
Simulation of Composite I/O Automata

by

Edward Solovey

Submitted to the Department of Ele
tri
al Engineering and Computer S
ien
e

in Partial Ful�llment of the Requirements for the Degree of

Master of Engineering in Ele
tri
al Engineering and Computer S
ien
e

at the

Massa
husetts Institute of Te
hnology

Aug 22, 2003

Copyright 2003 Edward Solovey. All rights reserved.

The author hereby grants to M.I.T permission to reprodu
e and distribute publi
ly

paper and ele
troni

opies of this thesis and to grant others the right to do so.

Author

Department of Ele
tri
al Engineering and Computer S
ien
e

Aug 22, 2003

Certi�ed by

Dilsun K. Kaynar

Post-do
toral resear
h asso
iate, Theory of Distributed Systems Group

Thesis Supervisor

Certi�ed by

Nan
y Lyn
h

NEC Professor of Software S
ien
e and Engineering, Professor of Ele
tri
al Engineering

and Computer S
ien
e

Thesis Supervisor

A

epted by

Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Simulation of Composite I/O Automata

by

Edward Solovey

Submitted to the

Department of Ele
tri
al Engineering and Computer S
ien
e

Aug 22, 2003

In Partial Ful�llment of the Requirements for the Degree of

Master of Engineering in Ele
tri
al Engineering and Computer S
ien
e

Abstra
t

The IOA simulator is a tool that has been developed in the Theory of Distributed Systems group at

MIT. This tool simulates the exe
ution of automata des
ribed by the IOA language. It generates

logs of exe
ution tra
es and provides other pertinent information regarding the exe
ution, su
h

as the validity of spe
i�ed invariants. Although the simulator supports paired simulation of two

automata for the purpose of
he
king simulation relations, one of its limitations is its la
k of support

for the simulation of
omposite automata. A
omposite automaton represents a
omplex system

and is made up of other automata, ea
h representing a system
omponent. This thesis
on
erns

the addition of a
apability to simulate
omposite automata in a manner that allows observing

and debugging the individual system
omponent automata. While there is work in progress on

reating a tool that will translate a
omposite de�nition into a single automaton, the added ability

to simulate
omposite automata dire
tly will add modularity and simpli
ity, as well as ease of

observing the behavior of individual
omponents for the purpose of distributed debugging.

Thesis Supervisor: Dilsun K. Kaynar

Title: Post-do
toral resear
h asso
iate, Theory of Distributed Systems Group

Thesis Supervisor: Nan
y Lyn
h

Title: NEC Professor of Software S
ien
e and Engineering, Professor of Ele
tri
al Engineering and

Computer S
ien
e

3

4

A
knowledgments

I would like to thank my supervisor, Dilsun Kirli Kaynar, for making this experien
e both pleasur-

able and produ
tive. Her attention to and en
ouragement of my ideas made their fruition possible.

She attentively read many
opies of my paper and provided invaluable and detailed
omments.

Throughout this proje
t she has never treated me as a subordinate, but always as a peer. This

gave me
on�den
e that the goals of the proje
t were attainable.

I am grateful to Professor Lyn
h and Professor Garland for the helpful
onversations and
om-

ments. Professor Garland and Josh Tauber were extremely open to and helpful with my modi�-

ations to the front-end of the IOA toolkit. I was lu
ky enough to share an oÆ
e with Josh, and

he readily answered a multitude of questions that
ame up during my work. Without the work of

prior students Toh Ne Win, Laura Dean, Antonio Ramirez, Mi
hael Tsai, and Anna Chefter my

extensions of the simulator would not have been possible.

I would like to thank my parents and grandparents whose struggles and hard work in life have

paved the way for every opportunity that I might have. Their unyielding support and en
ourage-

ment during this proje
t and throughout my studies in general have made them possible. I would

like to thank my sister for her support, good humor, and for being a friend.

The support and en
ouragement of my friends is greatly appre
iated. I would like to thank Trey

Reyher for his attempts to proofread my thesis, and for helping me relax during stressful times.

I am most grateful to Erin Trea
y whose optimisti
 approa
h towards life is an inspiration. Her

ompany, a�e
tion, and friendship are
herished.

5

For Roza and Copl Levshteyn

6

Contents

1 Introdu
tion 15

1.1 I/O Automaton Simulator Overview . 15

1.1.1 Previously Implemented Features . 16

1.1.2 Newly Implemented Features . 17

1.2 Compositions . 18

1.2.1 Formal De�nition of Compositions . 19

1.2.2 Distributed Debugging . 20

1.2.3 Comparison to Composer . 22

1.2.4 Hierar
hi
al Debugging . 23

2 Composite Simulations 25

2.1 Nondeterminism . 25

2.1.1 Overview of Nondeterminism . 25

2.1.2 Reuse of Component S
hedule Blo
ks . 27

2.1.3 Low-Level NDR Looping . 29

2.1.4 Composite S
hedule Blo
ks . 31

2.2 Intera
tion of Components . 32

2.2.1 Where Clauses in Transitions . 32

2.2.2 S
heduled Input A
tions . 33

2.3 Code Changes . 35

3 Examples 37

3.1 Examples with Non-Parameterized Components . 37

3.1.1 Example : Reuse of Component S
hedule Blo
ks 41

7

3.1.2 Example : A Composite S
hedule Blo
k . 44

3.2 Examples with Parameterized Components . 47

3.2.1 Example: Parameterized Components, Reuse of Component S
hedule Blo
ks 50

3.2.2 Example: Parameterized Components, Composite S
hedule Blo
k 52

3.3 With Blo
ks . 52

3.3.1 Handle Names in S
hedule Blo
ks . 53

3.3.2 Non Exhaustive De
laration . 54

3.3.3 Example: With Blo
k . 54

4 IOA Language Extension 57

4.1 Grammar Modi�
ation . 57

4.2 Semanti
 Che
ks . 59

4.3 Code Changes . 60

4.4 IL Representations . 61

5 Simulator Extension 63

5.1 Representation of a Composite Automaton . 63

5.1.1 Basi
 Side . 64

5.1.2 A
tual Side . 64

5.1.3 Implementation De
isions . 65

5.2 Copying of Components . 66

5.2.1 Implementation De
isions . 66

5.2.2 Code Changes . 67

5.3 IL Parser . 70

5.4 Display of Output . 70

6 Test Suite Extension 73

6.1 SIMAUTOMATON Parameter . 73

6.2 Non-Parameterized Components . 74

6.2.1 Testing Reuse of NDR Blo
ks . 74

6.2.2 Testing NDR Blo
ks for Composite Automata 76

6.3 Parameterized Components . 76

6.3.1 Testing Reuse of NDR Blo
ks for Parameterized Components 77

8

6.3.2 Testing Composite S
hedule Blo
ks for Parameterized Components 78

6.3.3 Testing With Blo
ks . 78

7 Appli
ation to Work
ow 81

7.1 Work
ow Des
ription . 81

7.2 Design Time Debugging of Work
ow Systems . 83

8 Relation to Existing Features and Future Work 87

8.1 Invariant Che
king . 87

8.2 Paired Simulation of Composite Automata . 88

8.3 NDR Relinquish Control Command . 89

8.4 User Intera
tive Nondeterminism Resolution . 89

8.5 Debugging Tool . 90

8.5.1 Step Through Exe
ution and Breakpoints . 90

8.5.2 Intera
tive Exe
ution Logs . 91

8.6 Graphi
al Improvements . 91

A IOA Parser File Modi�
ations 93

A.1 Modi�ed Files - parser . 93

A.2 New Files - parser . 94

A.3 Modi�ed Files - automaton . 94

A.4 New Files - automaton . 94

A.5 Modi�ed �les -
he
ker . 95

B Simulator File Modi�
ations 97

B.1 Modi�ed Files . 97

B.2 New Files - Simulator . 98

B.3 Modi�ed Files - il . 99

B.4 New Files - il . 101

B.5 Files where the only
hanges involve the naming of the new interfa
es 101

B.6 Test Suite . 101

C IOA Grammar 103

C.1 Des
ription . 103

9

C.1.1 Tokens . 103

C.1.2 Rules . 104

C.1.3 Typed Lists . 105

C.1.4 Pro
essing the Grammar . 105

C.2 Auxiliary �les . 105

C.3 Brief Guide to Modifying Grammar . 106

10

List of Figures

1.1.1 Automaton Sys . 18

1.2.2 Combination of a
tion where
lauses . 23

2.1.1 Example of a terminating NDR program . 26

2.1.2 Sample det blo
k . 27

2.1.3 Example of a non-terminating NDR program . 29

2.2.4 Exe
ution of s
heduled input a
tions . 34

3.1.1 A
tions of Env and Bank . 38

3.1.2 Banking environment automaton . 38

3.1.3 Automaton Bank . 40

3.1.4 The NDR blo
k for automaton Env . 42

3.1.5 The NDR blo
k for automaton Bank . 43

3.1.6 Composite NDR blo
k for automaton EnvBank . 45

3.1.7 Simulator output for
omposite automaton with a
omposite s
hedule blo
k 46

3.1.8 Simulator output for manually
omposed
omposite automaton 46

3.2.9 Automaton Sys . 49

3.2.10Components of automaton Sys . 49

3.2.11NDR blo
k for Channel . 50

3.2.12NDR blo
k for Pro
ess . 50

3.2.13Simulator output for automaton Sys, �rst
ase . 51

3.2.14NDR blo
k for automaton Sys . 52

3.3.15Example of a with blo
k . 53

3.3.16Automaton Sys
ase three : with blo
k . 55

3.3.17Simulator output for Sys automaton that
ontains a with blo
k 55

11

5.1.1 Basi
 side obje
t diagram . 64

5.1.2 A
tual side obje
t diagram before
hanges . 65

5.1.3 A
tual side obje
t diagram after
hanges . 65

5.2.4 Partial, abstra
t representation of an automaton . 68

5.2.5 Partial, abstra
t representation of a term . 69

5.2.6 Partial, abstra
t representation of a statement . 70

5.4.7 Display of state in
omposite simulations . 71

5.4.8 Display of triggered transitions in
omposite simulations 71

7.1.1 Work
ow s
hema of a patient registration pro
ess . 82

7.1.2 Work
ow s
hema of a patient diagnosis pro
ess . 82

7.1.3 Intera
tion between Hospital and Diagnosis automata 83

7.1.4 IOA spe
i�
ation of Diagnosis automaton . 84

7.1.5 IOA spe
i�
ation of Hospital automaton . 85

C.1.1Fibona

i automaton . 104

12

List of Tables

1.2.1 E�e
t
lauses of automaton Sys to be exe
uted . 22

4.3.1 Java
lasses representing new non-terminal symbols 61

13

14

Chapter 1

Introdu
tion

One of the major resear
h a
tivities within the Theory of Distributed Systems Group at MIT is

the development of formal methods for modeling and reasoning about distributed systems. As

distributed systems may be fairly
omplex, it is important to be able to model them pre
isely

and reason about them at various levels of abstra
tion. The input/output (I/O) automaton model

onstitutes the basis of the work on formal methods [KCD

+

02a℄.

1.1 I/O Automaton Simulator Overview

The I/O automaton model is a formal model for asyn
hronous
omputing. It is a labeled transition

system model suitable for des
ribing asyn
hronous
on
urrent systems [Lyn96℄. An I/O automaton

models a distributed system
omponent that
an intera
t with other system
omponents. It is a

simple type of state ma
hine in whi
h transitions are asso
iated with named a
tions. The IOA

language, a formal language based on the I/O automaton model, provides an expressive medium

for pre
ise des
ription of a system's behavior. Des
riptions of subsystems may be
omposed in

parallel to form a
omposite des
ription. Further, the language allows for des
ription at various

levels of abstra
tion, and provides a me
hanism for relating these des
riptions [Dea01℄.

The IOA toolkit is a suite of software tools. It fa
ilitates the design, analysis, and development

of distributed systems within the I/O automaton framework [KCD

+

02a℄. The tools in the suite
an

be broken into
ategories of front-end and ba
k-end. The
he
ker is a front-end tool that
he
ks

the syntax and the semanti
s of a given IOA �le, whi
h
ontains the des
ription of one or more

I/O automata. If the IOA �le is valid, the
he
ker generates an intermediate language (IL) �le.

15

This IL �le is then used by the ba
k-end tools. The ba
k-end tools
onsist of a simulator,
ode

generator, and translators to a range of representations suitable for use with some theorem provers.

This paper primarily deals with the simulator.

The IOA simulator was designed by Anna Chefter [Che98℄, and parts of it were implemented

by Antonio Ramirez [RR00℄. The input to the simulator is an IL �le produ
ed by the front-end

he
ker des
ribed above. The simulator
an be used to test automata before attempting
orre
tness

proofs. A simulation that goes as expe
ted does not prove the
orre
tness of the automaton but

does in
rease
on�den
e that the automaton has been designed as intended. A simulation that

does not go as expe
ted dis
overs bugs in the automaton spe
i�
ation. The user
an then modify

the automaton and run the simulator again. The following two se
tions des
ribe those features of

the simulator that were implemented and those that were not at the start of this proje
t.

1.1.1 Previously Implemented Features

The simulator in release 0.09 of the IOA Toolkit is
apable of simulating a primitive non-parameterized

automaton. In order to resolve the nondeterminism that may be present in the automaton, the

simulator is
apable of using a nondeterminism resolution (NDR) blo
k. Nondeterminism and NDR

blo
ks are dis
ussed in detail in Se
tion 2.1.

In order for the simulation to be useful, the user needs to be able to observe the step-by-step

behavior of the automaton being simulated. The user may invoke the simulation with a variety

of
ommand line options. Further, the user has the options to display the triggered transition at

every step, never display the transition, or only display the external transitions to
reate a tra
e of

the automaton. Similarly, at every step the user has the option to display all of the state variables

of the automaton, none of the state variables, or just those that have been modi�ed as a result of

the transition triggered at that step.

In addition to simply observing the log of the exe
ution, the user may provide one or more

invariants for the automaton. An invariant is a predi
ate involving the state variables of the

automaton. The simulator
he
ks the truth value of the predi
ate after every step of the simulation

and displays an appropriate message at every step that the predi
ate is false. Just as above, the

fa
t that the invariant is true at every step does not ne
essarily imply that its always true. It

simply in
reases our
on�den
e that it might be a valid invariant. However, if it is ever false, we

an dis
ard it and look for a new one.

16

The simulator is also
apable of paired simulations [RR00℄, an extremely useful feature in

distributed system design and debugging. Su
h a simulation may be bene�
ial when a system

is designed by moving from the highest level to the lowest level in the abstra
tion hierar
hy. In

this
ase the user spe
i�es two automata, a simulation relation between the automata, and a step

orresponden
e. The step
orresponden
e spe
i�es a high-level exe
ution fragment for ea
h low-level

transition, su
h that the simulation relation holds after the exe
ution of any low-level transition

and its
orresponding high-level fragment. The simulator then
he
ks if the relation holds at every

step of the exe
ution. This enables the user to reason about the behavioral
orresponden
e between

the automata at di�erent levels of abstra
tion [KCD

+

02a℄.

1.1.2 Newly Implemented Features

One of the simulator's prior limitations was its inability to simulate
omposite automata. We have

implemented this feature. We �rst
on
entrate on the basi

ase, that of a
omposite automaton

onsisting of
omponents that are not parameterized. Even this basi

ase presents the ne
essity

to resolve a new kind of nondeterminism: nondeterminism in sele
ting the
omponent that will

�re the next transition. A possibility for resolving su
h nondeterminism is an NDR blo
k in the

omposite automaton. Although at the onset of this proje
t su
h NDR blo
ks were supported

for primitive automata simulations, they were not supported for
omposite automata simulations.

Their implementation is dis
ussed in detail in Se
tion 2.1.4.

More often it is the
ase that the
omponents of a
omposite automaton will have param-

eters. These parameters may be either type or variable parameters. Variable parameters are

now supported, while type parameters remain as future work. The introdu
tion of parameterized

omponents in a
omposite automaton introdu
es questions regarding the instantiation of these

omponents and ability to a

ess them later. These issues are dis
ussed in Se
tion 3.2.

The possibility of automata parameters introdu
es the need for
onstant,
onst, parameters in

a
tion signatures. A
onstant parameter is a term in an a
tion signature that refers to a formal

parameter of the automaton, rather than a fresh variable de
laration [Tau03℄. These parameters

are useful when the
omposite automaton
ontains multiple
omponents based on the same original

automaton. In this
ase some other
omponent may want to intera
t with a
ertain subset of these

omponents based on their formal parameters. Constant parameters allow su
h intera
tion.

For example, Figure 1.1.1
ontains the partial spe
i�
ations of automata Channel and Pro
ess

17

automaton Channel(Node, Msg:type, i, j:Node)

signature

input send(
onst i,
onst j, m:Msg)

output re
eive(
onst i,
onst j, m:Msg)

...

automaton Pro
ess(n:Int)

signature

input re
eive(
onst n-1,
onst n, x:Int)

output send(
onst n,
onst n+1, x:Int),

overflow(
onst n, s:Set[Int℄)

...

automaton Sys

omponents C[n:Int℄: Channel(Int, Int, n, n+1)

where 1 � n ^ n < 10;

P[n:Int℄: Pro
ess(n) where 1 � n ^ n � 10;

Figure 1.1.1: Automaton Sys

[Tau03℄. The automaton Sys is a
omposite automaton
omprised of ten Pro
ess
omponents and

nine Channel
omponents. The Channel
omponents fa
ilitate the ex
hange of messages between

the Pro
ess
omponents. Thus when the Pro
ess
omponent with formal parameter n set to 5 sends

a message, only the Channel automaton with formal parameters i and j set to 5 and 6 respe
tively

should re
eive this message. Constant parameters enable this intera
tion. They are now supported.

The following is a high level des
ription of the features that we have implemented:

� Simulation of Composite Automata

� S
hedule Blo
ks in Composite Automata

� Parameters in the Components of a Composite Automaton

� Constant Parameters

� Invariants for Composite Automata

1.2 Compositions

The fo
us of this thesis is the simulation of
omposite automata. Josh Tauber's work on the

omposer, a front-end tool that
onverts an IOA spe
i�
ation of a
omposite automaton to an IOA

spe
i�
ation of a primitive one, is
losely related to the ability to simulate
omposite automata

dire
tly. In this se
tion we introdu
e
omposite automata formally, motivate their dire
t simulation

18

for the purpose of distributed debugging,
ompare their dire
t simulation to the
omposer, and

�nally propose a hierar
hi
al debugging te
hnique that uses both the ability to simulate
omposite

automata dire
tly and the
omposer.

1.2.1 Formal De�nition of Compositions

A
omposition
reates an automaton representing a
omplex system from a set of individual au-

tomata representing system
omponents. Intera
tion between
omponents is a
hieved through

output and input a
tions of the same name. More spe
i�
ally, when a
omponent automaton

performs an a
tion, �, all other automata that
ontain an a
tion named � perform it as well. Lim-

itations, in the form of stati
 semanti

he
ks, on whi
h automata are
ompatible for
omposition

do exist [Lyn96℄. They are listed below:

A
ountable
olle
tion fS

i

g

i

2 I of signatures is
ompatible if for all i; j 2 I; i 6= j, all of

the following hold (where int, out, in, and a
ts denote internal, output, input, and all a
tions

respe
tively):

1. int(S

i

)

T

a
ts(S

j

) = �

2. out(S

i

)

T

out(S

j

) = �

3. No a
tion is
ontained in in�nitely many sets a
ts(S

i

)

Internal a
tions are intended to be private to a
omponent automaton and thus unobservable

by other
omponents. The �rst
ondition ensures this. Without it a
ertain internal a
tion of a

omponent might for
e an a
tion in another
omponent to be triggered. The initial internal a
tion

would thus have to be observed. The se
ond
ondition requires that the sets of output a
tions

of all
omponents be disjoint. This ensures that at most one
omponent automaton \
ontrols"

the performan
e of any given a
tion, whi
h is useful when
omparing the tra
e of the stand alone

automaton to its tra
e when it is a
omponent of a
omposite automaton. The resulting primitive

automaton is de�ned to have the following signature:

� out(S) =

S

i2I

out(S

i

)

� int(S) =

S

i2I

int(S

i

)

� in(S) =

S

i2I

in(S

i

) n

S

i2I

out(S

i

)

19

The signature, states, tasks, and start states of the produ
ed primitive automaton are ve
tors

of the respe
tive pie
es of the
omponent automata. Transitions are modi�ed to allow a
tions with

the same name to be exe
uted simultaneously.

Upon �rst glan
e it might seem intuitive that if a
omponent
ontains an output a
tion � and

another
omponent
ontains an input a
tion �, then the a
tion � should be an internal one in

the
omposition. The above signature renders a
tion � as an output a
tion in the
omposition.

The labeling of a
tion � as an output a
tion allows the resulting
omposed automaton to later be

omposed with another new
omponent
ontaining an input a
tion �. Had � been labeled as an

internal a
tion after the �rst
omposition,
ondition one of the limitations listed above would have

prevented the se
ond
omposition. This is not the desired behavior as it should be possible for an

output a
tion to be broad
ast to more than one automaton. The behavior is also not desirable

be
ause it makes the order of
omposition relevant.

The initial implementation of the
omposite automata simulator requires that the a
tion where

lauses of the
omponent automata do not have quanti�ers. Allowing quanti�ers would require

veri�
ation by a theorem prover to ensure that an input and an output a
tion do indeed satisfy

their respe
tive where
lauses. Also, the
omponent automata are required to have no hidden

a
tions.

It
an be seen from the above de�nitions that unless the names of the a
tions and state vari-

ables of the
omponent automata identify their owner, all modularity and tra
tability of individual

omponents are lost on
e the automata are
omposed. When looking at the tra
e of the primi-

tive automaton, it will not be possible to dis
ern from whi
h
omponent automaton the a
tions

originated. Nor will it be possible to dis
ern what individual automaton
ontributed a parti
ular

state variable to the global state when looking at the exe
utions of the primitive automaton. Thus,

although it is possible to prepend ea
h a
tion and state variable with an identi�er for its
omponent

automaton, it would be
onvenient not to do this. The ability to
losely monitor the behavior of

individual
omponents during a simulation of a
omposite automaton is useful for the purpose of

distributed debugging. We analyze this topi
 next.

1.2.2 Distributed Debugging

Debugging distributed systems is a mu
h more diÆ
ult task than debugging
onventional, sequen-

tial programs. This is due to the fa
t that distributed systems are more
omplex, introdu
e the

20

element of syn
hronization, and make debugging mu
h more diÆ
ult due to the possibility of par-

tial failures [Kun93℄. For these reasons it is
ru
ial to be able to simulate and thoroughly debug a

distributed system at design time. The
apability of the simulator to run
omposite automata will

allow for tra
e logs that
learly identify individual
omponents and for testing
omponent spe
i�

invariants. This in turn will allow the user to observe and reason about individual
omponents of

the
omposition, thus aiding him/her in identifying the
omponent that is
ausing a problem or

behaving in an unpredi
table manner. Further, it will
learly display to the user the
ommuni
ation

pattern and syn
hronization between
omponent automata.

The notion of global snapshots is a tool often used for distributed debugging. A global snapshot

aptures the state of all the pro
esses of the system at a
ertain point in time [Yan92℄. Although in

the
ase of simulating a
omposition as a single primitive automaton it is possible to see the state of

all of the variables involved, it is not
lear from whi
h of the
omponent automata those variables

originated. In a snapshot that is produ
ed by the dire
t simulation of a
omposition, all state is

available along with the information of what
omponent automaton
ontributed that parti
ular

pie
e of the state. On
e again, this
an prove to be useful during the debugging of a
ompli
ated

system. In theory, when
reating a snapshot of a distributed system, an algorithm su
h as that of

Chandy and Lamport [Yan92℄ must be used to ensure that the snapshot represents the state of all

omponents at the same point of the exe
ution. Sin
e the simulator has a single point of
ontrol,

we do not have to worry about ensuring this
ondition.

In addition to debugging on
e a problem has been observed, the designer of the distributed

system might want to forestall problems by proving properties about the
omposite system. \In

order to prove properties of a
omposed system automata, it is often helpful to reason about the

omponent automata individually." [Lyn96℄ More spe
i�
ally, the designer might want to see if

his/her
omposite automaton satis�es su
h tra
e properties as safety (some parti
ular \bad" thing

never happens) and liveness (some parti
ular \good" thing eventually happens). Be
ause showing

that ea
h
omponent satis�es a parti
ular tra
e property implies that the
omposition satis�es the

produ
t tra
e property, it is extremely useful to be able to reason about individual
omponents.

Similarly, if the
omposition fails to satisfy a produ
t tra
e property, the simulator will be able to

help the designer identify the parti
ular
omponent that failed the tra
e property.

21

1.2.3 Comparison to Composer

The
omposer takes the IOA spe
i�
ation of a
omposite automaton as input. As output it returns

the IOA spe
i�
ation of an equivalent primitive automaton. Thus the
omposer is entirely a front-

end tool. As the new primitive automaton is being
reated, a major part of the
omposer
on
erns

the
reation of
omposite automaton variables of appropriate sorts. For example, an entirely new

state table
onsisting of a ve
tor
ombination of the
omponent state tables must be
reated.

The dire
t simulation of
omposite automata moves part of this burden to the ba
k-end tool, the

simulator. Instead of attempting to
reate an aggregate state table, the simulator simply
reates

an automaton obje
t for every
omponent whi
h is responsible for maintaining its own state.

Another area of
on
ern of the
omposer is the semanti

he
king of where
lauses in transition

de�nitions to determine how to
ombine output and input transitions. For example, Figure 1.2.2

ontains the spe
i�
ation for automaton Sys with
omponents Channel and Pro
ess (where P

1

,P

2

,P

3

,

and P

4

are e�e
ts programs).

When output a
tion send in automaton Pro
ess is �red, it may trigger the �rst send transition

of automaton Channel, the se
ond send transition of automaton Channel, or neither. Table 1.2.1

ontains a list of the possibilities.

Value(s) of x Exe
uted E�e
ts Programs

6,7,8 P

4

9,10,11 P

1

,P

4

12,13 P

4

14 P

2

, P

4

15,16 P

2

,P

3

17,18... P

3

Table 1.2.1: E�e
t
lauses of automaton Sys to be exe
uted

The
omposer has to
reate a separate transition in the expanded automaton for every one of the

ases in Table 1.2.1. In some
ases this might require an unde
idable semanti
 proof. However, in

the dire
t simulation
ase, whenever output a
tion send in automaton Pro
ess is �red, the simulator

has a value for the a
tual parameter x of the transition. The simulator
an now perform boolean

tests on the where
lauses (still limited to disallow quanti�ers) of the input send transitions of

automaton Channel to see if any should be triggered. The
ase of where
lauses in
omponents

22

automaton Channel

signature

input send(x:Int) where x>0

...

transitions

input send(x) where x>8 =n x<12

e� P

1

input send(x) where x>13 =n x<17

e� P

2

...

automaton Pro
ess

signature

output send(x:Int) where x>0

...

transitions

output send(x) where x>15

e� P

3

output send(x) where x>5 =n x<15

e� P

4

...

automaton Sys

omponents Channel;Pro
ess

Figure 1.2.2: Combination of a
tion where
lauses

de�nitions is very similar to the above and is dis
ussed in detail in Se
tion 3.2.

It is true that any
omposite simulation that may be performed using dire
t simulation
an

be performed via two steps: �rst the transfer from
omposite automaton to primitive automaton

using the
omposer; and se
ond, a primitive simulation of the resulting automaton. In some
ases

it might be easier and faster to perform the dire
t simulation. Also, the dire
t simulation provides

easy tra
eability of
omponents. To a
hieve the same tra
eability, the
omposer would have to

reate some kind of system of labeling the resulting states and transitions that would maintain the

individuality and modularity of the
omponents.

1.2.4 Hierar
hi
al Debugging

It will often be helpful to reason about a system from a hierar
hi
al, top-down perspe
tive, varying

the levels of modules to identify the sour
e of error. For example, [Kun93℄ des
ribes a system

23

that models an airport shuttle system. The shuttle system
onsists of four major
omponents -

platforms (NorthEast, NorthWest, SouthEast, and SouthWest platforms). Ea
h of these platforms

is in turn made up of smaller
omponents - tra
ks (Tra
kNorthWest, Tra
kMiddleWest,...).

1

A

single automaton models ea
h tra
k
omponent.

To debug the system following the
on
epts of hierar
hi
al debugging, the designer might �rst

want to model the system as
onsisting of two parts - North and South. A round of testing might

reveal an error in one of these two parts. The designer will then move down a level of modules in the

erroneous part and leave the properly behaving one at the highest level of modules. If part South

is found to
ontain an error, the se
ond round of testing will
onsist of three parts - SouthEast,

SouthWest, and North. This pro
ess
an
ontinue until the lowest level erroneous part has been

pointed out.

The
ombination of the
omposer tool and the ability to simulate
omposite automata dire
tly

provides an easy way to implement hierar
hi
al debugging as des
ribed above. The
omposer is

used to
reate various levels of modules. The ability to simulate
omposite automata is used to

identify the erroneous
omponent at a parti
ular level of abstra
tion.

The
omposer tool
an be used to
reate primitive automata AutSouth and AutNorth out of

omposite automata that
onsist of all of the south and all of the north
omponent tra
ks respe
-

tively. The simulator then simulates the
omposition of AutSouth and AutNorth. If AutSouth is

identi�ed as the erroneous
omponent, the
omposer
an be used to
reate primitive automata

AutSouthWest and AutSouthEast. The simulator then simulates the
omposition of AutSouthWest,

AutSouthEast, and AutNorth. On
e again, this hierar
hi
al pro
ess
an
ontinue until either the

lowest level erroneous
omponent has been identi�ed, or the error has been identi�ed at the desired

level of modules.

1

Terminology note: The term \level of modules" refers to a point in the modular hierar
hy. For example, the
om-

ponents NorthPlatform and SouthPlatform are the highest level of modules. The next lower level of the NorthPlatform

module might
ontain NorthEastPlatform and NorthWestPlatform. The next lower level of the NorthEastPlatform

might
ontain NE1Platform, NE2Platform, and NE3Platform.

24

Chapter 2

Composite Simulations

We now shift our fo
us to the simulator and its handling of
omposite automata. How is a simulation

of a
omposite automaton di�erent from a simulation of a primitive automaton? How should we

pi
k the next a
tion to �re? Will the �ring of this a
tion involve any other
omponents? Se
tion 2.1

dis
usses a new type of nondeterminism that arises in
omposite simulations. Se
tion 2.2 des
ribes

how the intera
tion between
omponents is handled by the simulator.

2.1 Nondeterminism

Before dis
ussing the nondeterminism introdu
ed by
omposite simulations, in Se
tion 2.1.1 we

take a look at the nondeterminism already present in primitive automata. We then propose two

methods of resolving the new nondeterminism. Se
tion 2.1.2 dis
usses the reuse of nondeterminism

resolution pro
edures provided for ea
h
omponent. Se
tion 2.1.3 des
ribes how we avoid the pitfall

of nondeterminism pro
edure looping introdu
ed by the reuse strategy. Se
tion 2.1.4 dis
usses the

reation of a nondeterminism resolution pro
edure tailored for the
omposite automaton.

2.1.1 Overview of Nondeterminism

A key feature of the IOA model is nondeterminism. Nondeterminism allows systems to be des
ribed

in their most general forms and to be veri�ed
onsidering all possible behaviors without being tied to

a parti
ular implementation of a system design [KCD

+

02b℄. There are two types of nondeterminism

in the IOA model. Expli
it nondeterminism appears in the form of
hoose statements, whi
h may

appear on the right hand side of variable assignments su
h as:

25

s
hedule

states
ounter:Int:=1

do

i f (Aut.total>10) then

f i r e output a
tion1

f i ;

ounter:=
ounter+1;

i f (Aut.ready=true) then

f i r e output a
tion2

f i

od

Figure 2.1.1: Example of a terminating NDR program

output a
tion1

e f f
hosen :=
hoose x: Int where 10 < x;

Impli
it nondeterminism arises due to ambiguity in s
heduling a
tions [KCD

+

02a℄. Listed below

are the two ways in whi
h impli
it nondeterminism may o

ur:

� an automaton
an have multiple enabled a
tions in a given state; and

� a given transition de�nition
an take arbitrary a
tual parameter values, as long as they satisfy

its where
lause.

The IOA simulator is a deterministi
 program and
annot itself resolve the nondeterminism

present in the automata that it is simulating. To solve this problem we have taken advantage of the

fa
t that from the point of view of an IOA automaton spe
i�
ation, resolution of nondeterminism

an be regarded as a bla
k box that
an yield transitions to be s
heduled and values to be assigned

to statements that involve nondeterministi

hoi
e [KCD

+

02a℄. In other words, the automaton is

not aware how the nondeterminism is resolved, but as long as it is resolved, the simulation of the

automaton may go forward. The simulator requires the user to provide deterministi
 programs

that repla
e these bla
k boxes. These programs are det and s
hedule blo
ks for expli
it and

impli
it nondeterminism respe
tively. In the presen
e of these nondeterminism resolution blo
ks,

the simulator
an deterministi
ally simulate an automaton.

Figure 2.1.1 displays a simple s
hedule blo
k for the primitive automaton Aut. At every step of

the simulation, the simulator polls this s
hedule blo
k for the next a
tion to �re. The s
hedule blo
k

is then exe
uted until a �re invo
ation is returned. The next time the s
hedule blo
k is polled it

26

e f f
hosen :=
hoose x where 1 � x ^ x � 30

det do

yield 1; yield 2; yield 3

od

Figure 2.1.2: Sample det blo
k

resumes exe
ution at the statement immediately after the previously returned �re statement. For

example, if at step one of the simulation the s
hedule blo
k in Figure 2.1.1 returned fire output

a
tion1, then upon its next polling it will start exe
ution at
ounter:=
ounter+1. Figure 2.1.2

displays the use of a det blo
k to resolve the expli
it nondeterminism of a
hoose statement in a

transition e�e
ts
lause.

The use of det blo
ks is una�e
ted by the extension of the simulator to support
omposite

automata simulations. Thus in our dis
ussion of nondeterminism we
on
entrate on impli
it non-

determinism. Above we saw two ways that impli
it nondeterminismmay arise during the simulation

of a single automaton. Be
ause at a given time during a simulation, more than one
omponent may

have enabled a
tions, simulating
omposite automata introdu
es a higher level of nondeterminism -

whi
h
omponent should exe
ute the next a
tion? On
e this nondeterminism, high-level nondeter-

minism, has been resolved and the next
omponent has been identi�ed, we on
e again fa
e the two

ases of nondeterminism above, whi
h from now on will be referred to as low-level nondeterminism.

The user of the simulator has two options to resolve the impli
it nondeterminism present in

omposite automata. The �rst option allows the user to
hoose a high-level nondeterminism reso-

lution strategy and reuse the
omponent s
hedule blo
k to resolve low-level nondeterminism. The

se
ond option allows the user to write a
omposite s
hedule blo
k and resolve both the high and

low levels of nondeterminism at on
e.

2.1.2 Reuse of Component S
hedule Blo
ks

This strategy to resolve nondeterminism present in
omposite simulations takes advantage of the

fa
t that ea
h
omponent of the
omposition is itself an automaton that might have been simulated

on its own. This implies that ea
h
omponent already has its own program to resolve the low-level

nondeterminism. Thus all that is left to be done in order to simulate the
omposite automaton is

the resolution of the high-level of nondeterminism. We provide the user with three options of how

the high-level nondeterminism should be resolved during the simulation. These three options are

similar to the three s
heduling poli
ies in Chefter's S
heduler [Che98℄. However, there they refer

27

to low-level nondeterminism and the sele
tion of a
tions to exe
ute. Here we extend this approa
h

to high-level nondeterminism and the sele
tion of the next
omponent to
ontribute an a
tion.

Regardless of the high-level poli
y, it is possible that, on
e sele
ted, a
omponent will not be able

to return an enabled a
tion to the simulator. This situation is dis
ussed in Se
tion 2.1.3, after the

three high-level poli
ies are presented.

Stri
tly Uniform Poli
y

Chefter refers to this poli
y as round robin. Consider the simulation of a system with n
omponents,

1

;

2

; :::;

n

. If the user sele
ts the stri
tly uniform poli
y, then at the �rst step of the simulation

the simulator will ask

1

for the next a
tion to exe
ute (

1

will use its own low-level nondeterminism

resolution program to provide this a
tion). At the se
ond step, the simulator will ask

2

for an

a
tion. This will
ontinue until the (n + 1)

th

step. At the (n + 1)

th

step the simulator will on
e

again poll

1

for an a
tion, and so on. The ordering of
omponents is the same as their ordering in

the IOA �le in whi
h their spe
i�
ations appear. This is the default high-level poli
y.

Random Poli
y

This poli
y has the same name in Chefter's paper. If the user sele
ts this poli
y, then at the

beginning of ea
h step the simulator randomly sele
ts a
omponent. The sele
tion is entirely

random and the
omponent
hosen at step k is
ompletely independent of the
omponents
hosen

at steps 1 through (k � 1). The presen
e of the boolean
ommand line parameter randComp

enables this poli
y in the simulator.

Weighted Poli
y

This poli
y is analogous to Chefter's poli
y that uses time estimates for ea
h a
tion. If the user

sele
ts this poli
y, then he/she must also provide a weight for ea
h
omponent. At ea
h simulation

step the simulator will pi
k
omponent

i

with probability

weight of

i

total weight of all
omponents

. In this way

this poli
y is similar to the random poli
y. The only di�eren
e is that here the
omponents do not

ne
essarily have an equal
han
e to get pi
ked.

This poli
y is enabled via the
ommand line parameter weightComp. This parameter is fol-

lowed by one argument - the name of the �le
ontaining the weight spe
i�
ations for the
omponents.

The syntax of the weight �le is the following:

28

s
hedule

states
ounter:Int:=1

do

while true do

i f (Aut.total>10) then

f i r e output a
tion1

f i ;

ounter:=
ounter+1;

i f (Aut.ready=true) then

f i r e output a
tion2

f i

od

od

Figure 2.1.3: Example of a non-terminating NDR program

omponentName

1

= integerWeight

1

omponentName

2

= integerWeight

2

...

The following
he
ks are performed to ensure the validity of the spe
i�ed weight �le. If the �le

is found to be invalid, the simulation halts.

1. The �le with the spe
i�ed name exists,

2. Ea
h line in the �le
ontains exa
tly one, = symbol,

3. The text following the = symbol is a nonnegative integer, and

4. The text before the = symbol exa
tly mat
hes a
omponent name.

The user is not required to spe
ify weights for all
omponents. Those
omponents whose weight

is left unspe
i�ed will never be pi
ked by the high-level strategy. If the user lists a parti
ular

omponent more than on
e, its weight will be the sum of the listings. The
ode
hanges ne
essary

to support this strategy are des
ribed in Se
tion 2.3.

2.1.3 Low-Level NDR Looping

Above we mentioned that when polled for an a
tion the low-level nondeterminism resolution (NDR)

program of the
omponent might not �nd an enabled a
tion. This
an happen in two ways de-

pending on whether the NDR program is terminating or not. Figure 2.1.1 and Figure 2.1.3 show

29

examples of respe
tively a terminating and a non-terminating NDR program for automaton Aut.

In either
ase, the simulator simply returns to the high-level NDR strategy and pi
ks the next

omponent to poll for an a
tion. This is the next
omponent in the ordering in the uniform
ase,

and a randomly, possibly weighted,
hosen
omponent in the other two high-level NDR strategy

ases.

If the
omponent was unable to return an a
tion be
ause its low-level NDR blo
k is terminating

and is now exhausted, the simulator will not poll this
omponent again during the simulation.

However, noti
e that if a
omponent with a non-terminating low-level NDR blo
k is polled and it

annot return an a
tion, the NDR blo
k will loop in�nitely. This will
ause the simulator itself to

loop in�nitely. This is a

epted behavior in the primitive automaton simulation
ase be
ause if the

NDR blo
k of the single automaton
annot provide an a
tion, no a
tions will be exe
uted again and

the simulation is in e�e
t
ompleted. This, however, is not the
ase in the simulation of a
omposite

automaton. A
omponent might have enabled a
tions at the point that another
omponent's low-

level NDR blo
k has gone into an in�nite loop. Below we �rst dis
uss two strategies to avoid this

pitfall and then des
ribe the implementation of the
hosen one. A third strategy is presented as a

future work in Se
tion 8.3.

Maximum NDR Steps

One possible way to avoid the problem of a
omponent's low-level NDR program looping forever,

is to impose a limit on the number of steps that any NDR program may run for. Thus when a

omponent is pi
ked by the high-level NDR strategy, if its low-level NDR program runs for the

alloted number of steps without returning an a
tion, the simulator returns to the high-level NDR

strategy and pi
ks another
omponent, as mentioned above. After this o

urren
e, the
omponent

is not eliminated from being pi
ked again.

Taking Advantage of While Loop Stru
ture

Another possible solution to the problem takes advantage of the fa
t that most non-terminating

low-level NDR programs appear inside a while(true) loop. This solution proposes that when a

low-level NDR program rea
hes the end of its while(true) loop, it relinquishes
ontrol ba
k to the

simulator. The simulator then uses the high-level NDR strategy to pi
k another
omponent. Here

also, the
omponent is not eliminated from being pi
ked again.

30

Implemented Strategy

The advantage of the Maximum NDR Steps strategy is that it does not rely on the stru
ture of

the low-level NDR program. Although, it is
ommon for NDR programs to exhibit the mentioned

stru
ture, they are not required to do so. Thus if the se
ond strategy were implemented, NDR

programs that did not exhibit the while(true) loop stru
ture would not avoid the pitfall of in�nite

looping. The advantage of the se
ond strategy is that it does not have to pi
k a potentially arbitrary

number as the limit on the low-level NDR steps allowed during a single iteration.

We made the de
ision to implement the �rst strategy, as the possibility of non standard stru
-

tured low-level NDR programs
ausing in�nite loops appeared parti
ularly unpleasant. The user

now has the option to spe
ify the maximum number of steps that a low-level NDR program runs

for during a single request for an a
tion. This option is presented via the ndrSteps
ommand line

parameter. The parameter is defaulted at 500.

Note that the implementation of this strategy a�e
ts primitive simulations. We mentioned

above that if a low-level NDR blo
k loops in a primitive simulation, the entire simulation loops.

With the introdu
tion of the maximum steps limitation, instead of the simulation looping, it will

halt and display an appropriate message. In the
ase of a primitive simulation with an unusually

long NDR blo
k, the user might want to in
rease the ndrSteps parameter to avoid the possibility

of the simulation halting without the NDR blo
k looping. The
ode
hanges ne
essary to support

the ndrSteps parameter are des
ribed in Se
tion 2.3

2.1.4 Composite S
hedule Blo
ks

Above we dis
ussed the possibility of reusing
omponent s
hedule blo
ks to resolve nondetermin-

ism in a
omposite automaton. It might be the
ase that the user does not want to reuse the

existing
omponent NDR blo
ks, but instead
reate a new NDR blo
k tailored spe
i�
ally for the

omposite automaton. In ea
h �re invo
ation of this
omposite NDR blo
k, the user spe
i�es

both the
omponent that is exe
uting the a
tion and the a
tion being exe
uted. In doing so, the

user resolves both the high-level nondeterminism, by spe
ifying the
omponent, and the low-level

nondeterminism, by spe
ifying the a
tion.

The modi�
ations to the IOA language required to support
omposite NDR blo
ks are dis
ussed

in Chapter 4. NDR blo
ks for
omposite automata are very similar to those for primitive automata.

The two di�eren
es being:

31

� The a
tion in ea
h �re invo
ation of a
omposite s
hedule blo
k must be pre�xed with the

omponent owning the a
tion.

� Referen
es to
omponent state variables of all
omponents are allowed from within the
om-

posite s
hedule blo
k.

Allowing the �rst modi�
ation requires
omponent names to be of a sort that has a

ess to

all of the a
tions of the automaton that this
omponent is based on. In IOA Toolkit release 0.09,

read-only referen
es to the state variables of the single primitive automaton are allowed from within

that automaton's NDR blo
k. These referen
es are ne
essary be
ause it is the responsibility of the

s
hedule blo
k to
he
k pre
ondition and where
lause predi
ates before s
heduling a transition.

Allowing referen
es to the state variables of all
omponents, requires
omponent names to be of a

sort that has a

ess to all of the state variables of the automaton that this
omponent is based on.

2.2 Intera
tion of Components

In Se
tion 1.2.1 we saw that the only way two
omponents of a
omposite automaton may intera
t

is through a same named a
tion �. Moreover, the limitations posed on
ompositions, the sets of

omponent internal a
tions have to be disjoint from all other
omponent a
tions and ea
h output

a
tion is
ontrolled by a single automaton, limit this intera
tion to the exe
ution of an output a
tion

� of one
omponent
ausing the exe
ution of input a
tions � of one ore more other
omponents.

This intera
tion also depends on the signatures of � mat
hing and on the a
tual parameters of �

satisfying the where
lause of the input a
tion.

Knowing that
omponent intera
tion is limited to the above, the simulator must now simply

exe
ute all appropriate input a
tions � in the same step that the output a
tion � was exe
uted.

Thus the only simulation steps during whi
h an intera
tion is possible, are those steps that begin

by exe
uting an output a
tion. When de
iding how to implement this feature, two options were

onsidered. The pros and
ons of the options deal with the existen
e of where
lauses in the

transitions of �. These implementation options are dis
ussed in detail in the following se
tion.

2.2.1 Where Clauses in Transitions

One possible implementation of intera
tion between
omponents involved building a map from the

output transitions of
omponents to zero or more input transitions of other
omponents su
h that

32

the exe
ution of the output transition would
ause the input transition(s) to be exe
uted. This

map would be built before any simulation steps took pla
e. Thus every time an output transition

would be exe
uted during the simulation, the simulator would simply
onsult the map to see if any

input transitions need to be exe
uted as well. An alternative option had the map being built during

the simulation. Here every time an output a
tion were exe
uted, the input a
tions
orresponding

to it would be populated in the map.

The problem with this implementation was dis
ussed in Se
tion 1.2.3, and involves the where

lauses of the transitions of �. In order to build the map above, the simulator would have to �nd the

interse
tions of the where
lauses of the output and input transitions �. As we saw in table 1.2.1

this is often a diÆ
ult task, whi
h at times (depending on the
omplexity of the predi
ate in the

where
lause) may be unde
idable and require a proof. We thus de
ided to abandon the above

implementation.

Instead, the simulator waits for the output transition � to be exe
uted. Having done so, the

simulator takes advantage of the fa
t that it has a

ess to all of the a
tual parameters of � and

using these parameters
an evaluate the where
lauses of all input a
tions � to see if they should

also be exe
uted. If an intera
tion does o

ur the simulator does not re
ord the
onne
tion between

the output transition � and the triggered input transition(s) � for future purposes. This is due to

the fa
t that the next time output transition � is exe
uted its a
tual parameters might not
ause

the same set of input transitions � to be exe
uted.

Even with the implemented strategy above, a limitation on the type of predi
ates that may

appear in the where
lauses must be pla
ed. Namely, the predi
ate must not
ontain either the

existential or the universal quanti�er. Just as dis
ussed in Se
tion 1.2.1 , the presen
e of su
h

quanti�ers would require a proof.

2.2.2 S
heduled Input A
tions

An interesting situation arises when
omponent s
hedule blo
ks are being reused to resolve non-

determinism in a
omposite simulation, des
ribed in Se
tion 2.1.2. What if input transition � of

omponent A, that may be triggered by output transition � of
omponent B, is s
heduled in the

low-level NDR blo
k of
omponent A? Two strategies were
onsidered when dealing with su
h

situations:

1. Look for and exe
ute output transition(s) � when input transition � is exe
uted,

33

automaton Aut1

signature input a

output b

...

s
hedule

do

while(true) do

f i r e output b;

f i r e input a

od

od

automaton Aut2

signature input b

output

...

s
hedule

do

while(true) do

f i r e output
;

f i r e input b

od

od

automaton CompositeAut

omponents Aut1;Aut2

Figure 2.2.4: Exe
ution of s
heduled input a
tions

2. Ignore all s
heduled input transitions that at some point may be triggered by the exe
ution

of output transitions.

We made the de
ision to implement the se
ond strategy. Sin
e the output a
tion is the driving

for
e behind the intera
tion of
omponents, it makes more sense for it to trigger the input a
tion and

not vi
e versa. An input a
tion � that gets triggered by an output a
tion in the
omposition, may be

s
heduled in the original
omponent be
ause when it is simulated as a stand alone automaton, the

NDR blo
k of this
omponent mimi
s its external environment. On
e this automaton is
omposed

with another one (that has an output a
tion �), and be
omes a
omponent in a more
omplex

automaton, its s
hedule blo
k no longer needs to mimi
 the external environment be
ause the

system be
omes
losed as a result of the
omposition. To �nd out whether a s
heduled input a
tion

may eventually be triggered by an output a
tion, we use the strategy des
ribed in Se
tion 2.2.1

that was used to �nd out what input a
tions are triggered by the s
heduled output a
tion.

34

Figure 2.2.4 shows partial spe
i�
ations of
omponent automata Aut1, Aut2, and the
ompos-

ite automaton CompositeAut. We
onsider simulating CompositeAut and reusing the
omponent

s
hedule blo
ks to resolve nondeterminism. When the simulator en
ounters input a
tion a in the

s
hedule blo
k for Aut1, it will exe
ute it. The system represented by CompositeAut is not
om-

pletely
losed (Aut2 does not have an output a
tion named a), and the �ring of input a
tion a still

mimi
s the external environment of CompositeAut. However, when the simulator en
ounters input

a
tion b in the s
hedule blo
k for Aut2, it will not exe
ute it. This a
tion represents part of the

system that has be
ome
losed due to the
omposition of Aut1 and Aut2. It will only be exe
uted

as a result of output a
tion b of
omponent automaton Aut1 being exe
uted.

2.3 Code Changes

The
lass simulator/shell/SimShell has been modi�ed to a

ept the ndrSteps, randComp,

and weightComp parameters and to display them for simulator help. The value of the ndrSteps

parameter is stored in the simulator/Simulator
lass. The
lass

simulator/Exe
Control has been modi�ed to enable limited step exe
ution. The
lass

simulator/StepsEx
eededProdu
t has been
reated to represent the event of an NDR program

ex
eeding the alloted number of steps.

The veri�
ation of the spe
i�ed weight �le provided with the weightComp parameter is done

in simulator/A
tualCompositeAutomaton. This
lass also builds the representation of the weight

distribution. It
ontains an array that maps weight ranges to
omponent indi
es and a hash table

that maps the indi
es to the
omponent names.

For more
ode
hange detail please
onsult Appendix B.

35

36

Chapter 3

Examples

This
hapter
ontains �ve examples of
omposite automata that we would like to simulate. We

break the examples down based on the
hoi
e of nondeterminism resolution strategy, reuse of

omponent blo
ks versus use of a
omposite s
hedule blo
k, and on the absen
e versus presen
e of

omponent parameters. The �rst four examples
over the four
ombinations of the above s
enarios.

The �fth example illustrates the use of a with blo
k within a
omposite s
hedule. The with blo
k

is a new IOA notion and is dis
ussed in detail in Se
tion 3.3. Chapter 4 dis
usses the IOA language

extensions ne
essary to support the simulation of these examples. Chapter 5 dis
usses the simulator

extensions ne
essary to support the simulation of these examples.

3.1 Examples with Non-Parameterized Components

The �rst two examples we
onsider are slight modi�
ations of the toy banking system of [GL00℄.

The banking system
onsists of a single a

ount that may be referen
ed from multiple lo
ations.

Automaton Env, Figure 3.1.2 , represents the outside environment of the banking system. The

lo
ations are indexed by the integer i. Env des
ribes what operations
an be invoked, where, and

when. Noti
e that the only state kept by this automaton is a boolean
ag for ea
h lo
ation. This

enables the environment automaton to request transa
tions at a
ertain lo
ation only on
e the

previous transa
tion at that lo
ation has
ompleted and Env has been informed of its
ompletion.

The a
tions of this automaton provide an interfa
e for its
ommuni
ation with the Bank automaton.

Automaton Bank, Figure 3.1.3, is a mirror image of the Env automaton - output a
tions of Env

are input a
tions of Bank and vi
e versa. Automaton Bank
ontains an additional internal a
tion,

37

Env Bank

doBalance

requestDeposit

requestWithdrawal

requestBalance

OK

reportBalance

Figure 3.1.1: A
tions of Env and Bank

automaton Env

signature

input OK(i: Int,y:OpRe
), reportBalan
e(n, i:Int)

output requestDeposit(n,i:Int) where n>0,

requestWithdrawal(n,i:Int) where n>0, requestBalan
e(i:Int)

states a
tive:Array[Int,Bool℄ :=
onstant(false)

trans i t ions

input OK(i,y)

e f f a
tive[i℄ :=false

input reportBalan
e(n,i)

e f f a
tive[i℄ :=false

output requestDeposit(n,i)

pre :a
tive[i℄

e f f a
tive[i℄ :=true

output requestWithdrawal(n,i)

pre :a
tive[i℄

e f f a
tive[i℄:=true

output requestBalan
e(i)

pre :a
tive[i℄

e f f a
tive[i℄ :=true

Figure 3.1.2: Banking environment automaton

doBalan
e. As transa
tion requests are re
eived by Bank, they are re
orded. At some point after

a request for the balan
e at a
ertain lo
ation is re
eived, the doBalan
e transition
al
ulates the

balan
e at that parti
ular lo
ation, and the balan
e at that lo
ation is now ready to be returned

by reportBalan
e.

The interfa
e diagram in Figure 3.1.1 shows that by mat
hing external a
tion of Env and Bank,

we
an form a new
omposite automaton EnvBank:

automaton EnvBank

omponents Bank;Env

Automaton EnvBank is a
ombination of Env and Bank, and represents the bank
omposed

with its environment. In order to be simulated in the presen
e of a simulator that is
apable of

handling only primitive automata, EnvBank would have to �rst be manually
omposed and then

38

simulated. Test
ase Banking01 of the IOA toolkit test suite does exa
tly this. We now see how

automaton EnvBank is simulated dire
tly.

39

automaton Bank

signature

input requestDeposit(n, i: Int) where n > 0,

requestWithdrawal(n, i: Int) where n > 0,

requestBalan
e(i: Int)

output

OK(i: Int,x:OpRe
), reportBalan
e(n, i: Int)

internal

doBalan
e(i: Int, tempChosenOps: Set[OpRe
℄, amount : Int)

states ops: Set[OpRe
℄ :={}, pending_ops: Set[OpRe
℄ :={},

reported_ops: Set[OpRe
℄ :={}, bals: Set[BalRe
 ℄ :={},

pending_bals: Set[BalRe
 ℄ := {}, done_bals : Set[BalRe
℄,

lastSeqno: Array[Int, Int℄ :=
onstant(0),

hosenOps: Set[OpRe
℄

trans i t ions

input requestDeposit(n, i)

e f f lastSeqno[i℄ := lastSeqno[i℄ + 1;

ops := insert([i, lastSeqno[i℄, n, false℄, ops);

pending_ops := insert ([i, lastSeqno[i℄, n, false℄, pending_ops);

input requestWithdrawal(n, i)

e f f lastSeqno[i℄ := lastSeqno[i℄ + 1;

ops := insert([i, lastSeqno[i℄, -n, false℄, ops);

pending_ops := insert ([i, lastSeqno[i℄, -n, false℄, pending_ops);

input requestBalan
e(i)

e f f pending_bals := insert ([i, 0℄, pending_bals);

bals := pending_bals [done_bals;

output OK(i,x)

pre x 2 ops ^ x.lo
 = i ^ :x.reported

e f f ops:=insert(set_reported(x,true),delete(x,ops));

pending_ops := delete(x,pending_ops);

reported_ops:=insert(set_reported(x,true),reported_ops)

output reportBalan
e(n,i)

pre [i,n℄ 2 done_bals

e f f done_bals :=delete([i,n℄,done_bals);

bals:=pending_bals [done_bals

internal doBalan
e(i,tempChosenOps,amount)

pre [i,0℄ 2 pending_bals

e f f
hosenOps:=tempChosenOps;

pending_bals:=delete([i,0℄, pending_bals);

done_bals :=insert ([i,amount ℄,done_bals);

bals:=pending_bals [done_bals

Figure 3.1.3: Automaton Bank

40

3.1.1 Example : Reuse of Component S
hedule Blo
ks

Suppose, the
omponent automata, Env and Bank had s
hedule blo
ks asso
iated with them. Let

the s
hedule blo
k in Figure 3.1.4 be part of the spe
i�
ation of automaton Env, and the s
hedule

blo
k in Figure 3.1.5 part of the spe
i�
ation of automaton Bank. These automata
an now be

simulated as stand alone automata. Their output a
tions are simply not \heard" by anyone. The

automaton EnvBank,
loses the system. Noti
e that for the
omposite simulation, the numLo
ations

and maxAmount s
hedule blo
k variables in Figures 3.1.4 and 3.1.5 are set to the same value to

avoid ambiguity.

The extended simulator
an now simulate the
omposite automaton EnvBank dire
tly. Assum-

ing that the
he
ker has been used to
ompile the ioa �le
ontaining the spe
i�
ation of EnvBank

into the intermediate language �le, EnvBank01.il

1

, we
an start the simulation by entering the

following string at the
ommand line:

sim 10 EnvBank EnvBank01.il

The default high-level nondeterminism resolution strategy is stri
tly uniform ordering. The

ommand line invo
ation,

sim -randComp 10 EnvBank EnvBank01.il

would
ause the random strategy to be used. At ea
h step of the simulation, the next
omponent

is sele
ted based on the high-level nondeterminism resolution strategy provided at the
ommand

line. The NDR blo
k of this
omponent is now exe
uted until an a
tion is �red or the NDR blo
k

ex
eeds the maximum number of steps alloted to it. If the �red a
tion happens to be an output

one, the input a
tions of all other
omponents are
he
ked for a possible triggering. The simulation

now returns to its highest level of nondeterminism and the sele
tion strategy is on
e again used to

sele
t an NDR blo
k of a parti
ular
omponent to be exe
uted.

1

This
an be a

omplished by running, ioaChe
k -il EnvBank01.ioa > EnvBank01.il, where EnvBank01.ioa is

the �le
ontaining the spe
i�
ation of EnvBank

41

s
hedule

states

numLo
ations, lo
ation, a
tionChosen, maxAmount : Int,

op : OpRe
, tempOps : Set[OpRe
℄ := {}, tempOps2 : Set[OpRe
℄ := {},

tempBals : Set[BalRe
 ℄ := {}, bal : BalRe
, amount : Int,

loopBreak : Bool := false

do

numLo
ations := 15;

maxAmount := 100;

while (true) do % We

0

ll pi
k a random lo
ation now

lo
ation := randomInt (0, numLo
ations - 1);

a
tionChosen := randomInt (0, 5);

i f (a
tionChosen � 0 ^ a
tionChosen � 2) then

% Do a deposit. But must be sure we

0

re not a
tive at this lo
ation

i f :Env.a
tive[lo
ation℄ then

f i r e output requestDeposit(randomInt (1, maxAmount), lo
ation)

f i

f i ;

i f (a
tionChosen � 3 ^ a
tionChosen � 4) then

i f :Env.a
tive[lo
ation℄ then

f i r e output requestWithdrawal (randomInt (1, maxAmount), lo
ation)

f i

f i ;

i f (a
tionChosen = 5) then

i f :Env.a
tive[lo
ation℄ then

f i r e output requestBalan
e (lo
ation)

f i

f i

od

od

Figure 3.1.4: The NDR blo
k for automaton Env

42

s
hedule

states

numLo
ations, lo
ation, a
tionChosen, maxAmount : Int,

op : OpRe
, tempOps : Set[OpRe
℄ := {}, tempOps2 : Set[OpRe
℄ := {},

tempBals : Set[BalRe
 ℄ := {}, bal : BalRe
, amount : Int,

loopBreak : Bool := false

do

numLo
ations := 15; maxAmount := 100;

while (true) do % We

0

ll pi
k a random lo
ation now

lo
ation := randomInt (0, numLo
ations - 1);

a
tionChosen := randomInt (0,4);

i f (a
tionChosen � 0 ^ a
tionChosen � 2) then

tempOps := Banking01.pending_ops; loopBreak := false;

while (:isEmpty(tempOps) ^ :loopBreak) do

op :=
hooseRandom (Banking01.ops);

tempOps := delete (op, tempOps);

i f (:op.reported) then loopBreak := true;

f i r e output OK (op.lo
, op)

f i od f i ;

i f (a
tionChosen = 3) then

tempBals := Banking01.done_bals;

loopBreak := false;

i f (:isEmpty(tempBals)) then bal :=
hooseRandom (tempBals);

tempBals := delete (bal, tempBals);

f i r e output reportBalan
e (bal.value, bal.lo
)

f i f i ;

i f (a
tionChosen = 4) then % Find a null balan
e

tempBals := Banking01.pending_bals;

loopBreak := false; bal := [10, 10℄;

i f (:isEmpty(tempBals)) then

bal :=
hooseRandom (tempBals);

tempBals := delete (bal, tempBals);

% There is a null bal to do balan
e for

loopBreak := false; tempOps := Banking01.ops;

tempOps2 := {};

while (:isEmpty(tempOps)) do

op :=
hooseRandom(tempOps);

tempOps := delete (op, tempOps);

i f (op.lo
 = bal.lo
) then

tempOps2 := insert (op, tempOps2)

f i od;

tempOps := tempOps2; amount := 0;

while (:isEmpty(tempOps)) do

op :=
hooseRandom(tempOps);

tempOps := delete (op, tempOps);

amount := amount + op.amount

od;

f i r e internal doBalan
e (bal.lo
, tempOps2, amount)

f i f i od od

Figure 3.1.5: The NDR blo
k for automaton Bank

43

3.1.2 Example : A Composite S
hedule Blo
k

Above we saw that when simulating a
omposite automaton, a user of the simulator may want to

resolve nondeterminism by reusing the NDR blo
ks of the
omponent automata. However, it may

be the
ase that the user wants to resolve nondeterminism by writing a brand new NDR blo
k for

the
omposite automaton. In the former
ase, the
omponent blo
ks serve the purpose of resolving

the low-level nondeterminism while the
ommand line sele
ted strategy resolves the high-level

nondeterminism. In this
ase, the
omposite NDR blo
k resolves both levels of nondeterminism.

Consider adding the NDR blo
k in Figure 3.1.6 (de
laration of s
hedule state variables has been

ommitted for the purpose of brevity) to the spe
i�
ation of automaton EnvBank:

automaton EnvBank

omponents Bank;Env

Noti
e that ea
h �re invo
ation is now followed by the type of a
tion being invoked as well

as the
omponent whi
h owns the �red a
tion, the a
tion name, and the a
tual parameters, as

in fire output Bank.OK (op.lo
, op). Similarly, there are referen
es to the state variables of

omponent automata, as in Bank.done bals. The NDR blo
k in Figure 3.1.6 was designed to

losely model the NDR blo
k used in the above mentioned test suite
ase Banking01, where the

omposite automaton was
onverted to a primitive one manually. Assuming that the
he
ker has

been used to
ompile the ioa �le
ontaining the spe
i�
ation of EnvBank and its
omposite s
hedule

blo
k into the intermediate language �le, EnvBank02.il, we
an start the simulation by entering

the following string at the
ommand line:

sim 10 EnvBank EnvBank02.il

Noti
e that this invo
ation does not di�er from the one above where
omponent s
hedule blo
ks

were reused to resolve nondeterminism. The simulator uses the
omposite s
hedule blo
k if it is

present. If it is not, it defaults to reusing
omponent s
hedule blo
ks. The above simulation

produ
es the transition output displayed in Figure 3.1.7. When
ompared to the transition output

of the manually
omposed automaton in the test
ase Banking01, Figure 3.1.8, we see that the two

outputs are analogous.

44

s
hedule

do

numLo
ations := randomInt(10,15); maxAmount := 100;

while (true) do % We

0

ll pi
k a random lo
ation now

lo
ation := randomInt (0, numLo
ations - 1);

a
tionChosen := randomInt (0, 10);

i f (a
tionChosen � 0 ^ a
tionChosen � 2) then

i f :Env.a
tive[lo
ation℄ then

f i r e output Env.requestDeposit(randomInt (1, maxAmount), lo
ation)

f i f i ;

i f (a
tionChosen � 3 ^ a
tionChosen � 4) then

i f :Env.a
tive[lo
ation℄ then

f i r e output Env.requestWithdrawal (randomInt (1, maxAmount), lo
ation)

f i f i ;

i f (a
tionChosen = 5) then

i f :Env.a
tive[lo
ation℄ then

f i r e output Env.requestBalan
e (lo
ation)

f i f i ;

i f (a
tionChosen � 6 ^ a
tionChosen � 8) then

tempOps := Bank.pending_ops; loopBreak := false;

while (:isEmpty(tempOps) ^ :loopBreak) do

op :=
hooseRandom (Bank.ops); tempOps := delete (op, tempOps);

i f (:op.reported) then loopBreak := true;

f i r e output Bank.OK (op.lo
, op)

f i od f i ;

i f (a
tionChosen = 9) then

tempBals := Bank.done_bals; loopBreak := false;

i f (:isEmpty(tempBals)) then

bal :=
hooseRandom (tempBals); tempBals := delete (bal, tempBals);

f i r e output Bank.reportBalan
e (bal.value, bal.lo
)

f i f i ;

i f (a
tionChosen = 10) then

tempBals := Bank.pending_bals; loopBreak := false; bal := [10, 10℄;

i f (:isEmpty(tempBals)) then

bal :=
hooseRandom (tempBals); tempBals := delete (bal, tempBals);

loopBreak := false; tempOps := Bank.ops; tempOps2 := {};

while (:isEmpty(tempOps)) do

op :=
hooseRandom(tempOps); tempOps := delete (op, tempOps);

i f (op.lo
 = bal.lo
) then

tempOps2 := insert (op, tempOps2)

f i od; tempOps := tempOps2; amount := 0;

while (:isEmpty(tempOps)) do

op :=
hooseRandom(tempOps); tempOps := delete (op, tempOps);

amount := amount + op.amount od;

f i r e internal Bank.doBalan
e (bal.lo
, tempOps2, amount)

f i f i od od

Figure 3.1.6: Composite NDR blo
k for automaton EnvBank

45

Automaton initialized

1: output requestWithdrawal(9, 6) in automaton Env --- Conne
ted to :

input requestWithdrawal(9, 6) in automaton Bank

2: output requestBalan
e(11) in automaton Env --- Conne
ted to :

input requestBalan
e(11) in automaton Bank

3: output requestWithdrawal(74, 2) in automaton Env --- Conne
ted to :

input requestWithdrawal(74, 2) in automaton Bank

4: output OK(2, [lo
: 2, seqno : 1, amount : -74, reported: false℄)

in automaton Bank --- Conne
ted to :

input OK(2, [lo
: 2, seqno: 1, amount : -74, reported: false℄)

in automaton Env

5: output requestDeposit(36, 12) in automaton Env --- Conne
ted to :

input requestDeposit(36, 12) in automaton Bank

6: output OK(12, [lo
: 12, seqno : 1, amount : 36, reported: false℄)

in automaton Bank --- Conne
ted to :

input OK(12, [lo
: 12, seqno : 1, amount : 36, reported: false℄)

in automaton Env

7: internal doBalan
e(11, (), 0) in automaton Bank

8: output requestWithdrawal(11, 9) in automaton Env --- Conne
ted to :

input requestWithdrawal(11, 9) in automaton Bank

9: output OK(6, [lo
: 6, seqno : 1, amount : -9, reported: false℄)

in automaton Bank --- Conne
ted to :

input OK(6, [lo
: 6, seqno: 1, amount : -9, reported: false℄)

in automaton Env

10: output requestWithdrawal(69, 1) in automaton Env --- Conne
ted to :

input requestWithdrawal(69, 1) in automaton Bank

No errors

Figure 3.1.7: Simulator output for
omposite automaton with a
omposite s
hedule blo
k

Automaton initialized

1: internal requestWithdrawal(9, 6) in automaton Banking01

2: internal requestBalan
e(11) in automaton Banking01

3: internal requestWithdrawal(74, 2) in automaton Banking01

4: output OK(2, [lo
: 2, seqno : 1, amount : -74, reported: false℄)

in automaton Banking01

5: internal requestDeposit(36, 12) in automaton Banking01

6: output OK(12, [lo
: 12, seqno : 1, amount : 36, reported: false℄)

in automaton Banking01

7: internal doBalan
e(11, (), 0) in automaton Banking01

8: internal requestWithdrawal(11, 9) in automaton Banking01

9: output OK(6, [lo
: 6, seqno : 1, amount : -9, reported: false℄)

in automaton Banking01

10: internal requestWithdrawal(69, 1) in automaton Banking01

No errors

Figure 3.1.8: Simulator output for manually
omposed
omposite automaton

46

3.2 Examples with Parameterized Components

Before this proje
t, automata parameters, both type and variable, were not supported by either

primitive or
omposite simulations. This is not very surprising as automata parameters have lit-

tle bene�t to a simulator that
an only handle primitive automata. Parameters allow for simple

spe
i�
ations of
omposite automata with multiple
omponents based on the same automaton.

For example the running example of the next few se
tions is a system that
onsists of multiple

pro
ess and multiple
hannel
omponents. Every pro
ess
omponent is based on the same automa-

ton. However, ea
h one is instantiated with a di�erent parameter. Variable parameters are now

supported, while type parameters remain a fututre work.

The examples used in this and the following se
tion, Figure 3.2.9, are slight modi�
ations of the

Channel, Pro
ess, and Sys automata used in the \Illustrative examples" se
tion of Tauber's paper

[Tau03℄. The Channel automaton represents a
ommuni
ation
hannel that
an drop dupli
ate

messages and reorder messages. Noti
e the use of
onst parameters des
ribed in Se
tion 1.1.2.

The Pro
ess automaton represents a pro
ess that runs on a node indexed by the integer automaton

parameter, n. This pro
ess
ommuni
ates with its neighbors by sending and re
eiving messages

that
onsist of natural numbers. The pro
ess re
ords the smallest value it has re
eived and passes

on all values that ex
eed the re
orded value; if the set of values waiting to be passed on grows too

large, the pro
ess
an also lose a nondeterministi
 set of those values [Tau03℄.

In the
omponents de�nition of automaton Sys, C is a
omponent name and Channel is a base

automaton name. Component names appearing in the
omponents spe
i�
ation will hen
eforth

be referred to as
omponent tags.

We now note that although the de�nition of automaton Sys in Figure 3.2.9 is a valid IOA

spe
i�
ation, it is not suÆ
ient for the purposes of simulating
omposite automata. The where

lause presents the simulator with the problem of instantiating all of the
omponents in its s
ope.

Although it might seem that this is feasible in the
ase of automaton Sys in Figure 3.2.9, a more

omplex predi
ate involving n would for
e the simulator to sear
h for all values satisfying the

predi
ate. Thus without a theorem prover, it is not possible for the simulator to
orre
tly instantiate

all of the
omponents s
oped by where
lauses. The interfa
e diagram in Figure 3.2.10 shows the

intera
tion of the Pro
ess and Channel
omponents when all of the
omponents in the s
ope of the

two where
lauses of Figure 3.2.9 are instantiated.

We �rst avoid this problem by
onsidering two examples that involve spe
i�
ations of the

47

omposite automaton Sys that do not
ontain a where
lause. Later, we introdu
e the notion of

a with blo
k and illustrate its use through an example. A with blo
k solves the s
oping pitfall by

requiring the user to instantiate all of the parti
ipating
omponents.

48

automaton Channel(i, j:Int)

signature

input send(
onst i,
onst j, m:Int)

output re
eive(
onst i,
onst j, m:Int)

states
ontents:Set[Int℄ := {},

formalI:Int:=i, formalJ:Int:=j

trans i t ions

input send(i, j, m)

e f f
ontents := insert(m,
ontents)

output re
eive(i, j, m)

pre m 2
ontents

e f f
ontents := delete(m,
ontents)

automaton Pro
ess(n:Int)

signature

input re
eive(
onst n-1,
onst n, x:Int)

output send(
onst n,
onst n+1, x:Int),

overflow(
onst n, s:Set[Int℄)

states

val:Int := 0, toSend:Set[Int℄ := {}, formalN:Int:=n

trans i t ions

input re
eive(n-1, n, x)

e f f i f val = 0 then val := x

e l s e i f x < val then

toSend := insert(val, toSend);

val := x

e l s e i f val < x then

toSend := insert(x, toSend) f i

output send(n, n+1, x)

pre x 2 toSend

e f f toSend := delete(x, toSend)

output overflow(n, s:Set[Int℄; l o
a l t:Set[Int℄)

pre s = toSend ^ n < size(s) ^ t � s

e f f toSend := t

automaton Sys

omponents C[n:Int℄: Channel(n, n+1) where 1 � n ^ n < 5;

P[n:Int℄: Pro
ess(n) where 1 � n ^ n � 5

Figure 3.2.9: Automaton Sys

Process

1

Process

2

Process

3

Process

4

Process

5

Channel

1-2

Channel

2-3

Channel

3-4

Channel

4-5

send send send send

receive receive receive receive

overflow overflow overflow overflow overflow

Figure 3.2.10: Components of automaton Sys

49

3.2.1 Example: Parameterized Components, Reuse of Component S
hedule

Blo
ks

Consider the following spe
i�
ation of automaton Sys as an alternative to the spe
i�
ation in

Figure 3.2.9:

automaton Sys

omponents C1: Channel(5,6); P1: Pro
ess(5);

C2: Channel(6,7); P2: Pro
ess(6)

The automaton Sys now
ontains two
omponents based on ea
h base automaton. Sin
e there is

no
omposite s
hedule present, the simulation will reuse the
omponent s
hedule blo
ks for Channel,

Figure 3.2.11, and Pro
ess, Figure 3.2.12. We invoke the simulation with:

sim -outputTrans 8 Sys Pro
Chan01.il

Figure 3.2.13 shows the transition output of the simulation. Noti
e that the
omponent tag

names and not the base automaton names are used to identify the
omponents in the output.

s
hedule

do

while(true) do

f i r e input send(Channel.formalI,Channel.formalJ,290);

f i r e output re
eive(Channel.formalI,Channel.formalJ,290)

od od

Figure 3.2.11: NDR blo
k for Channel

s
hedule

states formVar:Int

do

while(true) do

formVar:=Pro
ess.formalN-1;

f i r e input re
eive(formVar,Pro
ess.formalN,18);

formVar:=Pro
ess.formalN+1;

i f (18 2 Pro
ess.toSend) then

f i r e output send(Pro
ess.formalN,formVar,18)

f i od od

Figure 3.2.12: NDR blo
k for Pro
ess

50

Automaton initialized

1: input re
eive(4, 5, 18) in automaton P1

2: input send (6, 7, 290) in automaton C2

3: input re
eive(5, 6, 18) in automaton P2

4: input send (5, 6, 290) in automaton C1

5: output send(5, 6, 18) in automaton P1 --- Conne
ted to :

input send(5, 6, 18) in automaton C1

6: output re
eive(6, 7, 290) in automaton C2

7: output send(6, 7, 18) in automaton P2 --- Conne
ted to :

input send(6, 7, 18) in automaton C2

8: output re
eive(5, 6, 290) in automaton C1 --- Conne
ted to :

input re
eive(5, 6, 290) in automaton P2

No errors

Figure 3.2.13: Simulator output for automaton Sys, �rst
ase

51

3.2.2 Example: Parameterized Components, Composite S
hedule Blo
k

We now
onsider the
ase where the spe
i�
ation of automaton Sys remains as above:

automaton Sys

omponents C1: Channel(5,6); P1: Pro
ess(5);

C2: Channel(6,7); P2: Pro
ess(6)

However, now we provide it with a
omposite s
hedule blo
k, Figure 3.2.14. Noti
e, that the

referen
es to the
omponent state variables and
omponent a
tions use the
omponent tag names

and not the base automata names. The invo
ation of this simulation, and its output are similar to

those in the above se
tion.

do

while(true) do

sendingAmount:=sendingAmount-1;

amount:=P1.formalN-1;

f i r e input P1.re
eive(amount,P1.formalN,sendingAmount);

amount:=P1.formalN+1;

f i r e output P1.send(P1.formalN,amount,sendingAmount);

f i r e output C1.re
eive(C1.formalI,C1.formalJ,sendingAmount);

amount:=P2.formalN+1;

f i r e output P2.send(P2.formalN,amount,sendingAmount)

od od

Figure 3.2.14: NDR blo
k for automaton Sys

3.3 With Blo
ks

As mentioned above the simulator is not
apable of instantiating
omponents based solely on the

where
lause in the
omponents de
laration. The with blo
k solves this problem by requiring

the user to provide the simulator with all of the
omponents that will be present in the simulation.

Thus the burden of a possible proof is shifted from the simulator to the user. The with blo
k is

part of the s
hedule blo
k and enumerates the
omponents that will be
reated. Figure 3.3.15

shows an example of a with blo
k that might appear in the s
hedule blo
k of automaton Sys from

Figure 3.2.9. We refer to ea
h line in the with blo
k as a de
laration.

De
larations may only be made for
omponent tags with formal parameters. De
larations for

omponent tags with no formal parameters, would result in the
omposite automaton having more

than one identi
al
omponent, and this would violate the limitations on
ompositions established

52

s
hedule

states

randomInt:Int

with

ompChannel1 = C[1℄,

ompChannel2 = C[2℄,

ompChannel3 = C[3℄,

ompP1 = P[1℄,

ompP2 = P[2℄,

ompP3 = P[3℄,

ompP4 = P[4℄

do

f i r e output
ompP2.send(1,2,10)

...

Figure 3.3.15: Example of a with blo
k

in Se
tion 1.2.1. Noti
e that in addition to enumerating the
omponents that will parti
ipate in

the simulation, the user provides a handle name for ea
h instantiated
omponent (the name on the

left of the equals sign). As des
ribed below, the handle names are used in the s
hedule blo
k of the

omposite automaton.

3.3.1 Handle Names in S
hedule Blo
ks

Aside from the burden of a proof,
omponent de�nitions with where
lauses pose a diÆ
ulty for

omposite s
hedule blo
ks. In Se
tion 2.1.4 we established that a �re invo
ation in a
omposite

s
hedule blo
k must be pre�xed by the name of the
omponent that is exe
uting the a
tion. One

possibility for referen
ing the desired
omponent in the s
hedule blo
k is to list the
omponent

name followed by the a
tual parameters for that
omponent. Su
h an invo
ation would look like:

fire output P[2℄.send(1,2,10)

The presen
e of the with blo
k gives us the option to referen
e the
omponent by its handle

name. This is the implemented option and it looks like:

fire output
ompP2.send(1,2,10)

The bene�t of the
hosen option is brevity in the
ase of a
omponent with many parameters.

In su
h a
ase the user does not have to re-list all of the parameters every time he/she wants to

referen
e the
omponent. As mentioned in Se
tion 2.1.4, the handle name
an also be used in the

s
hedule blo
k to referen
e a state variable of a parti
ular
omponent.

53

In addition to their use in
omposite s
hedule blo
ks, handle names also provide an implemen-

tation bene�t to the simulator itself. During a simulation of a
omposite automaton, the simulator

must tra
k all of the individual
omponents. Handle names provide a
onvenient method for the

simulator to uniquely identify all su
h
omponents. Further, handle names are useful for output

purposes in the simulation log �le. To identify
omponent variables and transitions, the simulator

an display them pre�xed by the
omponent's handle name.

3.3.2 Non Exhaustive De
laration

We saw above how with blo
ks solve the problem of the ne
essity of a proof by enumerating the

desired
omponents. The simulator
an now
he
k the a
tual parameters provided in ea
h of the

de
larations against the
orrespondingwhere
lause. Just as in Se
tion 1.2.1, we require that these

where
lauses do not
ontain quanti�ers, otherwise the simulator would not be able to evaluate

the where
lause predi
ate even in the presen
e of a
tual values. If the parameter provided makes

the where
lause predi
ate evaluate to false, the simulator will halt the simulation and display an

appropriate error message. Noti
e that although the simulator
an dete
t illegal de
larations, it
an

not verify whether or not the with blo
k exhausts the where
lause. Che
king for an exhaustive

de
laration would require the same exa
t proof that motivated us to
reate the with blo
k in the

�rst pla
e.

3.3.3 Example: With Blo
k

Finally, we get to the most interesting
ase of a
omposite automaton with parameterized
ompo-

nent automata. In this
ase the automaton Sys does
ontain a where
lause in its
omponents

de�nition, whi
h requires it to have a s
hedule blo
k, and a with blo
k in its s
hedule. Noti
e

that the de
larations in the with blo
k happen to exhaust the where
lauses. If this were not the

ase, the only e�e
t on the simulation would be the presen
e of fewer
omponents in the
omposite

automaton. Automaton Sys is displayed in Figure 3.3.16.

The simulation begins with Pro
1 re
eiving a message \18". It should then send this message

down the pro
ess-
hannel
hain. The message should get to Pro
3 and stop there. Figure 3.3.17

displays the result of the simulation of
omposite automaton Sys for �ve steps.

54

automaton Sys

omponents C[n:Int℄: Channel(n, n+1) where 1 � n ^ n < 5;

P[n:Int℄: Pro
ess(n) where 1 � n ^ n � 5

s
hedule

states

amount:Int:=17

with

Pro
1=P[1℄,

Chan12=C[1℄,

Pro
2=P[2℄,

Chan23=C[2℄,

Pro
3=P[3℄,

Chan34=C[3℄,

Pro
4=P[4℄,

Chan45=C[4℄,

Pro
5=P[5℄

do

while(true) do

amount:=amount +1;

f i r e input Pro
1.re
eive(0,1,amount);

i f (amount 2 Pro
1.toSend) then

f i r e output Pro
1.send(1,2, amount)

f i ;

i f (amount 2 Chan12.
ontents) then

f i r e output Chan12.re
eive(1,2, amount)

f i ;

i f (amount 2 Pro
2.toSend) then

f i r e output Pro
2.send(2,3, amount)

f i ;

i f (amount 2 Chan23.
ontents) then

f i r e output Chan23.re
eive(2,3, amount)

f i od od

Figure 3.3.16: Automaton Sys
ase three : with blo
k

Automaton initialized

1: input re
eive(0, 1, 18) in automaton Pro
1

2: output send(1, 2, 18) in automaton Pro
1 --- Conne
ted to :

input send(1, 2, 18) in automaton Chan12

3: output re
eive(1, 2, 18) in automaton Chan12 --- Conne
ted to :

input re
eive(1, 2, 18) in automaton Pro
2

4: output send(2, 3, 18) in automaton Pro
2 --- Conne
ted to :

input send(2, 3, 18) in automaton Chan23

5: output re
eive(2, 3, 18) in automaton Chan23 --- Conne
ted to :

input re
eive(2, 3, 18) in automaton Pro
3

No errors

Figure 3.3.17: Simulator output for Sys automaton that
ontains a with blo
k

55

56

Chapter 4

IOA Language Extension

The ability to spe
ify the automata and their
onstituents presented in the previous
hapter required

the IOA language to be extended to support:

1. NDR Blo
ks in Composite Automata,

2. Component Name Pre�xes in Fire Invo
ations,

3. with blo
ks in
omposite s
hedule blo
ks, and

4. De
larations inside the with blo
k.

The following four se
tions deal with the spe
i�
 grammar
hanges involved with the above

extensions, the new semanti

he
ks ne
essary to verify the validity of the extended IOA �les,

the a
tual
ode modi�
ations, and �nally the intermediate language representations of the new

extensions.

4.1 Grammar Modi�
ation

To allow NDR blo
ks in
omposite automata the grammar de�ning
ompositions was modi�ed

from,

omposition ::= '
omponents'
omponent;+ ('hidden' a
tionSet)?

to:

omposition ::= '
omponents'
omponent;+ ('hidden' a
tionSet,+)?
ompS
hedule?

57

Now, a
omposition may or may not have a
omposite s
hedule blo
k. The grammar dealing

with
omposite s
hedule blo
ks is the following:

ompS
hedule ::= 's
hedule' states? withBlo
k? 'DO'
ompDetProgram 'OD'

ompDetProgram ::=
ompDetStatement;+

ompDetStatement ::= assignment |
ompDetConditional |
ompDetWhile |
ompDetFire

ompDetConditional ::= 'if' predi
ate 'then'
ompDetProgram

('elseif' predi
ate 'then'
ompDetProgram)*

('else'
ompDetProgram)? 'fi'

ompDetWhile ::= 'while' predi
ate 'do'
ompDetProgram 'od'

ompDetFire ::=
ompInvo
ation1

ompInvo
ation1 ::=
ompInvo
ation2

ompInvo
ation2 ::= 'fire' a
tionType
ompName '.' a
tionName invo
ationA
tuals?

('
ase' IdOrNumeral)?

The stru
ture of the grammar of a
omposite deterministi
 program,
ompDetProgram,
losely

resembles that of a primitive deterministi
 program. The ex
eption is that a
omposite invo
ation

is required to have a
omponent name pre�x. An alternative modi�
ation of the grammar had

ompositions being modi�ed to the following:

omposition ::= '
omponents'
omponent;+ ('hidden' a
tionSet,+)? s
hedule?

This strategy does not make a distin
tion between a s
hedule blo
k for a primitive automaton

and a s
hedule blo
k for a
omposite automaton. Be
ause of this, implementing this strategy

would avoid the
reation of new non-terminal symbols
ompDetProgram,
ompDetStatement, and

ompDetFire. However, a �re statement would now have to bran
h to both non-pre�xed and

pre�xed invo
ations. This would require new semanti

he
ks to ensure that no pre�xes were

spe
i�ed in the invo
ations of NDR blo
ks of primitive automata. Thus although the
hosen

implementation involves the
reation of more new symbols, it is more straightforward and
leaner.

The
omposite s
hedule blo
k may or may not have a with blo
k. We de�ne the grammar of

a with blo
k and the de
larations inside it to be:

withBlo
k ::= 'with' de
larations

de
larations ::= de
laration,+

de
laration ::= handle EQ IDENTIFIER '[' terms,+ '℄'

handle ::=
omponentName

58

Noti
e that the �rst member of a de
laration is a handle and not an identi�er like the member

on the other side of the equals sign. This is ne
essary be
ause the handle will be used in the

s
hedule blo
k to referen
e state variables and transitions of the
omponent. Thus it must be a

variable of type
omponentNode and not simply an ltoken. However, the identi�er simply links

the
omponent being de
lared here to a
omponent tag in the
omponents de�nition, and it is

suÆ
ient to represent the identi�er by an ltoken.

A possibility for future work would allow a more
ompli
ated
ode stru
ture inside the with

blo
k. For example, de
laring
omponents inside a for loop might prove to be useful. A brief guide

on modifying the IOA Grammar appears in appendix C.

4.2 Semanti
 Che
ks

The introdu
tion of
omponent name pre�xes in �re statements presents one new semanti

he
k.

The pre�x spe
i�ed in the invo
ation must exa
tly mat
h one of the
omponent tags without

formal parameters in the
omponents de
laration of the
omposition, or the handle name of one

of the de
larations of the with blo
k. This semanti

he
k is performed along with the rest of

the semanti

he
ks for a
omposite automaton. Semanti

he
ks that
on�rm the existen
e of

the spe
i�ed a
tion and mat
h the validity of the type of the a
tion as well as of the parameters

spe
i�ed, already exist. These
he
ks are invoked on the owning
omponent on
e the new semanti

he
k has veri�ed the existen
e of the spe
i�ed
omponent.

The
omponent pre�x should be a variable of sort that is an aggregate over all of the transitions

of the
omponent automaton. Its . operator should allow a

ess to all of the transitions of the

omponent automaton. Currently, the pre�x is not implemented in this way. It is simply an ltoken

that is easily parsed and veri�ed be
ause a
omponent name is the only thing that may pre
ede an

a
tion name in an invo
ation.

The following is a list of the semanti

he
ks that must be performed to ensure the validity of

the IOA
ode in a with blo
k:

1. The handle names in the de
larations must be unique.

2. Handle names must be distin
t from the names of the state variables of the s
hedule blo
k.

3. Handle names must be distin
t from the formal variables of the
omposite automaton.

59

4. The indenti�er on the right hand side of the equals sign must exa
tly mat
h one of the

omponent names in the
omponents de�nition.

5. The length of the list of terms following the indenti�er must equal the length of the list of

formal parameters of the mat
hing
omponent from the
omponents de�nition.

6. The types of the terms following the identi�er must mat
h the types of the formal terms of

the mat
hing
omponent from the
omponents de�nition.

7. Ea
h of the terms following the identi�er must be a simple literal term.

The �rst three semanti

he
ks ensure that variable names remain unambiguous inside the

omposite s
hedule blo
k. The fourth semanti

he
k requires that ea
h de
laration
orrespond to

some
omponent tag established in the
omponents se
tion. The �fth and sixth
he
ks guarantee

that the terms in the de
laration are valid with respe
t to the terms de
lared for the
omponent

tag in the
omponents se
tion. Finally, the seventh
he
k puts a restri
tion on the type of terms

that may appear here. Just as above, these semanti

he
ks are performed along with the rest of

the semanti

he
ks for a
omposite automaton.

4.3 Code Changes

Table 4.3.1 lists the Java
lasses in dire
tory (IOA Toolkit=Code=ioa=parser) (we will refer to

instan
es of these
lasses as parser side obje
ts) that represent the new non-terminal symbols

introdu
ed to the grammar in Se
tion 4.1. The
lass
ompDetFireNode is a new
lass that extends

the existing detFireNode and provides the set methods used to
reate the
omposite invo
ation

during parsing. The
lass invo
ationNode now has a �eld representing the
omponent name that

may be asso
iated with the invo
ation statement. Similarly,
ompositionNode, the
lass that

represents a
omposition, now has a �eld that represents the s
hedule blo
k that may be asso
iated

with the
omposite automaton.

The
lass withNode is a new
lass and represents a with blo
k. Its state
onsists of a
olle
tion

of de
larations. It has a method that retrieves a
omponent tag name based on its handle name.

The
lass de
larationNode is a new
lass and represents a single de
laration in a with blo
k. Its

state
onsists of a handle name, a
omponent tag name, and a list of terms
orresponding to the

formals of this
omponent tag. The
lass
omponentNode is an existing
lass. When it represents

60

non-terminal symbol Java
lass

ompS
hedule detS
heduleNode

ompDetProgram ListNode of statementNode

ompDetStatement statementNode

ompDetFire detFireNode

ompInvo
ation1 invo
ationNode

ompInvo
ation2
ompDetFireNode

withBlo
k withNode

de
larations ListNode of de
larationNode

de
laration de
larationNode

handle
omponentNode

Table 4.3.1: Java
lasses representing new non-terminal symbols

a handle, it does not have the
orre
t state upon
reation. Its state variables get updated later

when this
omponent is linked to the
omponent de
lared in the
omponents spe
i�
ation by

the
omponent tag name. For a more detailed do
umentation of the modi�ed �les please
onsult

Appendix A.

4.4 IL Representations

The
lasses listed in Figure 4.3.1 all implement the method makeAbstra
t. This method
onverts

the parser side obje
t representing an automaton
onstituent into its
ounterpart obje
t that is an

instan
e of a
lass in the (IOA Toolkit=Code=ioa=automaton) dire
tory (we will refer to instan
es

of these
lasses as automaton side obje
ts). These automaton side,
ounterpart obje
ts are all

apable of translating their representation into intermediate language
ode. After all semanti

he
ks have been performed, the makeAbstra
tmethod is invoked on all of the parti
ipating parser

side obje
ts and the automaton side obje
ts are
reated.

The
ounterparts of invo
ationNode and
ompositionNode on the automaton side are ndrfire

and
omposition respe
tively. These
lasses have been modi�ed to a

ount for the possibility of

NDR blo
ks in
omposite automata and
omponent name pre�xes in the �re statements of those

blo
ks.

The IL representation of an ndr �re statement has been modi�ed from:

61

(FIRE {transition-id (ACTUALS a
tuals+)}?)

to,

(FIRE {
omponent-name? transition-id (ACTUALS a
tuals+)}?)

where the
apitalized words denote literal strings and lower
ase words denote IOA notions;

urly bra
kets denote grouping and do not a
tually appear in the IL syntax. The IL representation

of a
omposition has been modi�ed from:

((COMPOSE {(
omponent-name (ACTUALS a
tuals+))}+) (HIDDEN hiddens+))

to,

((COMPOSE {(
omponent-name (ACTUALS a
tuals+))}+) (HIDDEN hiddens+) s
hedule?)

Compared to the IL representation of a a primitive s
hedule blo
k,

(SCHEDULE (STATES states*) program)

the IL representation of a
omposite s
hedule blo
k is,

(SCHEDULE (STATES states*) (WITH de
larations+)? program)

and the IL representation of a de
larations is,

(handle
omponentTag a
tuals+)

where the
apitalized words denote literal strings and lower
ase words denote IOA notions.

62

Chapter 5

Simulator Extension

In Chapter 4 we saw how the IOA language and the tools that parse it have been modi�ed to a

ount

for the possibility of
omposite s
hedule blo
ks,
omponent pre�xes in �re invo
ations, and with

blo
ks. We now
on
entrate on the modi�
ations to the simulator itself ne
essary to utilize these

notions in order to support simulations of
omposite automata. We divide this
hapter based on the

presen
e of parameters in the
omponents of the
omposite automaton and on the nondeterminism

resolution strategy used to resolve nondeterminism in the
omposite automaton.

First, we des
ribe the stru
ture of the simulator
lasses that represent a
omposite automaton

and its
omponents. Se
ond, we dis
uss how this stru
ture is employed to allow more than one

omponent to be based on the same automaton during simulations of a
omposite automaton with

parameterized
omponents. Next, we des
ribe the
onne
tion via the IL parser of the intermediate

language representation of an automaton to its representation in the simulator. Finally, we des
ribe

the modi�
ations to the output produ
ed by the simulator that are motivated by simulations of

omposite automata.

5.1 Representation of a Composite Automaton

The Java
lass representation of automata
onsists of two sides, the basi
 side and the a
tual side.

The basi
 side is
reated during the parsing of the IL �le. It is a representation of the blueprint

of the automaton. The a
tual side is
reated at the beginning of the a
tual simulation, and allows

for the addition of a
tual parameters to the automaton. Prior to this proje
t, the representations

of
omposite automata on both sides were either limited or nonexistent.

63

5.1.1 Basi
 Side

ILElement

Automaton

PrimitiveAutomaton CompositeAutomaton

BasicILElement

BasicAutomaton

BasicPrimitiveAutomaton

NDRPrimitiveAutomaton

SimPrimitiveAutomaton

SimAutomaton

BasicCompositeAutomaton

SimCompositeAutomaton

NDRCompositeAutomaton

Class

Abstract Class

Interface

Key

Figure 5.1.1: Basi
 side obje
t diagram

Figure 5.1.1 shows part of the basi
 side ar
hite
ture of the simulator. The
omponents of a
om-

posite automaton are stored as a Ve
tor of AutComponent obje
ts in Basi
CompositeAutomaton.

The NDRCompositeAutomaton and the SimCompositeAutomaton obje
ts have been added to the

ar
hite
ture. The NDRCompositeAutomaton obje
t supports a s
hedule blo
k in a
omposite au-

tomaton. The SimCompositeAutomaton obje
t allows for instantiation of a
tual side obje
ts based

on their basi
 side representations. The method that does this is now de
lared in the SimAutomaton

interfa
e, instead of just in the SimPrimitiveAutomaton. Both NDRCompositeAutomaton and

SimCompositeAutomaton obje
ts parallel their primitive
ounterparts.

5.1.2 A
tual Side

Just as the SimAutomaton interfa
e is an abstra
tion for a basi
 side automaton, primitive or
om-

posite, the new interfa
e A
tualAutInterfa
e is an abstra
t
onne
tion to an a
tual automaton,

whether primitive or
omposite. Figure 5.1.2 shows the relevant part of the a
tual side ar
hite
ture

before the latest modi�
ations. Figure 5.1.3 displays the ar
hite
ture after them.

64

During the simulation, the Simulator obje
t has a

ess only to the new

A
tualAutInterfa
e interfa
e and is not aware whether it is simulating a primitive or a
om-

posite automaton. The A
tualCompositeAutomaton represents a
omposite automaton, possibly

with parameters. The a
tual
omponents of the
omposite automaton are stored as a Ve
tor of

A
tualAutomaton obje
ts. Note that be
ause simulations of
omposite automata whose
ompo-

nents are themselves
omposite automata are not
urrently supported, this is suÆ
ient. To support

su
h simulations slight modi�
ations would have to be made, in
luding the storing of a
tual
om-

ponents as A
tualAutInterfa
e obje
ts and not primitive A
tualAutomaton obje
ts.

ActualAutomaton

DetActualAutomatonNDRActualAutomaton

BasicILElement

Class

Abstract Class

Interface

Key

Figure 5.1.2: A
tual side obje
t diagram before
hanges

ActualAutomaton

DetActualAutomatonNDRActualAutomaton

ActualCompositeAutomaton

ActualAutInterface

ILElement

Class

Abstract Class

Interface

Key

Figure 5.1.3: A
tual side obje
t diagram after
hanges

5.1.3 Implementation De
isions

An alternative to the above implementation of
omposite automata, was to
reate obje
ts for

omposite automata that are not related to the primitive automata obje
ts. In addition to this,

reate a new simulator obje
t that spe
i�
ally simulates
omposite automata. The biggest pro of

65

this approa
h is the ease with whi
h a primitive/
omposite spe
i�

hange
ould be implemented.

The major
on of this approa
h is the double implementation and upkeep of features that are

ommon to both primitive and
omposite simulations.

The approa
h
hosen, avoids dupli
ate
ode upkeep. We took
are to avoid large
ode blo
ks

spe
i�
 to primitive/
omposite simulations in the Simulator obje
t. When ne
essary, the distin
-

tions are handled through di�erent implementations in the primitive and
omposite obje
ts of the

methods available to the Simulator through the interfa
e .

For a more detailed do
umentation of the modi�ed �les dis
ussed above please
onsult Ap-

pendix B.

5.2 Copying of Components

When the simulator tool was initially
reated, its implementation was tailored for the simulation of

a primitive automaton. The possibility of simulating a
omposite automaton with parameterized

omponents presents the problem of
reating more than one simulator representation of an automa-

ton based on a single IOA automaton spe
i�
ation. For example, when simulating automaton Sys

from Figure 3.3.16, the simulator would have to
reate and tra
k four
omponents based on the

Channel automaton. Initially, the only di�eren
e between these
omponents are the values of the

formal parameters of the automaton Channel. However, as the simulation progresses, the state of

ea
h of these
omponents will diverge. This ne
essitates the
reation of a separate
opy of ea
h

omponent.

5.2.1 Implementation De
isions

Three reasonable options for
reating more than one simulator representation of an automaton

based on a single IOA automaton spe
i�
ation existed:

1. Augment the IOA parser to
reate multiple IL representations of a primitive automaton

whenever the spe
i�
ation of a
omposite automaton with parameterized
omponents is en-

ountered.

2. Modify the IL Parser to parse the same IL automaton representation multiple times whenever

the IL representation of a
omposite automaton with parameterized
omponents is en
oun-

tered.

66

3. Modify the Simulator, su
h that prior to the simulation, it
reates
opies of its representation

of an automaton, whenever the simulation about to take pla
e involves a
omposite automaton

with parameterized
omponents.

The de
isive disadvantage of option one is its violation of the one-to-one
orresponden
e between

notions in an IOA �le and their IL representations. The feasibility of option two depended on the

urrent implementation of the IL Parser and the magnitude of the modi�
ations to it that would

produ
e the desired result. Currently, the IL Parser s
ans the IL �le in a top-down manner. For

example, when the parser en
ounters the automaton keyword, it expe
ts a name, a list of formals,

a list of a
tions, a list of states, and a list of transitions to follow immediately after.

In order to a
hieve the goal proposed by solution two, on
e the IL parser
ame a
ross the

de�nition of a
omposite automaton with parameterized
omponents, it would have to return to

the position in the IL �le where the base automaton for that
omponent were lo
ated, and then

parse it top-down again. Implementing the ability of the IL parser to traverse the IL �le ba
kwards,

in sear
h for the base automaton, would require extremely signi�
ant modi�
ations to it. Due to

this, option three was
hosen.

5.2.2 Code Changes

The implemented option
auses the simulator, prior to the simulation, to
reate
opies of its rep-

resentation of an automaton, whenever the simulation about to take pla
e involves a
omposite

automaton with parameterized
omponents. Figure 5.2.4 shows the obje
t representation of a prim-

itive automaton. Solid lines represent
ontainment (with an asterisk denoting the
ontainment of

multiple obje
ts), dotted lines represent read-only a

ess, and dashed lines represent read/write

a

ess.

As
an be seen from the diagram, a primitive automaton
ontains a
olle
tion of transitions

whose where term, pre
ondition term, and effe
t program
an all a

ess the state variables and

formals of the automaton. Similarly, the NDR program of the automaton
an a

ess both the NDR

variables and the state variables of the automaton. This s
enario presents two options as to how

the automaton may be
opied.

One possibility is to
opy the entire automaton representation hierar
hy. After the
opy is
om-

plete, a s
an of the transitions is ne
essary to make them a

ess the new
opy of the state variables

and not the original one. Sin
e the only di�eren
e between transitions of every
omponent based

67

PrimitiveAutomaton

Transiition

transitions

*Term

Program

Term

where

pre
condition

effect

Variable

* formals

State

* states

Variable Value

initial
Value

Statement

* statements

Program Term

State

Variable

Value

NDRstates

*

initial
Value

Program

Statement

* NDR
statements

Term Program

NDRProgram

Term

Action

Term

actions

*

where

Term

formals

*

actuals *

Figure 5.2.4: Partial, abstra
t representation of an automaton

on the same automaton, are the referen
es to the obje
ts representing state or formal variables,

another option is to
opy the state and formal variables only. A single set of transitions would be

kept for all
omponents based on the same automaton. Prior to the exe
ution of a transition, its

referen
es to variables would get modi�ed to point to those of the
urrently a
tive
omponent.

The advantage of the se
ond implementation is that it does not
opy obje
ts that do not

ne
essarily need to get
opied. Its disadvantage is the ne
essity to update transition referen
es

every time a transition is pro
essed. We de
ided that the �rst implementation is superior. The

signi�
ant advantage of the �rst implementation is that after the
opy and update are
omplete,

the simulation
an
ontinue without needing to be interrupted again for
opy/update purposes.

This allows future modi�
ations to the me
hanism of the simulation to be independent of the

opy/update pro
ess.

The situation is a bit di�erent in the
ase of the NDR program and its variables. NDR programs

di�er from the e�e
t programs in transitions be
ause every time the e�e
t program is ran, it runs

until
ompletion, and if its ran again, exe
ution starts from the top. This is not the
ase with NDR

68

programs. Their exe
ution is interrupted by �re statements and resumes from the same spot on

its next iteration. Thus NDR programs must either be
opied, or a new method to maintain ea
h

omponents' pla
e within its NDR program must be implemented. For this reason, NDR programs

are also
opied in their entirety and their variable referen
es are updated just as is the
ase with

transitions.

The
opying of formals is fairly straightforward as they are shallow obje
ts; their state
onsists

of String's, boolean's and an Entity referen
e. The
opying of both automata and NDR state

variables, involves
opying their initial value terms. The
opying and updating of statements in

effe
t and NDR programs is more
ompli
ated be
ause they are obje
ts with fairly deep state. To

opy all of the above, we must be able to
opy the terms that appear as initial values, pre
onditions

and where
lauses of transitions and the statements that appear in programs. Figure 5.2.5 shows

an abstra
tion of su
h terms.

Term

LiteralTerm ReferenceTermAplicationTerm QuantifierTerm

Term

opands *

Variable

Figure 5.2.5: Partial, abstra
t representation of a term

Sin
e we have ex
luded the possibility of quanti�ers in where
lauses in Se
tion 2.2.1, we do

not worry about quanti�er terms here. Literal terms do not
ontain any dynami
 state and do not

have to be
opied. Thus the only work remaining is the
opying of the opands of appli
ation terms

and updating the variable referen
e of referen
e terms.

Figure 5.2.6 shows an abstra
tion of statements. It shows what obje
ts need to be
opied

and/or updated for ea
h type of statement. The Term's in the diagram are
opied, the Variable's

are updated to point to the
orre
t
opy, and the Program's are a
olle
tion of Statement's that

re
ursively get pro
essed in the same way.

For a more detailed do
umentation of the modi�ed �les dis
ussed above please
onsult Ap-

pendix B.

69

Statement

Conditional LoopAssignment NDRWhile

Term

value

*

NDRFire NDRYield

Value

left

value

Term Program Program

pred

icates programs *
else

program

Variable Term Program

condi
tional

Transition Term

actuals*

Term Program

Term

Figure 5.2.6: Partial, abstra
t representation of a statement

5.3 IL Parser

We saw in Se
tion 4.4 that the intermediate language representation of
omposite automata and

their
onstituents generated by the IOA parser has been modi�ed. The ba
k-end tool that in turn

parses this
ode and
reates simulator side obje
ts dis
ussed above is the IL parser,

(IOA Toolkit=Code=ioa=il=ILParser:java). The IL parser has been modi�ed to a

ount for the

hanges in the IL language.

Most of the modi�
ations o

ur in the parseCompositeAut method. The parser now
he
ks

for the existen
e of a with blo
k in a
omposite automaton. If it exists the parser
reates two

maps, one from
omponent tag names to base automaton names, and another from handle names

to
omponent tag names. These maps are used by the NDRILFa
tory and NDRCompositeAutomaton

lasses when parsing the s
hedule blo
k of the
omposite automaton. Finally, the parser
reates

as many
omponent obje
ts as are de
lared in the with blo
k. These
omponent obje
ts are later

used by the simulator to
reate
opies of automata obje
ts as des
ribed in Se
tion 5.2.2. Also,

as dis
ussed in Se
tion 5.4, when
reating simulator representations of state variables, it lets the

variable know whi
h
omponent it belongs to. For a more detailed do
umentation of the modi�ed

�les dis
ussed above please
onsult Appendix B.

5.4 Display of Output

The new fun
tionality of the simulator dis
ussed in the se
tions above requires some modi�
ations

to the way that its output is displayed. It is no longer suÆ
ient to list modi�ed state variables by

their name alone as that would not make it
lear to whi
h
omponent they belong. Also be
ause an

70

output a
tion may trigger one or more input a
tions, it is now possible for more than one transition

to be exe
uted at every step of the simulation.

To solve the �rst problem the simulator representations of state variables have been modi�ed

so that they are now aware to whi
h
omponent they belong to. In
omposite simulations, every

time a variable is displayed, the name of the owning
omponent of that variable is displayed in

front of it. Figure 5.4.7 illustrates this via a hypotheti
al output during the simulation of the

EnvBank automaton des
ribed in Se
tion 3.1. To solve the se
ond problem, the output transition

that initially triggers the input transitions is aware of the transitions triggered by it and it displays

this information following its own display. Figure 5.4.8 illustrates this.

%%%% Modified state variables:

%% Bank:ops --> ([lo
: 8, seqno: 1, amount: 78, reported: false℄)

%% Bank:pending_ops --> ([lo
: 8, seqno: 1, amount: 78, reported: false℄)

%% Bank:lastSeqno --> (ArraySort (ConstantValue 0) (8 1))

%% Env:a
tive --> (ArraySort (ConstantValue false) (8 true))

Figure 5.4.7: Display of state in
omposite simulations

[[[[Begin step 1 [[[[

transition: output requestDeposit(78, 8) in automaton Env --- Conne
ted to :

input requestDeposit(78, 8) in automaton Bank

Figure 5.4.8: Display of triggered transitions in
omposite simulations

71

72

Chapter 6

Test Suite Extension

The IOA toolkit
ontains a
omprehensive test suite for regression testing purposes. The test suite

ontains tests for every tool in the kit. For our purposes, we are most interested in the
he
ker

and the sim tests that
he
k the behavior of the IOA parser and the simulator respe
tively. The

test suite
onsists of about one hundred test
ases ea
h designed to examine spe
i�
 fun
tions of

the toolkit. The following se
tions deal with the test
ases added to
he
k the fun
tionality of the

tools for parsing IOA spe
i�
ations of
omposite automata, the simulation of these automata, and

with a parameter added to enable the automation of su
h tests. Be
ause of the extra
omplexity

involved in simulating
omposite automata with parameterized
omponents, we separate the tests

into those that do
he
k su
h simulations, and those that do not.

6.1 SIMAUTOMATON Parameter

The test suite allows the user to run all tests on all of the test
ases at on
e. The user also has

the option to run a parti
ular test on all of the test
ases at on
e. The Makefile in the dire
tory

of ea
h test
ase
ontains parameters that allow the test
ase to be
ustomized. For example, the

SIMSTEPS parameter spe
i�es the number of steps that the test simulation should be run for and

the SIMDEBUG parameter allows the user to spe
ify the random seed to be used for the simulation.

Before the introdu
tion of
omposite automata simulations, ea
h IOA �le in the test suite
on-

tained the de�nition of only one automaton. The possibility of
omposite simulations introdu
es

the situation where an IOA �le might
ontain more than one automaton de�nition. At the sim-

ulation
ommand line, the simulator must then be provided with the name of the automaton to

73

simulate. To allow for the automated testing of
omposite automata simulations, the Makefile

of ea
h test
ase now
ontains a SIMAUTOMATON parameter. When provided, this parameter

spe
i�es the name of the automaton to be simulated. Note that the introdu
tion of this parameter

does not require the modi�
ation of all existing Makefile's be
ause when this parameter is not

spe
i�ed, the simulator assumes that there is only one automaton in the IOA �le and simulates it.

6.2 Non-Parameterized Components

The test
ases des
ribed in this se
tion involve
omposite automata with non-parameterized
om-

ponents. They test the simulator's behavior when using both the
omponent s
hedule blo
k reuse

and
omposite s
hedule blo
k strategies to resolve nondeterminism. Many of the s
enarios
he
ked

in these tests also apply to the simulations of
omposite automata with parameterized
omponents.

Se
tion 6.3 des
ribes the test
ases for su
h simulations. Those tests build on the ones des
ribed

in this se
tion by
on
entrating on issues parti
ular to simulations of
omposite automata with

parameterized
omponents.

6.2.1 Testing Reuse of NDR Blo
ks

The following tests
he
k the behavior of the simulation of
omposite automata whi
h do not
ontain

a
omposite s
hedule blo
k and therefore use the NDR blo
ks of the
omponents to resolve non-

determinism. We �rst must test that if a
omponent name pre�x is spe
i�ed in a NDR blo
k of a

primitive automaton, the IOA
he
ker displays an error message. The following is a list of points to

be
he
ked on the simulator side. Note that the �rst �ve
ases are independent of nondeterminism

resolution strategy and thus also apply to the tests in Se
tion 6.2.2.

1. All input a
tions �, whose where
lause is satis�ed by the a
tual parameters, are exe
uted

in the same step that output a
tion � of some other
omponent is exe
uted.

2. No input a
tions other than �, whose where
lause is satis�ed by the a
tual parameters, are

exe
uted in the same step that output a
tion � of some other
omponent is exe
uted.

3. Corre
t behavior of the above
ases for a
tions with and without a
tual parameters.

4. Component invariants are veri�ed
orre
tly.

5. Composite invariants are ver�ed
orre
tly.

74

6. Input a
tion � that is s
heduled to be �red by its
omponent's NDR blo
k, but may also be

triggered by the exe
ution of output a
tion � of some other
omponent, does not get exe
uted

when its NDR blo
k attempts to �re it.

7. Component NDR blo
ks that are terminating/non-terminating behave
orre
tly.

8. Component NDR blo
ks that at some point be
ome in�nitely looping are
orre
tly disrupted

by the NDR max steps parameter.

9. High-level nondeterminism resolution strategies - uniform, random, and weighted all behave

as expe
ted.

The following is a list of newly
reated test
ases that have been added to the test suite. If left

unspe
i�ed, the high-level nondeterminism resolution strategy is uniform.

� ComposedBank01 test
ase. This test
ase
orresponds to the automaton dis
ussed in Se
-

tion 3.1.2. The
omposite automaton
ontains a bank
omponent and an environment
ompo-

nent. This test is similar to the Banking01 test
ase, ex
ept here we have a dire
t simulation

of a
omposite automaton, while there the
omposite banking automaton is
reated manually.

The SIMAUTOMATON parameter for this test
ase is set to EnvBank01, the name of the

omposite automaton. The random seed, rseed, value is set to 10 just as in the Banking01

test
ase. This test
he
ks points 1 and 7 above.

� PushPullAut01 test
ase. The two
omponents of the
omposite automaton PushPullAut are

PushAut and PullAut. Their respe
tive input/output a
tions are
onne
ted to ea
h other.

The pre-
onditions on the output a
tions are su
h that they require the two
omponents to

�re their output a
tions alternatively. The
omponent PushAut, also has an input a
tion

that is
onne
ted to PullAut. The SIMAUTOMATON parameter for this test
ase is set to

PushPullAut. This test
he
ks points 3, 5, 7, and 8.

� PushPullAut02 test
ase. Here the
omposite automaton, PushPullAut
ontains three
om-

ponents. The output a
tion of PushAut is
onne
ted to input a
tions of both PullAut and

ExtraAut. The output a
tion of PullAut is only
onne
ted to an input a
tion of PushAut.

The
omponent ExtraAut
ontains two output a
tions that do not trigger any input a
tions.

The SIMUATOMATON parameter for this test
ase is set to PushPullAut. This test
he
ks

points 2, 4, 5, 8, and 9.

75

There is a diÆ
ulty involved with automated testing of the random and weighted high-level

nondeterminism resolution strategies. Be
ause the
omponents are sele
ted based on a random

number pi
ked by the Java random number generator, there is no way to make two
onse
utive

simulations produ
e the same output. Thus although these strategies have been tested, there are

no test
ases in the automated test suite that
he
k the simulator's behavior under these high-level

nondeterminism resolution strategies.

6.2.2 Testing NDR Blo
ks for Composite Automata

The following test
he
ks the behavior of the simulation of a
omposite automaton whi
h
ontains

a
omposite s
hedule blo
k. We must �rst
he
k that the IOA parser handles su
h automata

orre
tly. The following is a list of
ases to be veri�ed on the IOA parser side.

1. Composite s
hedule blo
ks are a

epted.

2. Component name pre�xes in
omposite �re invo
ations are a

epted.

3. Only appropriate
omponent name pre�xes in
omposite �re invo
ations are a

epted (Se-

manti
 Che
k).

4. Component name pre�xes are required in
omposite �re invo
ations.

5. A
tions invalid for the spe
i�ed
omponent in a
omposite �re invo
ation are dis
overed and

reported.

As mentioned in Se
tion 6.2.1, the �rst �ve simulator test points listed there also apply to

testing
omposite automata with their own s
hedule blo
ks.

� BankCompositeS
hedule01 test
ase. This test
ase veri�es the simulation of a
omposite

automaton with its own s
hedule blo
k. This test
ase
orresponds to the automaton EnvBank

dis
ussed in Se
tion 3.1.2. The SIMUATOMATON parameter is set to BankComposed. This

test
ase
he
ks all of the ne
essary
ases for simulations of
omposite automata with their

own NDR blo
k.

6.3 Parameterized Components

Now that we have tested the simulator's ability to handle
omposite automata with non-parameterized

omponents we move on to expanding the test suite to
he
k the more
omplex
ase of
omposite

76

automata with parameterized
omponents. Simulations of
omposite automata with parameter-

ized
omponents that use the
omponent s
hedule blo
k reuse strategy to resolve nondeterminism,

involve the
opying and tra
king of multiple
opies of the same s
hedule blo
k. To validate the

simulator's behavior in su
h
ases we on
e again partition this se
tion based on nondeterminism

resolution strategy. Finally, sin
e in the
ase of parameterized
omponents, a
omposite s
hedule

blo
k may have a with blo
k, we separate the
omposite s
hedule blo
k nondeterminism resolution

strategy into two
ases, one that does not
ontain a with, and one that does.

6.3.1 Testing Reuse of NDR Blo
ks for Parameterized Components

The following tests
he
k the behavior of the simulation of a
omposite automaton with parameter-

ized
omponents and no s
hedule blo
k. They are based on automaton Sys from Se
tion 3.2.1. They

test the simulator's ability to handle
omponents based on the same automaton and to maintain

their independent states as they diverge during a simulation.

� Pro
Chan01 test
ase. This is the most simple of the test
ases. It involves only one
ompo-

nent based on the Channel automaton and one
omponent based on thePro
ess automaton.

This test veri�es the parsing and simulation of a
omposite automaton whose parameterized

omponents possess their own NDR blo
ks. The test ensures the simulator's ability to make

independent
opies of
omponents based on their base automaton. It
ontains
omponent

invariants as well as
omposite ones. Further, it veri�es the simulator's ability to tra
k these

opies as their state diverges. The
omponents
ontain transition and a
tion where
lauses

that are always satis�ed. The
orre
t intera
tion of the two
omponents depends on the

simulator's
orre
t handling of
onstant parameters.

� Pro
Chan04 test
ase. This test
ase builds on the previous one by adding two more
ompo-

nents based on ea
h of the base automata. This test validates the simulator's ability to
opy

omponents and their respe
tive NDR blo
ks. In addition it tests
omponent s
hedule blo
ks

with diverging states and e�e
t
lauses with no program.

� IGPro
RelialbleChannel02 test
ase. The
omposite automaton in this
ase represents a

reliable FIFO
ommuni
ation. The
omposite automaton here has two
omponents based on

one automaton and six based on another. The test
ase extends the above two by
he
king

the ability of the simulator to handle
ases where one
omponent
ommuni
ates with more

77

than one other
omponent based on the same base automaton.

6.3.2 Testing Composite S
hedule Blo
ks for Parameterized Components

The following test
he
ks the behavior of the simulation of a
omposite automaton with param-

eterized
omponents, a s
hedule blo
k, but no with blo
k. It is based on automaton Sys from

Se
tion 3.2.2. In addition to testing the
riteria of the above se
tion, this test also
he
ks the sim-

ulator's ability to handle
omponent variable a

ess and �re invo
ations in the
omposite s
hedule

blo
k.

� Pro
Chan02 test
ase. The
omposite automaton in this
ase
ontains two
omponents based

on ea
h of the base automata. The s
hedule blo
k of the
omposite automaton a

esses

variables and invokes transitions of both
omponents. Further, the test veri�es the simulator's

handling of
onstant formals in a
tion signatures, an input a
tion triggering the
orre
t output

a
tion based on
onstant parameters, and a where
lause in a transition that is violated and

thus halts the simulation. It
ontains
omponent invariants as well as
omposite ones.

6.3.3 Testing With Blo
ks

The following tests
he
k the behavior of the simulation of a
omposite automaton with parame-

terized
omponents, a s
hedule blo
k, and a with blo
k. They are based on automaton Sys from

Se
tion 3.3.3. In addition to testing the
riteria of the above se
tions, these tests also
he
k the

simulator's ability to handle
omponents de
lared in the with blo
k.

� Pro
Chan03 test
ase. The
omposite automaton in this
ase
ontains �ve
omponents based

on the Pro
ess automaton and four
omponents based on the Channel automaton. This test

ase veri�es the following points:

{ An input a
tion where
lause that
auses an a
tion that otherwise would have been

triggered by an output a
tion of another
omponent, not to be,

{ Constant parameters, and
orre
t output a
tions being triggered due to the
onstant

parameters,

{ A pre
ondition that fails and leads to the halting of the simulation,

{ Component invariants, and

78

{ Composite invariants.

� IGPro
RelialbleChannel01 test
ase. This automaton represents a reliable FIFO
ommu-

ni
ation. In addition to testing the above points, this test
ase also veri�es, a for loop in an

effe
ts
lause and variable a

ess via handle names in the
omposite s
hedule blo
k.

� WithSemanti
s01 test
ase. This test
ase veri�es that all of the semanti

he
ks for a with

blo
k in a
omposite s
hedule blo
k dis
over the appropriate errors when those errors are

present. These semanti

he
ks are listed in Se
tion 4.2.

79

80

Chapter 7

Appli
ation to Work
ow

It is possible to use formal modeling to represent a wide variety of appli
ations. The bene�ts of

doing this are a more stru
tured design,
apability for invariant and theorem
he
king, and the

ability to debug the system at design time.

The simulation of a single automaton allows for invariant
he
king. The simulation of paired

automata allows for simulation relation
he
king. The dire
t simulation of
omposite automata,

in addition to enhan
ing the formal modeling aspe
t of the simulator, allows for
omprehensive

debugging of distributed systems and appli
ations. These fun
tions together provide a useful tool

for design time debugging of
omplex systems. One su
h example is work
ow appli
ations.

7.1 Work
ow Des
ription

Work
ow appli
ations expli
itly model pro
esses, most often but not limited to business pro
esses.

A work
ow system implements and automates a pro
ess by modeling the
ow of its states. \A

work
ow is simply a set of tasks that
o-operate to implement a business pro
ess" [OW98℄. Work-

ows abstra
t the user from a parti
ular state by establishing an API to that state. Be
ause of this,

systems with distributed sour
es of information are well modeled by work
ow systems [Ci
98℄. The

following example from [MSK

+

95℄ illustrates a work
ow model of a part of a health
are system.

Figure 7.1.1 models the
ow of treating a patient at a hospital. Figure 7.1.2 models the diagnosis

sub
ow. When the Diagnosis blo
k in Figure 7.1.1 is rea
hed, the Patient work
ow waits for

a response from the Diagnosis sub work
ow before de
iding whi
h way to pro
eed. The possible

return values of the End blo
k of the Diagnosis pro
ess are \Inpatient" and \Outpatient". The

81

Start
EndDiagnosis

Out-
Patient

Case
Closed

In-
Patient

Diagnosis:
Out-Patient

Diagnosis:
In-Patient

Daily Exam:
Better

Daily Exam:
Passed

Register
Patient

Daily Exam:
Worse

Daily Exam:
Passed

Figure 7.1.1: Work
ow s
hema of a patient registration pro
ess

Start Choose
Exam
Type

Perform
X-Ray

Perform
Biopsy

Analyze
Results

End:
Out P

End:
In P

Done
Examining

Output:
In Patient

Output:
Out Patient

Figure 7.1.2: Work
ow s
hema of a patient diagnosis pro
ess

Diagnosis s
hema leaves the me
hanism for
hoosing what medi
al test (Biopsy, X-Ray) will be

performed ambiguous. The s
hema simply de
lares that on
e the Choose Exam Type diamond is

rea
hed, the work
ow will wait for input letting it know what examination was
hosen. Later we

will see how the automaton modeling the hospital provides this information.

While the Patient work
ow is waiting for a response from the Diagnosis work
ow, it may still

ommuni
ate with other work
ows of the systems. For example, another work
ow may notify the

Patient work
ow of new information regarding the patient. The only
ause of nondeterminism in

this model is input from the system's environment, most likely from physi
ians. For a given set of

input values from the physi
ians, the work
ow is deterministi
.

Figure 7.1.4 displays an automaton that models the Diagnosis work
ow pro
ess from Fig-

ure 7.1.2. Figure 7.1.5 displays an automaton that models the medi
al a
tivity at a hospital.

This automaton provides an interfa
e for the Diagnosis automaton to request that
ertain tests

be performed on the patient being diagnosed. The Hospital automaton then
ommuni
ates the

results of the test ba
k to the Diagnosis automaton. Other fun
tions of the Hospital automaton are

82

Diagnosis

State Variables:

patientInfo,
examDone,
examReady,
nextExam,
res

Hospital

State Variables:

patientInfo,
nextExam

AnalyzeResults

Communication
with other
modules of

the Hospital
system

ChooseExaminationType(patientInfo)

ExaminationType(et)

XrayRequest(patientInfo)

XrayResult(result)

BiopsyRequest(patientInfo)

BiopsyResult(result)Result(result)

DiagnoseStart(patientInfo)

Figure 7.1.3: Intera
tion between Hospital and Diagnosis automata

not expli
itly modeled here. They would in
lude other medi
al pro
esses su
h as surgery, physi
al

therapy, blood transfusions, et
.

By
omposing the Diagnosis and Hospital automata, we
an form a new
omposite automaton.

Figure 7.1.3 shows the intera
tion between the two
omponents of this automaton. We
an now

simulate this
omposite automaton and observe the full diagnosis
y
le. Further, we
an model

other pro
esses that use up the Hospital's resour
es as automata. By
omposing all of these

pro
ess modeling automata, in
luding the Diagnosis automaton, with the Hospital automaton, we

an
reate a
omplex system automaton. By simulating this system automaton we
an observe the

work load pla
ed on the Hospital by various modules of the system. We
an thus see that automata

simulation of worklfow pro
esses is useful during the design time of the work
ow pro
esses. As it

an reveal unintended and erroneous behavior in the work
ow model as well as be used for resour
e

allo
ation modeling.

7.2 Design Time Debugging of Work
ow Systems

\Simulation
an be used to study and re�ne work
ow spe
i�
ations. Be
ause the work
ow spe
-

i�
ation
aptures the implementation aspe
ts of a business pro
ess model, their simulation and

analysis
an provide valuable feedba
k to the business pro
ess model evaluation [MSK

+

95℄." Given

an a

urate model of the environment of the system, this feedba
k might
onsist of estimates of

resour
e allo
ation. In the above example, a simulation might reveal the ne
essity for more hospital

resour
es assigned to the support of the Diagnosis pro
ess. Further, a simulation of a
ompli
ated

work
ow s
hema
an be bene�
ial in that it
an expose a variety of properties of the work
ow

s
hema. [Ci
98℄ These properties
an be dis
overed through a simulation, possibly of a
omposite

83

Automaton Diagnosis

type PatInfo = tuple of name: String, biopsy, xRay: Bool, si
kLevel: Int;

type ExamType = enumeration of X-Ray, Biopsy, Done, None

type ResType = enumeration of InPatient, OutPatient

signature

input DiagnoseStart(pf:PatientInfo), BiopsyResult(result:Bool),

XRayResult(result:Bool), ExaminationType(et:ExamType)

output BiopsyRequest(pf:PatientInfo), XRayRequest(pf:PatientInfo),

ChooseExamType(pf:PatientInfo), Result(result:ResType)

internal AnalyzeResults

states patientInfo : PatInfo :=null, examDone : Bool:=false,

examReady : Bool:=false, nextExam : ExamType :=None,

res : ResType :=null

trans i t ions

input DiagnoseStart(pf)

e f f patientInfo :=pf; examReady=true

input BiopsyResult(result)

e f f patientInfo.biopsy=result ; examReady=true

input XrayResult(result)

e f f patientInfo.xRay = result ; examReady = true

input ExaminationType(et)

e f f nextExam:=et

ouput BiopsyRequest(pf)

pre nextExam=Biopsy ^ examDone=false

ouput XrayRequest(pf)

pre nextExam=Xray ^ examDone=false

output ChooseExamType(pf)

pre examReady = true e f f examReady = false

output Result(result)

pre examDone= true ^ result=res

internal AnalyzeResultIn pre NextExam=Done

e f f i f (patienfInfo.xRay=true ^ patientInfo.biopsy=true) then

res=InPatient e l se res=OutPatient f i ;

Figure 7.1.4: IOA spe
i�
ation of Diagnosis automaton

automaton, along with invariant
he
king. These properties are similar to some of those des
ribed

in the I/O automata
hapter of [Lyn96℄.

� rea
hability -
an
ertain states be rea
hed,

� safety - the work
ow/state-ma
hine does not terminate in an una

eptable state,

� deadlo
k - is it possible to rea
h a state where none of the prerequisites for its a
tions will

ever be satis�ed,

� bottlene
ks - do
ertain states take up signi�
antly larger amounts of times than the rest. The

veri�
ation of this property would require the addition of the notion of time to the simulator.

84

Automaton Hospital

type PatInfo = tuple of name: String, biopsy, xRay: Bool, si
kLevel: Int;

type ExamType = enumeration of X-Ray, Biopsy, Done, None

signature

input BiopsyRequest(pf:PatientInfo), XRayRequest(pf:PatientInfo),

ChooseExamType(pf:PatientInfo)

output BiopsyResult(result:Bool), XRayResult(result:Bool),

ExaminationType(et:ExamType)

states patientInfo : PatInfo :=null, nextExam : ExamType :=None

trans i t ions

output BiopsyResult(result) pre nextExam=Biopsy

e f f
hosen :=
hoose x: Int where x>0 and x<11

i f (
hosen<4) then result=true e l se result=false

output XrayResult(result) pre nextExam=X-Ray

e f f
hosen :=
hoose x: Int where x>0 and x<11

i f (
hosen<6) then result=true e l se result=false f i

output ExaminationType(et) pre nextExam=Done

e f f i f (PatInfo.si
kLevel>5) then et=Done

e l s e i f (PatInfo.si
kLevel>8) then et=X-Ray

e l s e i f (PatInfo.si
kLevel>11) then et=Biopsy f i ;

input BiopsyRequest(pf) e f f patientInfo=pf; nextExam=Biopsy

input XrayRequest(pf) e f f patientInfo=X-Ray; nextExam=Biopsy

input ChooseExamType(pf) e f f patientInfo=pf; nextExam=Done

Figure 7.1.5: IOA spe
i�
ation of Hospital automaton

The majority of work
ow systems are implemented through the use of databases, XML s
hemas,

and PLSQL pro
edures. This te
h sta
k does not lend itself as well to extensive simulation and

debugging, as does the implementation of work
ow via automata. There are two possible ways to

improve the simulation and debugging
apabilities of
urrent work
ow systems. One, we
an enable

a
urrent work
ow pa
kage to translate its representation of a s
hema to an IOA spe
i�
ation for

the purpose of debugging and invariant
he
king. Two, implement the entire work
ow software

with IOA automata.

The bene�t of the �rst option is that it does not require any modi�
ations to be made to the

parti
ular implementation of the work
ow system. Its only diÆ
ulty is the design of the tool that

will
onvert the work
ow s
hema to an IOA spe
i�
ation. Option two avoids the need for su
h a

tool, but it is problemati
 for two reasons. Some work
ow instan
es might have long life
y
les and

will require a mode of permanent storage su
h as a database. Also, option two requires a
omplete

overhaul of the
urrent work
ow implementation.

I believe that option one is superior to option two be
ause the s
hema to IOA translator tool

should not be parti
ularly diÆ
ult to implement. Further, the parti
ular work
ow implementation

itself may be left un
hanged. Also, in the absen
e of the s
hema to IOA translator tool, it is

85

plausible that work
ow designers may �rst model their systems with IOA, debug them at design

time using the simulator, and then
reate the a
tual s
hema based on the modi�ed IOA models

that resulted after thorough debugging/simulating.

86

Chapter 8

Relation to Existing Features and

Future Work

In this
hapter we �rst dis
uss how the extension of the simulator to support
omposite automata

has e�e
ted other features of the simulator. We then give suggestions for future work. The sugges-

tions apply to both primitive and
omposite simulations.

8.1 Invariant Che
king

In Se
tion 1.1.1 we mentioned that the simulator supports an invariant
he
king feature. The user

may enter a boolean predi
ate on the state variables of the automaton being simulated. This pred-

i
ate is tested after every simulation step, and an appropriate error message is displayed whenever

the predi
ate evaluates to false. During a
omposite simulation, the simulator
he
ks the invariants

of all
omponents of the
omposite automaton. The simulator also has the
apability of
he
k-

ing invariants written spe
i�
ally for the
omposite automaton. The syntax for referen
ing state

variables in an invariant of a
omposite automaton is the following:

CompositeAutomatonName.ComponentName.StateVariableName

Further, the predi
ates of invariants of primitive automata, may only refer to variables of that

one automaton. In the
ase of invariants of
omposite automata, the predi
ate may refer to any

of the state variables of any of the
omponents. Thus an invariant relating the state variables of

several
omponents is legal. For example,
onsider the following two invariants of automaton Sys

des
ribed in Se
tion 3.2.2:

87

invariant nonEmpty of Sys:

size(Sys.C1.
ontents)=0

invariant C1greaterC2 of Sys:

size(Sys.C1.
ontents)>size(Sys.C2.
ontents)

Invariant nonEmpty is a predi
ate on the state variables of
omponent C1 only. Invariant

C1greaterC2 relates the state variables of
omponent C1 to
omponent C2. Referen
es to
ompo-

nent variables in invariant predi
ates of
omposite automata that
ontain a with blo
k, parallel

the referen
es to these variables in the s
hedule blo
k of su
h an automaton - the handle name is

used as the
omponent name. For example, the following is a possible invariant of automaton Sys

des
ribed in Se
tion 3.3.3 (Pro
1=P[1℄ and Pro
2=P[2℄ are de
larations in the with blo
k of that

automaton):

invariant toSendEquals of Sys:

Sys.Pro
1.toSend=Sys.Pro
2.toSend

8.2 Paired Simulation of Composite Automata

The extension of the paired simulator to support
omposite automata has not been implemented,

and is a future work. Consider the
ase where a
omplex spe
i�
ation is implemented via an

algorithm des
ribed as a
omposite automaton. We now want to verify the
orre
tness of the

algorithm by writing a simulation relation from it to the spe
i�
ation. To evaluate this relation using

the paired simulator, we need to be able to input a
omposite automaton as the implementation

automaton. The following
hanges need to be made to allow su
h input to the paired simulator.

Currently the semanti

he
ks on the IOA parser side require both the spe
i�
ation and the

implementation automata to be primitive automata. These
he
ks need to be relaxed. The rest

of the
ode that runs the semanti

he
ks
asts the spe
i�
ation and implementation automata as

primitive automata Java obje
ts. This
asting needs to be
hanged to allow
omposite automata.

On the simulator side, the paired shell and the paired simulator need to be updated to a

ount for

the possibility of
omposite automata.

88

8.3 NDR Relinquish Control Command

In Se
tion 2.1.3 we dis
ussed the possibility of a
omponent s
hedule blo
k
ausing an in�nite loop

during a simulation of a
omposite automaton that reuses
omponent s
hedule blo
ks to resolve

nondeterminism. We proposed two solutions to this problem and des
ribed the implemented one, a

limit on the maximum number of steps that a s
hedule blo
k may run without returning an a
tion

to �re. Another alternative to solving the looping pitfall is the introdu
tion of a new keyword

to the syntax of s
hedule blo
ks. When a s
hedule blo
k would en
ounter this keyword, it would

relinquish
ontrol ba
k to the high-level s
heduling poli
y in a
omposite simulation, and halt the

simulation in the primitive
ase.

8.4 User Intera
tive Nondeterminism Resolution

As an alternative method to NDR programs, this extension would allow the user to resolve nonde-

terminism as it o

urs during the simulation. Prior to beginning the simulation the user will have

to spe
ify the
hoi
e of this option as opposed to the use of an NDR program. Then at runtime

whenever the simulation is halted by either impli
it or expli
it nondeterminism, the user will be

prompted to
hoose whi
h bran
h the simulation should take. The user will also have the ability

to inform the simulator that similar de
isions should be made in the future without prompting the

user again.

In the
ase of impli
it nondeterminism, the user will be presented with a list of a
tions with

satis�ed pre
onditions, if possible. The user will then
hoose one of these a
tions. To aid the

de
ision pro
ess, it will be useful to present the user with
ertain heuristi
s asso
iated with ea
h

valid
hoi
e. The heuristi
 may be a partial snapshot of the resulting global state given that the

parti
ular a
tion is taken. It
ould also be an estimate, either time or step amount, of simulation

duration remaining until a
ertain state is rea
hed, given that the parti
ular bran
h is
hosen.

In the
ase of expli
it nondeterminism, the user will be presented with the
hoose statement

that is responsible for halting the simulation. The user will then enter a value in the appropriate

range for the variable in the
hoose statement. On
e again, some heuristi
 of the possible
hoi
es

should be presented to the user. In the
ase where this is not pra
ti
al (displaying heuristi
s for

every integer between 1 and 100 is not pra
ti
al for eff a :=
hoose x: Int where x>0 and

x<101), heuristi
s
an be displayed for a subset of all valid
hoi
es.

89

8.5 Debugging Tool

The ability of the simulator to print out tra
e logs and state snapshots is naturally extended to

the
reation of a more
omprehensive debugging tool. This tool would
omprise of features that

are both
ommon to most debugging appli
ations and those that are more IOA spe
i�
. They will

in
lude runtime user intera
tive nondeterminism resolution, des
ribed in Se
tion 8.4, step-through

exe
ution and breakpoints, and intera
tive exe
ution logs.

On
e this debugger tool is implemented the user will have a spe
trum of tools that will enable

him/her to explore in detail many possible exe
utions of the system being modeled. The user

will also be able to
onveniently modify the system until he/she is satis�ed with the observed

simulations. This will allow the user to foresee problems in the system at design time and will aid

the user in augmenting and improving the system at design time.

8.5.1 Step Through Exe
ution and Breakpoints

This feature would provide the user with more
ontrol over the
ow of the simulation. Both notions,

stepping through a simulation and setting up breakpoints, are
ommon to every standard debugging

tool. Instead of only being able to observe the
omplete tra
e log after an exe
ution has
ompleted,

the step through feature will enable the user to observe the state of the simulation as the tra
e log

is being
reated. More spe
i�
ally, after ea
h addition to the tra
e log, the simulation will pause

and present the user with the tra
e log up to this point and the global state of the system. The

simulation will only resume on
e the user signals that he/she has
ompleted analyzing the
urrent

situation and is ready for the simulation to
ontinue.

Breakpoints will allow the user to
hoose, prior to the simulation, either one or many a
tions of

the automaton being simulated. During the simulation whenever one of these a
tions is about to

be �red, the simulation will pause and present the user with the tra
e log up to this point and the

global state of the system. On
e again, the simulation will only
ontinue on
e the user signals that

he/she is ready. Thus breakpoints will allow for a step through simulation that pauses at spe
i�ed

points of the simulation as opposed to pausing at every step of the simulation, as is the
ase with

a standard step through exe
ution.

To enhan
e step through simulation, the user will have the ability to sele
t what variables are

displayed as part of the state. Thus allowing him/her to
on
entrate on spe
i�
 variables instead

of having to look through the entire global state of the system.

90

8.5.2 Intera
tive Exe
ution Logs

On
e the features of step through exe
ution, Se
tion 8.5.1, and user intera
tive nondeterminism

resolution, Se
tion 8.4 are implemented, it would be useful to enhan
e tra
e logs to allow for

simulation navigation. The user will be able to
hoose a point in a given tra
e log and return the

simulation to this parti
ular point. The simulation will then
ontinue from this point.

This feature is parti
ularly useful when
oupled with user intera
tive nondeterminism resolution.

It allows the user to return to a point in the simulation prior to some nondeterminism resolution

de
ision. He/she
an then make a di�erent de
ision and follow the simulation to see how the

bran
hes di�er. The user
an repeat this until he/she has explored all of the desired bran
hes of

nondeterminism.

8.6 Graphi
al Improvements

The extension of the simulator's user interfa
e from a text based one to a more graphi
al one

would be a useful improvement. Combined with the features des
ribed above, a graphi
al interfa
e

would provide an engaging debugging environment. Via
oloring, it would allow for
omprehensive

representations of the
omponents of a
omposite automaton. Suggestions for the implementation

of a graphi
al user interfa
e to the simulator are mentioned in [Che98℄.

91

92

Appendix A

IOA Parser File Modi�
ations

This
hapter des
ribes the
hanges made to the
ode of the IOA parser. The se
tions are partitioned

by dire
tory and a distin
tion is made between the �les that were modi�ed and the �les that have

been
reated.

A.1 Modi�ed Files - parser

�
omponentNode - added two methods to modify this obje
t after
reation as is ne
essary

for
reating
omponents de
lared in the with blo
k. Methods : setFormals and
hangeName.

- 1.7

�
ompositionNode - added getAutNameByCompName and getComponentByNamemethods and

hashtables to support them. The former retrieves the automaton name of the
omponent

with the spe
i�ed
omponent tag. The latter retrieves the
omponentNode obje
t for the

omponent with the spe
i�ed
omponent tag. Both are used in
he
kComposition. Added

s
hedule obje
t to the makeAbstra
t method. Overloaded set method to allow for a s
hed-

ule parameter. Added a detS
heduleNode �eld to store the s
hedule for this
omposite

automaton. Passes the s
heduleNode to the
omposition upon makeAbstra
t, depends on

automaton/
omposition(1.26) for the latest make method. - 1.9

� detFireNode - the �re statement might now have a
omponent name asso
iated with it.

Depends on automaton/ndrfire(1.13). - 1.13

� detS
heduleNode - added an withNode �eld to store a with bl
ok that may be asso
i-

ated with this s
hedule node. Overloaded set methods to allow for the passing of the with

blo
k. Added the with blo
k to the makeAbstra
t method. Depends on withNode(1.1),

automaton/s
hedule(1.9), automaton/de
laration(1.1). - 1.15

� grammar.sr
 - updated produ
tion rules for
ompositions to allow s
hedule blo
ks. Com-

posite s
hdule blo
ks di�er from primitive ones in that their invo
ation
alls must have a

omponent name pre�x. Introdu
ed produ
tion rules for the new notion of with blo
ks and

de
larations for
omposite s
hedule blo
ks. New WITHCOMP keyword. Depends on latest

version of
ompositionNode(1.8), detFireNode(1.13), detS
heduleNode(1.15),

ompDetFireNode(1.1), withNode(1.1), and de
larationNode(1.1). - 1.23

93

� invo
ationNode - added ltoken �eld to store
omponent name that may be asso
iated with

this invo
ation. Added a

essor for this �eld and made sure it
opies over when thi sobje
t

is
opied. - 1.2

� ioaTokenizer - adde the WITHCOMP = \with" keyword. - 1.10

� Make�le - added three new �les : withNode.pj, de
larationNode.pj, and

ompDetFireNode.pj. - 1.26

A.2 New Files - parser

�
ompDetFireNode - extends detFireNode and provides analogous set methods that al-

low for the passing of a
omponent name asso
iated with this �re statement. Depends on

invo
ationNode(1.2). - 1.1

� de
larationNode - node representing a single de
laration line in a
omposite s
hedule blo
k

with blo
k. Fields in
lude: the
omponent tag name, the handle name, and the a
tuals for

this
omponent. Depends on automaton/de
laration(1.1). - 1.1

� withNode - node representing the entire with blo
k of a
omposite s
hedule blo
k. Consists

of an array of de
larationNode obje
ts . getCompName method retrieves the
omponent

tag of the
omponent with the spe
i�ed handle name. Method used in
he
kComposition.

Depends on de
larationNode(1.1), automaton/de
laration(1.1). - 1.1

A.3 Modi�ed Files - automaton

�
omponent - updated toSValue method to in
lude formals for the
omponent tag and the

name of the base automaton that this
omponent is based on. - 1.19

�
omposition updated the make method to take in a s
hedule parameter. Added the
on-

verison of the s
hedule to an SValue in the thisKindOfAutomatonToSValue method. - 1.26

� formal Added the keyword CONST (ILParser.KEYW CONST) at the head of the SList

of the IL representation of an a
tion formal. Previously, there was no way to distinguish a

onstant parameter from a non
onstant one. - 1.8

� Make�le added new de
laration.java �le. - 1.19

� ndr�re added �eld to store
omponent name in the
ase of this �re statement o

uring in a

omposite s
hedule blo
k. Added the
omponent name to the toSValue method. - 1.13

� s
hedule added de
larations �eld to store the de
larations in a with blo
k that may be

asso
iated with the s
hedule in the
omposite
ase. Overloaded
onstru
tors to in
lude this

�eld. Added this �eld to the toSValue method. Depends on de
laration(1.1). - 1.9

A.4 New Files - automaton

� de
laration represents an abstra
t de
laration blo
k in a with blo
k of a s
hedule blo
k of

a
omposite automaton. FIX: print methods. - 1.1

94

A.5 Modi�ed �les -
he
ker

� Moved
he
k methods from
he
kBasi
Automaton to
he
kAutomaton,
hanged the a

essi-

bility of these methods to prote
ted instead of private. This allows
he
kComposition to

inherent the
he
k methods it now needs to
he
k the
omposite s
hedule blo
k.

�
he
kComposition -
he
kDetFire overloaded to a

ount for
omponent name pre�x in

�re invo
ations of
omposite s
hedule blo
ks. Added
he
kWithBlo
k method that performs

semanti

he
ks on the with blo
k; builds the
ompNodes array, whi
h is later used by

extra
tStates to make variables out of the
omponents de
lared in the with blo
k; extends

the symbol map to make the sort of the
omponents de
lared in thewith blo
k to be aggregate

over the state variables of the automaton that its based on. The extra
tStates method has been

extended to make the
omponents de
lared in the with blo
k in addition to those de
lared

in the
omponents se
tion, into variables. The
he
kCompNDRStates
alls the super
lass

he
kNDRStates method and also makes sure that state variable names do not
lash with the

handle names established in the with blo
k. Depends on
he
kAutomaton, all of the parser

modi�
ations. - 1.22

95

96

Appendix B

Simulator File Modi�
ations

This
hapter des
ribes the
hanges made to the
ode of the simulator. The se
tions are partitioned

by dire
tory and a distin
tion is made between the �les that were modi�ed and the �les that have

been
reated.

B.1 Modi�ed Files

� A
tualAutomaton abstra
t
lass - now implements A
tualAutInterfa
e and supports all

of its methods. - 1.12

� A
tual Transition - Now knows whether it is a
onne
e
ted transition or initial one. Con-

tains string bu�er for
onne
ted output. Announ
erExe
 only registers initial transitions

whi
h in turn output all of the ones
onne
ted to them. - 1.19

� DetA
tualAutomaton - New isSimulatable variable is used in
omposite simulations to

let the
omposite automaton know that this automaton will never again have any enabled

transitions. - 1.4

� Exe
Control allow Exe
Controls to be made for automata other than the one a
tually

making it. (During a
omposite simulation, the
omposite automaton needs to
reate an

NDR s
hedule for one of its
omponents). Overloaded exe
ute method with one that takes

an int parameter. If the exe
ute loop is not broken after this number of steps, an ex
eption

is thrown. - 1.13

� FireProdu
t - implement the new interfa
e. Code to support
omposite s
hedule blo
ks. -

1.2

� NDRA
tualAutomaton
reation of s
hedule
ontrol obje
t needs to know whi
h automa-

ton it is to simulate. nextTransition method now
alls the exe
ution of the NDR program

with a max-steps parameter. If the NDR program does not return the next transition before

these steps have been exhausted, the NDR program stops looking for a transition. - 1.4

� SimAutomaton Interfa
e - added method to
reate a new A
tualAutomaton from this basi

one. - 1.2

� SimPrimitiveAutomaton - now returns an A
tualAutInterfa
e instead of

97

A
tualAutomaton, allowing the abstra
tion of primitive versus
omposite atuomaton for sim-

ulation. Is now
apable of
reating an independent
opy of itself used when multiple
ompo-

nents of a
omposition are based on the same automaton. Depends on interfa
e Copyable(1.1)

and the
lasses that implement it. - 1.14

� SimILFa
tory - added method for
reation of newCompositeAutomaton. Overloaded new-

State method to allow a variable to know whi
h automaton it belongs to. This allows the

automaton name to be displayed in front of its variables. - 1.17

� SimNDRFire - modi�
ations to allow
omposite s
hedule blo
ks. - 1.6

� SimState - Now knows its owner automaton's name, for display purposes. - 1.2

� Simulator - depends on A
tualCompositeAutomaton.java(1.1) and updates to a

ount for

the new A
tualAutInterfa
e(1.1) interfa
e. Also depends on SimPrimitiveAutomaton(1.12).

- 1.31

1. Interfa
e Updates

2. doStep modi�ed to handle
onne
ted a
tions as well as initially �red ones

3. Initial a
tions are aware of what needs to be outputed for their
onne
ted ones

4. Overloaded newControl when a
omposite might need a
ontrol thats not for itself

5. Added stati
 MAX NDR STATES variable whi
h is defaulted to 500 and
an be

hanged via a
ommand line argument. This variable determines the maximum number

of steps a parti
ular
all to an NDR program is exe
uted.

� shell/SimShell - Interfa
e
hanges. Lets StepListener know that the simulation is a
om-

posite one. Introdu
ed new
ommand line parameter, ndrSteps. This parameter spe
i�es

the maximum number of steps to run a parti
ular
all to an NDR program. This variable is

stati
ally stored in ioa.simulator.Simulator and is defaulted to 500. - 1.64

� shell/StepListener - Output automaton name next to state variable when the simulation

is a
omposite one. Output all of the
onne
ted a
tions when handling an initial a
tion that

has a
tions
onn
e
ted to it. - 1.19

B.2 New Files - Simulator

� A
tualAutInterfa
e Interfa
e - new interfa
e on the a
tual side to abstra
t away knowledge

of
omposite vs primitive automaton. Can ask it whether the automaton is a
omposite one

or not. - 1.1

� A
tualCompositeAutomaton - 1.2

1. Dependen
y - SimCompositeAutmaton.

2. NextTransition method looks through
omponents on sear
h of next a
tion to �re. Two

possible non determinism resolution strategies. One - use the blo
ks of the
omponents.

Two - use an NDR blo
k spe
i�
ally de�ned for the
omposite automaton.

3. �reConne
ted method looks for input transitions that might possibly be
onne
ted to

the re
ently �red output transition. Exe
utes all su
h transitions.

98

4. Lets
onne
ted a
tions know that they are
onne
ted. Adds the output produ
ed by

onne
ted a
tions to the a
tion that initially triggered them.

5.
omponentSele
tionPoli
y variable determines the order in whi
h
omponent automata

are tested for enabled transitions. Random and Uniform poli
ies have been implemented.

A Weighted poli
y is being implemented. Currently, the uniform poli
y is the default

option.

6. To do: implement toSValue.

� Copyable Interfa
e - obje
ts that implement this interfa
e are
apable of
opying their

reprsentations. This is used in
ompositions where multiple
omponents are based on the

same automaton. Classes that implement this interfa
e:

{ SimAppli
ationTerm 1.13

{ SimExistsTerm 1.4

{ SimForAllTerm 1.5

{ SimLiteralTerm 1.4

{ SimVarRefTerm 1.7

{ SimAssignment 1.7

{ SimChoi
e 1.11

{ SimConditional 1.4

{ SimPairedFire 1.7

{ SimNDRFire 1.7

{ SimNDRWhile 1.6

{ SimNDRYield 1.4

{ SimNOP 1.5

� SimCompositeAutomaton parallel of SimPrimitiveAutomaton. - 1.1

� StepsEx
eededProdu
t thrown when a parti
ular NDR program has been running for

more steps than the alloted number. Used for
ontrol relinquishing between
omponent NDR

programs in
omposite simlations. - 1.1

B.3 Modi�ed Files - il

� AutComponent - made �elds and a

essor methods. Now extends Basi
ILElement. Added

�elds to store the a
tuals of a
omponent de
lared in a with blo
k and the formals of the

omponent tag
orresponding to this
omponent. Its
onstru
tor has been overloaded to allow

the passing of these �elds. To do: �x toSValue method. - 1.3

� Basi
A
tion formals are now represented as Term obje
ts as they may be
onstants. - 1.9

� Basi
A
tionTable Added method to allow Basi
CompositeAutomaton to return a
tion

table. - 1.11

99

� Basi
CompositeAutomaton Changes dealing with new AutComponent methods. getA
-

tionTable update. - 1.6

� Basi
ILFa
tory Overloaded newState method to allow state to know whi
h automaton it

belongs to, for display purposes. - 1.9

� Basi
State Allow state to know whi
h automaton it belongs to, for display purposes. Related

to SimState. - 1.7

� Basi
Variable To allow StepListener to display information about a
onne
ted a
tion, mod-

i�ed a method. - 1.7

� CompositeAutomaton syn
hronized addComponent method with the latest version of Aut-

Component. - 1.4

� ILFa
tory abstra
t
lass Added newState method to allow
reation of a variable that knows

whi
h automaton it belongs to. This enables the output of the automaotn name in front of

the variable name. - 1.10

� ILParser - 1.43

1. added
urAut variable to keep tra
k of the automaton
urrently being parsed,

2. parseState and parseStates modi�
ation to allow a state (variable) to know what au-

tomaton it belongs to,

3. parseTerm is aware of the possbility of a
onstant term,

4. parseCompositeAut begins the handling of parsing a
omposite s
hedule blo
k.

5. The TempComponent internal
lass is ised to store the temporary representation of a

omponent when it is des
ribed in the
omponents se
tion. It is later used when

NDRCompositeAutomaton parses the with blo
k of this
omposite automaton to instan-

tiate
omponents based on this temporary representation.

� HookILFa
tory Added newState method; implementing that of the ILFa
tory interfa
e. -

1.7

� NDRFire Modi�
ation to allow
omposite s
hedule blo
k and storing of the
omponent

name pre�x in
omposite s
hedule blo
ks. - 1.6

� NDRILFa
tory handles the parsing of a �re statement that may appear with a
omponent

name pre�x in a
omosite s
hedule blo
k. - 1.5

� PrimitiveAutomaton and Basi
PrimitiveAutomaton added
opy method that is used

by
omposite automata that have more than
omponent based on the same base automaton.

The meaningful implementation of this method is in

simulator/SimPrimitiveAutomaton and overrides the implementation in

Basi
PrimitiveAutomaton. - 1.5

� Variable interfa
e Added setAutName and getAutName methods to allow variables to know

what automaton they belong to. - 1.4

� Files modi�ed to allow the marking of terms as
onstant formals of a
tion signatures:

100

{ Basi
Appli
ationTerm - 1.10

{ Basi
ExistsTerm - 1.5

{ Basi
ForAllTerm - 1.7

{ Basi
LiteralTerm - 1.5

{ Basi
SortRefTerm - 1.5

{ Basi
VarRefTerm - 1.5

{ Term - 1.5

B.4 New Files - il

� NDRCompositeAutomaton parallel of NDRPrimitiveAutomaton. Handles the parsing of

the
omposite s
hedule blo
k and the with blo
k that may appear there. - 1.2

B.5 Files where the only
hanges involve the naming of the new

interfa
es

�
odegen/ig/Invo
ationGenerator - 1.3

�
odegen/ig/Invo
ationListener - 1.2

� il/ILUnparser - 1.31

� simulator/daikon/DaikonListener - 1.18

� simulator/daikon/De
lsPrinter - 1.18

� simulator/daikon/PairedDaikonListener - 1.6

� simulator/daikon/SplitterWriter - 1.4

� simulator/PairedFireProdu
t - 1.2

� simulator/PairedImplAutomaton - 1.12

� simulator/PairedSimulator - 1.6

� simulator/shell/PairedShell - 1.32

� simulator/shell/PairedSteplistener - 1.13

B.6 Test Suite

� Test/Make�le.
ommon Added SIMAUTOMATON parameter for sim testing. When spe
-

i�ed in a Makefile of a test
ase, this parameter determines whi
h automaton is to be simu-

lated. This is ne
essary for testing of
omposite simulations as the ioa �le may
ontain more

than one automaton. - 1.29

101

� Test/Make�le Support for the SIMAUTOMATON parameter for sim testing. When spe
-

i�ed in a Makefile of a test
ase, this parameter determines whi
h automaton is to be

simulated. This is ne
essary for testing of
omposite simulations as the ioa �le may
ontain

more than one automaton. - 1.29

102

Appendix C

IOA Grammar

C.1 Des
ription

The .ioa �le that is the input to the
he
ker gets parsed a

ording to the IOA grammar. This

grammar is de�ned in /Code/ioa/parser/grammar.sr
. The grammar
onsists of two parts, tokens

and rules. The tokens themselves are divided into two parts, terminal tokens and non terminal

tokens. The terminal tokens are the leaves of the parse tree, while the non terminal tokens are the

non-leaf nodes of the parse tree. Ea
h non terminal token must appear on the left side of a rule.

The grammar gets pro
essed by the javaCup tool. This tool
reates �les, des
ribed in detail

below, that a
t as the parser for the IOA language.

C.1.1 Tokens

Terminal tokens are asso
iated with keywords of the IOA language; notions that do not need

to be further broken down. A terminal token is represented by an ioa.parser.ltoken obje
t. It

is de
lared using the following syntax,

terminal ltoken tokenName

For example, pun
tuation marks su
h as a
omma and a semi
olon, key words su
h as automa-

ton and input, and operators su
h as or and and are all terminal tokens.

Non terminal tokens are asso
iated with notions that need to be further broken down. A non

terminal token is represented by a spe
i�
 sub
lass of the ioa.parser.Node obje
t. It is de
lared

using the following syntax,

non terminal
lassName tokenName

For example, the high level notions of an IOA spe
, an automaton de�nition, and a transition

de�nition are all non terminal tokens. Figure C.1.1 displays the spe
i�
ation of automaton Fi-

bona

i. After parsing, everything other than automaton Fibona

i would be represented by the

non terminal token basi
Automaton. This token would further be broken down a

ording to the

rules des
ribed in Se
tion C.1.2.

103

automaton Fibona

i

signature

internal
ompute

states

a:Int := 0,

b:Int := 1,

:Int := 1,

d:Bool

trans i t ions

internal
ompute

e f f a := b ;

b :=
 ;

 := a + b; }

Figure C.1.1: Fibona

i automaton

C.1.2 Rules

Rules of the IOA grammar are of the form:

non-terminal-token ::= +non-terminal-token/terminal-token method-
all()

(where + denotes, one or more)

Rules de�ne the
onne
tion between non terminal tokens and other non terminal or terminal

tokens. The highest node in the parse tree is represented by a start token. This non terminal token

is the only one that does not appear on the right side of any rules. In our
ase this happens to be the

spe
 token. The rule of the IOA grammar that has spe
 on its left hand side, de�nes the notions that

may make up a spe
 obje
t. Other rules further re�ne these notions until everything is represented

by a terminal token. For example, the following rule spe
i�es the notion of a basi
Automaton:

basi
Automaton ::=

SIGNATURE:l formalA
tions:a states:s transitions:t

{set(l,a,s,t)} |

SIGNATURE:l formalA
tions:a states:s transitions:t tasks:tk

{set(l,a,s,t,tk)} |

SIGNATURE:l formalA
tions:a states:s transitions:t s
hedule:s

{set(l,a,s,t,s
)} |

SIGNATURE:l formalA
tions:a states:s transitions:t tasks:tk s
hedule:s

{set(l,a,s,t,tk,s
)} ;

The non-terminal token basi
Automaton represents the main body of a primitive basi
 automa-

ton. The above rule de�nes four possible ways that the basi
Automaton may further be broken

up. The terminal token SIGNATURE, represents the IOA keyword signature and is the required

beginning in ea
h of the four possibilities. The other tokens are all non terminals. The �rst
ase

is an automaton spe
i�
ation without tasks and a s
hedule blo
k, the se
ond with tasks but no

s
hedule blo
k, the third with a s
hedule blo
k and no tasks, and �nally the fourth is an automaton

with tasks and a s
hedule blo
k.

Ea
h token is followed by a \:" and a temporary variable assignment. These temporary vari-

ables are used in the method
alls that follow ea
h one of the
ases. In the de
laration se
tion of

104

the non terminals, the following line
an be found:

non terminal basi
AutomatonNode basi
Automaton;

This de
laration of the basi
Automaton token indi
ates that the basi
 automaton notion is rep-

resented by a basi
AutomatonNode obje
t. The methods that are spe
i�ed at the end of ea
h of

the four
ases are methods of this obje
t. When this rule is triggered, a basi
AutomatonNode

is
reated and depending on whi
h
ase was mat
hed, the
orresponding method is
alled. The

arguments to these methods are the temporary variables whose type depends on the token that

they represent. Thus in the �rst
ase, set(l,a,s,t), l (SIGNATURE) is an ltoken, a (formalA
-

tions) is a fa
toredListNode of a
tionNode and Node (des
ribed in Se
tion C.1.3), s (states) is a

statesNode, and t (transitions) is a listNode of transitionNode's.

C.1.3 Typed Lists

Some of the tokens are de
lared to be of type ListNodeXXnameYY or

Fa
toredListNodeXXname

1

ZZname

2

YY. The former denotes a typed list of name obje
ts, while

the later denotes a typed list of name

1

obje
ts whose members are in turn lists of name

2

obje
ts.

The typed lists are only supported by polyj and are not re
ognized by javaCup. Thus they are

de
lared with the XX, YY, and ZZ delimiters. These are later
onverted to polyj representations by

the postpro
essor (des
ribed below). For example, the following de
larations of the non terminal

token operators, denotes that the operators token is represented by a list of operatorNode obje
ts.

non terminal ListNodeXXoperatorNodeYY operators;

C.1.4 Pro
essing the Grammar

The Make�le for the /Code/ioa/parser dire
tory
ontains s
ripts that do all of the following. The

grammar.sr
 �le gets prepro
essed into grammar.
up. This �le is pro
essed by javaCup and two

�les are produ
ed, parser.java and sym.java. These �les now get post-pro
essed into polyj �les

to allow for the use of parameterized lists, lparser.pj and sym.pj are produ
ed. Finally, these

two �les get
ompiled into what be
omes the parser tool. This pro
ess is des
ribed in more detail

in the grammar.sr
 �le.

C.2 Auxiliary �les

There are a few other �les that are involved with the IOA parser other than grammar.sr
. These

�les de�ne the IOA keywords and
reate a mapping between them and the representation
reated

for them by javaCup.

notions/lexi
al.java this �le de�nes the a
tual text of keyword strings. It is updated manually.

parser/sym.pj this �le is generated by the javaCup pro
ess. It
ontains the internal representa-

tions of the tokens

parser/tokenizer.pj this �le is manually updated. It is the link between the keywords in lexi
al.java

and sym.pj.

105

parser/ioaTokenizer.pj same as above, ioa spe
i�

parser/lparser.pj this �le is generated by the javaCup pro
ess. It is the a
tual parser.

C.3 Brief Guide to Modifying Grammar

If the modi�
ation required the addition of new keywords to the IOA language or the update of

existing keywords in the IOA language:

� Update lexi
al.java by adding/modifying keyword strings, and

� Create
onne
tion between the keyword and its representation in the generated parser by

updating ioaTokenizer.java (in the
ase of new keywords).

If the modi�
ation requires the
reation of a new intermediary token or the modi�
ation of the

behavior of one:

� Create/update the appropriate sub
lass of Node.java, and

� Verify that the methods you intend to
all upon the pro
essing of this obje
t during parsing

have the intended signatures/behaviors.

In all
ases:

� Update grammar.sr
 to en
orporate the new/modi�ed keywords, tokens, and rules, and

� Re
ompile the the Code/ioa/parser and the IOA Toolkit/bin dire
tories to make all of these

hanges take e�e
t.

106

Bibliography

[Che98℄ Anna E. Chefter. A simulator for the IOA language. Master's thesis, MIT, May 1998.

[Ci
98℄ Andrzej Ci
ho
ki. Work
ow and Pro
ess Automation: Con
epts and Te
hnology.

Kluwer A
ademi
 Publishers, 1998.

[Dea01℄ Laura Dean. Improved simulation of input/output automata. Master's thesis, MIT,

September 2001.

[GL00℄ Stephen J. Garland and Nan
y Lyn
h. Foundations of Component-Based Systems,

hapter 13 - Using I/O automata for developing distributed systems, pages 285{312.

Cambridge University Press, USA, 2000.

[KCD

+

02a℄ Dilsun Kirli Kaynar, Anna Chefter, Laura Dean, Stephen Garland, Nan
y Lyn
h,

Toh Ne Win, and Antonio Ramirez-Robredo. The IOA Simulator. Te
hni
al Report

843, MIT Laboratory for Computer S
ien
e, 200 Te
hnology Square, Cambridge, MA

02139, USA, July 2002. http://theory.l
s.mit.edu/tds/ioa.html.

[KCD

+

02b℄ Dilsun Kirli Kaynar, Anna Chefter, Laura Dean, Stephen Garland, Nan
y Lyn
h,

Toh Ne Win, and Antonio Ramirez-Robredo. Simulating nondeterministi
 systems at

multiple levels of abstra
tion. August 2002. In Tools Day held in
onjun
tion with

CONCUR'02, Brno, Cze
h Republi
.

[Kun93℄ Thomas Kunz. Distributed debugging { a
ase study. Te
hni
al Report TI{3/92,

Institut fur Theoretis
he Informatik, Darmstadt, Germany, February 1993.

[Lyn96℄ Nan
y Lyn
h. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

107

[MSK

+

95℄ John A. Miller, Amit P. Sheth, Krys Ko
hut, Xuzhong Wang, and Arun Murugan.

Simulation modeling within work
ow te
hnology. In Winter Simulation Conferen
e,

pages 612{619, Arlington, VA, De
ember 1995.

[OW98℄ P. D. O'Brien and W. E. Wiegand. Agent based pro
ess management: Applying

intelligent agents to work
ow. The Knowledge Engineering Review, 13(2), 1998.

[RR00℄ J. Antonio Ramirez-Robredo. Paired simulation of I/O automata. Master's thesis,

MIT, September 2000.

[Tau03℄ Joshua Tauber. De�nition and expansion of
omposite automata in IOA. PhD thesis,

in progress. MIT, 2003.

[Yan92℄ Z. Yang. Global snapshots for distributed debugging: an overview. Te
hni
al Report

TR-92-03, Laboratory for Distributed and Parallel Computing, University of Alberta,

Edmonton, Alberta, Canada, Mar
h 1992.

108

