

compared to a purely RVN-based algorithm, but it may come at the cost of lower reliability.

65

Bibliography

[1] S. Dolev, S. Gilbert, N. Lynch, E. Schiller, A. Shvartsman, and J. Welch, “Virtual mobile nodes for mo-

bile ad hoc networks,” in 18th International Symposium on Distributed Computing (DISC04), Oct. 2004.

[2] S. Dolev, S. Gilbert, E. Schiller, A. Shvartsman, and J. Welch, “Autonomous virtual mobile nodes,” in

�ird Annual ACM/SIGMOBILE International Workshop on Foundation of Mobile Computing (DIAL-

M-POMC 2005), Cologne, Germany, Sep. 2005.

[3] S. Dolev, L. Lahiani, N. Lynch, and T. Nolte, “Self-stabilizing mobile node location management

and message routing,” in Seventh International Symposium on Self-Stabilizing Systems (SSS 2005),

Barcelona, Spain, Oct. 2005.

[4] S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, and T. Nolte, “Timed virtual stationary automata for mobile

networks,” in 9th International Conference on Principles of Distributed Systems (OPODIS 2005), Pisa,

Italy, Dec. 2005.

[5] Friefunk. [Online]. Available: http://start.freifunk.net

[6] FunkFeuer. [Online]. Available: http://www.funkfeuer.at/

[7] B. A. Chambers, “�e grid roofnet: a roo�op ad hoc wireless network,” Master’s thesis, Massachusetts

Institute of Technology, June 2002.

[8] Meraki Networks Inc. [Online]. Available: http://www.meraki.com

[9] Metrix Communication LLC. [Online]. Available: http://www.metrix.net

[10] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch, “Geoquorums: Implementing atomic

memory in ad hoc networks,” in 17th International Symposium on Distributed Computing (DISC 2003),

66

ser. Lecture Notes in Computer Science, vol. 2848. Sorrento, Italy: Springer-Verlag, Oct. 2003, pp.

206–320.

[11] M. Brown, S. Gilbert, N. Lynch, C. Newport, T. Nolte, and M. Spindel, “�e virtual node layer:

A programming abstraction for wireless sensor networks,” in Proceedings of the the International

Workshop on Wireless Sensor Network Architecture (WWSNA), Cambridge, MA, Apr. 2007, to appear.

[12] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector routing (DSDV)

for mobile computers,” in Proceedings of the ACM SIGCOMM Conference on Communications Architec-

tures, Protocols and Applications. London, United Kingdom: ACM, 1994, pp. 234–244.

[13] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in Proceedings of the 2nd

IEEE Workshop on Mobile Computer Systems and Applications, New Orleans, LA, USA, February 25–26

1999.

[14] Z. Haas, “A new routing protocol for the recon�gurable wireless networks,” in Proceedings of 6th IEEE

International Conference on Universal Personal Communications, IEEE ICUPC’97, vol. 2. San Diego,

California: IEEE, Oct. 1997, pp. 562–566.

[15] D. B. Johnson, D. A. Maltz, and J. Broch, DSR: the dynamic source routing protocol for multihop wireless

ad hoc networks. Addison-Wesley Longman Publishing Co., Inc., 2001, pp. 139–172.

[16] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot, “Optimized link state

routing protocol for ad hoc networks,” in Proceedings of the 5th IEEE Multi Topic Conference, IEEE

INMIC’01, 2001, pp. 62–68.

[17] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for wireless networks,” in Proceed-

ings of the 6th annual international conference on Mobile computing and networking, MobiCom 2000.

Boston, Massachusetts, United States: ACM, 2000, pp. 243–254.

[18] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, “�e theory of timed i/o automata,” Synthesis Lectures

on Computer Science, 2006.

[19] (2008) Stackless python. [Online]. Available: http://www.stackless.com

[20] R. Brown, Calendar queues: a fast O(1) priority queue implementation for the simulation event set prob-

lem. ACM Press, 1988, vol. 31.

67

[21] G. Yan and S. Eidenbenz, “Sluggish calendar queues for network simulation,” in Modeling, Anal-

ysis, and Simulation of Computer and Telecommunication Systems, 2006. MASCOTS 2006. 14th IEEE

International Symposium on, 2006, pp. 127– 136.

[22] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Communications of the

ACM, vol. 21, pp. 558–565, 1978.

[23] D. Estrin, M. Handley, J. Heidemann, S. McCanne, Y. Xu, and H. Yu, “Network visualization with nam,

the vint network animator,” Computer, vol. 33, pp. 63–68, 2000.

[24] O. Ben-Kiki, C. Evans, and B. Ingerson. (2005) YAML speci�cation. [Online]. Available:

http://www.yaml.org/spec/

[25] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance vector (aodv) routing,” Jul.

2003. [Online]. Available: http://www.ietf.org/rfc/rfc3561.txt

[26] C. Perkins, E. Royer, S. Das, and M. Marina, “Performance comparison of two on-demand routing pro-

tocols for ad hoc networks,” Personal Communications, IEEE [see also IEEE Wireless Communications],

vol. 8, pp. 16–28, 2001.

[27] �e network simulator ns-2. [Online]. Available: http://www.isi.edu/nsnam/ns/

[28] D. P. Bertsekas and R. G. Gallager, Distributed Asynchronous Bellman-Ford Algorithm. Englewood

Cli�s: Prentice Hall, 1987, pp. 325–333.

68

