
Simulation of Composite I/O Automata

by

Edward Solovey

Submitted to the Department of Eletrial Engineering and Computer Siene

in Partial Ful�llment of the Requirements for the Degree of

Master of Engineering in Eletrial Engineering and Computer Siene

at the

Massahusetts Institute of Tehnology

Aug 22, 2003

Copyright 2003 Edward Solovey. All rights reserved.

The author hereby grants to M.I.T permission to reprodue and distribute publily

paper and eletroni opies of this thesis and to grant others the right to do so.

Author

Department of Eletrial Engineering and Computer Siene

Aug 22, 2003

Certi�ed by

Dilsun K. Kaynar

Post-dotoral researh assoiate, Theory of Distributed Systems Group

Thesis Supervisor

Certi�ed by

Nany Lynh

NEC Professor of Software Siene and Engineering, Professor of Eletrial Engineering

and Computer Siene

Thesis Supervisor

Aepted by

Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Simulation of Composite I/O Automata

by

Edward Solovey

Submitted to the

Department of Eletrial Engineering and Computer Siene

Aug 22, 2003

In Partial Ful�llment of the Requirements for the Degree of

Master of Engineering in Eletrial Engineering and Computer Siene

Abstrat

The IOA simulator is a tool that has been developed in the Theory of Distributed Systems group at

MIT. This tool simulates the exeution of automata desribed by the IOA language. It generates

logs of exeution traes and provides other pertinent information regarding the exeution, suh

as the validity of spei�ed invariants. Although the simulator supports paired simulation of two

automata for the purpose of heking simulation relations, one of its limitations is its lak of support

for the simulation of omposite automata. A omposite automaton represents a omplex system

and is made up of other automata, eah representing a system omponent. This thesis onerns

the addition of a apability to simulate omposite automata in a manner that allows observing

and debugging the individual system omponent automata. While there is work in progress on

reating a tool that will translate a omposite de�nition into a single automaton, the added ability

to simulate omposite automata diretly will add modularity and simpliity, as well as ease of

observing the behavior of individual omponents for the purpose of distributed debugging.

Thesis Supervisor: Dilsun K. Kaynar

Title: Post-dotoral researh assoiate, Theory of Distributed Systems Group

Thesis Supervisor: Nany Lynh

Title: NEC Professor of Software Siene and Engineering, Professor of Eletrial Engineering and

Computer Siene

3

4

Aknowledgments

I would like to thank my supervisor, Dilsun Kirli Kaynar, for making this experiene both pleasur-

able and produtive. Her attention to and enouragement of my ideas made their fruition possible.

She attentively read many opies of my paper and provided invaluable and detailed omments.

Throughout this projet she has never treated me as a subordinate, but always as a peer. This

gave me on�dene that the goals of the projet were attainable.

I am grateful to Professor Lynh and Professor Garland for the helpful onversations and om-

ments. Professor Garland and Josh Tauber were extremely open to and helpful with my modi�-

ations to the front-end of the IOA toolkit. I was luky enough to share an oÆe with Josh, and

he readily answered a multitude of questions that ame up during my work. Without the work of

prior students Toh Ne Win, Laura Dean, Antonio Ramirez, Mihael Tsai, and Anna Chefter my

extensions of the simulator would not have been possible.

I would like to thank my parents and grandparents whose struggles and hard work in life have

paved the way for every opportunity that I might have. Their unyielding support and enourage-

ment during this projet and throughout my studies in general have made them possible. I would

like to thank my sister for her support, good humor, and for being a friend.

The support and enouragement of my friends is greatly appreiated. I would like to thank Trey

Reyher for his attempts to proofread my thesis, and for helping me relax during stressful times.

I am most grateful to Erin Treay whose optimisti approah towards life is an inspiration. Her

ompany, a�etion, and friendship are herished.

5

For Roza and Copl Levshteyn

6

Contents

1 Introdution 15

1.1 I/O Automaton Simulator Overview . 15

1.1.1 Previously Implemented Features . 16

1.1.2 Newly Implemented Features . 17

1.2 Compositions . 18

1.2.1 Formal De�nition of Compositions . 19

1.2.2 Distributed Debugging . 20

1.2.3 Comparison to Composer . 22

1.2.4 Hierarhial Debugging . 23

2 Composite Simulations 25

2.1 Nondeterminism . 25

2.1.1 Overview of Nondeterminism . 25

2.1.2 Reuse of Component Shedule Bloks . 27

2.1.3 Low-Level NDR Looping . 29

2.1.4 Composite Shedule Bloks . 31

2.2 Interation of Components . 32

2.2.1 Where Clauses in Transitions . 32

2.2.2 Sheduled Input Ations . 33

2.3 Code Changes . 35

3 Examples 37

3.1 Examples with Non-Parameterized Components . 37

3.1.1 Example : Reuse of Component Shedule Bloks 41

7

3.1.2 Example : A Composite Shedule Blok . 44

3.2 Examples with Parameterized Components . 47

3.2.1 Example: Parameterized Components, Reuse of Component Shedule Bloks 50

3.2.2 Example: Parameterized Components, Composite Shedule Blok 52

3.3 With Bloks . 52

3.3.1 Handle Names in Shedule Bloks . 53

3.3.2 Non Exhaustive Delaration . 54

3.3.3 Example: With Blok . 54

4 IOA Language Extension 57

4.1 Grammar Modi�ation . 57

4.2 Semanti Cheks . 59

4.3 Code Changes . 60

4.4 IL Representations . 61

5 Simulator Extension 63

5.1 Representation of a Composite Automaton . 63

5.1.1 Basi Side . 64

5.1.2 Atual Side . 64

5.1.3 Implementation Deisions . 65

5.2 Copying of Components . 66

5.2.1 Implementation Deisions . 66

5.2.2 Code Changes . 67

5.3 IL Parser . 70

5.4 Display of Output . 70

6 Test Suite Extension 73

6.1 SIMAUTOMATON Parameter . 73

6.2 Non-Parameterized Components . 74

6.2.1 Testing Reuse of NDR Bloks . 74

6.2.2 Testing NDR Bloks for Composite Automata 76

6.3 Parameterized Components . 76

6.3.1 Testing Reuse of NDR Bloks for Parameterized Components 77

8

6.3.2 Testing Composite Shedule Bloks for Parameterized Components 78

6.3.3 Testing With Bloks . 78

7 Appliation to Workow 81

7.1 Workow Desription . 81

7.2 Design Time Debugging of Workow Systems . 83

8 Relation to Existing Features and Future Work 87

8.1 Invariant Cheking . 87

8.2 Paired Simulation of Composite Automata . 88

8.3 NDR Relinquish Control Command . 89

8.4 User Interative Nondeterminism Resolution . 89

8.5 Debugging Tool . 90

8.5.1 Step Through Exeution and Breakpoints . 90

8.5.2 Interative Exeution Logs . 91

8.6 Graphial Improvements . 91

A IOA Parser File Modi�ations 93

A.1 Modi�ed Files - parser . 93

A.2 New Files - parser . 94

A.3 Modi�ed Files - automaton . 94

A.4 New Files - automaton . 94

A.5 Modi�ed �les - heker . 95

B Simulator File Modi�ations 97

B.1 Modi�ed Files . 97

B.2 New Files - Simulator . 98

B.3 Modi�ed Files - il . 99

B.4 New Files - il . 101

B.5 Files where the only hanges involve the naming of the new interfaes 101

B.6 Test Suite . 101

C IOA Grammar 103

C.1 Desription . 103

9

C.1.1 Tokens . 103

C.1.2 Rules . 104

C.1.3 Typed Lists . 105

C.1.4 Proessing the Grammar . 105

C.2 Auxiliary �les . 105

C.3 Brief Guide to Modifying Grammar . 106

10

List of Figures

1.1.1 Automaton Sys . 18

1.2.2 Combination of ation where lauses . 23

2.1.1 Example of a terminating NDR program . 26

2.1.2 Sample det blok . 27

2.1.3 Example of a non-terminating NDR program . 29

2.2.4 Exeution of sheduled input ations . 34

3.1.1 Ations of Env and Bank . 38

3.1.2 Banking environment automaton . 38

3.1.3 Automaton Bank . 40

3.1.4 The NDR blok for automaton Env . 42

3.1.5 The NDR blok for automaton Bank . 43

3.1.6 Composite NDR blok for automaton EnvBank . 45

3.1.7 Simulator output for omposite automaton with a omposite shedule blok 46

3.1.8 Simulator output for manually omposed omposite automaton 46

3.2.9 Automaton Sys . 49

3.2.10Components of automaton Sys . 49

3.2.11NDR blok for Channel . 50

3.2.12NDR blok for Proess . 50

3.2.13Simulator output for automaton Sys, �rst ase . 51

3.2.14NDR blok for automaton Sys . 52

3.3.15Example of a with blok . 53

3.3.16Automaton Sys ase three : with blok . 55

3.3.17Simulator output for Sys automaton that ontains a with blok 55

11

5.1.1 Basi side objet diagram . 64

5.1.2 Atual side objet diagram before hanges . 65

5.1.3 Atual side objet diagram after hanges . 65

5.2.4 Partial, abstrat representation of an automaton . 68

5.2.5 Partial, abstrat representation of a term . 69

5.2.6 Partial, abstrat representation of a statement . 70

5.4.7 Display of state in omposite simulations . 71

5.4.8 Display of triggered transitions in omposite simulations 71

7.1.1 Workow shema of a patient registration proess . 82

7.1.2 Workow shema of a patient diagnosis proess . 82

7.1.3 Interation between Hospital and Diagnosis automata 83

7.1.4 IOA spei�ation of Diagnosis automaton . 84

7.1.5 IOA spei�ation of Hospital automaton . 85

C.1.1Fibonai automaton . 104

12

List of Tables

1.2.1 E�et lauses of automaton Sys to be exeuted . 22

4.3.1 Java lasses representing new non-terminal symbols 61

13

14

Chapter 1

Introdution

One of the major researh ativities within the Theory of Distributed Systems Group at MIT is

the development of formal methods for modeling and reasoning about distributed systems. As

distributed systems may be fairly omplex, it is important to be able to model them preisely

and reason about them at various levels of abstration. The input/output (I/O) automaton model

onstitutes the basis of the work on formal methods [KCD

+

02a℄.

1.1 I/O Automaton Simulator Overview

The I/O automaton model is a formal model for asynhronous omputing. It is a labeled transition

system model suitable for desribing asynhronous onurrent systems [Lyn96℄. An I/O automaton

models a distributed system omponent that an interat with other system omponents. It is a

simple type of state mahine in whih transitions are assoiated with named ations. The IOA

language, a formal language based on the I/O automaton model, provides an expressive medium

for preise desription of a system's behavior. Desriptions of subsystems may be omposed in

parallel to form a omposite desription. Further, the language allows for desription at various

levels of abstration, and provides a mehanism for relating these desriptions [Dea01℄.

The IOA toolkit is a suite of software tools. It failitates the design, analysis, and development

of distributed systems within the I/O automaton framework [KCD

+

02a℄. The tools in the suite an

be broken into ategories of front-end and bak-end. The heker is a front-end tool that heks

the syntax and the semantis of a given IOA �le, whih ontains the desription of one or more

I/O automata. If the IOA �le is valid, the heker generates an intermediate language (IL) �le.

15

This IL �le is then used by the bak-end tools. The bak-end tools onsist of a simulator, ode

generator, and translators to a range of representations suitable for use with some theorem provers.

This paper primarily deals with the simulator.

The IOA simulator was designed by Anna Chefter [Che98℄, and parts of it were implemented

by Antonio Ramirez [RR00℄. The input to the simulator is an IL �le produed by the front-end

heker desribed above. The simulator an be used to test automata before attempting orretness

proofs. A simulation that goes as expeted does not prove the orretness of the automaton but

does inrease on�dene that the automaton has been designed as intended. A simulation that

does not go as expeted disovers bugs in the automaton spei�ation. The user an then modify

the automaton and run the simulator again. The following two setions desribe those features of

the simulator that were implemented and those that were not at the start of this projet.

1.1.1 Previously Implemented Features

The simulator in release 0.09 of the IOA Toolkit is apable of simulating a primitive non-parameterized

automaton. In order to resolve the nondeterminism that may be present in the automaton, the

simulator is apable of using a nondeterminism resolution (NDR) blok. Nondeterminism and NDR

bloks are disussed in detail in Setion 2.1.

In order for the simulation to be useful, the user needs to be able to observe the step-by-step

behavior of the automaton being simulated. The user may invoke the simulation with a variety

of ommand line options. Further, the user has the options to display the triggered transition at

every step, never display the transition, or only display the external transitions to reate a trae of

the automaton. Similarly, at every step the user has the option to display all of the state variables

of the automaton, none of the state variables, or just those that have been modi�ed as a result of

the transition triggered at that step.

In addition to simply observing the log of the exeution, the user may provide one or more

invariants for the automaton. An invariant is a prediate involving the state variables of the

automaton. The simulator heks the truth value of the prediate after every step of the simulation

and displays an appropriate message at every step that the prediate is false. Just as above, the

fat that the invariant is true at every step does not neessarily imply that its always true. It

simply inreases our on�dene that it might be a valid invariant. However, if it is ever false, we

an disard it and look for a new one.

16

The simulator is also apable of paired simulations [RR00℄, an extremely useful feature in

distributed system design and debugging. Suh a simulation may be bene�ial when a system

is designed by moving from the highest level to the lowest level in the abstration hierarhy. In

this ase the user spei�es two automata, a simulation relation between the automata, and a step

orrespondene. The step orrespondene spei�es a high-level exeution fragment for eah low-level

transition, suh that the simulation relation holds after the exeution of any low-level transition

and its orresponding high-level fragment. The simulator then heks if the relation holds at every

step of the exeution. This enables the user to reason about the behavioral orrespondene between

the automata at di�erent levels of abstration [KCD

+

02a℄.

1.1.2 Newly Implemented Features

One of the simulator's prior limitations was its inability to simulate omposite automata. We have

implemented this feature. We �rst onentrate on the basi ase, that of a omposite automaton

onsisting of omponents that are not parameterized. Even this basi ase presents the neessity

to resolve a new kind of nondeterminism: nondeterminism in seleting the omponent that will

�re the next transition. A possibility for resolving suh nondeterminism is an NDR blok in the

omposite automaton. Although at the onset of this projet suh NDR bloks were supported

for primitive automata simulations, they were not supported for omposite automata simulations.

Their implementation is disussed in detail in Setion 2.1.4.

More often it is the ase that the omponents of a omposite automaton will have param-

eters. These parameters may be either type or variable parameters. Variable parameters are

now supported, while type parameters remain as future work. The introdution of parameterized

omponents in a omposite automaton introdues questions regarding the instantiation of these

omponents and ability to aess them later. These issues are disussed in Setion 3.2.

The possibility of automata parameters introdues the need for onstant, onst, parameters in

ation signatures. A onstant parameter is a term in an ation signature that refers to a formal

parameter of the automaton, rather than a fresh variable delaration [Tau03℄. These parameters

are useful when the omposite automaton ontains multiple omponents based on the same original

automaton. In this ase some other omponent may want to interat with a ertain subset of these

omponents based on their formal parameters. Constant parameters allow suh interation.

For example, Figure 1.1.1 ontains the partial spei�ations of automata Channel and Proess

17

automaton Channel(Node, Msg:type, i, j:Node)

signature

input send(onst i, onst j, m:Msg)

output reeive(onst i, onst j, m:Msg)

...

automaton Proess(n:Int)

signature

input reeive(onst n-1, onst n, x:Int)

output send(onst n, onst n+1, x:Int),

overflow(onst n, s:Set[Int℄)

...

automaton Sys

omponents C[n:Int℄: Channel(Int, Int, n, n+1)

where 1 � n ^ n < 10;

P[n:Int℄: Proess(n) where 1 � n ^ n � 10;

Figure 1.1.1: Automaton Sys

[Tau03℄. The automaton Sys is a omposite automaton omprised of ten Proess omponents and

nine Channel omponents. The Channel omponents failitate the exhange of messages between

the Proess omponents. Thus when the Proess omponent with formal parameter n set to 5 sends

a message, only the Channel automaton with formal parameters i and j set to 5 and 6 respetively

should reeive this message. Constant parameters enable this interation. They are now supported.

The following is a high level desription of the features that we have implemented:

� Simulation of Composite Automata

� Shedule Bloks in Composite Automata

� Parameters in the Components of a Composite Automaton

� Constant Parameters

� Invariants for Composite Automata

1.2 Compositions

The fous of this thesis is the simulation of omposite automata. Josh Tauber's work on the

omposer, a front-end tool that onverts an IOA spei�ation of a omposite automaton to an IOA

spei�ation of a primitive one, is losely related to the ability to simulate omposite automata

diretly. In this setion we introdue omposite automata formally, motivate their diret simulation

18

for the purpose of distributed debugging, ompare their diret simulation to the omposer, and

�nally propose a hierarhial debugging tehnique that uses both the ability to simulate omposite

automata diretly and the omposer.

1.2.1 Formal De�nition of Compositions

A omposition reates an automaton representing a omplex system from a set of individual au-

tomata representing system omponents. Interation between omponents is ahieved through

output and input ations of the same name. More spei�ally, when a omponent automaton

performs an ation, �, all other automata that ontain an ation named � perform it as well. Lim-

itations, in the form of stati semanti heks, on whih automata are ompatible for omposition

do exist [Lyn96℄. They are listed below:

A ountable olletion fS

i

g

i

2 I of signatures is ompatible if for all i; j 2 I; i 6= j, all of

the following hold (where int, out, in, and ats denote internal, output, input, and all ations

respetively):

1. int(S

i

)

T

ats(S

j

) = �

2. out(S

i

)

T

out(S

j

) = �

3. No ation is ontained in in�nitely many sets ats(S

i

)

Internal ations are intended to be private to a omponent automaton and thus unobservable

by other omponents. The �rst ondition ensures this. Without it a ertain internal ation of a

omponent might fore an ation in another omponent to be triggered. The initial internal ation

would thus have to be observed. The seond ondition requires that the sets of output ations

of all omponents be disjoint. This ensures that at most one omponent automaton \ontrols"

the performane of any given ation, whih is useful when omparing the trae of the stand alone

automaton to its trae when it is a omponent of a omposite automaton. The resulting primitive

automaton is de�ned to have the following signature:

� out(S) =

S

i2I

out(S

i

)

� int(S) =

S

i2I

int(S

i

)

� in(S) =

S

i2I

in(S

i

) n

S

i2I

out(S

i

)

19

The signature, states, tasks, and start states of the produed primitive automaton are vetors

of the respetive piees of the omponent automata. Transitions are modi�ed to allow ations with

the same name to be exeuted simultaneously.

Upon �rst glane it might seem intuitive that if a omponent ontains an output ation � and

another omponent ontains an input ation �, then the ation � should be an internal one in

the omposition. The above signature renders ation � as an output ation in the omposition.

The labeling of ation � as an output ation allows the resulting omposed automaton to later be

omposed with another new omponent ontaining an input ation �. Had � been labeled as an

internal ation after the �rst omposition, ondition one of the limitations listed above would have

prevented the seond omposition. This is not the desired behavior as it should be possible for an

output ation to be broadast to more than one automaton. The behavior is also not desirable

beause it makes the order of omposition relevant.

The initial implementation of the omposite automata simulator requires that the ation where

lauses of the omponent automata do not have quanti�ers. Allowing quanti�ers would require

veri�ation by a theorem prover to ensure that an input and an output ation do indeed satisfy

their respetive where lauses. Also, the omponent automata are required to have no hidden

ations.

It an be seen from the above de�nitions that unless the names of the ations and state vari-

ables of the omponent automata identify their owner, all modularity and tratability of individual

omponents are lost one the automata are omposed. When looking at the trae of the primi-

tive automaton, it will not be possible to disern from whih omponent automaton the ations

originated. Nor will it be possible to disern what individual automaton ontributed a partiular

state variable to the global state when looking at the exeutions of the primitive automaton. Thus,

although it is possible to prepend eah ation and state variable with an identi�er for its omponent

automaton, it would be onvenient not to do this. The ability to losely monitor the behavior of

individual omponents during a simulation of a omposite automaton is useful for the purpose of

distributed debugging. We analyze this topi next.

1.2.2 Distributed Debugging

Debugging distributed systems is a muh more diÆult task than debugging onventional, sequen-

tial programs. This is due to the fat that distributed systems are more omplex, introdue the

20

element of synhronization, and make debugging muh more diÆult due to the possibility of par-

tial failures [Kun93℄. For these reasons it is ruial to be able to simulate and thoroughly debug a

distributed system at design time. The apability of the simulator to run omposite automata will

allow for trae logs that learly identify individual omponents and for testing omponent spei�

invariants. This in turn will allow the user to observe and reason about individual omponents of

the omposition, thus aiding him/her in identifying the omponent that is ausing a problem or

behaving in an unpreditable manner. Further, it will learly display to the user the ommuniation

pattern and synhronization between omponent automata.

The notion of global snapshots is a tool often used for distributed debugging. A global snapshot

aptures the state of all the proesses of the system at a ertain point in time [Yan92℄. Although in

the ase of simulating a omposition as a single primitive automaton it is possible to see the state of

all of the variables involved, it is not lear from whih of the omponent automata those variables

originated. In a snapshot that is produed by the diret simulation of a omposition, all state is

available along with the information of what omponent automaton ontributed that partiular

piee of the state. One again, this an prove to be useful during the debugging of a ompliated

system. In theory, when reating a snapshot of a distributed system, an algorithm suh as that of

Chandy and Lamport [Yan92℄ must be used to ensure that the snapshot represents the state of all

omponents at the same point of the exeution. Sine the simulator has a single point of ontrol,

we do not have to worry about ensuring this ondition.

In addition to debugging one a problem has been observed, the designer of the distributed

system might want to forestall problems by proving properties about the omposite system. \In

order to prove properties of a omposed system automata, it is often helpful to reason about the

omponent automata individually." [Lyn96℄ More spei�ally, the designer might want to see if

his/her omposite automaton satis�es suh trae properties as safety (some partiular \bad" thing

never happens) and liveness (some partiular \good" thing eventually happens). Beause showing

that eah omponent satis�es a partiular trae property implies that the omposition satis�es the

produt trae property, it is extremely useful to be able to reason about individual omponents.

Similarly, if the omposition fails to satisfy a produt trae property, the simulator will be able to

help the designer identify the partiular omponent that failed the trae property.

21

1.2.3 Comparison to Composer

The omposer takes the IOA spei�ation of a omposite automaton as input. As output it returns

the IOA spei�ation of an equivalent primitive automaton. Thus the omposer is entirely a front-

end tool. As the new primitive automaton is being reated, a major part of the omposer onerns

the reation of omposite automaton variables of appropriate sorts. For example, an entirely new

state table onsisting of a vetor ombination of the omponent state tables must be reated.

The diret simulation of omposite automata moves part of this burden to the bak-end tool, the

simulator. Instead of attempting to reate an aggregate state table, the simulator simply reates

an automaton objet for every omponent whih is responsible for maintaining its own state.

Another area of onern of the omposer is the semanti heking of where lauses in transition

de�nitions to determine how to ombine output and input transitions. For example, Figure 1.2.2

ontains the spei�ation for automaton Sys with omponents Channel and Proess (where P

1

,P

2

,P

3

,

and P

4

are e�ets programs).

When output ation send in automaton Proess is �red, it may trigger the �rst send transition

of automaton Channel, the seond send transition of automaton Channel, or neither. Table 1.2.1

ontains a list of the possibilities.

Value(s) of x Exeuted E�ets Programs

6,7,8 P

4

9,10,11 P

1

,P

4

12,13 P

4

14 P

2

, P

4

15,16 P

2

,P

3

17,18... P

3

Table 1.2.1: E�et lauses of automaton Sys to be exeuted

The omposer has to reate a separate transition in the expanded automaton for every one of the

ases in Table 1.2.1. In some ases this might require an undeidable semanti proof. However, in

the diret simulation ase, whenever output ation send in automaton Proess is �red, the simulator

has a value for the atual parameter x of the transition. The simulator an now perform boolean

tests on the where lauses (still limited to disallow quanti�ers) of the input send transitions of

automaton Channel to see if any should be triggered. The ase of where lauses in omponents

22

automaton Channel

signature

input send(x:Int) where x>0

...

transitions

input send(x) where x>8 =n x<12

e� P

1

input send(x) where x>13 =n x<17

e� P

2

...

automaton Proess

signature

output send(x:Int) where x>0

...

transitions

output send(x) where x>15

e� P

3

output send(x) where x>5 =n x<15

e� P

4

...

automaton Sys

omponents Channel;Proess

Figure 1.2.2: Combination of ation where lauses

de�nitions is very similar to the above and is disussed in detail in Setion 3.2.

It is true that any omposite simulation that may be performed using diret simulation an

be performed via two steps: �rst the transfer from omposite automaton to primitive automaton

using the omposer; and seond, a primitive simulation of the resulting automaton. In some ases

it might be easier and faster to perform the diret simulation. Also, the diret simulation provides

easy traeability of omponents. To ahieve the same traeability, the omposer would have to

reate some kind of system of labeling the resulting states and transitions that would maintain the

individuality and modularity of the omponents.

1.2.4 Hierarhial Debugging

It will often be helpful to reason about a system from a hierarhial, top-down perspetive, varying

the levels of modules to identify the soure of error. For example, [Kun93℄ desribes a system

23

that models an airport shuttle system. The shuttle system onsists of four major omponents -

platforms (NorthEast, NorthWest, SouthEast, and SouthWest platforms). Eah of these platforms

is in turn made up of smaller omponents - traks (TrakNorthWest, TrakMiddleWest,...).

1

A

single automaton models eah trak omponent.

To debug the system following the onepts of hierarhial debugging, the designer might �rst

want to model the system as onsisting of two parts - North and South. A round of testing might

reveal an error in one of these two parts. The designer will then move down a level of modules in the

erroneous part and leave the properly behaving one at the highest level of modules. If part South

is found to ontain an error, the seond round of testing will onsist of three parts - SouthEast,

SouthWest, and North. This proess an ontinue until the lowest level erroneous part has been

pointed out.

The ombination of the omposer tool and the ability to simulate omposite automata diretly

provides an easy way to implement hierarhial debugging as desribed above. The omposer is

used to reate various levels of modules. The ability to simulate omposite automata is used to

identify the erroneous omponent at a partiular level of abstration.

The omposer tool an be used to reate primitive automata AutSouth and AutNorth out of

omposite automata that onsist of all of the south and all of the north omponent traks respe-

tively. The simulator then simulates the omposition of AutSouth and AutNorth. If AutSouth is

identi�ed as the erroneous omponent, the omposer an be used to reate primitive automata

AutSouthWest and AutSouthEast. The simulator then simulates the omposition of AutSouthWest,

AutSouthEast, and AutNorth. One again, this hierarhial proess an ontinue until either the

lowest level erroneous omponent has been identi�ed, or the error has been identi�ed at the desired

level of modules.

1

Terminology note: The term \level of modules" refers to a point in the modular hierarhy. For example, the om-

ponents NorthPlatform and SouthPlatform are the highest level of modules. The next lower level of the NorthPlatform

module might ontain NorthEastPlatform and NorthWestPlatform. The next lower level of the NorthEastPlatform

might ontain NE1Platform, NE2Platform, and NE3Platform.

24

Chapter 2

Composite Simulations

We now shift our fous to the simulator and its handling of omposite automata. How is a simulation

of a omposite automaton di�erent from a simulation of a primitive automaton? How should we

pik the next ation to �re? Will the �ring of this ation involve any other omponents? Setion 2.1

disusses a new type of nondeterminism that arises in omposite simulations. Setion 2.2 desribes

how the interation between omponents is handled by the simulator.

2.1 Nondeterminism

Before disussing the nondeterminism introdued by omposite simulations, in Setion 2.1.1 we

take a look at the nondeterminism already present in primitive automata. We then propose two

methods of resolving the new nondeterminism. Setion 2.1.2 disusses the reuse of nondeterminism

resolution proedures provided for eah omponent. Setion 2.1.3 desribes how we avoid the pitfall

of nondeterminism proedure looping introdued by the reuse strategy. Setion 2.1.4 disusses the

reation of a nondeterminism resolution proedure tailored for the omposite automaton.

2.1.1 Overview of Nondeterminism

A key feature of the IOA model is nondeterminism. Nondeterminism allows systems to be desribed

in their most general forms and to be veri�ed onsidering all possible behaviors without being tied to

a partiular implementation of a system design [KCD

+

02b℄. There are two types of nondeterminism

in the IOA model. Expliit nondeterminism appears in the form of hoose statements, whih may

appear on the right hand side of variable assignments suh as:

25

shedule

states ounter:Int:=1

do

i f (Aut.total>10) then

f i r e output ation1

f i ;

ounter:=ounter+1;

i f (Aut.ready=true) then

f i r e output ation2

f i

od

Figure 2.1.1: Example of a terminating NDR program

output ation1

e f f hosen := hoose x: Int where 10 < x;

Impliit nondeterminism arises due to ambiguity in sheduling ations [KCD

+

02a℄. Listed below

are the two ways in whih impliit nondeterminism may our:

� an automaton an have multiple enabled ations in a given state; and

� a given transition de�nition an take arbitrary atual parameter values, as long as they satisfy

its where lause.

The IOA simulator is a deterministi program and annot itself resolve the nondeterminism

present in the automata that it is simulating. To solve this problem we have taken advantage of the

fat that from the point of view of an IOA automaton spei�ation, resolution of nondeterminism

an be regarded as a blak box that an yield transitions to be sheduled and values to be assigned

to statements that involve nondeterministi hoie [KCD

+

02a℄. In other words, the automaton is

not aware how the nondeterminism is resolved, but as long as it is resolved, the simulation of the

automaton may go forward. The simulator requires the user to provide deterministi programs

that replae these blak boxes. These programs are det and shedule bloks for expliit and

impliit nondeterminism respetively. In the presene of these nondeterminism resolution bloks,

the simulator an deterministially simulate an automaton.

Figure 2.1.1 displays a simple shedule blok for the primitive automaton Aut. At every step of

the simulation, the simulator polls this shedule blok for the next ation to �re. The shedule blok

is then exeuted until a �re invoation is returned. The next time the shedule blok is polled it

26

e f f hosen := hoose x where 1 � x ^ x � 30

det do

yield 1; yield 2; yield 3

od

Figure 2.1.2: Sample det blok

resumes exeution at the statement immediately after the previously returned �re statement. For

example, if at step one of the simulation the shedule blok in Figure 2.1.1 returned fire output

ation1, then upon its next polling it will start exeution at ounter:=ounter+1. Figure 2.1.2

displays the use of a det blok to resolve the expliit nondeterminism of a hoose statement in a

transition e�ets lause.

The use of det bloks is una�eted by the extension of the simulator to support omposite

automata simulations. Thus in our disussion of nondeterminism we onentrate on impliit non-

determinism. Above we saw two ways that impliit nondeterminismmay arise during the simulation

of a single automaton. Beause at a given time during a simulation, more than one omponent may

have enabled ations, simulating omposite automata introdues a higher level of nondeterminism -

whih omponent should exeute the next ation? One this nondeterminism, high-level nondeter-

minism, has been resolved and the next omponent has been identi�ed, we one again fae the two

ases of nondeterminism above, whih from now on will be referred to as low-level nondeterminism.

The user of the simulator has two options to resolve the impliit nondeterminism present in

omposite automata. The �rst option allows the user to hoose a high-level nondeterminism reso-

lution strategy and reuse the omponent shedule blok to resolve low-level nondeterminism. The

seond option allows the user to write a omposite shedule blok and resolve both the high and

low levels of nondeterminism at one.

2.1.2 Reuse of Component Shedule Bloks

This strategy to resolve nondeterminism present in omposite simulations takes advantage of the

fat that eah omponent of the omposition is itself an automaton that might have been simulated

on its own. This implies that eah omponent already has its own program to resolve the low-level

nondeterminism. Thus all that is left to be done in order to simulate the omposite automaton is

the resolution of the high-level of nondeterminism. We provide the user with three options of how

the high-level nondeterminism should be resolved during the simulation. These three options are

similar to the three sheduling poliies in Chefter's Sheduler [Che98℄. However, there they refer

27

to low-level nondeterminism and the seletion of ations to exeute. Here we extend this approah

to high-level nondeterminism and the seletion of the next omponent to ontribute an ation.

Regardless of the high-level poliy, it is possible that, one seleted, a omponent will not be able

to return an enabled ation to the simulator. This situation is disussed in Setion 2.1.3, after the

three high-level poliies are presented.

Stritly Uniform Poliy

Chefter refers to this poliy as round robin. Consider the simulation of a system with n omponents,

1

;

2

; :::;

n

. If the user selets the stritly uniform poliy, then at the �rst step of the simulation

the simulator will ask

1

for the next ation to exeute (

1

will use its own low-level nondeterminism

resolution program to provide this ation). At the seond step, the simulator will ask

2

for an

ation. This will ontinue until the (n + 1)

th

step. At the (n + 1)

th

step the simulator will one

again poll

1

for an ation, and so on. The ordering of omponents is the same as their ordering in

the IOA �le in whih their spei�ations appear. This is the default high-level poliy.

Random Poliy

This poliy has the same name in Chefter's paper. If the user selets this poliy, then at the

beginning of eah step the simulator randomly selets a omponent. The seletion is entirely

random and the omponent hosen at step k is ompletely independent of the omponents hosen

at steps 1 through (k � 1). The presene of the boolean ommand line parameter randComp

enables this poliy in the simulator.

Weighted Poliy

This poliy is analogous to Chefter's poliy that uses time estimates for eah ation. If the user

selets this poliy, then he/she must also provide a weight for eah omponent. At eah simulation

step the simulator will pik omponent

i

with probability

weight of

i

total weight of all omponents

. In this way

this poliy is similar to the random poliy. The only di�erene is that here the omponents do not

neessarily have an equal hane to get piked.

This poliy is enabled via the ommand line parameter weightComp. This parameter is fol-

lowed by one argument - the name of the �le ontaining the weight spei�ations for the omponents.

The syntax of the weight �le is the following:

28

shedule

states ounter:Int:=1

do

while true do

i f (Aut.total>10) then

f i r e output ation1

f i ;

ounter:=ounter+1;

i f (Aut.ready=true) then

f i r e output ation2

f i

od

od

Figure 2.1.3: Example of a non-terminating NDR program

omponentName

1

= integerWeight

1

omponentName

2

= integerWeight

2

...

The following heks are performed to ensure the validity of the spei�ed weight �le. If the �le

is found to be invalid, the simulation halts.

1. The �le with the spei�ed name exists,

2. Eah line in the �le ontains exatly one, = symbol,

3. The text following the = symbol is a nonnegative integer, and

4. The text before the = symbol exatly mathes a omponent name.

The user is not required to speify weights for all omponents. Those omponents whose weight

is left unspei�ed will never be piked by the high-level strategy. If the user lists a partiular

omponent more than one, its weight will be the sum of the listings. The ode hanges neessary

to support this strategy are desribed in Setion 2.3.

2.1.3 Low-Level NDR Looping

Above we mentioned that when polled for an ation the low-level nondeterminism resolution (NDR)

program of the omponent might not �nd an enabled ation. This an happen in two ways de-

pending on whether the NDR program is terminating or not. Figure 2.1.1 and Figure 2.1.3 show

29

examples of respetively a terminating and a non-terminating NDR program for automaton Aut.

In either ase, the simulator simply returns to the high-level NDR strategy and piks the next

omponent to poll for an ation. This is the next omponent in the ordering in the uniform ase,

and a randomly, possibly weighted, hosen omponent in the other two high-level NDR strategy

ases.

If the omponent was unable to return an ation beause its low-level NDR blok is terminating

and is now exhausted, the simulator will not poll this omponent again during the simulation.

However, notie that if a omponent with a non-terminating low-level NDR blok is polled and it

annot return an ation, the NDR blok will loop in�nitely. This will ause the simulator itself to

loop in�nitely. This is aepted behavior in the primitive automaton simulation ase beause if the

NDR blok of the single automaton annot provide an ation, no ations will be exeuted again and

the simulation is in e�et ompleted. This, however, is not the ase in the simulation of a omposite

automaton. A omponent might have enabled ations at the point that another omponent's low-

level NDR blok has gone into an in�nite loop. Below we �rst disuss two strategies to avoid this

pitfall and then desribe the implementation of the hosen one. A third strategy is presented as a

future work in Setion 8.3.

Maximum NDR Steps

One possible way to avoid the problem of a omponent's low-level NDR program looping forever,

is to impose a limit on the number of steps that any NDR program may run for. Thus when a

omponent is piked by the high-level NDR strategy, if its low-level NDR program runs for the

alloted number of steps without returning an ation, the simulator returns to the high-level NDR

strategy and piks another omponent, as mentioned above. After this ourrene, the omponent

is not eliminated from being piked again.

Taking Advantage of While Loop Struture

Another possible solution to the problem takes advantage of the fat that most non-terminating

low-level NDR programs appear inside a while(true) loop. This solution proposes that when a

low-level NDR program reahes the end of its while(true) loop, it relinquishes ontrol bak to the

simulator. The simulator then uses the high-level NDR strategy to pik another omponent. Here

also, the omponent is not eliminated from being piked again.

30

Implemented Strategy

The advantage of the Maximum NDR Steps strategy is that it does not rely on the struture of

the low-level NDR program. Although, it is ommon for NDR programs to exhibit the mentioned

struture, they are not required to do so. Thus if the seond strategy were implemented, NDR

programs that did not exhibit the while(true) loop struture would not avoid the pitfall of in�nite

looping. The advantage of the seond strategy is that it does not have to pik a potentially arbitrary

number as the limit on the low-level NDR steps allowed during a single iteration.

We made the deision to implement the �rst strategy, as the possibility of non standard stru-

tured low-level NDR programs ausing in�nite loops appeared partiularly unpleasant. The user

now has the option to speify the maximum number of steps that a low-level NDR program runs

for during a single request for an ation. This option is presented via the ndrSteps ommand line

parameter. The parameter is defaulted at 500.

Note that the implementation of this strategy a�ets primitive simulations. We mentioned

above that if a low-level NDR blok loops in a primitive simulation, the entire simulation loops.

With the introdution of the maximum steps limitation, instead of the simulation looping, it will

halt and display an appropriate message. In the ase of a primitive simulation with an unusually

long NDR blok, the user might want to inrease the ndrSteps parameter to avoid the possibility

of the simulation halting without the NDR blok looping. The ode hanges neessary to support

the ndrSteps parameter are desribed in Setion 2.3

2.1.4 Composite Shedule Bloks

Above we disussed the possibility of reusing omponent shedule bloks to resolve nondetermin-

ism in a omposite automaton. It might be the ase that the user does not want to reuse the

existing omponent NDR bloks, but instead reate a new NDR blok tailored spei�ally for the

omposite automaton. In eah �re invoation of this omposite NDR blok, the user spei�es

both the omponent that is exeuting the ation and the ation being exeuted. In doing so, the

user resolves both the high-level nondeterminism, by speifying the omponent, and the low-level

nondeterminism, by speifying the ation.

The modi�ations to the IOA language required to support omposite NDR bloks are disussed

in Chapter 4. NDR bloks for omposite automata are very similar to those for primitive automata.

The two di�erenes being:

31

� The ation in eah �re invoation of a omposite shedule blok must be pre�xed with the

omponent owning the ation.

� Referenes to omponent state variables of all omponents are allowed from within the om-

posite shedule blok.

Allowing the �rst modi�ation requires omponent names to be of a sort that has aess to

all of the ations of the automaton that this omponent is based on. In IOA Toolkit release 0.09,

read-only referenes to the state variables of the single primitive automaton are allowed from within

that automaton's NDR blok. These referenes are neessary beause it is the responsibility of the

shedule blok to hek preondition and where lause prediates before sheduling a transition.

Allowing referenes to the state variables of all omponents, requires omponent names to be of a

sort that has aess to all of the state variables of the automaton that this omponent is based on.

2.2 Interation of Components

In Setion 1.2.1 we saw that the only way two omponents of a omposite automaton may interat

is through a same named ation �. Moreover, the limitations posed on ompositions, the sets of

omponent internal ations have to be disjoint from all other omponent ations and eah output

ation is ontrolled by a single automaton, limit this interation to the exeution of an output ation

� of one omponent ausing the exeution of input ations � of one ore more other omponents.

This interation also depends on the signatures of � mathing and on the atual parameters of �

satisfying the where lause of the input ation.

Knowing that omponent interation is limited to the above, the simulator must now simply

exeute all appropriate input ations � in the same step that the output ation � was exeuted.

Thus the only simulation steps during whih an interation is possible, are those steps that begin

by exeuting an output ation. When deiding how to implement this feature, two options were

onsidered. The pros and ons of the options deal with the existene of where lauses in the

transitions of �. These implementation options are disussed in detail in the following setion.

2.2.1 Where Clauses in Transitions

One possible implementation of interation between omponents involved building a map from the

output transitions of omponents to zero or more input transitions of other omponents suh that

32

the exeution of the output transition would ause the input transition(s) to be exeuted. This

map would be built before any simulation steps took plae. Thus every time an output transition

would be exeuted during the simulation, the simulator would simply onsult the map to see if any

input transitions need to be exeuted as well. An alternative option had the map being built during

the simulation. Here every time an output ation were exeuted, the input ations orresponding

to it would be populated in the map.

The problem with this implementation was disussed in Setion 1.2.3, and involves the where

lauses of the transitions of �. In order to build the map above, the simulator would have to �nd the

intersetions of the where lauses of the output and input transitions �. As we saw in table 1.2.1

this is often a diÆult task, whih at times (depending on the omplexity of the prediate in the

where lause) may be undeidable and require a proof. We thus deided to abandon the above

implementation.

Instead, the simulator waits for the output transition � to be exeuted. Having done so, the

simulator takes advantage of the fat that it has aess to all of the atual parameters of � and

using these parameters an evaluate the where lauses of all input ations � to see if they should

also be exeuted. If an interation does our the simulator does not reord the onnetion between

the output transition � and the triggered input transition(s) � for future purposes. This is due to

the fat that the next time output transition � is exeuted its atual parameters might not ause

the same set of input transitions � to be exeuted.

Even with the implemented strategy above, a limitation on the type of prediates that may

appear in the where lauses must be plaed. Namely, the prediate must not ontain either the

existential or the universal quanti�er. Just as disussed in Setion 1.2.1 , the presene of suh

quanti�ers would require a proof.

2.2.2 Sheduled Input Ations

An interesting situation arises when omponent shedule bloks are being reused to resolve non-

determinism in a omposite simulation, desribed in Setion 2.1.2. What if input transition � of

omponent A, that may be triggered by output transition � of omponent B, is sheduled in the

low-level NDR blok of omponent A? Two strategies were onsidered when dealing with suh

situations:

1. Look for and exeute output transition(s) � when input transition � is exeuted,

33

automaton Aut1

signature input a

output b

...

shedule

do

while(true) do

f i r e output b;

f i r e input a

od

od

automaton Aut2

signature input b

output

...

shedule

do

while(true) do

f i r e output ;

f i r e input b

od

od

automaton CompositeAut

omponents Aut1;Aut2

Figure 2.2.4: Exeution of sheduled input ations

2. Ignore all sheduled input transitions that at some point may be triggered by the exeution

of output transitions.

We made the deision to implement the seond strategy. Sine the output ation is the driving

fore behind the interation of omponents, it makes more sense for it to trigger the input ation and

not vie versa. An input ation � that gets triggered by an output ation in the omposition, may be

sheduled in the original omponent beause when it is simulated as a stand alone automaton, the

NDR blok of this omponent mimis its external environment. One this automaton is omposed

with another one (that has an output ation �), and beomes a omponent in a more omplex

automaton, its shedule blok no longer needs to mimi the external environment beause the

system beomes losed as a result of the omposition. To �nd out whether a sheduled input ation

may eventually be triggered by an output ation, we use the strategy desribed in Setion 2.2.1

that was used to �nd out what input ations are triggered by the sheduled output ation.

34

Figure 2.2.4 shows partial spei�ations of omponent automata Aut1, Aut2, and the ompos-

ite automaton CompositeAut. We onsider simulating CompositeAut and reusing the omponent

shedule bloks to resolve nondeterminism. When the simulator enounters input ation a in the

shedule blok for Aut1, it will exeute it. The system represented by CompositeAut is not om-

pletely losed (Aut2 does not have an output ation named a), and the �ring of input ation a still

mimis the external environment of CompositeAut. However, when the simulator enounters input

ation b in the shedule blok for Aut2, it will not exeute it. This ation represents part of the

system that has beome losed due to the omposition of Aut1 and Aut2. It will only be exeuted

as a result of output ation b of omponent automaton Aut1 being exeuted.

2.3 Code Changes

The lass simulator/shell/SimShell has been modi�ed to aept the ndrSteps, randComp,

and weightComp parameters and to display them for simulator help. The value of the ndrSteps

parameter is stored in the simulator/Simulator lass. The lass

simulator/ExeControl has been modi�ed to enable limited step exeution. The lass

simulator/StepsExeededProdut has been reated to represent the event of an NDR program

exeeding the alloted number of steps.

The veri�ation of the spei�ed weight �le provided with the weightComp parameter is done

in simulator/AtualCompositeAutomaton. This lass also builds the representation of the weight

distribution. It ontains an array that maps weight ranges to omponent indies and a hash table

that maps the indies to the omponent names.

For more ode hange detail please onsult Appendix B.

35

36

Chapter 3

Examples

This hapter ontains �ve examples of omposite automata that we would like to simulate. We

break the examples down based on the hoie of nondeterminism resolution strategy, reuse of

omponent bloks versus use of a omposite shedule blok, and on the absene versus presene of

omponent parameters. The �rst four examples over the four ombinations of the above senarios.

The �fth example illustrates the use of a with blok within a omposite shedule. The with blok

is a new IOA notion and is disussed in detail in Setion 3.3. Chapter 4 disusses the IOA language

extensions neessary to support the simulation of these examples. Chapter 5 disusses the simulator

extensions neessary to support the simulation of these examples.

3.1 Examples with Non-Parameterized Components

The �rst two examples we onsider are slight modi�ations of the toy banking system of [GL00℄.

The banking system onsists of a single aount that may be referened from multiple loations.

Automaton Env, Figure 3.1.2 , represents the outside environment of the banking system. The

loations are indexed by the integer i. Env desribes what operations an be invoked, where, and

when. Notie that the only state kept by this automaton is a boolean ag for eah loation. This

enables the environment automaton to request transations at a ertain loation only one the

previous transation at that loation has ompleted and Env has been informed of its ompletion.

The ations of this automaton provide an interfae for its ommuniation with the Bank automaton.

Automaton Bank, Figure 3.1.3, is a mirror image of the Env automaton - output ations of Env

are input ations of Bank and vie versa. Automaton Bank ontains an additional internal ation,

37

Env Bank

doBalance

requestDeposit

requestWithdrawal

requestBalance

OK

reportBalance

Figure 3.1.1: Ations of Env and Bank

automaton Env

signature

input OK(i: Int,y:OpRe), reportBalane(n, i:Int)

output requestDeposit(n,i:Int) where n>0,

requestWithdrawal(n,i:Int) where n>0, requestBalane(i:Int)

states ative:Array[Int,Bool℄ :=onstant(false)

trans i t ions

input OK(i,y)

e f f ative[i℄ :=false

input reportBalane(n,i)

e f f ative[i℄ :=false

output requestDeposit(n,i)

pre :ative[i℄

e f f ative[i℄ :=true

output requestWithdrawal(n,i)

pre :ative[i℄

e f f ative[i℄:=true

output requestBalane(i)

pre :ative[i℄

e f f ative[i℄ :=true

Figure 3.1.2: Banking environment automaton

doBalane. As transation requests are reeived by Bank, they are reorded. At some point after

a request for the balane at a ertain loation is reeived, the doBalane transition alulates the

balane at that partiular loation, and the balane at that loation is now ready to be returned

by reportBalane.

The interfae diagram in Figure 3.1.1 shows that by mathing external ation of Env and Bank,

we an form a new omposite automaton EnvBank:

automaton EnvBank

omponents Bank;Env

Automaton EnvBank is a ombination of Env and Bank, and represents the bank omposed

with its environment. In order to be simulated in the presene of a simulator that is apable of

handling only primitive automata, EnvBank would have to �rst be manually omposed and then

38

simulated. Test ase Banking01 of the IOA toolkit test suite does exatly this. We now see how

automaton EnvBank is simulated diretly.

39

automaton Bank

signature

input requestDeposit(n, i: Int) where n > 0,

requestWithdrawal(n, i: Int) where n > 0,

requestBalane(i: Int)

output

OK(i: Int,x:OpRe), reportBalane(n, i: Int)

internal

doBalane(i: Int, tempChosenOps: Set[OpRe℄, amount : Int)

states ops: Set[OpRe℄ :={}, pending_ops: Set[OpRe℄ :={},

reported_ops: Set[OpRe℄ :={}, bals: Set[BalRe ℄ :={},

pending_bals: Set[BalRe ℄ := {}, done_bals : Set[BalRe℄,

lastSeqno: Array[Int, Int℄ := onstant(0),

hosenOps: Set[OpRe℄

trans i t ions

input requestDeposit(n, i)

e f f lastSeqno[i℄ := lastSeqno[i℄ + 1;

ops := insert([i, lastSeqno[i℄, n, false℄, ops);

pending_ops := insert ([i, lastSeqno[i℄, n, false℄, pending_ops);

input requestWithdrawal(n, i)

e f f lastSeqno[i℄ := lastSeqno[i℄ + 1;

ops := insert([i, lastSeqno[i℄, -n, false℄, ops);

pending_ops := insert ([i, lastSeqno[i℄, -n, false℄, pending_ops);

input requestBalane(i)

e f f pending_bals := insert ([i, 0℄, pending_bals);

bals := pending_bals [done_bals;

output OK(i,x)

pre x 2 ops ^ x.lo = i ^ :x.reported

e f f ops:=insert(set_reported(x,true),delete(x,ops));

pending_ops := delete(x,pending_ops);

reported_ops:=insert(set_reported(x,true),reported_ops)

output reportBalane(n,i)

pre [i,n℄ 2 done_bals

e f f done_bals :=delete([i,n℄,done_bals);

bals:=pending_bals [done_bals

internal doBalane(i,tempChosenOps,amount)

pre [i,0℄ 2 pending_bals

e f f hosenOps:=tempChosenOps;

pending_bals:=delete([i,0℄, pending_bals);

done_bals :=insert ([i,amount ℄,done_bals);

bals:=pending_bals [done_bals

Figure 3.1.3: Automaton Bank

40

3.1.1 Example : Reuse of Component Shedule Bloks

Suppose, the omponent automata, Env and Bank had shedule bloks assoiated with them. Let

the shedule blok in Figure 3.1.4 be part of the spei�ation of automaton Env, and the shedule

blok in Figure 3.1.5 part of the spei�ation of automaton Bank. These automata an now be

simulated as stand alone automata. Their output ations are simply not \heard" by anyone. The

automaton EnvBank, loses the system. Notie that for the omposite simulation, the numLoations

and maxAmount shedule blok variables in Figures 3.1.4 and 3.1.5 are set to the same value to

avoid ambiguity.

The extended simulator an now simulate the omposite automaton EnvBank diretly. Assum-

ing that the heker has been used to ompile the ioa �le ontaining the spei�ation of EnvBank

into the intermediate language �le, EnvBank01.il

1

, we an start the simulation by entering the

following string at the ommand line:

sim 10 EnvBank EnvBank01.il

The default high-level nondeterminism resolution strategy is stritly uniform ordering. The

ommand line invoation,

sim -randComp 10 EnvBank EnvBank01.il

would ause the random strategy to be used. At eah step of the simulation, the next omponent

is seleted based on the high-level nondeterminism resolution strategy provided at the ommand

line. The NDR blok of this omponent is now exeuted until an ation is �red or the NDR blok

exeeds the maximum number of steps alloted to it. If the �red ation happens to be an output

one, the input ations of all other omponents are heked for a possible triggering. The simulation

now returns to its highest level of nondeterminism and the seletion strategy is one again used to

selet an NDR blok of a partiular omponent to be exeuted.

1

This an be aomplished by running, ioaChek -il EnvBank01.ioa > EnvBank01.il, where EnvBank01.ioa is

the �le ontaining the spei�ation of EnvBank

41

shedule

states

numLoations, loation, ationChosen, maxAmount : Int,

op : OpRe, tempOps : Set[OpRe℄ := {}, tempOps2 : Set[OpRe℄ := {},

tempBals : Set[BalRe ℄ := {}, bal : BalRe, amount : Int,

loopBreak : Bool := false

do

numLoations := 15;

maxAmount := 100;

while (true) do % We

0

ll pik a random loation now

loation := randomInt (0, numLoations - 1);

ationChosen := randomInt (0, 5);

i f (ationChosen � 0 ^ ationChosen � 2) then

% Do a deposit. But must be sure we

0

re not ative at this loation

i f :Env.ative[loation℄ then

f i r e output requestDeposit(randomInt (1, maxAmount), loation)

f i

f i ;

i f (ationChosen � 3 ^ ationChosen � 4) then

i f :Env.ative[loation℄ then

f i r e output requestWithdrawal (randomInt (1, maxAmount), loation)

f i

f i ;

i f (ationChosen = 5) then

i f :Env.ative[loation℄ then

f i r e output requestBalane (loation)

f i

f i

od

od

Figure 3.1.4: The NDR blok for automaton Env

42

shedule

states

numLoations, loation, ationChosen, maxAmount : Int,

op : OpRe, tempOps : Set[OpRe℄ := {}, tempOps2 : Set[OpRe℄ := {},

tempBals : Set[BalRe ℄ := {}, bal : BalRe, amount : Int,

loopBreak : Bool := false

do

numLoations := 15; maxAmount := 100;

while (true) do % We

0

ll pik a random loation now

loation := randomInt (0, numLoations - 1);

ationChosen := randomInt (0,4);

i f (ationChosen � 0 ^ ationChosen � 2) then

tempOps := Banking01.pending_ops; loopBreak := false;

while (:isEmpty(tempOps) ^ :loopBreak) do

op := hooseRandom (Banking01.ops);

tempOps := delete (op, tempOps);

i f (:op.reported) then loopBreak := true;

f i r e output OK (op.lo, op)

f i od f i ;

i f (ationChosen = 3) then

tempBals := Banking01.done_bals;

loopBreak := false;

i f (:isEmpty(tempBals)) then bal := hooseRandom (tempBals);

tempBals := delete (bal, tempBals);

f i r e output reportBalane (bal.value, bal.lo)

f i f i ;

i f (ationChosen = 4) then % Find a null balane

tempBals := Banking01.pending_bals;

loopBreak := false; bal := [10, 10℄;

i f (:isEmpty(tempBals)) then

bal := hooseRandom (tempBals);

tempBals := delete (bal, tempBals);

% There is a null bal to do balane for

loopBreak := false; tempOps := Banking01.ops;

tempOps2 := {};

while (:isEmpty(tempOps)) do

op := hooseRandom(tempOps);

tempOps := delete (op, tempOps);

i f (op.lo = bal.lo) then

tempOps2 := insert (op, tempOps2)

f i od;

tempOps := tempOps2; amount := 0;

while (:isEmpty(tempOps)) do

op := hooseRandom(tempOps);

tempOps := delete (op, tempOps);

amount := amount + op.amount

od;

f i r e internal doBalane (bal.lo, tempOps2, amount)

f i f i od od

Figure 3.1.5: The NDR blok for automaton Bank

43

3.1.2 Example : A Composite Shedule Blok

Above we saw that when simulating a omposite automaton, a user of the simulator may want to

resolve nondeterminism by reusing the NDR bloks of the omponent automata. However, it may

be the ase that the user wants to resolve nondeterminism by writing a brand new NDR blok for

the omposite automaton. In the former ase, the omponent bloks serve the purpose of resolving

the low-level nondeterminism while the ommand line seleted strategy resolves the high-level

nondeterminism. In this ase, the omposite NDR blok resolves both levels of nondeterminism.

Consider adding the NDR blok in Figure 3.1.6 (delaration of shedule state variables has been

ommitted for the purpose of brevity) to the spei�ation of automaton EnvBank:

automaton EnvBank

omponents Bank;Env

Notie that eah �re invoation is now followed by the type of ation being invoked as well

as the omponent whih owns the �red ation, the ation name, and the atual parameters, as

in fire output Bank.OK (op.lo, op). Similarly, there are referenes to the state variables of

omponent automata, as in Bank.done bals. The NDR blok in Figure 3.1.6 was designed to

losely model the NDR blok used in the above mentioned test suite ase Banking01, where the

omposite automaton was onverted to a primitive one manually. Assuming that the heker has

been used to ompile the ioa �le ontaining the spei�ation of EnvBank and its omposite shedule

blok into the intermediate language �le, EnvBank02.il, we an start the simulation by entering

the following string at the ommand line:

sim 10 EnvBank EnvBank02.il

Notie that this invoation does not di�er from the one above where omponent shedule bloks

were reused to resolve nondeterminism. The simulator uses the omposite shedule blok if it is

present. If it is not, it defaults to reusing omponent shedule bloks. The above simulation

produes the transition output displayed in Figure 3.1.7. When ompared to the transition output

of the manually omposed automaton in the test ase Banking01, Figure 3.1.8, we see that the two

outputs are analogous.

44

shedule

do

numLoations := randomInt(10,15); maxAmount := 100;

while (true) do % We

0

ll pik a random loation now

loation := randomInt (0, numLoations - 1);

ationChosen := randomInt (0, 10);

i f (ationChosen � 0 ^ ationChosen � 2) then

i f :Env.ative[loation℄ then

f i r e output Env.requestDeposit(randomInt (1, maxAmount), loation)

f i f i ;

i f (ationChosen � 3 ^ ationChosen � 4) then

i f :Env.ative[loation℄ then

f i r e output Env.requestWithdrawal (randomInt (1, maxAmount), loation)

f i f i ;

i f (ationChosen = 5) then

i f :Env.ative[loation℄ then

f i r e output Env.requestBalane (loation)

f i f i ;

i f (ationChosen � 6 ^ ationChosen � 8) then

tempOps := Bank.pending_ops; loopBreak := false;

while (:isEmpty(tempOps) ^ :loopBreak) do

op := hooseRandom (Bank.ops); tempOps := delete (op, tempOps);

i f (:op.reported) then loopBreak := true;

f i r e output Bank.OK (op.lo, op)

f i od f i ;

i f (ationChosen = 9) then

tempBals := Bank.done_bals; loopBreak := false;

i f (:isEmpty(tempBals)) then

bal := hooseRandom (tempBals); tempBals := delete (bal, tempBals);

f i r e output Bank.reportBalane (bal.value, bal.lo)

f i f i ;

i f (ationChosen = 10) then

tempBals := Bank.pending_bals; loopBreak := false; bal := [10, 10℄;

i f (:isEmpty(tempBals)) then

bal := hooseRandom (tempBals); tempBals := delete (bal, tempBals);

loopBreak := false; tempOps := Bank.ops; tempOps2 := {};

while (:isEmpty(tempOps)) do

op := hooseRandom(tempOps); tempOps := delete (op, tempOps);

i f (op.lo = bal.lo) then

tempOps2 := insert (op, tempOps2)

f i od; tempOps := tempOps2; amount := 0;

while (:isEmpty(tempOps)) do

op := hooseRandom(tempOps); tempOps := delete (op, tempOps);

amount := amount + op.amount od;

f i r e internal Bank.doBalane (bal.lo, tempOps2, amount)

f i f i od od

Figure 3.1.6: Composite NDR blok for automaton EnvBank

45

Automaton initialized

1: output requestWithdrawal(9, 6) in automaton Env --- Conneted to :

input requestWithdrawal(9, 6) in automaton Bank

2: output requestBalane(11) in automaton Env --- Conneted to :

input requestBalane(11) in automaton Bank

3: output requestWithdrawal(74, 2) in automaton Env --- Conneted to :

input requestWithdrawal(74, 2) in automaton Bank

4: output OK(2, [lo: 2, seqno : 1, amount : -74, reported: false℄)

in automaton Bank --- Conneted to :

input OK(2, [lo: 2, seqno: 1, amount : -74, reported: false℄)

in automaton Env

5: output requestDeposit(36, 12) in automaton Env --- Conneted to :

input requestDeposit(36, 12) in automaton Bank

6: output OK(12, [lo: 12, seqno : 1, amount : 36, reported: false℄)

in automaton Bank --- Conneted to :

input OK(12, [lo: 12, seqno : 1, amount : 36, reported: false℄)

in automaton Env

7: internal doBalane(11, (), 0) in automaton Bank

8: output requestWithdrawal(11, 9) in automaton Env --- Conneted to :

input requestWithdrawal(11, 9) in automaton Bank

9: output OK(6, [lo: 6, seqno : 1, amount : -9, reported: false℄)

in automaton Bank --- Conneted to :

input OK(6, [lo: 6, seqno: 1, amount : -9, reported: false℄)

in automaton Env

10: output requestWithdrawal(69, 1) in automaton Env --- Conneted to :

input requestWithdrawal(69, 1) in automaton Bank

No errors

Figure 3.1.7: Simulator output for omposite automaton with a omposite shedule blok

Automaton initialized

1: internal requestWithdrawal(9, 6) in automaton Banking01

2: internal requestBalane(11) in automaton Banking01

3: internal requestWithdrawal(74, 2) in automaton Banking01

4: output OK(2, [lo: 2, seqno : 1, amount : -74, reported: false℄)

in automaton Banking01

5: internal requestDeposit(36, 12) in automaton Banking01

6: output OK(12, [lo: 12, seqno : 1, amount : 36, reported: false℄)

in automaton Banking01

7: internal doBalane(11, (), 0) in automaton Banking01

8: internal requestWithdrawal(11, 9) in automaton Banking01

9: output OK(6, [lo: 6, seqno : 1, amount : -9, reported: false℄)

in automaton Banking01

10: internal requestWithdrawal(69, 1) in automaton Banking01

No errors

Figure 3.1.8: Simulator output for manually omposed omposite automaton

46

3.2 Examples with Parameterized Components

Before this projet, automata parameters, both type and variable, were not supported by either

primitive or omposite simulations. This is not very surprising as automata parameters have lit-

tle bene�t to a simulator that an only handle primitive automata. Parameters allow for simple

spei�ations of omposite automata with multiple omponents based on the same automaton.

For example the running example of the next few setions is a system that onsists of multiple

proess and multiple hannel omponents. Every proess omponent is based on the same automa-

ton. However, eah one is instantiated with a di�erent parameter. Variable parameters are now

supported, while type parameters remain a fututre work.

The examples used in this and the following setion, Figure 3.2.9, are slight modi�ations of the

Channel, Proess, and Sys automata used in the \Illustrative examples" setion of Tauber's paper

[Tau03℄. The Channel automaton represents a ommuniation hannel that an drop dupliate

messages and reorder messages. Notie the use of onst parameters desribed in Setion 1.1.2.

The Proess automaton represents a proess that runs on a node indexed by the integer automaton

parameter, n. This proess ommuniates with its neighbors by sending and reeiving messages

that onsist of natural numbers. The proess reords the smallest value it has reeived and passes

on all values that exeed the reorded value; if the set of values waiting to be passed on grows too

large, the proess an also lose a nondeterministi set of those values [Tau03℄.

In the omponents de�nition of automaton Sys, C is a omponent name and Channel is a base

automaton name. Component names appearing in the omponents spei�ation will heneforth

be referred to as omponent tags.

We now note that although the de�nition of automaton Sys in Figure 3.2.9 is a valid IOA

spei�ation, it is not suÆient for the purposes of simulating omposite automata. The where

lause presents the simulator with the problem of instantiating all of the omponents in its sope.

Although it might seem that this is feasible in the ase of automaton Sys in Figure 3.2.9, a more

omplex prediate involving n would fore the simulator to searh for all values satisfying the

prediate. Thus without a theorem prover, it is not possible for the simulator to orretly instantiate

all of the omponents soped by where lauses. The interfae diagram in Figure 3.2.10 shows the

interation of the Proess and Channel omponents when all of the omponents in the sope of the

two where lauses of Figure 3.2.9 are instantiated.

We �rst avoid this problem by onsidering two examples that involve spei�ations of the

47

omposite automaton Sys that do not ontain a where lause. Later, we introdue the notion of

a with blok and illustrate its use through an example. A with blok solves the soping pitfall by

requiring the user to instantiate all of the partiipating omponents.

48

automaton Channel(i, j:Int)

signature

input send(onst i, onst j, m:Int)

output reeive(onst i, onst j, m:Int)

states ontents:Set[Int℄ := {},

formalI:Int:=i, formalJ:Int:=j

trans i t ions

input send(i, j, m)

e f f ontents := insert(m, ontents)

output reeive(i, j, m)

pre m 2 ontents

e f f ontents := delete(m, ontents)

automaton Proess(n:Int)

signature

input reeive(onst n-1, onst n, x:Int)

output send(onst n, onst n+1, x:Int),

overflow(onst n, s:Set[Int℄)

states

val:Int := 0, toSend:Set[Int℄ := {}, formalN:Int:=n

trans i t ions

input reeive(n-1, n, x)

e f f i f val = 0 then val := x

e l s e i f x < val then

toSend := insert(val, toSend);

val := x

e l s e i f val < x then

toSend := insert(x, toSend) f i

output send(n, n+1, x)

pre x 2 toSend

e f f toSend := delete(x, toSend)

output overflow(n, s:Set[Int℄; l o a l t:Set[Int℄)

pre s = toSend ^ n < size(s) ^ t � s

e f f toSend := t

automaton Sys

omponents C[n:Int℄: Channel(n, n+1) where 1 � n ^ n < 5;

P[n:Int℄: Proess(n) where 1 � n ^ n � 5

Figure 3.2.9: Automaton Sys

Process

1

Process

2

Process

3

Process

4

Process

5

Channel

1-2

Channel

2-3

Channel

3-4

Channel

4-5

send send send send

receive receive receive receive

overflow overflow overflow overflow overflow

Figure 3.2.10: Components of automaton Sys

49

3.2.1 Example: Parameterized Components, Reuse of Component Shedule

Bloks

Consider the following spei�ation of automaton Sys as an alternative to the spei�ation in

Figure 3.2.9:

automaton Sys

omponents C1: Channel(5,6); P1: Proess(5);

C2: Channel(6,7); P2: Proess(6)

The automaton Sys now ontains two omponents based on eah base automaton. Sine there is

no omposite shedule present, the simulation will reuse the omponent shedule bloks for Channel,

Figure 3.2.11, and Proess, Figure 3.2.12. We invoke the simulation with:

sim -outputTrans 8 Sys ProChan01.il

Figure 3.2.13 shows the transition output of the simulation. Notie that the omponent tag

names and not the base automaton names are used to identify the omponents in the output.

shedule

do

while(true) do

f i r e input send(Channel.formalI,Channel.formalJ,290);

f i r e output reeive(Channel.formalI,Channel.formalJ,290)

od od

Figure 3.2.11: NDR blok for Channel

shedule

states formVar:Int

do

while(true) do

formVar:=Proess.formalN-1;

f i r e input reeive(formVar,Proess.formalN,18);

formVar:=Proess.formalN+1;

i f (18 2 Proess.toSend) then

f i r e output send(Proess.formalN,formVar,18)

f i od od

Figure 3.2.12: NDR blok for Proess

50

Automaton initialized

1: input reeive(4, 5, 18) in automaton P1

2: input send (6, 7, 290) in automaton C2

3: input reeive(5, 6, 18) in automaton P2

4: input send (5, 6, 290) in automaton C1

5: output send(5, 6, 18) in automaton P1 --- Conneted to :

input send(5, 6, 18) in automaton C1

6: output reeive(6, 7, 290) in automaton C2

7: output send(6, 7, 18) in automaton P2 --- Conneted to :

input send(6, 7, 18) in automaton C2

8: output reeive(5, 6, 290) in automaton C1 --- Conneted to :

input reeive(5, 6, 290) in automaton P2

No errors

Figure 3.2.13: Simulator output for automaton Sys, �rst ase

51

3.2.2 Example: Parameterized Components, Composite Shedule Blok

We now onsider the ase where the spei�ation of automaton Sys remains as above:

automaton Sys

omponents C1: Channel(5,6); P1: Proess(5);

C2: Channel(6,7); P2: Proess(6)

However, now we provide it with a omposite shedule blok, Figure 3.2.14. Notie, that the

referenes to the omponent state variables and omponent ations use the omponent tag names

and not the base automata names. The invoation of this simulation, and its output are similar to

those in the above setion.

do

while(true) do

sendingAmount:=sendingAmount-1;

amount:=P1.formalN-1;

f i r e input P1.reeive(amount,P1.formalN,sendingAmount);

amount:=P1.formalN+1;

f i r e output P1.send(P1.formalN,amount,sendingAmount);

f i r e output C1.reeive(C1.formalI,C1.formalJ,sendingAmount);

amount:=P2.formalN+1;

f i r e output P2.send(P2.formalN,amount,sendingAmount)

od od

Figure 3.2.14: NDR blok for automaton Sys

3.3 With Bloks

As mentioned above the simulator is not apable of instantiating omponents based solely on the

where lause in the omponents delaration. The with blok solves this problem by requiring

the user to provide the simulator with all of the omponents that will be present in the simulation.

Thus the burden of a possible proof is shifted from the simulator to the user. The with blok is

part of the shedule blok and enumerates the omponents that will be reated. Figure 3.3.15

shows an example of a with blok that might appear in the shedule blok of automaton Sys from

Figure 3.2.9. We refer to eah line in the with blok as a delaration.

Delarations may only be made for omponent tags with formal parameters. Delarations for

omponent tags with no formal parameters, would result in the omposite automaton having more

than one idential omponent, and this would violate the limitations on ompositions established

52

shedule

states

randomInt:Int

with

ompChannel1 = C[1℄,

ompChannel2 = C[2℄,

ompChannel3 = C[3℄,

ompP1 = P[1℄,

ompP2 = P[2℄,

ompP3 = P[3℄,

ompP4 = P[4℄

do

f i r e output ompP2.send(1,2,10)

...

Figure 3.3.15: Example of a with blok

in Setion 1.2.1. Notie that in addition to enumerating the omponents that will partiipate in

the simulation, the user provides a handle name for eah instantiated omponent (the name on the

left of the equals sign). As desribed below, the handle names are used in the shedule blok of the

omposite automaton.

3.3.1 Handle Names in Shedule Bloks

Aside from the burden of a proof, omponent de�nitions with where lauses pose a diÆulty for

omposite shedule bloks. In Setion 2.1.4 we established that a �re invoation in a omposite

shedule blok must be pre�xed by the name of the omponent that is exeuting the ation. One

possibility for referening the desired omponent in the shedule blok is to list the omponent

name followed by the atual parameters for that omponent. Suh an invoation would look like:

fire output P[2℄.send(1,2,10)

The presene of the with blok gives us the option to referene the omponent by its handle

name. This is the implemented option and it looks like:

fire output ompP2.send(1,2,10)

The bene�t of the hosen option is brevity in the ase of a omponent with many parameters.

In suh a ase the user does not have to re-list all of the parameters every time he/she wants to

referene the omponent. As mentioned in Setion 2.1.4, the handle name an also be used in the

shedule blok to referene a state variable of a partiular omponent.

53

In addition to their use in omposite shedule bloks, handle names also provide an implemen-

tation bene�t to the simulator itself. During a simulation of a omposite automaton, the simulator

must trak all of the individual omponents. Handle names provide a onvenient method for the

simulator to uniquely identify all suh omponents. Further, handle names are useful for output

purposes in the simulation log �le. To identify omponent variables and transitions, the simulator

an display them pre�xed by the omponent's handle name.

3.3.2 Non Exhaustive Delaration

We saw above how with bloks solve the problem of the neessity of a proof by enumerating the

desired omponents. The simulator an now hek the atual parameters provided in eah of the

delarations against the orrespondingwhere lause. Just as in Setion 1.2.1, we require that these

where lauses do not ontain quanti�ers, otherwise the simulator would not be able to evaluate

the where lause prediate even in the presene of atual values. If the parameter provided makes

the where lause prediate evaluate to false, the simulator will halt the simulation and display an

appropriate error message. Notie that although the simulator an detet illegal delarations, it an

not verify whether or not the with blok exhausts the where lause. Cheking for an exhaustive

delaration would require the same exat proof that motivated us to reate the with blok in the

�rst plae.

3.3.3 Example: With Blok

Finally, we get to the most interesting ase of a omposite automaton with parameterized ompo-

nent automata. In this ase the automaton Sys does ontain a where lause in its omponents

de�nition, whih requires it to have a shedule blok, and a with blok in its shedule. Notie

that the delarations in the with blok happen to exhaust the where lauses. If this were not the

ase, the only e�et on the simulation would be the presene of fewer omponents in the omposite

automaton. Automaton Sys is displayed in Figure 3.3.16.

The simulation begins with Pro1 reeiving a message \18". It should then send this message

down the proess-hannel hain. The message should get to Pro3 and stop there. Figure 3.3.17

displays the result of the simulation of omposite automaton Sys for �ve steps.

54

automaton Sys

omponents C[n:Int℄: Channel(n, n+1) where 1 � n ^ n < 5;

P[n:Int℄: Proess(n) where 1 � n ^ n � 5

shedule

states

amount:Int:=17

with

Pro1=P[1℄,

Chan12=C[1℄,

Pro2=P[2℄,

Chan23=C[2℄,

Pro3=P[3℄,

Chan34=C[3℄,

Pro4=P[4℄,

Chan45=C[4℄,

Pro5=P[5℄

do

while(true) do

amount:=amount +1;

f i r e input Pro1.reeive(0,1,amount);

i f (amount 2 Pro1.toSend) then

f i r e output Pro1.send(1,2, amount)

f i ;

i f (amount 2 Chan12.ontents) then

f i r e output Chan12.reeive(1,2, amount)

f i ;

i f (amount 2 Pro2.toSend) then

f i r e output Pro2.send(2,3, amount)

f i ;

i f (amount 2 Chan23.ontents) then

f i r e output Chan23.reeive(2,3, amount)

f i od od

Figure 3.3.16: Automaton Sys ase three : with blok

Automaton initialized

1: input reeive(0, 1, 18) in automaton Pro1

2: output send(1, 2, 18) in automaton Pro1 --- Conneted to :

input send(1, 2, 18) in automaton Chan12

3: output reeive(1, 2, 18) in automaton Chan12 --- Conneted to :

input reeive(1, 2, 18) in automaton Pro2

4: output send(2, 3, 18) in automaton Pro2 --- Conneted to :

input send(2, 3, 18) in automaton Chan23

5: output reeive(2, 3, 18) in automaton Chan23 --- Conneted to :

input reeive(2, 3, 18) in automaton Pro3

No errors

Figure 3.3.17: Simulator output for Sys automaton that ontains a with blok

55

56

Chapter 4

IOA Language Extension

The ability to speify the automata and their onstituents presented in the previous hapter required

the IOA language to be extended to support:

1. NDR Bloks in Composite Automata,

2. Component Name Pre�xes in Fire Invoations,

3. with bloks in omposite shedule bloks, and

4. Delarations inside the with blok.

The following four setions deal with the spei� grammar hanges involved with the above

extensions, the new semanti heks neessary to verify the validity of the extended IOA �les,

the atual ode modi�ations, and �nally the intermediate language representations of the new

extensions.

4.1 Grammar Modi�ation

To allow NDR bloks in omposite automata the grammar de�ning ompositions was modi�ed

from,

omposition ::= 'omponents' omponent;+ ('hidden' ationSet)?

to:

omposition ::= 'omponents' omponent;+ ('hidden' ationSet,+)? ompShedule?

57

Now, a omposition may or may not have a omposite shedule blok. The grammar dealing

with omposite shedule bloks is the following:

ompShedule ::= 'shedule' states? withBlok? 'DO' ompDetProgram 'OD'

ompDetProgram ::= ompDetStatement;+

ompDetStatement ::= assignment | ompDetConditional | ompDetWhile | ompDetFire

ompDetConditional ::= 'if' prediate 'then' ompDetProgram

('elseif' prediate 'then' ompDetProgram)*

('else' ompDetProgram)? 'fi'

ompDetWhile ::= 'while' prediate 'do' ompDetProgram 'od'

ompDetFire ::= ompInvoation1

ompInvoation1 ::= ompInvoation2

ompInvoation2 ::= 'fire' ationType ompName '.' ationName invoationAtuals?

('ase' IdOrNumeral)?

The struture of the grammar of a omposite deterministi program, ompDetProgram, losely

resembles that of a primitive deterministi program. The exeption is that a omposite invoation

is required to have a omponent name pre�x. An alternative modi�ation of the grammar had

ompositions being modi�ed to the following:

omposition ::= 'omponents' omponent;+ ('hidden' ationSet,+)? shedule?

This strategy does not make a distintion between a shedule blok for a primitive automaton

and a shedule blok for a omposite automaton. Beause of this, implementing this strategy

would avoid the reation of new non-terminal symbols ompDetProgram, ompDetStatement, and

ompDetFire. However, a �re statement would now have to branh to both non-pre�xed and

pre�xed invoations. This would require new semanti heks to ensure that no pre�xes were

spei�ed in the invoations of NDR bloks of primitive automata. Thus although the hosen

implementation involves the reation of more new symbols, it is more straightforward and leaner.

The omposite shedule blok may or may not have a with blok. We de�ne the grammar of

a with blok and the delarations inside it to be:

withBlok ::= 'with' delarations

delarations ::= delaration,+

delaration ::= handle EQ IDENTIFIER '[' terms,+ '℄'

handle ::= omponentName

58

Notie that the �rst member of a delaration is a handle and not an identi�er like the member

on the other side of the equals sign. This is neessary beause the handle will be used in the

shedule blok to referene state variables and transitions of the omponent. Thus it must be a

variable of type omponentNode and not simply an ltoken. However, the identi�er simply links

the omponent being delared here to a omponent tag in the omponents de�nition, and it is

suÆient to represent the identi�er by an ltoken.

A possibility for future work would allow a more ompliated ode struture inside the with

blok. For example, delaring omponents inside a for loop might prove to be useful. A brief guide

on modifying the IOA Grammar appears in appendix C.

4.2 Semanti Cheks

The introdution of omponent name pre�xes in �re statements presents one new semanti hek.

The pre�x spei�ed in the invoation must exatly math one of the omponent tags without

formal parameters in the omponents delaration of the omposition, or the handle name of one

of the delarations of the with blok. This semanti hek is performed along with the rest of

the semanti heks for a omposite automaton. Semanti heks that on�rm the existene of

the spei�ed ation and math the validity of the type of the ation as well as of the parameters

spei�ed, already exist. These heks are invoked on the owning omponent one the new semanti

hek has veri�ed the existene of the spei�ed omponent.

The omponent pre�x should be a variable of sort that is an aggregate over all of the transitions

of the omponent automaton. Its . operator should allow aess to all of the transitions of the

omponent automaton. Currently, the pre�x is not implemented in this way. It is simply an ltoken

that is easily parsed and veri�ed beause a omponent name is the only thing that may preede an

ation name in an invoation.

The following is a list of the semanti heks that must be performed to ensure the validity of

the IOA ode in a with blok:

1. The handle names in the delarations must be unique.

2. Handle names must be distint from the names of the state variables of the shedule blok.

3. Handle names must be distint from the formal variables of the omposite automaton.

59

4. The indenti�er on the right hand side of the equals sign must exatly math one of the

omponent names in the omponents de�nition.

5. The length of the list of terms following the indenti�er must equal the length of the list of

formal parameters of the mathing omponent from the omponents de�nition.

6. The types of the terms following the identi�er must math the types of the formal terms of

the mathing omponent from the omponents de�nition.

7. Eah of the terms following the identi�er must be a simple literal term.

The �rst three semanti heks ensure that variable names remain unambiguous inside the

omposite shedule blok. The fourth semanti hek requires that eah delaration orrespond to

some omponent tag established in the omponents setion. The �fth and sixth heks guarantee

that the terms in the delaration are valid with respet to the terms delared for the omponent

tag in the omponents setion. Finally, the seventh hek puts a restrition on the type of terms

that may appear here. Just as above, these semanti heks are performed along with the rest of

the semanti heks for a omposite automaton.

4.3 Code Changes

Table 4.3.1 lists the Java lasses in diretory (IOA Toolkit=Code=ioa=parser) (we will refer to

instanes of these lasses as parser side objets) that represent the new non-terminal symbols

introdued to the grammar in Setion 4.1. The lass ompDetFireNode is a new lass that extends

the existing detFireNode and provides the set methods used to reate the omposite invoation

during parsing. The lass invoationNode now has a �eld representing the omponent name that

may be assoiated with the invoation statement. Similarly, ompositionNode, the lass that

represents a omposition, now has a �eld that represents the shedule blok that may be assoiated

with the omposite automaton.

The lass withNode is a new lass and represents a with blok. Its state onsists of a olletion

of delarations. It has a method that retrieves a omponent tag name based on its handle name.

The lass delarationNode is a new lass and represents a single delaration in a with blok. Its

state onsists of a handle name, a omponent tag name, and a list of terms orresponding to the

formals of this omponent tag. The lass omponentNode is an existing lass. When it represents

60

non-terminal symbol Java lass

ompShedule detSheduleNode

ompDetProgram ListNode of statementNode

ompDetStatement statementNode

ompDetFire detFireNode

ompInvoation1 invoationNode

ompInvoation2 ompDetFireNode

withBlok withNode

delarations ListNode of delarationNode

delaration delarationNode

handle omponentNode

Table 4.3.1: Java lasses representing new non-terminal symbols

a handle, it does not have the orret state upon reation. Its state variables get updated later

when this omponent is linked to the omponent delared in the omponents spei�ation by

the omponent tag name. For a more detailed doumentation of the modi�ed �les please onsult

Appendix A.

4.4 IL Representations

The lasses listed in Figure 4.3.1 all implement the method makeAbstrat. This method onverts

the parser side objet representing an automaton onstituent into its ounterpart objet that is an

instane of a lass in the (IOA Toolkit=Code=ioa=automaton) diretory (we will refer to instanes

of these lasses as automaton side objets). These automaton side, ounterpart objets are all

apable of translating their representation into intermediate language ode. After all semanti

heks have been performed, the makeAbstratmethod is invoked on all of the partiipating parser

side objets and the automaton side objets are reated.

The ounterparts of invoationNode and ompositionNode on the automaton side are ndrfire

and omposition respetively. These lasses have been modi�ed to aount for the possibility of

NDR bloks in omposite automata and omponent name pre�xes in the �re statements of those

bloks.

The IL representation of an ndr �re statement has been modi�ed from:

61

(FIRE {transition-id (ACTUALS atuals+)}?)

to,

(FIRE {omponent-name? transition-id (ACTUALS atuals+)}?)

where the apitalized words denote literal strings and lower ase words denote IOA notions;

urly brakets denote grouping and do not atually appear in the IL syntax. The IL representation

of a omposition has been modi�ed from:

((COMPOSE {(omponent-name (ACTUALS atuals+))}+) (HIDDEN hiddens+))

to,

((COMPOSE {(omponent-name (ACTUALS atuals+))}+) (HIDDEN hiddens+) shedule?)

Compared to the IL representation of a a primitive shedule blok,

(SCHEDULE (STATES states*) program)

the IL representation of a omposite shedule blok is,

(SCHEDULE (STATES states*) (WITH delarations+)? program)

and the IL representation of a delarations is,

(handle omponentTag atuals+)

where the apitalized words denote literal strings and lower ase words denote IOA notions.

62

Chapter 5

Simulator Extension

In Chapter 4 we saw how the IOA language and the tools that parse it have been modi�ed to aount

for the possibility of omposite shedule bloks, omponent pre�xes in �re invoations, and with

bloks. We now onentrate on the modi�ations to the simulator itself neessary to utilize these

notions in order to support simulations of omposite automata. We divide this hapter based on the

presene of parameters in the omponents of the omposite automaton and on the nondeterminism

resolution strategy used to resolve nondeterminism in the omposite automaton.

First, we desribe the struture of the simulator lasses that represent a omposite automaton

and its omponents. Seond, we disuss how this struture is employed to allow more than one

omponent to be based on the same automaton during simulations of a omposite automaton with

parameterized omponents. Next, we desribe the onnetion via the IL parser of the intermediate

language representation of an automaton to its representation in the simulator. Finally, we desribe

the modi�ations to the output produed by the simulator that are motivated by simulations of

omposite automata.

5.1 Representation of a Composite Automaton

The Java lass representation of automata onsists of two sides, the basi side and the atual side.

The basi side is reated during the parsing of the IL �le. It is a representation of the blueprint

of the automaton. The atual side is reated at the beginning of the atual simulation, and allows

for the addition of atual parameters to the automaton. Prior to this projet, the representations

of omposite automata on both sides were either limited or nonexistent.

63

5.1.1 Basi Side

ILElement

Automaton

PrimitiveAutomaton CompositeAutomaton

BasicILElement

BasicAutomaton

BasicPrimitiveAutomaton

NDRPrimitiveAutomaton

SimPrimitiveAutomaton

SimAutomaton

BasicCompositeAutomaton

SimCompositeAutomaton

NDRCompositeAutomaton

Class

Abstract Class

Interface

Key

Figure 5.1.1: Basi side objet diagram

Figure 5.1.1 shows part of the basi side arhiteture of the simulator. The omponents of a om-

posite automaton are stored as a Vetor of AutComponent objets in BasiCompositeAutomaton.

The NDRCompositeAutomaton and the SimCompositeAutomaton objets have been added to the

arhiteture. The NDRCompositeAutomaton objet supports a shedule blok in a omposite au-

tomaton. The SimCompositeAutomaton objet allows for instantiation of atual side objets based

on their basi side representations. The method that does this is now delared in the SimAutomaton

interfae, instead of just in the SimPrimitiveAutomaton. Both NDRCompositeAutomaton and

SimCompositeAutomaton objets parallel their primitive ounterparts.

5.1.2 Atual Side

Just as the SimAutomaton interfae is an abstration for a basi side automaton, primitive or om-

posite, the new interfae AtualAutInterfae is an abstrat onnetion to an atual automaton,

whether primitive or omposite. Figure 5.1.2 shows the relevant part of the atual side arhiteture

before the latest modi�ations. Figure 5.1.3 displays the arhiteture after them.

64

During the simulation, the Simulator objet has aess only to the new

AtualAutInterfae interfae and is not aware whether it is simulating a primitive or a om-

posite automaton. The AtualCompositeAutomaton represents a omposite automaton, possibly

with parameters. The atual omponents of the omposite automaton are stored as a Vetor of

AtualAutomaton objets. Note that beause simulations of omposite automata whose ompo-

nents are themselves omposite automata are not urrently supported, this is suÆient. To support

suh simulations slight modi�ations would have to be made, inluding the storing of atual om-

ponents as AtualAutInterfae objets and not primitive AtualAutomaton objets.

ActualAutomaton

DetActualAutomatonNDRActualAutomaton

BasicILElement

Class

Abstract Class

Interface

Key

Figure 5.1.2: Atual side objet diagram before hanges

ActualAutomaton

DetActualAutomatonNDRActualAutomaton

ActualCompositeAutomaton

ActualAutInterface

ILElement

Class

Abstract Class

Interface

Key

Figure 5.1.3: Atual side objet diagram after hanges

5.1.3 Implementation Deisions

An alternative to the above implementation of omposite automata, was to reate objets for

omposite automata that are not related to the primitive automata objets. In addition to this,

reate a new simulator objet that spei�ally simulates omposite automata. The biggest pro of

65

this approah is the ease with whih a primitive/omposite spei� hange ould be implemented.

The major on of this approah is the double implementation and upkeep of features that are

ommon to both primitive and omposite simulations.

The approah hosen, avoids dupliate ode upkeep. We took are to avoid large ode bloks

spei� to primitive/omposite simulations in the Simulator objet. When neessary, the distin-

tions are handled through di�erent implementations in the primitive and omposite objets of the

methods available to the Simulator through the interfae .

For a more detailed doumentation of the modi�ed �les disussed above please onsult Ap-

pendix B.

5.2 Copying of Components

When the simulator tool was initially reated, its implementation was tailored for the simulation of

a primitive automaton. The possibility of simulating a omposite automaton with parameterized

omponents presents the problem of reating more than one simulator representation of an automa-

ton based on a single IOA automaton spei�ation. For example, when simulating automaton Sys

from Figure 3.3.16, the simulator would have to reate and trak four omponents based on the

Channel automaton. Initially, the only di�erene between these omponents are the values of the

formal parameters of the automaton Channel. However, as the simulation progresses, the state of

eah of these omponents will diverge. This neessitates the reation of a separate opy of eah

omponent.

5.2.1 Implementation Deisions

Three reasonable options for reating more than one simulator representation of an automaton

based on a single IOA automaton spei�ation existed:

1. Augment the IOA parser to reate multiple IL representations of a primitive automaton

whenever the spei�ation of a omposite automaton with parameterized omponents is en-

ountered.

2. Modify the IL Parser to parse the same IL automaton representation multiple times whenever

the IL representation of a omposite automaton with parameterized omponents is enoun-

tered.

66

3. Modify the Simulator, suh that prior to the simulation, it reates opies of its representation

of an automaton, whenever the simulation about to take plae involves a omposite automaton

with parameterized omponents.

The deisive disadvantage of option one is its violation of the one-to-one orrespondene between

notions in an IOA �le and their IL representations. The feasibility of option two depended on the

urrent implementation of the IL Parser and the magnitude of the modi�ations to it that would

produe the desired result. Currently, the IL Parser sans the IL �le in a top-down manner. For

example, when the parser enounters the automaton keyword, it expets a name, a list of formals,

a list of ations, a list of states, and a list of transitions to follow immediately after.

In order to ahieve the goal proposed by solution two, one the IL parser ame aross the

de�nition of a omposite automaton with parameterized omponents, it would have to return to

the position in the IL �le where the base automaton for that omponent were loated, and then

parse it top-down again. Implementing the ability of the IL parser to traverse the IL �le bakwards,

in searh for the base automaton, would require extremely signi�ant modi�ations to it. Due to

this, option three was hosen.

5.2.2 Code Changes

The implemented option auses the simulator, prior to the simulation, to reate opies of its rep-

resentation of an automaton, whenever the simulation about to take plae involves a omposite

automaton with parameterized omponents. Figure 5.2.4 shows the objet representation of a prim-

itive automaton. Solid lines represent ontainment (with an asterisk denoting the ontainment of

multiple objets), dotted lines represent read-only aess, and dashed lines represent read/write

aess.

As an be seen from the diagram, a primitive automaton ontains a olletion of transitions

whose where term, preondition term, and effet program an all aess the state variables and

formals of the automaton. Similarly, the NDR program of the automaton an aess both the NDR

variables and the state variables of the automaton. This senario presents two options as to how

the automaton may be opied.

One possibility is to opy the entire automaton representation hierarhy. After the opy is om-

plete, a san of the transitions is neessary to make them aess the new opy of the state variables

and not the original one. Sine the only di�erene between transitions of every omponent based

67

PrimitiveAutomaton

Transiition

transitions

*Term

Program

Term

where

pre
condition

effect

Variable

* formals

State

* states

Variable Value

initial
Value

Statement

* statements

Program Term

State

Variable

Value

NDRstates

*

initial
Value

Program

Statement

* NDR
statements

Term Program

NDRProgram

Term

Action

Term

actions

*

where

Term

formals

*

actuals *

Figure 5.2.4: Partial, abstrat representation of an automaton

on the same automaton, are the referenes to the objets representing state or formal variables,

another option is to opy the state and formal variables only. A single set of transitions would be

kept for all omponents based on the same automaton. Prior to the exeution of a transition, its

referenes to variables would get modi�ed to point to those of the urrently ative omponent.

The advantage of the seond implementation is that it does not opy objets that do not

neessarily need to get opied. Its disadvantage is the neessity to update transition referenes

every time a transition is proessed. We deided that the �rst implementation is superior. The

signi�ant advantage of the �rst implementation is that after the opy and update are omplete,

the simulation an ontinue without needing to be interrupted again for opy/update purposes.

This allows future modi�ations to the mehanism of the simulation to be independent of the

opy/update proess.

The situation is a bit di�erent in the ase of the NDR program and its variables. NDR programs

di�er from the e�et programs in transitions beause every time the e�et program is ran, it runs

until ompletion, and if its ran again, exeution starts from the top. This is not the ase with NDR

68

programs. Their exeution is interrupted by �re statements and resumes from the same spot on

its next iteration. Thus NDR programs must either be opied, or a new method to maintain eah

omponents' plae within its NDR program must be implemented. For this reason, NDR programs

are also opied in their entirety and their variable referenes are updated just as is the ase with

transitions.

The opying of formals is fairly straightforward as they are shallow objets; their state onsists

of String's, boolean's and an Entity referene. The opying of both automata and NDR state

variables, involves opying their initial value terms. The opying and updating of statements in

effet and NDR programs is more ompliated beause they are objets with fairly deep state. To

opy all of the above, we must be able to opy the terms that appear as initial values, preonditions

and where lauses of transitions and the statements that appear in programs. Figure 5.2.5 shows

an abstration of suh terms.

Term

LiteralTerm ReferenceTermAplicationTerm QuantifierTerm

Term

opands *

Variable

Figure 5.2.5: Partial, abstrat representation of a term

Sine we have exluded the possibility of quanti�ers in where lauses in Setion 2.2.1, we do

not worry about quanti�er terms here. Literal terms do not ontain any dynami state and do not

have to be opied. Thus the only work remaining is the opying of the opands of appliation terms

and updating the variable referene of referene terms.

Figure 5.2.6 shows an abstration of statements. It shows what objets need to be opied

and/or updated for eah type of statement. The Term's in the diagram are opied, the Variable's

are updated to point to the orret opy, and the Program's are a olletion of Statement's that

reursively get proessed in the same way.

For a more detailed doumentation of the modi�ed �les disussed above please onsult Ap-

pendix B.

69

Statement

Conditional LoopAssignment NDRWhile

Term

value

*

NDRFire NDRYield

Value

left

value

Term Program Program

pred

icates programs *
else

program

Variable Term Program

condi
tional

Transition Term

actuals*

Term Program

Term

Figure 5.2.6: Partial, abstrat representation of a statement

5.3 IL Parser

We saw in Setion 4.4 that the intermediate language representation of omposite automata and

their onstituents generated by the IOA parser has been modi�ed. The bak-end tool that in turn

parses this ode and reates simulator side objets disussed above is the IL parser,

(IOA Toolkit=Code=ioa=il=ILParser:java). The IL parser has been modi�ed to aount for the

hanges in the IL language.

Most of the modi�ations our in the parseCompositeAut method. The parser now heks

for the existene of a with blok in a omposite automaton. If it exists the parser reates two

maps, one from omponent tag names to base automaton names, and another from handle names

to omponent tag names. These maps are used by the NDRILFatory and NDRCompositeAutomaton

lasses when parsing the shedule blok of the omposite automaton. Finally, the parser reates

as many omponent objets as are delared in the with blok. These omponent objets are later

used by the simulator to reate opies of automata objets as desribed in Setion 5.2.2. Also,

as disussed in Setion 5.4, when reating simulator representations of state variables, it lets the

variable know whih omponent it belongs to. For a more detailed doumentation of the modi�ed

�les disussed above please onsult Appendix B.

5.4 Display of Output

The new funtionality of the simulator disussed in the setions above requires some modi�ations

to the way that its output is displayed. It is no longer suÆient to list modi�ed state variables by

their name alone as that would not make it lear to whih omponent they belong. Also beause an

70

output ation may trigger one or more input ations, it is now possible for more than one transition

to be exeuted at every step of the simulation.

To solve the �rst problem the simulator representations of state variables have been modi�ed

so that they are now aware to whih omponent they belong to. In omposite simulations, every

time a variable is displayed, the name of the owning omponent of that variable is displayed in

front of it. Figure 5.4.7 illustrates this via a hypothetial output during the simulation of the

EnvBank automaton desribed in Setion 3.1. To solve the seond problem, the output transition

that initially triggers the input transitions is aware of the transitions triggered by it and it displays

this information following its own display. Figure 5.4.8 illustrates this.

%%%% Modified state variables:

%% Bank:ops --> ([lo: 8, seqno: 1, amount: 78, reported: false℄)

%% Bank:pending_ops --> ([lo: 8, seqno: 1, amount: 78, reported: false℄)

%% Bank:lastSeqno --> (ArraySort (ConstantValue 0) (8 1))

%% Env:ative --> (ArraySort (ConstantValue false) (8 true))

Figure 5.4.7: Display of state in omposite simulations

[[[[Begin step 1 [[[[

transition: output requestDeposit(78, 8) in automaton Env --- Conneted to :

input requestDeposit(78, 8) in automaton Bank

Figure 5.4.8: Display of triggered transitions in omposite simulations

71

72

Chapter 6

Test Suite Extension

The IOA toolkit ontains a omprehensive test suite for regression testing purposes. The test suite

ontains tests for every tool in the kit. For our purposes, we are most interested in the heker

and the sim tests that hek the behavior of the IOA parser and the simulator respetively. The

test suite onsists of about one hundred test ases eah designed to examine spei� funtions of

the toolkit. The following setions deal with the test ases added to hek the funtionality of the

tools for parsing IOA spei�ations of omposite automata, the simulation of these automata, and

with a parameter added to enable the automation of suh tests. Beause of the extra omplexity

involved in simulating omposite automata with parameterized omponents, we separate the tests

into those that do hek suh simulations, and those that do not.

6.1 SIMAUTOMATON Parameter

The test suite allows the user to run all tests on all of the test ases at one. The user also has

the option to run a partiular test on all of the test ases at one. The Makefile in the diretory

of eah test ase ontains parameters that allow the test ase to be ustomized. For example, the

SIMSTEPS parameter spei�es the number of steps that the test simulation should be run for and

the SIMDEBUG parameter allows the user to speify the random seed to be used for the simulation.

Before the introdution of omposite automata simulations, eah IOA �le in the test suite on-

tained the de�nition of only one automaton. The possibility of omposite simulations introdues

the situation where an IOA �le might ontain more than one automaton de�nition. At the sim-

ulation ommand line, the simulator must then be provided with the name of the automaton to

73

simulate. To allow for the automated testing of omposite automata simulations, the Makefile

of eah test ase now ontains a SIMAUTOMATON parameter. When provided, this parameter

spei�es the name of the automaton to be simulated. Note that the introdution of this parameter

does not require the modi�ation of all existing Makefile's beause when this parameter is not

spei�ed, the simulator assumes that there is only one automaton in the IOA �le and simulates it.

6.2 Non-Parameterized Components

The test ases desribed in this setion involve omposite automata with non-parameterized om-

ponents. They test the simulator's behavior when using both the omponent shedule blok reuse

and omposite shedule blok strategies to resolve nondeterminism. Many of the senarios heked

in these tests also apply to the simulations of omposite automata with parameterized omponents.

Setion 6.3 desribes the test ases for suh simulations. Those tests build on the ones desribed

in this setion by onentrating on issues partiular to simulations of omposite automata with

parameterized omponents.

6.2.1 Testing Reuse of NDR Bloks

The following tests hek the behavior of the simulation of omposite automata whih do not ontain

a omposite shedule blok and therefore use the NDR bloks of the omponents to resolve non-

determinism. We �rst must test that if a omponent name pre�x is spei�ed in a NDR blok of a

primitive automaton, the IOA heker displays an error message. The following is a list of points to

be heked on the simulator side. Note that the �rst �ve ases are independent of nondeterminism

resolution strategy and thus also apply to the tests in Setion 6.2.2.

1. All input ations �, whose where lause is satis�ed by the atual parameters, are exeuted

in the same step that output ation � of some other omponent is exeuted.

2. No input ations other than �, whose where lause is satis�ed by the atual parameters, are

exeuted in the same step that output ation � of some other omponent is exeuted.

3. Corret behavior of the above ases for ations with and without atual parameters.

4. Component invariants are veri�ed orretly.

5. Composite invariants are ver�ed orretly.

74

6. Input ation � that is sheduled to be �red by its omponent's NDR blok, but may also be

triggered by the exeution of output ation � of some other omponent, does not get exeuted

when its NDR blok attempts to �re it.

7. Component NDR bloks that are terminating/non-terminating behave orretly.

8. Component NDR bloks that at some point beome in�nitely looping are orretly disrupted

by the NDR max steps parameter.

9. High-level nondeterminism resolution strategies - uniform, random, and weighted all behave

as expeted.

The following is a list of newly reated test ases that have been added to the test suite. If left

unspei�ed, the high-level nondeterminism resolution strategy is uniform.

� ComposedBank01 test ase. This test ase orresponds to the automaton disussed in Se-

tion 3.1.2. The omposite automaton ontains a bank omponent and an environment ompo-

nent. This test is similar to the Banking01 test ase, exept here we have a diret simulation

of a omposite automaton, while there the omposite banking automaton is reated manually.

The SIMAUTOMATON parameter for this test ase is set to EnvBank01, the name of the

omposite automaton. The random seed, rseed, value is set to 10 just as in the Banking01

test ase. This test heks points 1 and 7 above.

� PushPullAut01 test ase. The two omponents of the omposite automaton PushPullAut are

PushAut and PullAut. Their respetive input/output ations are onneted to eah other.

The pre-onditions on the output ations are suh that they require the two omponents to

�re their output ations alternatively. The omponent PushAut, also has an input ation

that is onneted to PullAut. The SIMAUTOMATON parameter for this test ase is set to

PushPullAut. This test heks points 3, 5, 7, and 8.

� PushPullAut02 test ase. Here the omposite automaton, PushPullAut ontains three om-

ponents. The output ation of PushAut is onneted to input ations of both PullAut and

ExtraAut. The output ation of PullAut is only onneted to an input ation of PushAut.

The omponent ExtraAut ontains two output ations that do not trigger any input ations.

The SIMUATOMATON parameter for this test ase is set to PushPullAut. This test heks

points 2, 4, 5, 8, and 9.

75

There is a diÆulty involved with automated testing of the random and weighted high-level

nondeterminism resolution strategies. Beause the omponents are seleted based on a random

number piked by the Java random number generator, there is no way to make two onseutive

simulations produe the same output. Thus although these strategies have been tested, there are

no test ases in the automated test suite that hek the simulator's behavior under these high-level

nondeterminism resolution strategies.

6.2.2 Testing NDR Bloks for Composite Automata

The following test heks the behavior of the simulation of a omposite automaton whih ontains

a omposite shedule blok. We must �rst hek that the IOA parser handles suh automata

orretly. The following is a list of ases to be veri�ed on the IOA parser side.

1. Composite shedule bloks are aepted.

2. Component name pre�xes in omposite �re invoations are aepted.

3. Only appropriate omponent name pre�xes in omposite �re invoations are aepted (Se-

manti Chek).

4. Component name pre�xes are required in omposite �re invoations.

5. Ations invalid for the spei�ed omponent in a omposite �re invoation are disovered and

reported.

As mentioned in Setion 6.2.1, the �rst �ve simulator test points listed there also apply to

testing omposite automata with their own shedule bloks.

� BankCompositeShedule01 test ase. This test ase veri�es the simulation of a omposite

automaton with its own shedule blok. This test ase orresponds to the automaton EnvBank

disussed in Setion 3.1.2. The SIMUATOMATON parameter is set to BankComposed. This

test ase heks all of the neessary ases for simulations of omposite automata with their

own NDR blok.

6.3 Parameterized Components

Now that we have tested the simulator's ability to handle omposite automata with non-parameterized

omponents we move on to expanding the test suite to hek the more omplex ase of omposite

76

automata with parameterized omponents. Simulations of omposite automata with parameter-

ized omponents that use the omponent shedule blok reuse strategy to resolve nondeterminism,

involve the opying and traking of multiple opies of the same shedule blok. To validate the

simulator's behavior in suh ases we one again partition this setion based on nondeterminism

resolution strategy. Finally, sine in the ase of parameterized omponents, a omposite shedule

blok may have a with blok, we separate the omposite shedule blok nondeterminism resolution

strategy into two ases, one that does not ontain a with, and one that does.

6.3.1 Testing Reuse of NDR Bloks for Parameterized Components

The following tests hek the behavior of the simulation of a omposite automaton with parameter-

ized omponents and no shedule blok. They are based on automaton Sys from Setion 3.2.1. They

test the simulator's ability to handle omponents based on the same automaton and to maintain

their independent states as they diverge during a simulation.

� ProChan01 test ase. This is the most simple of the test ases. It involves only one ompo-

nent based on the Channel automaton and one omponent based on theProess automaton.

This test veri�es the parsing and simulation of a omposite automaton whose parameterized

omponents possess their own NDR bloks. The test ensures the simulator's ability to make

independent opies of omponents based on their base automaton. It ontains omponent

invariants as well as omposite ones. Further, it veri�es the simulator's ability to trak these

opies as their state diverges. The omponents ontain transition and ation where lauses

that are always satis�ed. The orret interation of the two omponents depends on the

simulator's orret handling of onstant parameters.

� ProChan04 test ase. This test ase builds on the previous one by adding two more ompo-

nents based on eah of the base automata. This test validates the simulator's ability to opy

omponents and their respetive NDR bloks. In addition it tests omponent shedule bloks

with diverging states and e�et lauses with no program.

� IGProRelialbleChannel02 test ase. The omposite automaton in this ase represents a

reliable FIFO ommuniation. The omposite automaton here has two omponents based on

one automaton and six based on another. The test ase extends the above two by heking

the ability of the simulator to handle ases where one omponent ommuniates with more

77

than one other omponent based on the same base automaton.

6.3.2 Testing Composite Shedule Bloks for Parameterized Components

The following test heks the behavior of the simulation of a omposite automaton with param-

eterized omponents, a shedule blok, but no with blok. It is based on automaton Sys from

Setion 3.2.2. In addition to testing the riteria of the above setion, this test also heks the sim-

ulator's ability to handle omponent variable aess and �re invoations in the omposite shedule

blok.

� ProChan02 test ase. The omposite automaton in this ase ontains two omponents based

on eah of the base automata. The shedule blok of the omposite automaton aesses

variables and invokes transitions of both omponents. Further, the test veri�es the simulator's

handling of onstant formals in ation signatures, an input ation triggering the orret output

ation based on onstant parameters, and a where lause in a transition that is violated and

thus halts the simulation. It ontains omponent invariants as well as omposite ones.

6.3.3 Testing With Bloks

The following tests hek the behavior of the simulation of a omposite automaton with parame-

terized omponents, a shedule blok, and a with blok. They are based on automaton Sys from

Setion 3.3.3. In addition to testing the riteria of the above setions, these tests also hek the

simulator's ability to handle omponents delared in the with blok.

� ProChan03 test ase. The omposite automaton in this ase ontains �ve omponents based

on the Proess automaton and four omponents based on the Channel automaton. This test

ase veri�es the following points:

{ An input ation where lause that auses an ation that otherwise would have been

triggered by an output ation of another omponent, not to be,

{ Constant parameters, and orret output ations being triggered due to the onstant

parameters,

{ A preondition that fails and leads to the halting of the simulation,

{ Component invariants, and

78

{ Composite invariants.

� IGProRelialbleChannel01 test ase. This automaton represents a reliable FIFO ommu-

niation. In addition to testing the above points, this test ase also veri�es, a for loop in an

effets lause and variable aess via handle names in the omposite shedule blok.

� WithSemantis01 test ase. This test ase veri�es that all of the semanti heks for a with

blok in a omposite shedule blok disover the appropriate errors when those errors are

present. These semanti heks are listed in Setion 4.2.

79

80

Chapter 7

Appliation to Workow

It is possible to use formal modeling to represent a wide variety of appliations. The bene�ts of

doing this are a more strutured design, apability for invariant and theorem heking, and the

ability to debug the system at design time.

The simulation of a single automaton allows for invariant heking. The simulation of paired

automata allows for simulation relation heking. The diret simulation of omposite automata,

in addition to enhaning the formal modeling aspet of the simulator, allows for omprehensive

debugging of distributed systems and appliations. These funtions together provide a useful tool

for design time debugging of omplex systems. One suh example is workow appliations.

7.1 Workow Desription

Workow appliations expliitly model proesses, most often but not limited to business proesses.

A workow system implements and automates a proess by modeling the ow of its states. \A

workow is simply a set of tasks that o-operate to implement a business proess" [OW98℄. Work-

ows abstrat the user from a partiular state by establishing an API to that state. Beause of this,

systems with distributed soures of information are well modeled by workow systems [Ci98℄. The

following example from [MSK

+

95℄ illustrates a workow model of a part of a health are system.

Figure 7.1.1 models the ow of treating a patient at a hospital. Figure 7.1.2 models the diagnosis

sub ow. When the Diagnosis blok in Figure 7.1.1 is reahed, the Patient workow waits for

a response from the Diagnosis sub workow before deiding whih way to proeed. The possible

return values of the End blok of the Diagnosis proess are \Inpatient" and \Outpatient". The

81

Start
EndDiagnosis

Out-
Patient

Case
Closed

In-
Patient

Diagnosis:
Out-Patient

Diagnosis:
In-Patient

Daily Exam:
Better

Daily Exam:
Passed

Register
Patient

Daily Exam:
Worse

Daily Exam:
Passed

Figure 7.1.1: Workow shema of a patient registration proess

Start Choose
Exam
Type

Perform
X-Ray

Perform
Biopsy

Analyze
Results

End:
Out P

End:
In P

Done
Examining

Output:
In Patient

Output:
Out Patient

Figure 7.1.2: Workow shema of a patient diagnosis proess

Diagnosis shema leaves the mehanism for hoosing what medial test (Biopsy, X-Ray) will be

performed ambiguous. The shema simply delares that one the Choose Exam Type diamond is

reahed, the workow will wait for input letting it know what examination was hosen. Later we

will see how the automaton modeling the hospital provides this information.

While the Patient workow is waiting for a response from the Diagnosis workow, it may still

ommuniate with other workows of the systems. For example, another workow may notify the

Patient workow of new information regarding the patient. The only ause of nondeterminism in

this model is input from the system's environment, most likely from physiians. For a given set of

input values from the physiians, the workow is deterministi.

Figure 7.1.4 displays an automaton that models the Diagnosis workow proess from Fig-

ure 7.1.2. Figure 7.1.5 displays an automaton that models the medial ativity at a hospital.

This automaton provides an interfae for the Diagnosis automaton to request that ertain tests

be performed on the patient being diagnosed. The Hospital automaton then ommuniates the

results of the test bak to the Diagnosis automaton. Other funtions of the Hospital automaton are

82

Diagnosis

State Variables:

patientInfo,
examDone,
examReady,
nextExam,
res

Hospital

State Variables:

patientInfo,
nextExam

AnalyzeResults

Communication
with other
modules of
the Hospital
system

ChooseExaminationType(patientInfo)

ExaminationType(et)

XrayRequest(patientInfo)

XrayResult(result)

BiopsyRequest(patientInfo)

BiopsyResult(result)Result(result)

DiagnoseStart(patientInfo)

Figure 7.1.3: Interation between Hospital and Diagnosis automata

not expliitly modeled here. They would inlude other medial proesses suh as surgery, physial

therapy, blood transfusions, et.

By omposing the Diagnosis and Hospital automata, we an form a new omposite automaton.

Figure 7.1.3 shows the interation between the two omponents of this automaton. We an now

simulate this omposite automaton and observe the full diagnosis yle. Further, we an model

other proesses that use up the Hospital's resoures as automata. By omposing all of these

proess modeling automata, inluding the Diagnosis automaton, with the Hospital automaton, we

an reate a omplex system automaton. By simulating this system automaton we an observe the

work load plaed on the Hospital by various modules of the system. We an thus see that automata

simulation of worklfow proesses is useful during the design time of the workow proesses. As it

an reveal unintended and erroneous behavior in the workow model as well as be used for resoure

alloation modeling.

7.2 Design Time Debugging of Workow Systems

\Simulation an be used to study and re�ne workow spei�ations. Beause the workow spe-

i�ation aptures the implementation aspets of a business proess model, their simulation and

analysis an provide valuable feedbak to the business proess model evaluation [MSK

+

95℄." Given

an aurate model of the environment of the system, this feedbak might onsist of estimates of

resoure alloation. In the above example, a simulation might reveal the neessity for more hospital

resoures assigned to the support of the Diagnosis proess. Further, a simulation of a ompliated

workow shema an be bene�ial in that it an expose a variety of properties of the workow

shema. [Ci98℄ These properties an be disovered through a simulation, possibly of a omposite

83

Automaton Diagnosis

type PatInfo = tuple of name: String, biopsy, xRay: Bool, sikLevel: Int;

type ExamType = enumeration of X-Ray, Biopsy, Done, None

type ResType = enumeration of InPatient, OutPatient

signature

input DiagnoseStart(pf:PatientInfo), BiopsyResult(result:Bool),

XRayResult(result:Bool), ExaminationType(et:ExamType)

output BiopsyRequest(pf:PatientInfo), XRayRequest(pf:PatientInfo),

ChooseExamType(pf:PatientInfo), Result(result:ResType)

internal AnalyzeResults

states patientInfo : PatInfo :=null, examDone : Bool:=false,

examReady : Bool:=false, nextExam : ExamType :=None,

res : ResType :=null

trans i t ions

input DiagnoseStart(pf)

e f f patientInfo :=pf; examReady=true

input BiopsyResult(result)

e f f patientInfo.biopsy=result ; examReady=true

input XrayResult(result)

e f f patientInfo.xRay = result ; examReady = true

input ExaminationType(et)

e f f nextExam:=et

ouput BiopsyRequest(pf)

pre nextExam=Biopsy ^ examDone=false

ouput XrayRequest(pf)

pre nextExam=Xray ^ examDone=false

output ChooseExamType(pf)

pre examReady = true e f f examReady = false

output Result(result)

pre examDone= true ^ result=res

internal AnalyzeResultIn pre NextExam=Done

e f f i f (patienfInfo.xRay=true ^ patientInfo.biopsy=true) then

res=InPatient e l se res=OutPatient f i ;

Figure 7.1.4: IOA spei�ation of Diagnosis automaton

automaton, along with invariant heking. These properties are similar to some of those desribed

in the I/O automata hapter of [Lyn96℄.

� reahability - an ertain states be reahed,

� safety - the workow/state-mahine does not terminate in an unaeptable state,

� deadlok - is it possible to reah a state where none of the prerequisites for its ations will

ever be satis�ed,

� bottleneks - do ertain states take up signi�antly larger amounts of times than the rest. The

veri�ation of this property would require the addition of the notion of time to the simulator.

84

Automaton Hospital

type PatInfo = tuple of name: String, biopsy, xRay: Bool, sikLevel: Int;

type ExamType = enumeration of X-Ray, Biopsy, Done, None

signature

input BiopsyRequest(pf:PatientInfo), XRayRequest(pf:PatientInfo),

ChooseExamType(pf:PatientInfo)

output BiopsyResult(result:Bool), XRayResult(result:Bool),

ExaminationType(et:ExamType)

states patientInfo : PatInfo :=null, nextExam : ExamType :=None

trans i t ions

output BiopsyResult(result) pre nextExam=Biopsy

e f f hosen :=hoose x: Int where x>0 and x<11

i f (hosen<4) then result=true e l se result=false

output XrayResult(result) pre nextExam=X-Ray

e f f hosen :=hoose x: Int where x>0 and x<11

i f (hosen<6) then result=true e l se result=false f i

output ExaminationType(et) pre nextExam=Done

e f f i f (PatInfo.sikLevel>5) then et=Done

e l s e i f (PatInfo.sikLevel>8) then et=X-Ray

e l s e i f (PatInfo.sikLevel>11) then et=Biopsy f i ;

input BiopsyRequest(pf) e f f patientInfo=pf; nextExam=Biopsy

input XrayRequest(pf) e f f patientInfo=X-Ray; nextExam=Biopsy

input ChooseExamType(pf) e f f patientInfo=pf; nextExam=Done

Figure 7.1.5: IOA spei�ation of Hospital automaton

The majority of workow systems are implemented through the use of databases, XML shemas,

and PLSQL proedures. This teh stak does not lend itself as well to extensive simulation and

debugging, as does the implementation of workow via automata. There are two possible ways to

improve the simulation and debugging apabilities of urrent workow systems. One, we an enable

a urrent workow pakage to translate its representation of a shema to an IOA spei�ation for

the purpose of debugging and invariant heking. Two, implement the entire workow software

with IOA automata.

The bene�t of the �rst option is that it does not require any modi�ations to be made to the

partiular implementation of the workow system. Its only diÆulty is the design of the tool that

will onvert the workow shema to an IOA spei�ation. Option two avoids the need for suh a

tool, but it is problemati for two reasons. Some workow instanes might have long life yles and

will require a mode of permanent storage suh as a database. Also, option two requires a omplete

overhaul of the urrent workow implementation.

I believe that option one is superior to option two beause the shema to IOA translator tool

should not be partiularly diÆult to implement. Further, the partiular workow implementation

itself may be left unhanged. Also, in the absene of the shema to IOA translator tool, it is

85

plausible that workow designers may �rst model their systems with IOA, debug them at design

time using the simulator, and then reate the atual shema based on the modi�ed IOA models

that resulted after thorough debugging/simulating.

86

Chapter 8

Relation to Existing Features and

Future Work

In this hapter we �rst disuss how the extension of the simulator to support omposite automata

has e�eted other features of the simulator. We then give suggestions for future work. The sugges-

tions apply to both primitive and omposite simulations.

8.1 Invariant Cheking

In Setion 1.1.1 we mentioned that the simulator supports an invariant heking feature. The user

may enter a boolean prediate on the state variables of the automaton being simulated. This pred-

iate is tested after every simulation step, and an appropriate error message is displayed whenever

the prediate evaluates to false. During a omposite simulation, the simulator heks the invariants

of all omponents of the omposite automaton. The simulator also has the apability of hek-

ing invariants written spei�ally for the omposite automaton. The syntax for referening state

variables in an invariant of a omposite automaton is the following:

CompositeAutomatonName.ComponentName.StateVariableName

Further, the prediates of invariants of primitive automata, may only refer to variables of that

one automaton. In the ase of invariants of omposite automata, the prediate may refer to any

of the state variables of any of the omponents. Thus an invariant relating the state variables of

several omponents is legal. For example, onsider the following two invariants of automaton Sys

desribed in Setion 3.2.2:

87

invariant nonEmpty of Sys:

size(Sys.C1.ontents)=0

invariant C1greaterC2 of Sys:

size(Sys.C1.ontents)>size(Sys.C2.ontents)

Invariant nonEmpty is a prediate on the state variables of omponent C1 only. Invariant

C1greaterC2 relates the state variables of omponent C1 to omponent C2. Referenes to ompo-

nent variables in invariant prediates of omposite automata that ontain a with blok, parallel

the referenes to these variables in the shedule blok of suh an automaton - the handle name is

used as the omponent name. For example, the following is a possible invariant of automaton Sys

desribed in Setion 3.3.3 (Pro1=P[1℄ and Pro2=P[2℄ are delarations in the with blok of that

automaton):

invariant toSendEquals of Sys:

Sys.Pro1.toSend=Sys.Pro2.toSend

8.2 Paired Simulation of Composite Automata

The extension of the paired simulator to support omposite automata has not been implemented,

and is a future work. Consider the ase where a omplex spei�ation is implemented via an

algorithm desribed as a omposite automaton. We now want to verify the orretness of the

algorithm by writing a simulation relation from it to the spei�ation. To evaluate this relation using

the paired simulator, we need to be able to input a omposite automaton as the implementation

automaton. The following hanges need to be made to allow suh input to the paired simulator.

Currently the semanti heks on the IOA parser side require both the spei�ation and the

implementation automata to be primitive automata. These heks need to be relaxed. The rest

of the ode that runs the semanti heks asts the spei�ation and implementation automata as

primitive automata Java objets. This asting needs to be hanged to allow omposite automata.

On the simulator side, the paired shell and the paired simulator need to be updated to aount for

the possibility of omposite automata.

88

8.3 NDR Relinquish Control Command

In Setion 2.1.3 we disussed the possibility of a omponent shedule blok ausing an in�nite loop

during a simulation of a omposite automaton that reuses omponent shedule bloks to resolve

nondeterminism. We proposed two solutions to this problem and desribed the implemented one, a

limit on the maximum number of steps that a shedule blok may run without returning an ation

to �re. Another alternative to solving the looping pitfall is the introdution of a new keyword

to the syntax of shedule bloks. When a shedule blok would enounter this keyword, it would

relinquish ontrol bak to the high-level sheduling poliy in a omposite simulation, and halt the

simulation in the primitive ase.

8.4 User Interative Nondeterminism Resolution

As an alternative method to NDR programs, this extension would allow the user to resolve nonde-

terminism as it ours during the simulation. Prior to beginning the simulation the user will have

to speify the hoie of this option as opposed to the use of an NDR program. Then at runtime

whenever the simulation is halted by either impliit or expliit nondeterminism, the user will be

prompted to hoose whih branh the simulation should take. The user will also have the ability

to inform the simulator that similar deisions should be made in the future without prompting the

user again.

In the ase of impliit nondeterminism, the user will be presented with a list of ations with

satis�ed preonditions, if possible. The user will then hoose one of these ations. To aid the

deision proess, it will be useful to present the user with ertain heuristis assoiated with eah

valid hoie. The heuristi may be a partial snapshot of the resulting global state given that the

partiular ation is taken. It ould also be an estimate, either time or step amount, of simulation

duration remaining until a ertain state is reahed, given that the partiular branh is hosen.

In the ase of expliit nondeterminism, the user will be presented with the hoose statement

that is responsible for halting the simulation. The user will then enter a value in the appropriate

range for the variable in the hoose statement. One again, some heuristi of the possible hoies

should be presented to the user. In the ase where this is not pratial (displaying heuristis for

every integer between 1 and 100 is not pratial for eff a := hoose x: Int where x>0 and

x<101), heuristis an be displayed for a subset of all valid hoies.

89

8.5 Debugging Tool

The ability of the simulator to print out trae logs and state snapshots is naturally extended to

the reation of a more omprehensive debugging tool. This tool would omprise of features that

are both ommon to most debugging appliations and those that are more IOA spei�. They will

inlude runtime user interative nondeterminism resolution, desribed in Setion 8.4, step-through

exeution and breakpoints, and interative exeution logs.

One this debugger tool is implemented the user will have a spetrum of tools that will enable

him/her to explore in detail many possible exeutions of the system being modeled. The user

will also be able to onveniently modify the system until he/she is satis�ed with the observed

simulations. This will allow the user to foresee problems in the system at design time and will aid

the user in augmenting and improving the system at design time.

8.5.1 Step Through Exeution and Breakpoints

This feature would provide the user with more ontrol over the ow of the simulation. Both notions,

stepping through a simulation and setting up breakpoints, are ommon to every standard debugging

tool. Instead of only being able to observe the omplete trae log after an exeution has ompleted,

the step through feature will enable the user to observe the state of the simulation as the trae log

is being reated. More spei�ally, after eah addition to the trae log, the simulation will pause

and present the user with the trae log up to this point and the global state of the system. The

simulation will only resume one the user signals that he/she has ompleted analyzing the urrent

situation and is ready for the simulation to ontinue.

Breakpoints will allow the user to hoose, prior to the simulation, either one or many ations of

the automaton being simulated. During the simulation whenever one of these ations is about to

be �red, the simulation will pause and present the user with the trae log up to this point and the

global state of the system. One again, the simulation will only ontinue one the user signals that

he/she is ready. Thus breakpoints will allow for a step through simulation that pauses at spei�ed

points of the simulation as opposed to pausing at every step of the simulation, as is the ase with

a standard step through exeution.

To enhane step through simulation, the user will have the ability to selet what variables are

displayed as part of the state. Thus allowing him/her to onentrate on spei� variables instead

of having to look through the entire global state of the system.

90

8.5.2 Interative Exeution Logs

One the features of step through exeution, Setion 8.5.1, and user interative nondeterminism

resolution, Setion 8.4 are implemented, it would be useful to enhane trae logs to allow for

simulation navigation. The user will be able to hoose a point in a given trae log and return the

simulation to this partiular point. The simulation will then ontinue from this point.

This feature is partiularly useful when oupled with user interative nondeterminism resolution.

It allows the user to return to a point in the simulation prior to some nondeterminism resolution

deision. He/she an then make a di�erent deision and follow the simulation to see how the

branhes di�er. The user an repeat this until he/she has explored all of the desired branhes of

nondeterminism.

8.6 Graphial Improvements

The extension of the simulator's user interfae from a text based one to a more graphial one

would be a useful improvement. Combined with the features desribed above, a graphial interfae

would provide an engaging debugging environment. Via oloring, it would allow for omprehensive

representations of the omponents of a omposite automaton. Suggestions for the implementation

of a graphial user interfae to the simulator are mentioned in [Che98℄.

91

92

Appendix A

IOA Parser File Modi�ations

This hapter desribes the hanges made to the ode of the IOA parser. The setions are partitioned

by diretory and a distintion is made between the �les that were modi�ed and the �les that have

been reated.

A.1 Modi�ed Files - parser

� omponentNode - added two methods to modify this objet after reation as is neessary

for reating omponents delared in the with blok. Methods : setFormals and hangeName.

- 1.7

� ompositionNode - added getAutNameByCompName and getComponentByNamemethods and

hashtables to support them. The former retrieves the automaton name of the omponent

with the spei�ed omponent tag. The latter retrieves the omponentNode objet for the

omponent with the spei�ed omponent tag. Both are used in hekComposition. Added

shedule objet to the makeAbstrat method. Overloaded set method to allow for a shed-

ule parameter. Added a detSheduleNode �eld to store the shedule for this omposite

automaton. Passes the sheduleNode to the omposition upon makeAbstrat, depends on

automaton/omposition(1.26) for the latest make method. - 1.9

� detFireNode - the �re statement might now have a omponent name assoiated with it.

Depends on automaton/ndrfire(1.13). - 1.13

� detSheduleNode - added an withNode �eld to store a with blok that may be assoi-

ated with this shedule node. Overloaded set methods to allow for the passing of the with

blok. Added the with blok to the makeAbstrat method. Depends on withNode(1.1),

automaton/shedule(1.9), automaton/delaration(1.1). - 1.15

� grammar.sr - updated prodution rules for ompositions to allow shedule bloks. Com-

posite shdule bloks di�er from primitive ones in that their invoation alls must have a

omponent name pre�x. Introdued prodution rules for the new notion of with bloks and

delarations for omposite shedule bloks. New WITHCOMP keyword. Depends on latest

version of ompositionNode(1.8), detFireNode(1.13), detSheduleNode(1.15),

ompDetFireNode(1.1), withNode(1.1), and delarationNode(1.1). - 1.23

93

� invoationNode - added ltoken �eld to store omponent name that may be assoiated with

this invoation. Added aessor for this �eld and made sure it opies over when thi sobjet

is opied. - 1.2

� ioaTokenizer - adde the WITHCOMP = \with" keyword. - 1.10

� Make�le - added three new �les : withNode.pj, delarationNode.pj, and

ompDetFireNode.pj. - 1.26

A.2 New Files - parser

� ompDetFireNode - extends detFireNode and provides analogous set methods that al-

low for the passing of a omponent name assoiated with this �re statement. Depends on

invoationNode(1.2). - 1.1

� delarationNode - node representing a single delaration line in a omposite shedule blok

with blok. Fields inlude: the omponent tag name, the handle name, and the atuals for

this omponent. Depends on automaton/delaration(1.1). - 1.1

� withNode - node representing the entire with blok of a omposite shedule blok. Consists

of an array of delarationNode objets . getCompName method retrieves the omponent

tag of the omponent with the spei�ed handle name. Method used in hekComposition.

Depends on delarationNode(1.1), automaton/delaration(1.1). - 1.1

A.3 Modi�ed Files - automaton

� omponent - updated toSValue method to inlude formals for the omponent tag and the

name of the base automaton that this omponent is based on. - 1.19

� omposition updated the make method to take in a shedule parameter. Added the on-

verison of the shedule to an SValue in the thisKindOfAutomatonToSValue method. - 1.26

� formal Added the keyword CONST (ILParser.KEYW CONST) at the head of the SList

of the IL representation of an ation formal. Previously, there was no way to distinguish a

onstant parameter from a non onstant one. - 1.8

� Make�le added new delaration.java �le. - 1.19

� ndr�re added �eld to store omponent name in the ase of this �re statement ouring in a

omposite shedule blok. Added the omponent name to the toSValue method. - 1.13

� shedule added delarations �eld to store the delarations in a with blok that may be

assoiated with the shedule in the omposite ase. Overloaded onstrutors to inlude this

�eld. Added this �eld to the toSValue method. Depends on delaration(1.1). - 1.9

A.4 New Files - automaton

� delaration represents an abstrat delaration blok in a with blok of a shedule blok of

a omposite automaton. FIX: print methods. - 1.1

94

A.5 Modi�ed �les - heker

� Moved hek methods from hekBasiAutomaton to hekAutomaton, hanged the aessi-

bility of these methods to proteted instead of private. This allows hekComposition to

inherent the hek methods it now needs to hek the omposite shedule blok.

� hekComposition - hekDetFire overloaded to aount for omponent name pre�x in

�re invoations of omposite shedule bloks. Added hekWithBlok method that performs

semanti heks on the with blok; builds the ompNodes array, whih is later used by

extratStates to make variables out of the omponents delared in the with blok; extends

the symbol map to make the sort of the omponents delared in thewith blok to be aggregate

over the state variables of the automaton that its based on. The extratStates method has been

extended to make the omponents delared in the with blok in addition to those delared

in the omponents setion, into variables. The hekCompNDRStates alls the superlass

hekNDRStates method and also makes sure that state variable names do not lash with the

handle names established in the with blok. Depends on hekAutomaton, all of the parser

modi�ations. - 1.22

95

96

Appendix B

Simulator File Modi�ations

This hapter desribes the hanges made to the ode of the simulator. The setions are partitioned

by diretory and a distintion is made between the �les that were modi�ed and the �les that have

been reated.

B.1 Modi�ed Files

� AtualAutomaton abstrat lass - now implements AtualAutInterfae and supports all

of its methods. - 1.12

� Atual Transition - Now knows whether it is a onneeted transition or initial one. Con-

tains string bu�er for onneted output. AnnounerExe only registers initial transitions

whih in turn output all of the ones onneted to them. - 1.19

� DetAtualAutomaton - New isSimulatable variable is used in omposite simulations to

let the omposite automaton know that this automaton will never again have any enabled

transitions. - 1.4

� ExeControl allow ExeControls to be made for automata other than the one atually

making it. (During a omposite simulation, the omposite automaton needs to reate an

NDR shedule for one of its omponents). Overloaded exeute method with one that takes

an int parameter. If the exeute loop is not broken after this number of steps, an exeption

is thrown. - 1.13

� FireProdut - implement the new interfae. Code to support omposite shedule bloks. -

1.2

� NDRAtualAutomaton reation of shedule ontrol objet needs to know whih automa-

ton it is to simulate. nextTransition method now alls the exeution of the NDR program

with a max-steps parameter. If the NDR program does not return the next transition before

these steps have been exhausted, the NDR program stops looking for a transition. - 1.4

� SimAutomaton Interfae - added method to reate a new AtualAutomaton from this basi

one. - 1.2

� SimPrimitiveAutomaton - now returns an AtualAutInterfae instead of

97

AtualAutomaton, allowing the abstration of primitive versus omposite atuomaton for sim-

ulation. Is now apable of reating an independent opy of itself used when multiple ompo-

nents of a omposition are based on the same automaton. Depends on interfae Copyable(1.1)

and the lasses that implement it. - 1.14

� SimILFatory - added method for reation of newCompositeAutomaton. Overloaded new-

State method to allow a variable to know whih automaton it belongs to. This allows the

automaton name to be displayed in front of its variables. - 1.17

� SimNDRFire - modi�ations to allow omposite shedule bloks. - 1.6

� SimState - Now knows its owner automaton's name, for display purposes. - 1.2

� Simulator - depends on AtualCompositeAutomaton.java(1.1) and updates to aount for

the new AtualAutInterfae(1.1) interfae. Also depends on SimPrimitiveAutomaton(1.12).

- 1.31

1. Interfae Updates

2. doStep modi�ed to handle onneted ations as well as initially �red ones

3. Initial ations are aware of what needs to be outputed for their onneted ones

4. Overloaded newControl when a omposite might need a ontrol thats not for itself

5. Added stati MAX NDR STATES variable whih is defaulted to 500 and an be

hanged via a ommand line argument. This variable determines the maximum number

of steps a partiular all to an NDR program is exeuted.

� shell/SimShell - Interfae hanges. Lets StepListener know that the simulation is a om-

posite one. Introdued new ommand line parameter, ndrSteps. This parameter spei�es

the maximum number of steps to run a partiular all to an NDR program. This variable is

statially stored in ioa.simulator.Simulator and is defaulted to 500. - 1.64

� shell/StepListener - Output automaton name next to state variable when the simulation

is a omposite one. Output all of the onneted ations when handling an initial ation that

has ations onneted to it. - 1.19

B.2 New Files - Simulator

� AtualAutInterfae Interfae - new interfae on the atual side to abstrat away knowledge

of omposite vs primitive automaton. Can ask it whether the automaton is a omposite one

or not. - 1.1

� AtualCompositeAutomaton - 1.2

1. Dependeny - SimCompositeAutmaton.

2. NextTransition method looks through omponents on searh of next ation to �re. Two

possible non determinism resolution strategies. One - use the bloks of the omponents.

Two - use an NDR blok spei�ally de�ned for the omposite automaton.

3. �reConneted method looks for input transitions that might possibly be onneted to

the reently �red output transition. Exeutes all suh transitions.

98

4. Lets onneted ations know that they are onneted. Adds the output produed by

onneted ations to the ation that initially triggered them.

5. omponentSeletionPoliy variable determines the order in whih omponent automata

are tested for enabled transitions. Random and Uniform poliies have been implemented.

A Weighted poliy is being implemented. Currently, the uniform poliy is the default

option.

6. To do: implement toSValue.

� Copyable Interfae - objets that implement this interfae are apable of opying their

reprsentations. This is used in ompositions where multiple omponents are based on the

same automaton. Classes that implement this interfae:

{ SimAppliationTerm 1.13

{ SimExistsTerm 1.4

{ SimForAllTerm 1.5

{ SimLiteralTerm 1.4

{ SimVarRefTerm 1.7

{ SimAssignment 1.7

{ SimChoie 1.11

{ SimConditional 1.4

{ SimPairedFire 1.7

{ SimNDRFire 1.7

{ SimNDRWhile 1.6

{ SimNDRYield 1.4

{ SimNOP 1.5

� SimCompositeAutomaton parallel of SimPrimitiveAutomaton. - 1.1

� StepsExeededProdut thrown when a partiular NDR program has been running for

more steps than the alloted number. Used for ontrol relinquishing between omponent NDR

programs in omposite simlations. - 1.1

B.3 Modi�ed Files - il

� AutComponent - made �elds and aessor methods. Now extends BasiILElement. Added

�elds to store the atuals of a omponent delared in a with blok and the formals of the

omponent tag orresponding to this omponent. Its onstrutor has been overloaded to allow

the passing of these �elds. To do: �x toSValue method. - 1.3

� BasiAtion formals are now represented as Term objets as they may be onstants. - 1.9

� BasiAtionTable Added method to allow BasiCompositeAutomaton to return ation

table. - 1.11

99

� BasiCompositeAutomaton Changes dealing with new AutComponent methods. getA-

tionTable update. - 1.6

� BasiILFatory Overloaded newState method to allow state to know whih automaton it

belongs to, for display purposes. - 1.9

� BasiState Allow state to know whih automaton it belongs to, for display purposes. Related

to SimState. - 1.7

� BasiVariable To allow StepListener to display information about a onneted ation, mod-

i�ed a method. - 1.7

� CompositeAutomaton synhronized addComponent method with the latest version of Aut-

Component. - 1.4

� ILFatory abstrat lass Added newState method to allow reation of a variable that knows

whih automaton it belongs to. This enables the output of the automaotn name in front of

the variable name. - 1.10

� ILParser - 1.43

1. added urAut variable to keep trak of the automaton urrently being parsed,

2. parseState and parseStates modi�ation to allow a state (variable) to know what au-

tomaton it belongs to,

3. parseTerm is aware of the possbility of a onstant term,

4. parseCompositeAut begins the handling of parsing a omposite shedule blok.

5. The TempComponent internal lass is ised to store the temporary representation of a

omponent when it is desribed in the omponents setion. It is later used when

NDRCompositeAutomaton parses the with blok of this omposite automaton to instan-

tiate omponents based on this temporary representation.

� HookILFatory Added newState method; implementing that of the ILFatory interfae. -

1.7

� NDRFire Modi�ation to allow omposite shedule blok and storing of the omponent

name pre�x in omposite shedule bloks. - 1.6

� NDRILFatory handles the parsing of a �re statement that may appear with a omponent

name pre�x in a omosite shedule blok. - 1.5

� PrimitiveAutomaton and BasiPrimitiveAutomaton added opy method that is used

by omposite automata that have more than omponent based on the same base automaton.

The meaningful implementation of this method is in

simulator/SimPrimitiveAutomaton and overrides the implementation in

BasiPrimitiveAutomaton. - 1.5

� Variable interfae Added setAutName and getAutName methods to allow variables to know

what automaton they belong to. - 1.4

� Files modi�ed to allow the marking of terms as onstant formals of ation signatures:

100

{ BasiAppliationTerm - 1.10

{ BasiExistsTerm - 1.5

{ BasiForAllTerm - 1.7

{ BasiLiteralTerm - 1.5

{ BasiSortRefTerm - 1.5

{ BasiVarRefTerm - 1.5

{ Term - 1.5

B.4 New Files - il

� NDRCompositeAutomaton parallel of NDRPrimitiveAutomaton. Handles the parsing of

the omposite shedule blok and the with blok that may appear there. - 1.2

B.5 Files where the only hanges involve the naming of the new

interfaes

� odegen/ig/InvoationGenerator - 1.3

� odegen/ig/InvoationListener - 1.2

� il/ILUnparser - 1.31

� simulator/daikon/DaikonListener - 1.18

� simulator/daikon/DelsPrinter - 1.18

� simulator/daikon/PairedDaikonListener - 1.6

� simulator/daikon/SplitterWriter - 1.4

� simulator/PairedFireProdut - 1.2

� simulator/PairedImplAutomaton - 1.12

� simulator/PairedSimulator - 1.6

� simulator/shell/PairedShell - 1.32

� simulator/shell/PairedSteplistener - 1.13

B.6 Test Suite

� Test/Make�le.ommon Added SIMAUTOMATON parameter for sim testing. When spe-

i�ed in a Makefile of a test ase, this parameter determines whih automaton is to be simu-

lated. This is neessary for testing of omposite simulations as the ioa �le may ontain more

than one automaton. - 1.29

101

� Test/Make�le Support for the SIMAUTOMATON parameter for sim testing. When spe-

i�ed in a Makefile of a test ase, this parameter determines whih automaton is to be

simulated. This is neessary for testing of omposite simulations as the ioa �le may ontain

more than one automaton. - 1.29

102

Appendix C

IOA Grammar

C.1 Desription

The .ioa �le that is the input to the heker gets parsed aording to the IOA grammar. This

grammar is de�ned in /Code/ioa/parser/grammar.sr. The grammar onsists of two parts, tokens

and rules. The tokens themselves are divided into two parts, terminal tokens and non terminal

tokens. The terminal tokens are the leaves of the parse tree, while the non terminal tokens are the

non-leaf nodes of the parse tree. Eah non terminal token must appear on the left side of a rule.

The grammar gets proessed by the javaCup tool. This tool reates �les, desribed in detail

below, that at as the parser for the IOA language.

C.1.1 Tokens

Terminal tokens are assoiated with keywords of the IOA language; notions that do not need

to be further broken down. A terminal token is represented by an ioa.parser.ltoken objet. It

is delared using the following syntax,

terminal ltoken tokenName

For example, puntuation marks suh as a omma and a semiolon, key words suh as automa-

ton and input, and operators suh as or and and are all terminal tokens.

Non terminal tokens are assoiated with notions that need to be further broken down. A non

terminal token is represented by a spei� sublass of the ioa.parser.Node objet. It is delared

using the following syntax,

non terminal lassName tokenName

For example, the high level notions of an IOA spe, an automaton de�nition, and a transition

de�nition are all non terminal tokens. Figure C.1.1 displays the spei�ation of automaton Fi-

bonai. After parsing, everything other than automaton Fibonai would be represented by the

non terminal token basiAutomaton. This token would further be broken down aording to the

rules desribed in Setion C.1.2.

103

automaton Fibonai

signature

internal ompute

states

a:Int := 0,

b:Int := 1,

:Int := 1,

d:Bool

trans i t ions

internal ompute

e f f a := b ;

b := ;

 := a + b; }

Figure C.1.1: Fibonai automaton

C.1.2 Rules

Rules of the IOA grammar are of the form:

non-terminal-token ::= +non-terminal-token/terminal-token method-all()

(where + denotes, one or more)

Rules de�ne the onnetion between non terminal tokens and other non terminal or terminal

tokens. The highest node in the parse tree is represented by a start token. This non terminal token

is the only one that does not appear on the right side of any rules. In our ase this happens to be the

spe token. The rule of the IOA grammar that has spe on its left hand side, de�nes the notions that

may make up a spe objet. Other rules further re�ne these notions until everything is represented

by a terminal token. For example, the following rule spei�es the notion of a basiAutomaton:

basiAutomaton ::=

SIGNATURE:l formalAtions:a states:s transitions:t

{set(l,a,s,t)} |

SIGNATURE:l formalAtions:a states:s transitions:t tasks:tk

{set(l,a,s,t,tk)} |

SIGNATURE:l formalAtions:a states:s transitions:t shedule:s

{set(l,a,s,t,s)} |

SIGNATURE:l formalAtions:a states:s transitions:t tasks:tk shedule:s

{set(l,a,s,t,tk,s)} ;

The non-terminal token basiAutomaton represents the main body of a primitive basi automa-

ton. The above rule de�nes four possible ways that the basiAutomaton may further be broken

up. The terminal token SIGNATURE, represents the IOA keyword signature and is the required

beginning in eah of the four possibilities. The other tokens are all non terminals. The �rst ase

is an automaton spei�ation without tasks and a shedule blok, the seond with tasks but no

shedule blok, the third with a shedule blok and no tasks, and �nally the fourth is an automaton

with tasks and a shedule blok.

Eah token is followed by a \:" and a temporary variable assignment. These temporary vari-

ables are used in the method alls that follow eah one of the ases. In the delaration setion of

104

the non terminals, the following line an be found:

non terminal basiAutomatonNode basiAutomaton;

This delaration of the basiAutomaton token indiates that the basi automaton notion is rep-

resented by a basiAutomatonNode objet. The methods that are spei�ed at the end of eah of

the four ases are methods of this objet. When this rule is triggered, a basiAutomatonNode

is reated and depending on whih ase was mathed, the orresponding method is alled. The

arguments to these methods are the temporary variables whose type depends on the token that

they represent. Thus in the �rst ase, set(l,a,s,t), l (SIGNATURE) is an ltoken, a (formalA-

tions) is a fatoredListNode of ationNode and Node (desribed in Setion C.1.3), s (states) is a

statesNode, and t (transitions) is a listNode of transitionNode's.

C.1.3 Typed Lists

Some of the tokens are delared to be of type ListNodeXXnameYY or

FatoredListNodeXXname

1

ZZname

2

YY. The former denotes a typed list of name objets, while

the later denotes a typed list of name

1

objets whose members are in turn lists of name

2

objets.

The typed lists are only supported by polyj and are not reognized by javaCup. Thus they are

delared with the XX, YY, and ZZ delimiters. These are later onverted to polyj representations by

the postproessor (desribed below). For example, the following delarations of the non terminal

token operators, denotes that the operators token is represented by a list of operatorNode objets.

non terminal ListNodeXXoperatorNodeYY operators;

C.1.4 Proessing the Grammar

The Make�le for the /Code/ioa/parser diretory ontains sripts that do all of the following. The

grammar.sr �le gets preproessed into grammar.up. This �le is proessed by javaCup and two

�les are produed, parser.java and sym.java. These �les now get post-proessed into polyj �les

to allow for the use of parameterized lists, lparser.pj and sym.pj are produed. Finally, these

two �les get ompiled into what beomes the parser tool. This proess is desribed in more detail

in the grammar.sr �le.

C.2 Auxiliary �les

There are a few other �les that are involved with the IOA parser other than grammar.sr. These

�les de�ne the IOA keywords and reate a mapping between them and the representation reated

for them by javaCup.

notions/lexial.java this �le de�nes the atual text of keyword strings. It is updated manually.

parser/sym.pj this �le is generated by the javaCup proess. It ontains the internal representa-

tions of the tokens

parser/tokenizer.pj this �le is manually updated. It is the link between the keywords in lexial.java

and sym.pj.

105

parser/ioaTokenizer.pj same as above, ioa spei�

parser/lparser.pj this �le is generated by the javaCup proess. It is the atual parser.

C.3 Brief Guide to Modifying Grammar

If the modi�ation required the addition of new keywords to the IOA language or the update of

existing keywords in the IOA language:

� Update lexial.java by adding/modifying keyword strings, and

� Create onnetion between the keyword and its representation in the generated parser by

updating ioaTokenizer.java (in the ase of new keywords).

If the modi�ation requires the reation of a new intermediary token or the modi�ation of the

behavior of one:

� Create/update the appropriate sublass of Node.java, and

� Verify that the methods you intend to all upon the proessing of this objet during parsing

have the intended signatures/behaviors.

In all ases:

� Update grammar.sr to enorporate the new/modi�ed keywords, tokens, and rules, and

� Reompile the the Code/ioa/parser and the IOA Toolkit/bin diretories to make all of these

hanges take e�et.

106

Bibliography

[Che98℄ Anna E. Chefter. A simulator for the IOA language. Master's thesis, MIT, May 1998.

[Ci98℄ Andrzej Cihoki. Workow and Proess Automation: Conepts and Tehnology.

Kluwer Aademi Publishers, 1998.

[Dea01℄ Laura Dean. Improved simulation of input/output automata. Master's thesis, MIT,

September 2001.

[GL00℄ Stephen J. Garland and Nany Lynh. Foundations of Component-Based Systems,

hapter 13 - Using I/O automata for developing distributed systems, pages 285{312.

Cambridge University Press, USA, 2000.

[KCD

+

02a℄ Dilsun Kirli Kaynar, Anna Chefter, Laura Dean, Stephen Garland, Nany Lynh,

Toh Ne Win, and Antonio Ramirez-Robredo. The IOA Simulator. Tehnial Report

843, MIT Laboratory for Computer Siene, 200 Tehnology Square, Cambridge, MA

02139, USA, July 2002. http://theory.ls.mit.edu/tds/ioa.html.

[KCD

+

02b℄ Dilsun Kirli Kaynar, Anna Chefter, Laura Dean, Stephen Garland, Nany Lynh,

Toh Ne Win, and Antonio Ramirez-Robredo. Simulating nondeterministi systems at

multiple levels of abstration. August 2002. In Tools Day held in onjuntion with

CONCUR'02, Brno, Czeh Republi.

[Kun93℄ Thomas Kunz. Distributed debugging { a ase study. Tehnial Report TI{3/92,

Institut fur Theoretishe Informatik, Darmstadt, Germany, February 1993.

[Lyn96℄ Nany Lynh. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

107

[MSK

+

95℄ John A. Miller, Amit P. Sheth, Krys Kohut, Xuzhong Wang, and Arun Murugan.

Simulation modeling within workow tehnology. In Winter Simulation Conferene,

pages 612{619, Arlington, VA, Deember 1995.

[OW98℄ P. D. O'Brien and W. E. Wiegand. Agent based proess management: Applying

intelligent agents to workow. The Knowledge Engineering Review, 13(2), 1998.

[RR00℄ J. Antonio Ramirez-Robredo. Paired simulation of I/O automata. Master's thesis,

MIT, September 2000.

[Tau03℄ Joshua Tauber. De�nition and expansion of omposite automata in IOA. PhD thesis,

in progress. MIT, 2003.

[Yan92℄ Z. Yang. Global snapshots for distributed debugging: an overview. Tehnial Report

TR-92-03, Laboratory for Distributed and Parallel Computing, University of Alberta,

Edmonton, Alberta, Canada, Marh 1992.

108

