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Abstra
t

The IOA simulator is a tool that has been developed in the Theory of Distributed Systems group at

MIT. This tool simulates the exe
ution of automata des
ribed by the IOA language. It generates

logs of exe
ution tra
es and provides other pertinent information regarding the exe
ution, su
h

as the validity of spe
i�ed invariants. Although the simulator supports paired simulation of two

automata for the purpose of 
he
king simulation relations, one of its limitations is its la
k of support

for the simulation of 
omposite automata. A 
omposite automaton represents a 
omplex system

and is made up of other automata, ea
h representing a system 
omponent. This thesis 
on
erns

the addition of a 
apability to simulate 
omposite automata in a manner that allows observing

and debugging the individual system 
omponent automata. While there is work in progress on


reating a tool that will translate a 
omposite de�nition into a single automaton, the added ability

to simulate 
omposite automata dire
tly will add modularity and simpli
ity, as well as ease of

observing the behavior of individual 
omponents for the purpose of distributed debugging.
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Chapter 1

Introdu
tion

One of the major resear
h a
tivities within the Theory of Distributed Systems Group at MIT is

the development of formal methods for modeling and reasoning about distributed systems. As

distributed systems may be fairly 
omplex, it is important to be able to model them pre
isely

and reason about them at various levels of abstra
tion. The input/output (I/O) automaton model


onstitutes the basis of the work on formal methods [KCD

+

02a℄.

1.1 I/O Automaton Simulator Overview

The I/O automaton model is a formal model for asyn
hronous 
omputing. It is a labeled transition

system model suitable for des
ribing asyn
hronous 
on
urrent systems [Lyn96℄. An I/O automaton

models a distributed system 
omponent that 
an intera
t with other system 
omponents. It is a

simple type of state ma
hine in whi
h transitions are asso
iated with named a
tions. The IOA

language, a formal language based on the I/O automaton model, provides an expressive medium

for pre
ise des
ription of a system's behavior. Des
riptions of subsystems may be 
omposed in

parallel to form a 
omposite des
ription. Further, the language allows for des
ription at various

levels of abstra
tion, and provides a me
hanism for relating these des
riptions [Dea01℄.

The IOA toolkit is a suite of software tools. It fa
ilitates the design, analysis, and development

of distributed systems within the I/O automaton framework [KCD

+

02a℄. The tools in the suite 
an

be broken into 
ategories of front-end and ba
k-end. The 
he
ker is a front-end tool that 
he
ks

the syntax and the semanti
s of a given IOA �le, whi
h 
ontains the des
ription of one or more

I/O automata. If the IOA �le is valid, the 
he
ker generates an intermediate language (IL) �le.

15



This IL �le is then used by the ba
k-end tools. The ba
k-end tools 
onsist of a simulator, 
ode

generator, and translators to a range of representations suitable for use with some theorem provers.

This paper primarily deals with the simulator.

The IOA simulator was designed by Anna Chefter [Che98℄, and parts of it were implemented

by Antonio Ramirez [RR00℄. The input to the simulator is an IL �le produ
ed by the front-end


he
ker des
ribed above. The simulator 
an be used to test automata before attempting 
orre
tness

proofs. A simulation that goes as expe
ted does not prove the 
orre
tness of the automaton but

does in
rease 
on�den
e that the automaton has been designed as intended. A simulation that

does not go as expe
ted dis
overs bugs in the automaton spe
i�
ation. The user 
an then modify

the automaton and run the simulator again. The following two se
tions des
ribe those features of

the simulator that were implemented and those that were not at the start of this proje
t.

1.1.1 Previously Implemented Features

The simulator in release 0.09 of the IOA Toolkit is 
apable of simulating a primitive non-parameterized

automaton. In order to resolve the nondeterminism that may be present in the automaton, the

simulator is 
apable of using a nondeterminism resolution (NDR) blo
k. Nondeterminism and NDR

blo
ks are dis
ussed in detail in Se
tion 2.1.

In order for the simulation to be useful, the user needs to be able to observe the step-by-step

behavior of the automaton being simulated. The user may invoke the simulation with a variety

of 
ommand line options. Further, the user has the options to display the triggered transition at

every step, never display the transition, or only display the external transitions to 
reate a tra
e of

the automaton. Similarly, at every step the user has the option to display all of the state variables

of the automaton, none of the state variables, or just those that have been modi�ed as a result of

the transition triggered at that step.

In addition to simply observing the log of the exe
ution, the user may provide one or more

invariants for the automaton. An invariant is a predi
ate involving the state variables of the

automaton. The simulator 
he
ks the truth value of the predi
ate after every step of the simulation

and displays an appropriate message at every step that the predi
ate is false. Just as above, the

fa
t that the invariant is true at every step does not ne
essarily imply that its always true. It

simply in
reases our 
on�den
e that it might be a valid invariant. However, if it is ever false, we


an dis
ard it and look for a new one.
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The simulator is also 
apable of paired simulations [RR00℄, an extremely useful feature in

distributed system design and debugging. Su
h a simulation may be bene�
ial when a system

is designed by moving from the highest level to the lowest level in the abstra
tion hierar
hy. In

this 
ase the user spe
i�es two automata, a simulation relation between the automata, and a step


orresponden
e. The step 
orresponden
e spe
i�es a high-level exe
ution fragment for ea
h low-level

transition, su
h that the simulation relation holds after the exe
ution of any low-level transition

and its 
orresponding high-level fragment. The simulator then 
he
ks if the relation holds at every

step of the exe
ution. This enables the user to reason about the behavioral 
orresponden
e between

the automata at di�erent levels of abstra
tion [KCD

+

02a℄.

1.1.2 Newly Implemented Features

One of the simulator's prior limitations was its inability to simulate 
omposite automata. We have

implemented this feature. We �rst 
on
entrate on the basi
 
ase, that of a 
omposite automaton


onsisting of 
omponents that are not parameterized. Even this basi
 
ase presents the ne
essity

to resolve a new kind of nondeterminism: nondeterminism in sele
ting the 
omponent that will

�re the next transition. A possibility for resolving su
h nondeterminism is an NDR blo
k in the


omposite automaton. Although at the onset of this proje
t su
h NDR blo
ks were supported

for primitive automata simulations, they were not supported for 
omposite automata simulations.

Their implementation is dis
ussed in detail in Se
tion 2.1.4.

More often it is the 
ase that the 
omponents of a 
omposite automaton will have param-

eters. These parameters may be either type or variable parameters. Variable parameters are

now supported, while type parameters remain as future work. The introdu
tion of parameterized


omponents in a 
omposite automaton introdu
es questions regarding the instantiation of these


omponents and ability to a

ess them later. These issues are dis
ussed in Se
tion 3.2.

The possibility of automata parameters introdu
es the need for 
onstant, 
onst, parameters in

a
tion signatures. A 
onstant parameter is a term in an a
tion signature that refers to a formal

parameter of the automaton, rather than a fresh variable de
laration [Tau03℄. These parameters

are useful when the 
omposite automaton 
ontains multiple 
omponents based on the same original

automaton. In this 
ase some other 
omponent may want to intera
t with a 
ertain subset of these


omponents based on their formal parameters. Constant parameters allow su
h intera
tion.

For example, Figure 1.1.1 
ontains the partial spe
i�
ations of automata Channel and Pro
ess
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automaton Channel(Node, Msg:type, i, j:Node)

signature

input send(
onst i, 
onst j, m:Msg)

output re
eive(
onst i, 
onst j, m:Msg)

...

automaton Pro
ess(n:Int)

signature

input re
eive(
onst n-1, 
onst n, x:Int)

output send(
onst n, 
onst n+1, x:Int),

overflow(
onst n, s:Set[Int℄)

...

automaton Sys


omponents C[n:Int℄: Channel(Int, Int, n, n+1)

where 1 � n ^ n < 10;

P[n:Int℄: Pro
ess(n) where 1 � n ^ n � 10;

Figure 1.1.1: Automaton Sys

[Tau03℄. The automaton Sys is a 
omposite automaton 
omprised of ten Pro
ess 
omponents and

nine Channel 
omponents. The Channel 
omponents fa
ilitate the ex
hange of messages between

the Pro
ess 
omponents. Thus when the Pro
ess 
omponent with formal parameter n set to 5 sends

a message, only the Channel automaton with formal parameters i and j set to 5 and 6 respe
tively

should re
eive this message. Constant parameters enable this intera
tion. They are now supported.

The following is a high level des
ription of the features that we have implemented:

� Simulation of Composite Automata

� S
hedule Blo
ks in Composite Automata

� Parameters in the Components of a Composite Automaton

� Constant Parameters

� Invariants for Composite Automata

1.2 Compositions

The fo
us of this thesis is the simulation of 
omposite automata. Josh Tauber's work on the


omposer, a front-end tool that 
onverts an IOA spe
i�
ation of a 
omposite automaton to an IOA

spe
i�
ation of a primitive one, is 
losely related to the ability to simulate 
omposite automata

dire
tly. In this se
tion we introdu
e 
omposite automata formally, motivate their dire
t simulation
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for the purpose of distributed debugging, 
ompare their dire
t simulation to the 
omposer, and

�nally propose a hierar
hi
al debugging te
hnique that uses both the ability to simulate 
omposite

automata dire
tly and the 
omposer.

1.2.1 Formal De�nition of Compositions

A 
omposition 
reates an automaton representing a 
omplex system from a set of individual au-

tomata representing system 
omponents. Intera
tion between 
omponents is a
hieved through

output and input a
tions of the same name. More spe
i�
ally, when a 
omponent automaton

performs an a
tion, �, all other automata that 
ontain an a
tion named � perform it as well. Lim-

itations, in the form of stati
 semanti
 
he
ks, on whi
h automata are 
ompatible for 
omposition

do exist [Lyn96℄. They are listed below:

A 
ountable 
olle
tion fS

i

g

i

2 I of signatures is 
ompatible if for all i; j 2 I; i 6= j, all of

the following hold (where int, out, in, and a
ts denote internal, output, input, and all a
tions

respe
tively):

1. int(S

i

)

T

a
ts(S

j

) = �

2. out(S

i

)

T

out(S

j

) = �

3. No a
tion is 
ontained in in�nitely many sets a
ts(S

i

)

Internal a
tions are intended to be private to a 
omponent automaton and thus unobservable

by other 
omponents. The �rst 
ondition ensures this. Without it a 
ertain internal a
tion of a


omponent might for
e an a
tion in another 
omponent to be triggered. The initial internal a
tion

would thus have to be observed. The se
ond 
ondition requires that the sets of output a
tions

of all 
omponents be disjoint. This ensures that at most one 
omponent automaton \
ontrols"

the performan
e of any given a
tion, whi
h is useful when 
omparing the tra
e of the stand alone

automaton to its tra
e when it is a 
omponent of a 
omposite automaton. The resulting primitive

automaton is de�ned to have the following signature:

� out(S) =

S

i2I

out(S

i

)

� int(S) =

S

i2I

int(S

i

)

� in(S) =

S

i2I

in(S

i

) n

S

i2I

out(S

i

)
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The signature, states, tasks, and start states of the produ
ed primitive automaton are ve
tors

of the respe
tive pie
es of the 
omponent automata. Transitions are modi�ed to allow a
tions with

the same name to be exe
uted simultaneously.

Upon �rst glan
e it might seem intuitive that if a 
omponent 
ontains an output a
tion � and

another 
omponent 
ontains an input a
tion �, then the a
tion � should be an internal one in

the 
omposition. The above signature renders a
tion � as an output a
tion in the 
omposition.

The labeling of a
tion � as an output a
tion allows the resulting 
omposed automaton to later be


omposed with another new 
omponent 
ontaining an input a
tion �. Had � been labeled as an

internal a
tion after the �rst 
omposition, 
ondition one of the limitations listed above would have

prevented the se
ond 
omposition. This is not the desired behavior as it should be possible for an

output a
tion to be broad
ast to more than one automaton. The behavior is also not desirable

be
ause it makes the order of 
omposition relevant.

The initial implementation of the 
omposite automata simulator requires that the a
tion where


lauses of the 
omponent automata do not have quanti�ers. Allowing quanti�ers would require

veri�
ation by a theorem prover to ensure that an input and an output a
tion do indeed satisfy

their respe
tive where 
lauses. Also, the 
omponent automata are required to have no hidden

a
tions.

It 
an be seen from the above de�nitions that unless the names of the a
tions and state vari-

ables of the 
omponent automata identify their owner, all modularity and tra
tability of individual


omponents are lost on
e the automata are 
omposed. When looking at the tra
e of the primi-

tive automaton, it will not be possible to dis
ern from whi
h 
omponent automaton the a
tions

originated. Nor will it be possible to dis
ern what individual automaton 
ontributed a parti
ular

state variable to the global state when looking at the exe
utions of the primitive automaton. Thus,

although it is possible to prepend ea
h a
tion and state variable with an identi�er for its 
omponent

automaton, it would be 
onvenient not to do this. The ability to 
losely monitor the behavior of

individual 
omponents during a simulation of a 
omposite automaton is useful for the purpose of

distributed debugging. We analyze this topi
 next.

1.2.2 Distributed Debugging

Debugging distributed systems is a mu
h more diÆ
ult task than debugging 
onventional, sequen-

tial programs. This is due to the fa
t that distributed systems are more 
omplex, introdu
e the
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element of syn
hronization, and make debugging mu
h more diÆ
ult due to the possibility of par-

tial failures [Kun93℄. For these reasons it is 
ru
ial to be able to simulate and thoroughly debug a

distributed system at design time. The 
apability of the simulator to run 
omposite automata will

allow for tra
e logs that 
learly identify individual 
omponents and for testing 
omponent spe
i�


invariants. This in turn will allow the user to observe and reason about individual 
omponents of

the 
omposition, thus aiding him/her in identifying the 
omponent that is 
ausing a problem or

behaving in an unpredi
table manner. Further, it will 
learly display to the user the 
ommuni
ation

pattern and syn
hronization between 
omponent automata.

The notion of global snapshots is a tool often used for distributed debugging. A global snapshot


aptures the state of all the pro
esses of the system at a 
ertain point in time [Yan92℄. Although in

the 
ase of simulating a 
omposition as a single primitive automaton it is possible to see the state of

all of the variables involved, it is not 
lear from whi
h of the 
omponent automata those variables

originated. In a snapshot that is produ
ed by the dire
t simulation of a 
omposition, all state is

available along with the information of what 
omponent automaton 
ontributed that parti
ular

pie
e of the state. On
e again, this 
an prove to be useful during the debugging of a 
ompli
ated

system. In theory, when 
reating a snapshot of a distributed system, an algorithm su
h as that of

Chandy and Lamport [Yan92℄ must be used to ensure that the snapshot represents the state of all


omponents at the same point of the exe
ution. Sin
e the simulator has a single point of 
ontrol,

we do not have to worry about ensuring this 
ondition.

In addition to debugging on
e a problem has been observed, the designer of the distributed

system might want to forestall problems by proving properties about the 
omposite system. \In

order to prove properties of a 
omposed system automata, it is often helpful to reason about the


omponent automata individually." [Lyn96℄ More spe
i�
ally, the designer might want to see if

his/her 
omposite automaton satis�es su
h tra
e properties as safety (some parti
ular \bad" thing

never happens) and liveness (some parti
ular \good" thing eventually happens). Be
ause showing

that ea
h 
omponent satis�es a parti
ular tra
e property implies that the 
omposition satis�es the

produ
t tra
e property, it is extremely useful to be able to reason about individual 
omponents.

Similarly, if the 
omposition fails to satisfy a produ
t tra
e property, the simulator will be able to

help the designer identify the parti
ular 
omponent that failed the tra
e property.
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1.2.3 Comparison to Composer

The 
omposer takes the IOA spe
i�
ation of a 
omposite automaton as input. As output it returns

the IOA spe
i�
ation of an equivalent primitive automaton. Thus the 
omposer is entirely a front-

end tool. As the new primitive automaton is being 
reated, a major part of the 
omposer 
on
erns

the 
reation of 
omposite automaton variables of appropriate sorts. For example, an entirely new

state table 
onsisting of a ve
tor 
ombination of the 
omponent state tables must be 
reated.

The dire
t simulation of 
omposite automata moves part of this burden to the ba
k-end tool, the

simulator. Instead of attempting to 
reate an aggregate state table, the simulator simply 
reates

an automaton obje
t for every 
omponent whi
h is responsible for maintaining its own state.

Another area of 
on
ern of the 
omposer is the semanti
 
he
king of where 
lauses in transition

de�nitions to determine how to 
ombine output and input transitions. For example, Figure 1.2.2


ontains the spe
i�
ation for automaton Sys with 
omponents Channel and Pro
ess (where P

1

,P

2

,P

3

,

and P

4

are e�e
ts programs).

When output a
tion send in automaton Pro
ess is �red, it may trigger the �rst send transition

of automaton Channel, the se
ond send transition of automaton Channel, or neither. Table 1.2.1


ontains a list of the possibilities.

Value(s) of x Exe
uted E�e
ts Programs

6,7,8 P

4

9,10,11 P

1

,P

4

12,13 P

4

14 P

2

, P

4

15,16 P

2

,P

3

17,18... P

3

Table 1.2.1: E�e
t 
lauses of automaton Sys to be exe
uted

The 
omposer has to 
reate a separate transition in the expanded automaton for every one of the


ases in Table 1.2.1. In some 
ases this might require an unde
idable semanti
 proof. However, in

the dire
t simulation 
ase, whenever output a
tion send in automaton Pro
ess is �red, the simulator

has a value for the a
tual parameter x of the transition. The simulator 
an now perform boolean

tests on the where 
lauses (still limited to disallow quanti�ers) of the input send transitions of

automaton Channel to see if any should be triggered. The 
ase of where 
lauses in 
omponents
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automaton Channel

signature

input send(x:Int) where x>0

...

transitions

input send(x) where x>8 =n x<12

e� P

1

input send(x) where x>13 =n x<17

e� P

2

...

automaton Pro
ess

signature

output send(x:Int) where x>0

...

transitions

output send(x) where x>15

e� P

3

output send(x) where x>5 =n x<15

e� P

4

...

automaton Sys


omponents Channel;Pro
ess

Figure 1.2.2: Combination of a
tion where 
lauses

de�nitions is very similar to the above and is dis
ussed in detail in Se
tion 3.2.

It is true that any 
omposite simulation that may be performed using dire
t simulation 
an

be performed via two steps: �rst the transfer from 
omposite automaton to primitive automaton

using the 
omposer; and se
ond, a primitive simulation of the resulting automaton. In some 
ases

it might be easier and faster to perform the dire
t simulation. Also, the dire
t simulation provides

easy tra
eability of 
omponents. To a
hieve the same tra
eability, the 
omposer would have to


reate some kind of system of labeling the resulting states and transitions that would maintain the

individuality and modularity of the 
omponents.

1.2.4 Hierar
hi
al Debugging

It will often be helpful to reason about a system from a hierar
hi
al, top-down perspe
tive, varying

the levels of modules to identify the sour
e of error. For example, [Kun93℄ des
ribes a system
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that models an airport shuttle system. The shuttle system 
onsists of four major 
omponents -

platforms (NorthEast, NorthWest, SouthEast, and SouthWest platforms). Ea
h of these platforms

is in turn made up of smaller 
omponents - tra
ks (Tra
kNorthWest, Tra
kMiddleWest,...).

1

A

single automaton models ea
h tra
k 
omponent.

To debug the system following the 
on
epts of hierar
hi
al debugging, the designer might �rst

want to model the system as 
onsisting of two parts - North and South. A round of testing might

reveal an error in one of these two parts. The designer will then move down a level of modules in the

erroneous part and leave the properly behaving one at the highest level of modules. If part South

is found to 
ontain an error, the se
ond round of testing will 
onsist of three parts - SouthEast,

SouthWest, and North. This pro
ess 
an 
ontinue until the lowest level erroneous part has been

pointed out.

The 
ombination of the 
omposer tool and the ability to simulate 
omposite automata dire
tly

provides an easy way to implement hierar
hi
al debugging as des
ribed above. The 
omposer is

used to 
reate various levels of modules. The ability to simulate 
omposite automata is used to

identify the erroneous 
omponent at a parti
ular level of abstra
tion.

The 
omposer tool 
an be used to 
reate primitive automata AutSouth and AutNorth out of


omposite automata that 
onsist of all of the south and all of the north 
omponent tra
ks respe
-

tively. The simulator then simulates the 
omposition of AutSouth and AutNorth. If AutSouth is

identi�ed as the erroneous 
omponent, the 
omposer 
an be used to 
reate primitive automata

AutSouthWest and AutSouthEast. The simulator then simulates the 
omposition of AutSouthWest,

AutSouthEast, and AutNorth. On
e again, this hierar
hi
al pro
ess 
an 
ontinue until either the

lowest level erroneous 
omponent has been identi�ed, or the error has been identi�ed at the desired

level of modules.

1

Terminology note: The term \level of modules" refers to a point in the modular hierar
hy. For example, the 
om-

ponents NorthPlatform and SouthPlatform are the highest level of modules. The next lower level of the NorthPlatform

module might 
ontain NorthEastPlatform and NorthWestPlatform. The next lower level of the NorthEastPlatform

might 
ontain NE1Platform, NE2Platform, and NE3Platform.
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Chapter 2

Composite Simulations

We now shift our fo
us to the simulator and its handling of 
omposite automata. How is a simulation

of a 
omposite automaton di�erent from a simulation of a primitive automaton? How should we

pi
k the next a
tion to �re? Will the �ring of this a
tion involve any other 
omponents? Se
tion 2.1

dis
usses a new type of nondeterminism that arises in 
omposite simulations. Se
tion 2.2 des
ribes

how the intera
tion between 
omponents is handled by the simulator.

2.1 Nondeterminism

Before dis
ussing the nondeterminism introdu
ed by 
omposite simulations, in Se
tion 2.1.1 we

take a look at the nondeterminism already present in primitive automata. We then propose two

methods of resolving the new nondeterminism. Se
tion 2.1.2 dis
usses the reuse of nondeterminism

resolution pro
edures provided for ea
h 
omponent. Se
tion 2.1.3 des
ribes how we avoid the pitfall

of nondeterminism pro
edure looping introdu
ed by the reuse strategy. Se
tion 2.1.4 dis
usses the


reation of a nondeterminism resolution pro
edure tailored for the 
omposite automaton.

2.1.1 Overview of Nondeterminism

A key feature of the IOA model is nondeterminism. Nondeterminism allows systems to be des
ribed

in their most general forms and to be veri�ed 
onsidering all possible behaviors without being tied to

a parti
ular implementation of a system design [KCD

+

02b℄. There are two types of nondeterminism

in the IOA model. Expli
it nondeterminism appears in the form of 
hoose statements, whi
h may

appear on the right hand side of variable assignments su
h as:
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s
hedule

states 
ounter:Int:=1

do

i f (Aut.total>10) then

f i r e output a
tion1

f i ;


ounter:=
ounter+1;

i f (Aut.ready=true) then

f i r e output a
tion2

f i

od

Figure 2.1.1: Example of a terminating NDR program

output a
tion1

e f f 
hosen := 
hoose x: Int where 10 < x;

Impli
it nondeterminism arises due to ambiguity in s
heduling a
tions [KCD

+

02a℄. Listed below

are the two ways in whi
h impli
it nondeterminism may o

ur:

� an automaton 
an have multiple enabled a
tions in a given state; and

� a given transition de�nition 
an take arbitrary a
tual parameter values, as long as they satisfy

its where 
lause.

The IOA simulator is a deterministi
 program and 
annot itself resolve the nondeterminism

present in the automata that it is simulating. To solve this problem we have taken advantage of the

fa
t that from the point of view of an IOA automaton spe
i�
ation, resolution of nondeterminism


an be regarded as a bla
k box that 
an yield transitions to be s
heduled and values to be assigned

to statements that involve nondeterministi
 
hoi
e [KCD

+

02a℄. In other words, the automaton is

not aware how the nondeterminism is resolved, but as long as it is resolved, the simulation of the

automaton may go forward. The simulator requires the user to provide deterministi
 programs

that repla
e these bla
k boxes. These programs are det and s
hedule blo
ks for expli
it and

impli
it nondeterminism respe
tively. In the presen
e of these nondeterminism resolution blo
ks,

the simulator 
an deterministi
ally simulate an automaton.

Figure 2.1.1 displays a simple s
hedule blo
k for the primitive automaton Aut. At every step of

the simulation, the simulator polls this s
hedule blo
k for the next a
tion to �re. The s
hedule blo
k

is then exe
uted until a �re invo
ation is returned. The next time the s
hedule blo
k is polled it
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e f f 
hosen := 
hoose x where 1 � x ^ x � 30

det do

yield 1; yield 2; yield 3

od

Figure 2.1.2: Sample det blo
k

resumes exe
ution at the statement immediately after the previously returned �re statement. For

example, if at step one of the simulation the s
hedule blo
k in Figure 2.1.1 returned fire output

a
tion1, then upon its next polling it will start exe
ution at 
ounter:=
ounter+1. Figure 2.1.2

displays the use of a det blo
k to resolve the expli
it nondeterminism of a 
hoose statement in a

transition e�e
ts 
lause.

The use of det blo
ks is una�e
ted by the extension of the simulator to support 
omposite

automata simulations. Thus in our dis
ussion of nondeterminism we 
on
entrate on impli
it non-

determinism. Above we saw two ways that impli
it nondeterminismmay arise during the simulation

of a single automaton. Be
ause at a given time during a simulation, more than one 
omponent may

have enabled a
tions, simulating 
omposite automata introdu
es a higher level of nondeterminism -

whi
h 
omponent should exe
ute the next a
tion? On
e this nondeterminism, high-level nondeter-

minism, has been resolved and the next 
omponent has been identi�ed, we on
e again fa
e the two


ases of nondeterminism above, whi
h from now on will be referred to as low-level nondeterminism.

The user of the simulator has two options to resolve the impli
it nondeterminism present in


omposite automata. The �rst option allows the user to 
hoose a high-level nondeterminism reso-

lution strategy and reuse the 
omponent s
hedule blo
k to resolve low-level nondeterminism. The

se
ond option allows the user to write a 
omposite s
hedule blo
k and resolve both the high and

low levels of nondeterminism at on
e.

2.1.2 Reuse of Component S
hedule Blo
ks

This strategy to resolve nondeterminism present in 
omposite simulations takes advantage of the

fa
t that ea
h 
omponent of the 
omposition is itself an automaton that might have been simulated

on its own. This implies that ea
h 
omponent already has its own program to resolve the low-level

nondeterminism. Thus all that is left to be done in order to simulate the 
omposite automaton is

the resolution of the high-level of nondeterminism. We provide the user with three options of how

the high-level nondeterminism should be resolved during the simulation. These three options are

similar to the three s
heduling poli
ies in Chefter's S
heduler [Che98℄. However, there they refer
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to low-level nondeterminism and the sele
tion of a
tions to exe
ute. Here we extend this approa
h

to high-level nondeterminism and the sele
tion of the next 
omponent to 
ontribute an a
tion.

Regardless of the high-level poli
y, it is possible that, on
e sele
ted, a 
omponent will not be able

to return an enabled a
tion to the simulator. This situation is dis
ussed in Se
tion 2.1.3, after the

three high-level poli
ies are presented.

Stri
tly Uniform Poli
y

Chefter refers to this poli
y as round robin. Consider the simulation of a system with n 
omponents,




1

; 


2

; :::; 


n

. If the user sele
ts the stri
tly uniform poli
y, then at the �rst step of the simulation

the simulator will ask 


1

for the next a
tion to exe
ute (


1

will use its own low-level nondeterminism

resolution program to provide this a
tion). At the se
ond step, the simulator will ask 


2

for an

a
tion. This will 
ontinue until the (n + 1)

th

step. At the (n + 1)

th

step the simulator will on
e

again poll 


1

for an a
tion, and so on. The ordering of 
omponents is the same as their ordering in

the IOA �le in whi
h their spe
i�
ations appear. This is the default high-level poli
y.

Random Poli
y

This poli
y has the same name in Chefter's paper. If the user sele
ts this poli
y, then at the

beginning of ea
h step the simulator randomly sele
ts a 
omponent. The sele
tion is entirely

random and the 
omponent 
hosen at step k is 
ompletely independent of the 
omponents 
hosen

at steps 1 through (k � 1). The presen
e of the boolean 
ommand line parameter randComp

enables this poli
y in the simulator.

Weighted Poli
y

This poli
y is analogous to Chefter's poli
y that uses time estimates for ea
h a
tion. If the user

sele
ts this poli
y, then he/she must also provide a weight for ea
h 
omponent. At ea
h simulation

step the simulator will pi
k 
omponent 


i

with probability

weight of 


i

total weight of all 
omponents

. In this way

this poli
y is similar to the random poli
y. The only di�eren
e is that here the 
omponents do not

ne
essarily have an equal 
han
e to get pi
ked.

This poli
y is enabled via the 
ommand line parameter weightComp. This parameter is fol-

lowed by one argument - the name of the �le 
ontaining the weight spe
i�
ations for the 
omponents.

The syntax of the weight �le is the following:
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s
hedule

states 
ounter:Int:=1

do

while true do

i f (Aut.total>10) then

f i r e output a
tion1

f i ;


ounter:=
ounter+1;

i f (Aut.ready=true) then

f i r e output a
tion2

f i

od

od

Figure 2.1.3: Example of a non-terminating NDR program


omponentName

1

= integerWeight

1


omponentName

2

= integerWeight

2

...

The following 
he
ks are performed to ensure the validity of the spe
i�ed weight �le. If the �le

is found to be invalid, the simulation halts.

1. The �le with the spe
i�ed name exists,

2. Ea
h line in the �le 
ontains exa
tly one, = symbol,

3. The text following the = symbol is a nonnegative integer, and

4. The text before the = symbol exa
tly mat
hes a 
omponent name.

The user is not required to spe
ify weights for all 
omponents. Those 
omponents whose weight

is left unspe
i�ed will never be pi
ked by the high-level strategy. If the user lists a parti
ular


omponent more than on
e, its weight will be the sum of the listings. The 
ode 
hanges ne
essary

to support this strategy are des
ribed in Se
tion 2.3.

2.1.3 Low-Level NDR Looping

Above we mentioned that when polled for an a
tion the low-level nondeterminism resolution (NDR)

program of the 
omponent might not �nd an enabled a
tion. This 
an happen in two ways de-

pending on whether the NDR program is terminating or not. Figure 2.1.1 and Figure 2.1.3 show
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examples of respe
tively a terminating and a non-terminating NDR program for automaton Aut.

In either 
ase, the simulator simply returns to the high-level NDR strategy and pi
ks the next


omponent to poll for an a
tion. This is the next 
omponent in the ordering in the uniform 
ase,

and a randomly, possibly weighted, 
hosen 
omponent in the other two high-level NDR strategy


ases.

If the 
omponent was unable to return an a
tion be
ause its low-level NDR blo
k is terminating

and is now exhausted, the simulator will not poll this 
omponent again during the simulation.

However, noti
e that if a 
omponent with a non-terminating low-level NDR blo
k is polled and it


annot return an a
tion, the NDR blo
k will loop in�nitely. This will 
ause the simulator itself to

loop in�nitely. This is a

epted behavior in the primitive automaton simulation 
ase be
ause if the

NDR blo
k of the single automaton 
annot provide an a
tion, no a
tions will be exe
uted again and

the simulation is in e�e
t 
ompleted. This, however, is not the 
ase in the simulation of a 
omposite

automaton. A 
omponent might have enabled a
tions at the point that another 
omponent's low-

level NDR blo
k has gone into an in�nite loop. Below we �rst dis
uss two strategies to avoid this

pitfall and then des
ribe the implementation of the 
hosen one. A third strategy is presented as a

future work in Se
tion 8.3.

Maximum NDR Steps

One possible way to avoid the problem of a 
omponent's low-level NDR program looping forever,

is to impose a limit on the number of steps that any NDR program may run for. Thus when a


omponent is pi
ked by the high-level NDR strategy, if its low-level NDR program runs for the

alloted number of steps without returning an a
tion, the simulator returns to the high-level NDR

strategy and pi
ks another 
omponent, as mentioned above. After this o

urren
e, the 
omponent

is not eliminated from being pi
ked again.

Taking Advantage of While Loop Stru
ture

Another possible solution to the problem takes advantage of the fa
t that most non-terminating

low-level NDR programs appear inside a while(true) loop. This solution proposes that when a

low-level NDR program rea
hes the end of its while(true) loop, it relinquishes 
ontrol ba
k to the

simulator. The simulator then uses the high-level NDR strategy to pi
k another 
omponent. Here

also, the 
omponent is not eliminated from being pi
ked again.
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Implemented Strategy

The advantage of the Maximum NDR Steps strategy is that it does not rely on the stru
ture of

the low-level NDR program. Although, it is 
ommon for NDR programs to exhibit the mentioned

stru
ture, they are not required to do so. Thus if the se
ond strategy were implemented, NDR

programs that did not exhibit the while(true) loop stru
ture would not avoid the pitfall of in�nite

looping. The advantage of the se
ond strategy is that it does not have to pi
k a potentially arbitrary

number as the limit on the low-level NDR steps allowed during a single iteration.

We made the de
ision to implement the �rst strategy, as the possibility of non standard stru
-

tured low-level NDR programs 
ausing in�nite loops appeared parti
ularly unpleasant. The user

now has the option to spe
ify the maximum number of steps that a low-level NDR program runs

for during a single request for an a
tion. This option is presented via the ndrSteps 
ommand line

parameter. The parameter is defaulted at 500.

Note that the implementation of this strategy a�e
ts primitive simulations. We mentioned

above that if a low-level NDR blo
k loops in a primitive simulation, the entire simulation loops.

With the introdu
tion of the maximum steps limitation, instead of the simulation looping, it will

halt and display an appropriate message. In the 
ase of a primitive simulation with an unusually

long NDR blo
k, the user might want to in
rease the ndrSteps parameter to avoid the possibility

of the simulation halting without the NDR blo
k looping. The 
ode 
hanges ne
essary to support

the ndrSteps parameter are des
ribed in Se
tion 2.3

2.1.4 Composite S
hedule Blo
ks

Above we dis
ussed the possibility of reusing 
omponent s
hedule blo
ks to resolve nondetermin-

ism in a 
omposite automaton. It might be the 
ase that the user does not want to reuse the

existing 
omponent NDR blo
ks, but instead 
reate a new NDR blo
k tailored spe
i�
ally for the


omposite automaton. In ea
h �re invo
ation of this 
omposite NDR blo
k, the user spe
i�es

both the 
omponent that is exe
uting the a
tion and the a
tion being exe
uted. In doing so, the

user resolves both the high-level nondeterminism, by spe
ifying the 
omponent, and the low-level

nondeterminism, by spe
ifying the a
tion.

The modi�
ations to the IOA language required to support 
omposite NDR blo
ks are dis
ussed

in Chapter 4. NDR blo
ks for 
omposite automata are very similar to those for primitive automata.

The two di�eren
es being:
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� The a
tion in ea
h �re invo
ation of a 
omposite s
hedule blo
k must be pre�xed with the


omponent owning the a
tion.

� Referen
es to 
omponent state variables of all 
omponents are allowed from within the 
om-

posite s
hedule blo
k.

Allowing the �rst modi�
ation requires 
omponent names to be of a sort that has a

ess to

all of the a
tions of the automaton that this 
omponent is based on. In IOA Toolkit release 0.09,

read-only referen
es to the state variables of the single primitive automaton are allowed from within

that automaton's NDR blo
k. These referen
es are ne
essary be
ause it is the responsibility of the

s
hedule blo
k to 
he
k pre
ondition and where 
lause predi
ates before s
heduling a transition.

Allowing referen
es to the state variables of all 
omponents, requires 
omponent names to be of a

sort that has a

ess to all of the state variables of the automaton that this 
omponent is based on.

2.2 Intera
tion of Components

In Se
tion 1.2.1 we saw that the only way two 
omponents of a 
omposite automaton may intera
t

is through a same named a
tion �. Moreover, the limitations posed on 
ompositions, the sets of


omponent internal a
tions have to be disjoint from all other 
omponent a
tions and ea
h output

a
tion is 
ontrolled by a single automaton, limit this intera
tion to the exe
ution of an output a
tion

� of one 
omponent 
ausing the exe
ution of input a
tions � of one ore more other 
omponents.

This intera
tion also depends on the signatures of � mat
hing and on the a
tual parameters of �

satisfying the where 
lause of the input a
tion.

Knowing that 
omponent intera
tion is limited to the above, the simulator must now simply

exe
ute all appropriate input a
tions � in the same step that the output a
tion � was exe
uted.

Thus the only simulation steps during whi
h an intera
tion is possible, are those steps that begin

by exe
uting an output a
tion. When de
iding how to implement this feature, two options were


onsidered. The pros and 
ons of the options deal with the existen
e of where 
lauses in the

transitions of �. These implementation options are dis
ussed in detail in the following se
tion.

2.2.1 Where Clauses in Transitions

One possible implementation of intera
tion between 
omponents involved building a map from the

output transitions of 
omponents to zero or more input transitions of other 
omponents su
h that
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the exe
ution of the output transition would 
ause the input transition(s) to be exe
uted. This

map would be built before any simulation steps took pla
e. Thus every time an output transition

would be exe
uted during the simulation, the simulator would simply 
onsult the map to see if any

input transitions need to be exe
uted as well. An alternative option had the map being built during

the simulation. Here every time an output a
tion were exe
uted, the input a
tions 
orresponding

to it would be populated in the map.

The problem with this implementation was dis
ussed in Se
tion 1.2.3, and involves the where


lauses of the transitions of �. In order to build the map above, the simulator would have to �nd the

interse
tions of the where 
lauses of the output and input transitions �. As we saw in table 1.2.1

this is often a diÆ
ult task, whi
h at times (depending on the 
omplexity of the predi
ate in the

where 
lause) may be unde
idable and require a proof. We thus de
ided to abandon the above

implementation.

Instead, the simulator waits for the output transition � to be exe
uted. Having done so, the

simulator takes advantage of the fa
t that it has a

ess to all of the a
tual parameters of � and

using these parameters 
an evaluate the where 
lauses of all input a
tions � to see if they should

also be exe
uted. If an intera
tion does o

ur the simulator does not re
ord the 
onne
tion between

the output transition � and the triggered input transition(s) � for future purposes. This is due to

the fa
t that the next time output transition � is exe
uted its a
tual parameters might not 
ause

the same set of input transitions � to be exe
uted.

Even with the implemented strategy above, a limitation on the type of predi
ates that may

appear in the where 
lauses must be pla
ed. Namely, the predi
ate must not 
ontain either the

existential or the universal quanti�er. Just as dis
ussed in Se
tion 1.2.1 , the presen
e of su
h

quanti�ers would require a proof.

2.2.2 S
heduled Input A
tions

An interesting situation arises when 
omponent s
hedule blo
ks are being reused to resolve non-

determinism in a 
omposite simulation, des
ribed in Se
tion 2.1.2. What if input transition � of


omponent A, that may be triggered by output transition � of 
omponent B, is s
heduled in the

low-level NDR blo
k of 
omponent A? Two strategies were 
onsidered when dealing with su
h

situations:

1. Look for and exe
ute output transition(s) � when input transition � is exe
uted,
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automaton Aut1

signature input a

output b

...

s
hedule

do

while(true) do

f i r e output b;

f i r e input a

od

od

automaton Aut2

signature input b

output 


...

s
hedule

do

while(true) do

f i r e output 
;

f i r e input b

od

od

automaton CompositeAut


omponents Aut1;Aut2

Figure 2.2.4: Exe
ution of s
heduled input a
tions

2. Ignore all s
heduled input transitions that at some point may be triggered by the exe
ution

of output transitions.

We made the de
ision to implement the se
ond strategy. Sin
e the output a
tion is the driving

for
e behind the intera
tion of 
omponents, it makes more sense for it to trigger the input a
tion and

not vi
e versa. An input a
tion � that gets triggered by an output a
tion in the 
omposition, may be

s
heduled in the original 
omponent be
ause when it is simulated as a stand alone automaton, the

NDR blo
k of this 
omponent mimi
s its external environment. On
e this automaton is 
omposed

with another one (that has an output a
tion �), and be
omes a 
omponent in a more 
omplex

automaton, its s
hedule blo
k no longer needs to mimi
 the external environment be
ause the

system be
omes 
losed as a result of the 
omposition. To �nd out whether a s
heduled input a
tion

may eventually be triggered by an output a
tion, we use the strategy des
ribed in Se
tion 2.2.1

that was used to �nd out what input a
tions are triggered by the s
heduled output a
tion.
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Figure 2.2.4 shows partial spe
i�
ations of 
omponent automata Aut1, Aut2, and the 
ompos-

ite automaton CompositeAut. We 
onsider simulating CompositeAut and reusing the 
omponent

s
hedule blo
ks to resolve nondeterminism. When the simulator en
ounters input a
tion a in the

s
hedule blo
k for Aut1, it will exe
ute it. The system represented by CompositeAut is not 
om-

pletely 
losed (Aut2 does not have an output a
tion named a), and the �ring of input a
tion a still

mimi
s the external environment of CompositeAut. However, when the simulator en
ounters input

a
tion b in the s
hedule blo
k for Aut2, it will not exe
ute it. This a
tion represents part of the

system that has be
ome 
losed due to the 
omposition of Aut1 and Aut2. It will only be exe
uted

as a result of output a
tion b of 
omponent automaton Aut1 being exe
uted.

2.3 Code Changes

The 
lass simulator/shell/SimShell has been modi�ed to a

ept the ndrSteps, randComp,

and weightComp parameters and to display them for simulator help. The value of the ndrSteps

parameter is stored in the simulator/Simulator 
lass. The 
lass

simulator/Exe
Control has been modi�ed to enable limited step exe
ution. The 
lass

simulator/StepsEx
eededProdu
t has been 
reated to represent the event of an NDR program

ex
eeding the alloted number of steps.

The veri�
ation of the spe
i�ed weight �le provided with the weightComp parameter is done

in simulator/A
tualCompositeAutomaton. This 
lass also builds the representation of the weight

distribution. It 
ontains an array that maps weight ranges to 
omponent indi
es and a hash table

that maps the indi
es to the 
omponent names.

For more 
ode 
hange detail please 
onsult Appendix B.
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Chapter 3

Examples

This 
hapter 
ontains �ve examples of 
omposite automata that we would like to simulate. We

break the examples down based on the 
hoi
e of nondeterminism resolution strategy, reuse of


omponent blo
ks versus use of a 
omposite s
hedule blo
k, and on the absen
e versus presen
e of


omponent parameters. The �rst four examples 
over the four 
ombinations of the above s
enarios.

The �fth example illustrates the use of a with blo
k within a 
omposite s
hedule. The with blo
k

is a new IOA notion and is dis
ussed in detail in Se
tion 3.3. Chapter 4 dis
usses the IOA language

extensions ne
essary to support the simulation of these examples. Chapter 5 dis
usses the simulator

extensions ne
essary to support the simulation of these examples.

3.1 Examples with Non-Parameterized Components

The �rst two examples we 
onsider are slight modi�
ations of the toy banking system of [GL00℄.

The banking system 
onsists of a single a

ount that may be referen
ed from multiple lo
ations.

Automaton Env, Figure 3.1.2 , represents the outside environment of the banking system. The

lo
ations are indexed by the integer i. Env des
ribes what operations 
an be invoked, where, and

when. Noti
e that the only state kept by this automaton is a boolean 
ag for ea
h lo
ation. This

enables the environment automaton to request transa
tions at a 
ertain lo
ation only on
e the

previous transa
tion at that lo
ation has 
ompleted and Env has been informed of its 
ompletion.

The a
tions of this automaton provide an interfa
e for its 
ommuni
ation with the Bank automaton.

Automaton Bank, Figure 3.1.3, is a mirror image of the Env automaton - output a
tions of Env

are input a
tions of Bank and vi
e versa. Automaton Bank 
ontains an additional internal a
tion,
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Env Bank

doBalance

requestDeposit

requestWithdrawal

requestBalance

OK

reportBalance

Figure 3.1.1: A
tions of Env and Bank

automaton Env

signature

input OK(i: Int,y:OpRe
), reportBalan
e(n, i:Int)

output requestDeposit(n,i:Int) where n>0,

requestWithdrawal(n,i:Int) where n>0, requestBalan
e(i:Int)

states a
tive:Array[Int,Bool℄ :=
onstant(false)

trans i t ions

input OK(i,y)

e f f a
tive[i℄ :=false

input reportBalan
e(n,i)

e f f a
tive[i℄ :=false

output requestDeposit(n,i)

pre :a
tive[i℄

e f f a
tive[i℄ :=true

output requestWithdrawal(n,i)

pre :a
tive[i℄

e f f a
tive[i℄:=true

output requestBalan
e(i)

pre :a
tive[i℄

e f f a
tive[i℄ :=true

Figure 3.1.2: Banking environment automaton

doBalan
e. As transa
tion requests are re
eived by Bank, they are re
orded. At some point after

a request for the balan
e at a 
ertain lo
ation is re
eived, the doBalan
e transition 
al
ulates the

balan
e at that parti
ular lo
ation, and the balan
e at that lo
ation is now ready to be returned

by reportBalan
e.

The interfa
e diagram in Figure 3.1.1 shows that by mat
hing external a
tion of Env and Bank,

we 
an form a new 
omposite automaton EnvBank:

automaton EnvBank


omponents Bank;Env

Automaton EnvBank is a 
ombination of Env and Bank, and represents the bank 
omposed

with its environment. In order to be simulated in the presen
e of a simulator that is 
apable of

handling only primitive automata, EnvBank would have to �rst be manually 
omposed and then
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simulated. Test 
ase Banking01 of the IOA toolkit test suite does exa
tly this. We now see how

automaton EnvBank is simulated dire
tly.
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automaton Bank

signature

input requestDeposit(n, i: Int) where n > 0,

requestWithdrawal(n, i: Int) where n > 0,

requestBalan
e(i: Int)

output

OK(i: Int,x:OpRe
), reportBalan
e(n, i: Int)

internal

doBalan
e(i: Int, tempChosenOps: Set[OpRe
℄, amount : Int)

states ops: Set[OpRe
℄ :={}, pending_ops: Set[OpRe
℄ :={},

reported_ops: Set[OpRe
℄ :={}, bals: Set[BalRe
 ℄ :={},

pending_bals: Set[BalRe
 ℄ := {}, done_bals : Set[BalRe
℄,

lastSeqno: Array[Int, Int℄ := 
onstant(0),


hosenOps: Set[OpRe
℄

trans i t ions

input requestDeposit(n, i)

e f f lastSeqno[i℄ := lastSeqno[i℄ + 1;

ops := insert([i, lastSeqno[i℄, n, false℄, ops);

pending_ops := insert ([i, lastSeqno[i℄, n, false℄, pending_ops);

input requestWithdrawal(n, i)

e f f lastSeqno[i℄ := lastSeqno[i℄ + 1;

ops := insert([i, lastSeqno[i℄, -n, false℄, ops);

pending_ops := insert ([i, lastSeqno[i℄, -n, false℄, pending_ops);

input requestBalan
e(i)

e f f pending_bals := insert ([i, 0℄, pending_bals);

bals := pending_bals [ done_bals;

output OK(i,x)

pre x 2 ops ^ x.lo
 = i ^ :x.reported

e f f ops:=insert(set_reported(x,true),delete(x,ops));

pending_ops := delete(x,pending_ops);

reported_ops:=insert(set_reported(x,true),reported_ops)

output reportBalan
e(n,i)

pre [i,n℄ 2 done_bals

e f f done_bals :=delete([i,n℄,done_bals);

bals:=pending_bals [ done_bals

internal doBalan
e(i,tempChosenOps,amount)

pre [i,0℄ 2 pending_bals

e f f 
hosenOps:=tempChosenOps;

pending_bals:=delete([i,0℄, pending_bals);

done_bals :=insert ([i,amount ℄,done_bals);

bals:=pending_bals [ done_bals

Figure 3.1.3: Automaton Bank
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3.1.1 Example : Reuse of Component S
hedule Blo
ks

Suppose, the 
omponent automata, Env and Bank had s
hedule blo
ks asso
iated with them. Let

the s
hedule blo
k in Figure 3.1.4 be part of the spe
i�
ation of automaton Env, and the s
hedule

blo
k in Figure 3.1.5 part of the spe
i�
ation of automaton Bank. These automata 
an now be

simulated as stand alone automata. Their output a
tions are simply not \heard" by anyone. The

automaton EnvBank, 
loses the system. Noti
e that for the 
omposite simulation, the numLo
ations

and maxAmount s
hedule blo
k variables in Figures 3.1.4 and 3.1.5 are set to the same value to

avoid ambiguity.

The extended simulator 
an now simulate the 
omposite automaton EnvBank dire
tly. Assum-

ing that the 
he
ker has been used to 
ompile the ioa �le 
ontaining the spe
i�
ation of EnvBank

into the intermediate language �le, EnvBank01.il

1

, we 
an start the simulation by entering the

following string at the 
ommand line:

sim 10 EnvBank EnvBank01.il

The default high-level nondeterminism resolution strategy is stri
tly uniform ordering. The


ommand line invo
ation,

sim -randComp 10 EnvBank EnvBank01.il

would 
ause the random strategy to be used. At ea
h step of the simulation, the next 
omponent

is sele
ted based on the high-level nondeterminism resolution strategy provided at the 
ommand

line. The NDR blo
k of this 
omponent is now exe
uted until an a
tion is �red or the NDR blo
k

ex
eeds the maximum number of steps alloted to it. If the �red a
tion happens to be an output

one, the input a
tions of all other 
omponents are 
he
ked for a possible triggering. The simulation

now returns to its highest level of nondeterminism and the sele
tion strategy is on
e again used to

sele
t an NDR blo
k of a parti
ular 
omponent to be exe
uted.

1

This 
an be a

omplished by running, ioaChe
k -il EnvBank01.ioa > EnvBank01.il, where EnvBank01.ioa is

the �le 
ontaining the spe
i�
ation of EnvBank
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s
hedule

states

numLo
ations, lo
ation, a
tionChosen, maxAmount : Int,

op : OpRe
, tempOps : Set[OpRe
℄ := {}, tempOps2 : Set[OpRe
℄ := {},

tempBals : Set[BalRe
 ℄ := {}, bal : BalRe
, amount : Int,

loopBreak : Bool := false

do

numLo
ations := 15;

maxAmount := 100;

while (true) do % We

0

ll pi
k a random lo
ation now

lo
ation := randomInt (0, numLo
ations - 1);

a
tionChosen := randomInt (0, 5);

i f (a
tionChosen � 0 ^ a
tionChosen � 2) then

% Do a deposit. But must be sure we

0

re not a
tive at this lo
ation

i f :Env.a
tive[lo
ation℄ then

f i r e output requestDeposit(randomInt (1, maxAmount), lo
ation)

f i

f i ;

i f (a
tionChosen � 3 ^ a
tionChosen � 4) then

i f :Env.a
tive[lo
ation℄ then

f i r e output requestWithdrawal ( randomInt (1, maxAmount), lo
ation)

f i

f i ;

i f (a
tionChosen = 5) then

i f :Env.a
tive[lo
ation℄ then

f i r e output requestBalan
e (lo
ation)

f i

f i

od

od

Figure 3.1.4: The NDR blo
k for automaton Env
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s
hedule

states

numLo
ations, lo
ation, a
tionChosen, maxAmount : Int,

op : OpRe
, tempOps : Set[OpRe
℄ := {}, tempOps2 : Set[OpRe
℄ := {},

tempBals : Set[BalRe
 ℄ := {}, bal : BalRe
, amount : Int,

loopBreak : Bool := false

do

numLo
ations := 15; maxAmount := 100;

while (true) do % We

0

ll pi
k a random lo
ation now

lo
ation := randomInt (0, numLo
ations - 1);

a
tionChosen := randomInt (0,4);

i f (a
tionChosen � 0 ^ a
tionChosen � 2) then

tempOps := Banking01.pending_ops; loopBreak := false;

while (:isEmpty(tempOps) ^ :loopBreak) do

op := 
hooseRandom (Banking01.ops);

tempOps := delete (op, tempOps);

i f (:op.reported) then loopBreak := true;

f i r e output OK (op.lo
, op)

f i od f i ;

i f (a
tionChosen = 3) then

tempBals := Banking01.done_bals;

loopBreak := false;

i f (:isEmpty(tempBals)) then bal := 
hooseRandom (tempBals);

tempBals := delete (bal, tempBals);

f i r e output reportBalan
e (bal.value, bal.lo
)

f i f i ;

i f (a
tionChosen = 4) then % Find a null balan
e

tempBals := Banking01.pending_bals;

loopBreak := false; bal := [10, 10℄;

i f (:isEmpty(tempBals)) then

bal := 
hooseRandom ( tempBals);

tempBals := delete (bal, tempBals);

% There is a null bal to do balan
e for

loopBreak := false; tempOps := Banking01.ops;

tempOps2 := {};

while (:isEmpty(tempOps)) do

op := 
hooseRandom(tempOps);

tempOps := delete (op, tempOps);

i f (op.lo
 = bal.lo
) then

tempOps2 := insert (op, tempOps2)

f i od;

tempOps := tempOps2; amount := 0;

while (:isEmpty(tempOps)) do

op := 
hooseRandom(tempOps);

tempOps := delete (op, tempOps);

amount := amount + op.amount

od;

f i r e internal doBalan
e (bal.lo
, tempOps2, amount)

f i f i od od

Figure 3.1.5: The NDR blo
k for automaton Bank
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3.1.2 Example : A Composite S
hedule Blo
k

Above we saw that when simulating a 
omposite automaton, a user of the simulator may want to

resolve nondeterminism by reusing the NDR blo
ks of the 
omponent automata. However, it may

be the 
ase that the user wants to resolve nondeterminism by writing a brand new NDR blo
k for

the 
omposite automaton. In the former 
ase, the 
omponent blo
ks serve the purpose of resolving

the low-level nondeterminism while the 
ommand line sele
ted strategy resolves the high-level

nondeterminism. In this 
ase, the 
omposite NDR blo
k resolves both levels of nondeterminism.

Consider adding the NDR blo
k in Figure 3.1.6 (de
laration of s
hedule state variables has been

ommitted for the purpose of brevity) to the spe
i�
ation of automaton EnvBank:

automaton EnvBank


omponents Bank;Env

Noti
e that ea
h �re invo
ation is now followed by the type of a
tion being invoked as well

as the 
omponent whi
h owns the �red a
tion, the a
tion name, and the a
tual parameters, as

in fire output Bank.OK (op.lo
, op). Similarly, there are referen
es to the state variables of


omponent automata, as in Bank.done bals. The NDR blo
k in Figure 3.1.6 was designed to


losely model the NDR blo
k used in the above mentioned test suite 
ase Banking01, where the


omposite automaton was 
onverted to a primitive one manually. Assuming that the 
he
ker has

been used to 
ompile the ioa �le 
ontaining the spe
i�
ation of EnvBank and its 
omposite s
hedule

blo
k into the intermediate language �le, EnvBank02.il, we 
an start the simulation by entering

the following string at the 
ommand line:

sim 10 EnvBank EnvBank02.il

Noti
e that this invo
ation does not di�er from the one above where 
omponent s
hedule blo
ks

were reused to resolve nondeterminism. The simulator uses the 
omposite s
hedule blo
k if it is

present. If it is not, it defaults to reusing 
omponent s
hedule blo
ks. The above simulation

produ
es the transition output displayed in Figure 3.1.7. When 
ompared to the transition output

of the manually 
omposed automaton in the test 
ase Banking01, Figure 3.1.8, we see that the two

outputs are analogous.
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s
hedule

do

numLo
ations := randomInt(10,15); maxAmount := 100;

while (true) do % We

0

ll pi
k a random lo
ation now

lo
ation := randomInt (0, numLo
ations - 1);

a
tionChosen := randomInt (0, 10);

i f (a
tionChosen � 0 ^ a
tionChosen � 2) then

i f :Env.a
tive[lo
ation℄ then

f i r e output Env.requestDeposit(randomInt (1, maxAmount), lo
ation)

f i f i ;

i f (a
tionChosen � 3 ^ a
tionChosen � 4) then

i f :Env.a
tive[lo
ation℄ then

f i r e output Env.requestWithdrawal (randomInt (1, maxAmount), lo
ation)

f i f i ;

i f (a
tionChosen = 5) then

i f :Env.a
tive[lo
ation℄ then

f i r e output Env.requestBalan
e (lo
ation)

f i f i ;

i f (a
tionChosen � 6 ^ a
tionChosen � 8) then

tempOps := Bank.pending_ops; loopBreak := false;

while (:isEmpty(tempOps) ^ :loopBreak) do

op := 
hooseRandom (Bank.ops); tempOps := delete (op, tempOps);

i f (:op.reported) then loopBreak := true;

f i r e output Bank.OK (op.lo
, op)

f i od f i ;

i f (a
tionChosen = 9) then

tempBals := Bank.done_bals; loopBreak := false;

i f (:isEmpty(tempBals)) then

bal := 
hooseRandom ( tempBals); tempBals := delete (bal, tempBals);

f i r e output Bank.reportBalan
e (bal.value, bal.lo
)

f i f i ;

i f (a
tionChosen = 10) then

tempBals := Bank.pending_bals; loopBreak := false; bal := [10, 10℄;

i f (:isEmpty(tempBals)) then

bal := 
hooseRandom ( tempBals); tempBals := delete (bal, tempBals);

loopBreak := false; tempOps := Bank.ops; tempOps2 := {};

while (:isEmpty(tempOps)) do

op := 
hooseRandom(tempOps); tempOps := delete (op, tempOps);

i f (op.lo
 = bal.lo
) then

tempOps2 := insert (op, tempOps2)

f i od; tempOps := tempOps2; amount := 0;

while (:isEmpty(tempOps)) do

op := 
hooseRandom(tempOps); tempOps := delete (op, tempOps);

amount := amount + op.amount od;

f i r e internal Bank.doBalan
e (bal.lo
, tempOps2, amount)

f i f i od od

Figure 3.1.6: Composite NDR blo
k for automaton EnvBank
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Automaton initialized

1: output requestWithdrawal(9, 6) in automaton Env --- Conne
ted to :

input requestWithdrawal(9, 6) in automaton Bank

2: output requestBalan
e(11) in automaton Env --- Conne
ted to :

input requestBalan
e(11) in automaton Bank

3: output requestWithdrawal(74, 2) in automaton Env --- Conne
ted to :

input requestWithdrawal(74, 2) in automaton Bank

4: output OK(2, [lo
: 2, seqno : 1, amount : -74, reported: false℄)

in automaton Bank --- Conne
ted to :

input OK(2, [lo
: 2, seqno: 1, amount : -74, reported: false℄)

in automaton Env

5: output requestDeposit(36, 12) in automaton Env --- Conne
ted to :

input requestDeposit(36, 12) in automaton Bank

6: output OK(12, [ lo
: 12, seqno : 1, amount : 36, reported: false℄)

in automaton Bank --- Conne
ted to :

input OK(12, [ lo
: 12, seqno : 1, amount : 36, reported: false℄)

in automaton Env

7: internal doBalan
e(11, (), 0) in automaton Bank

8: output requestWithdrawal(11, 9) in automaton Env --- Conne
ted to :

input requestWithdrawal(11, 9) in automaton Bank

9: output OK(6, [lo
: 6, seqno : 1, amount : -9, reported: false℄)

in automaton Bank --- Conne
ted to :

input OK(6, [lo
: 6, seqno: 1, amount : -9, reported: false℄)

in automaton Env

10: output requestWithdrawal(69, 1) in automaton Env --- Conne
ted to :

input requestWithdrawal(69, 1) in automaton Bank

No errors

Figure 3.1.7: Simulator output for 
omposite automaton with a 
omposite s
hedule blo
k

Automaton initialized

1: internal requestWithdrawal(9, 6) in automaton Banking01

2: internal requestBalan
e(11) in automaton Banking01

3: internal requestWithdrawal(74, 2) in automaton Banking01

4: output OK(2, [lo
: 2, seqno : 1, amount : -74, reported: false℄)

in automaton Banking01

5: internal requestDeposit(36, 12) in automaton Banking01

6: output OK(12, [ lo
: 12, seqno : 1, amount : 36, reported: false℄)

in automaton Banking01

7: internal doBalan
e(11, (), 0) in automaton Banking01

8: internal requestWithdrawal(11, 9) in automaton Banking01

9: output OK(6, [lo
: 6, seqno : 1, amount : -9, reported: false℄)

in automaton Banking01

10: internal requestWithdrawal(69, 1) in automaton Banking01

No errors

Figure 3.1.8: Simulator output for manually 
omposed 
omposite automaton
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3.2 Examples with Parameterized Components

Before this proje
t, automata parameters, both type and variable, were not supported by either

primitive or 
omposite simulations. This is not very surprising as automata parameters have lit-

tle bene�t to a simulator that 
an only handle primitive automata. Parameters allow for simple

spe
i�
ations of 
omposite automata with multiple 
omponents based on the same automaton.

For example the running example of the next few se
tions is a system that 
onsists of multiple

pro
ess and multiple 
hannel 
omponents. Every pro
ess 
omponent is based on the same automa-

ton. However, ea
h one is instantiated with a di�erent parameter. Variable parameters are now

supported, while type parameters remain a fututre work.

The examples used in this and the following se
tion, Figure 3.2.9, are slight modi�
ations of the

Channel, Pro
ess, and Sys automata used in the \Illustrative examples" se
tion of Tauber's paper

[Tau03℄. The Channel automaton represents a 
ommuni
ation 
hannel that 
an drop dupli
ate

messages and reorder messages. Noti
e the use of 
onst parameters des
ribed in Se
tion 1.1.2.

The Pro
ess automaton represents a pro
ess that runs on a node indexed by the integer automaton

parameter, n. This pro
ess 
ommuni
ates with its neighbors by sending and re
eiving messages

that 
onsist of natural numbers. The pro
ess re
ords the smallest value it has re
eived and passes

on all values that ex
eed the re
orded value; if the set of values waiting to be passed on grows too

large, the pro
ess 
an also lose a nondeterministi
 set of those values [Tau03℄.

In the 
omponents de�nition of automaton Sys, C is a 
omponent name and Channel is a base

automaton name. Component names appearing in the 
omponents spe
i�
ation will hen
eforth

be referred to as 
omponent tags.

We now note that although the de�nition of automaton Sys in Figure 3.2.9 is a valid IOA

spe
i�
ation, it is not suÆ
ient for the purposes of simulating 
omposite automata. The where


lause presents the simulator with the problem of instantiating all of the 
omponents in its s
ope.

Although it might seem that this is feasible in the 
ase of automaton Sys in Figure 3.2.9, a more


omplex predi
ate involving n would for
e the simulator to sear
h for all values satisfying the

predi
ate. Thus without a theorem prover, it is not possible for the simulator to 
orre
tly instantiate

all of the 
omponents s
oped by where 
lauses. The interfa
e diagram in Figure 3.2.10 shows the

intera
tion of the Pro
ess and Channel 
omponents when all of the 
omponents in the s
ope of the

two where 
lauses of Figure 3.2.9 are instantiated.

We �rst avoid this problem by 
onsidering two examples that involve spe
i�
ations of the
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omposite automaton Sys that do not 
ontain a where 
lause. Later, we introdu
e the notion of

a with blo
k and illustrate its use through an example. A with blo
k solves the s
oping pitfall by

requiring the user to instantiate all of the parti
ipating 
omponents.
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automaton Channel(i, j:Int)

signature

input send(
onst i, 
onst j, m:Int)

output re
eive(
onst i, 
onst j, m:Int)

states 
ontents:Set[Int℄ := {},

formalI:Int:=i, formalJ:Int:=j

trans i t ions

input send(i, j, m)

e f f 
ontents := insert(m, 
ontents)

output re
eive(i, j, m)

pre m 2 
ontents

e f f 
ontents := delete(m, 
ontents)

automaton Pro
ess(n:Int)

signature

input re
eive(
onst n-1, 
onst n, x:Int)

output send(
onst n, 
onst n+1, x:Int),

overflow(
onst n, s:Set[Int℄)

states

val:Int := 0, toSend:Set[Int℄ := {}, formalN:Int:=n

trans i t ions

input re
eive(n-1, n, x)

e f f i f val = 0 then val := x

e l s e i f x < val then

toSend := insert(val, toSend);

val := x

e l s e i f val < x then

toSend := insert(x, toSend) f i

output send(n, n+1, x)

pre x 2 toSend

e f f toSend := delete(x, toSend)

output overflow(n, s:Set[Int℄; l o 
a l t:Set[Int℄)

pre s = toSend ^ n < size(s) ^ t � s

e f f toSend := t

automaton Sys


omponents C[n:Int℄: Channel(n, n+1) where 1 � n ^ n < 5;

P[n:Int℄: Pro
ess(n) where 1 � n ^ n � 5

Figure 3.2.9: Automaton Sys

Process
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Process
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Process

3

Process

4

Process

5

Channel

1-2

Channel

2-3

Channel

3-4

Channel

4-5

send send send send

receive receive receive receive

overflow overflow overflow overflow overflow

Figure 3.2.10: Components of automaton Sys
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3.2.1 Example: Parameterized Components, Reuse of Component S
hedule

Blo
ks

Consider the following spe
i�
ation of automaton Sys as an alternative to the spe
i�
ation in

Figure 3.2.9:

automaton Sys


omponents C1: Channel(5,6); P1: Pro
ess(5);

C2: Channel(6,7); P2: Pro
ess(6)

The automaton Sys now 
ontains two 
omponents based on ea
h base automaton. Sin
e there is

no 
omposite s
hedule present, the simulation will reuse the 
omponent s
hedule blo
ks for Channel,

Figure 3.2.11, and Pro
ess, Figure 3.2.12. We invoke the simulation with:

sim -outputTrans 8 Sys Pro
Chan01.il

Figure 3.2.13 shows the transition output of the simulation. Noti
e that the 
omponent tag

names and not the base automaton names are used to identify the 
omponents in the output.

s
hedule

do

while(true) do

f i r e input send(Channel.formalI,Channel.formalJ,290);

f i r e output re
eive(Channel.formalI,Channel.formalJ,290)

od od

Figure 3.2.11: NDR blo
k for Channel

s
hedule

states formVar:Int

do

while(true) do

formVar:=Pro
ess.formalN-1;

f i r e input re
eive(formVar,Pro
ess.formalN,18);

formVar:=Pro
ess.formalN+1;

i f (18 2 Pro
ess.toSend) then

f i r e output send(Pro
ess.formalN,formVar,18)

f i od od

Figure 3.2.12: NDR blo
k for Pro
ess
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Automaton initialized

1: input re
eive(4, 5, 18) in automaton P1

2: input send (6, 7, 290) in automaton C2

3: input re
eive(5, 6, 18) in automaton P2

4: input send (5, 6, 290) in automaton C1

5: output send(5, 6, 18) in automaton P1 --- Conne
ted to :

input send(5, 6, 18) in automaton C1

6: output re
eive(6, 7, 290) in automaton C2

7: output send(6, 7, 18) in automaton P2 --- Conne
ted to :

input send(6, 7, 18) in automaton C2

8: output re
eive(5, 6, 290) in automaton C1 --- Conne
ted to :

input re
eive(5, 6, 290) in automaton P2

No errors

Figure 3.2.13: Simulator output for automaton Sys, �rst 
ase
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3.2.2 Example: Parameterized Components, Composite S
hedule Blo
k

We now 
onsider the 
ase where the spe
i�
ation of automaton Sys remains as above:

automaton Sys


omponents C1: Channel(5,6); P1: Pro
ess(5);

C2: Channel(6,7); P2: Pro
ess(6)

However, now we provide it with a 
omposite s
hedule blo
k, Figure 3.2.14. Noti
e, that the

referen
es to the 
omponent state variables and 
omponent a
tions use the 
omponent tag names

and not the base automata names. The invo
ation of this simulation, and its output are similar to

those in the above se
tion.

do

while(true) do

sendingAmount:=sendingAmount-1;

amount:=P1.formalN-1;

f i r e input P1.re
eive(amount,P1.formalN,sendingAmount);

amount:=P1.formalN+1;

f i r e output P1.send(P1.formalN,amount,sendingAmount);

f i r e output C1.re
eive(C1.formalI,C1.formalJ,sendingAmount);

amount:=P2.formalN+1;

f i r e output P2.send(P2.formalN,amount,sendingAmount)

od od

Figure 3.2.14: NDR blo
k for automaton Sys

3.3 With Blo
ks

As mentioned above the simulator is not 
apable of instantiating 
omponents based solely on the

where 
lause in the 
omponents de
laration. The with blo
k solves this problem by requiring

the user to provide the simulator with all of the 
omponents that will be present in the simulation.

Thus the burden of a possible proof is shifted from the simulator to the user. The with blo
k is

part of the s
hedule blo
k and enumerates the 
omponents that will be 
reated. Figure 3.3.15

shows an example of a with blo
k that might appear in the s
hedule blo
k of automaton Sys from

Figure 3.2.9. We refer to ea
h line in the with blo
k as a de
laration.

De
larations may only be made for 
omponent tags with formal parameters. De
larations for


omponent tags with no formal parameters, would result in the 
omposite automaton having more

than one identi
al 
omponent, and this would violate the limitations on 
ompositions established
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s
hedule

states

randomInt:Int

with


ompChannel1 = C[1℄,


ompChannel2 = C[2℄,


ompChannel3 = C[3℄,


ompP1 = P[1℄,


ompP2 = P[2℄,


ompP3 = P[3℄,


ompP4 = P[4℄

do

f i r e output 
ompP2.send(1,2,10)

...

Figure 3.3.15: Example of a with blo
k

in Se
tion 1.2.1. Noti
e that in addition to enumerating the 
omponents that will parti
ipate in

the simulation, the user provides a handle name for ea
h instantiated 
omponent (the name on the

left of the equals sign). As des
ribed below, the handle names are used in the s
hedule blo
k of the


omposite automaton.

3.3.1 Handle Names in S
hedule Blo
ks

Aside from the burden of a proof, 
omponent de�nitions with where 
lauses pose a diÆ
ulty for


omposite s
hedule blo
ks. In Se
tion 2.1.4 we established that a �re invo
ation in a 
omposite

s
hedule blo
k must be pre�xed by the name of the 
omponent that is exe
uting the a
tion. One

possibility for referen
ing the desired 
omponent in the s
hedule blo
k is to list the 
omponent

name followed by the a
tual parameters for that 
omponent. Su
h an invo
ation would look like:

fire output P[2℄.send(1,2,10)

The presen
e of the with blo
k gives us the option to referen
e the 
omponent by its handle

name. This is the implemented option and it looks like:

fire output 
ompP2.send(1,2,10)

The bene�t of the 
hosen option is brevity in the 
ase of a 
omponent with many parameters.

In su
h a 
ase the user does not have to re-list all of the parameters every time he/she wants to

referen
e the 
omponent. As mentioned in Se
tion 2.1.4, the handle name 
an also be used in the

s
hedule blo
k to referen
e a state variable of a parti
ular 
omponent.
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In addition to their use in 
omposite s
hedule blo
ks, handle names also provide an implemen-

tation bene�t to the simulator itself. During a simulation of a 
omposite automaton, the simulator

must tra
k all of the individual 
omponents. Handle names provide a 
onvenient method for the

simulator to uniquely identify all su
h 
omponents. Further, handle names are useful for output

purposes in the simulation log �le. To identify 
omponent variables and transitions, the simulator


an display them pre�xed by the 
omponent's handle name.

3.3.2 Non Exhaustive De
laration

We saw above how with blo
ks solve the problem of the ne
essity of a proof by enumerating the

desired 
omponents. The simulator 
an now 
he
k the a
tual parameters provided in ea
h of the

de
larations against the 
orrespondingwhere 
lause. Just as in Se
tion 1.2.1, we require that these

where 
lauses do not 
ontain quanti�ers, otherwise the simulator would not be able to evaluate

the where 
lause predi
ate even in the presen
e of a
tual values. If the parameter provided makes

the where 
lause predi
ate evaluate to false, the simulator will halt the simulation and display an

appropriate error message. Noti
e that although the simulator 
an dete
t illegal de
larations, it 
an

not verify whether or not the with blo
k exhausts the where 
lause. Che
king for an exhaustive

de
laration would require the same exa
t proof that motivated us to 
reate the with blo
k in the

�rst pla
e.

3.3.3 Example: With Blo
k

Finally, we get to the most interesting 
ase of a 
omposite automaton with parameterized 
ompo-

nent automata. In this 
ase the automaton Sys does 
ontain a where 
lause in its 
omponents

de�nition, whi
h requires it to have a s
hedule blo
k, and a with blo
k in its s
hedule. Noti
e

that the de
larations in the with blo
k happen to exhaust the where 
lauses. If this were not the


ase, the only e�e
t on the simulation would be the presen
e of fewer 
omponents in the 
omposite

automaton. Automaton Sys is displayed in Figure 3.3.16.

The simulation begins with Pro
1 re
eiving a message \18". It should then send this message

down the pro
ess-
hannel 
hain. The message should get to Pro
3 and stop there. Figure 3.3.17

displays the result of the simulation of 
omposite automaton Sys for �ve steps.
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automaton Sys


omponents C[n:Int℄: Channel(n, n+1) where 1 � n ^ n < 5;

P[n:Int℄: Pro
ess(n) where 1 � n ^ n � 5

s
hedule

states

amount:Int:=17

with

Pro
1=P[1℄,

Chan12=C[1℄,

Pro
2=P[2℄,

Chan23=C[2℄,

Pro
3=P[3℄,

Chan34=C[3℄,

Pro
4=P[4℄,

Chan45=C[4℄,

Pro
5=P[5℄

do

while(true) do

amount:=amount +1;

f i r e input Pro
1.re
eive(0,1,amount );

i f (amount 2 Pro
1.toSend) then

f i r e output Pro
1.send(1,2, amount)

f i ;

i f (amount 2 Chan12.
ontents) then

f i r e output Chan12.re
eive(1,2, amount)

f i ;

i f (amount 2 Pro
2.toSend) then

f i r e output Pro
2.send(2,3, amount)

f i ;

i f (amount 2 Chan23.
ontents) then

f i r e output Chan23.re
eive(2,3, amount)

f i od od

Figure 3.3.16: Automaton Sys 
ase three : with blo
k

Automaton initialized

1: input re
eive(0, 1, 18) in automaton Pro
1

2: output send(1, 2, 18) in automaton Pro
1 --- Conne
ted to :

input send(1, 2, 18) in automaton Chan12

3: output re
eive(1, 2, 18) in automaton Chan12 --- Conne
ted to :

input re
eive(1, 2, 18) in automaton Pro
2

4: output send(2, 3, 18) in automaton Pro
2 --- Conne
ted to :

input send(2, 3, 18) in automaton Chan23

5: output re
eive(2, 3, 18) in automaton Chan23 --- Conne
ted to :

input re
eive(2, 3, 18) in automaton Pro
3

No errors

Figure 3.3.17: Simulator output for Sys automaton that 
ontains a with blo
k

55



56



Chapter 4

IOA Language Extension

The ability to spe
ify the automata and their 
onstituents presented in the previous 
hapter required

the IOA language to be extended to support:

1. NDR Blo
ks in Composite Automata,

2. Component Name Pre�xes in Fire Invo
ations,

3. with blo
ks in 
omposite s
hedule blo
ks, and

4. De
larations inside the with blo
k.

The following four se
tions deal with the spe
i�
 grammar 
hanges involved with the above

extensions, the new semanti
 
he
ks ne
essary to verify the validity of the extended IOA �les,

the a
tual 
ode modi�
ations, and �nally the intermediate language representations of the new

extensions.

4.1 Grammar Modi�
ation

To allow NDR blo
ks in 
omposite automata the grammar de�ning 
ompositions was modi�ed

from,


omposition ::= '
omponents' 
omponent;+ ('hidden' a
tionSet)?

to:


omposition ::= '
omponents' 
omponent;+ ('hidden' a
tionSet,+)? 
ompS
hedule?
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Now, a 
omposition may or may not have a 
omposite s
hedule blo
k. The grammar dealing

with 
omposite s
hedule blo
ks is the following:


ompS
hedule ::= 's
hedule' states? withBlo
k? 'DO' 
ompDetProgram 'OD'


ompDetProgram ::= 
ompDetStatement;+


ompDetStatement ::= assignment | 
ompDetConditional | 
ompDetWhile | 
ompDetFire


ompDetConditional ::= 'if' predi
ate 'then' 
ompDetProgram

('elseif' predi
ate 'then' 
ompDetProgram)*

('else' 
ompDetProgram)? 'fi'


ompDetWhile ::= 'while' predi
ate 'do' 
ompDetProgram 'od'


ompDetFire ::= 
ompInvo
ation1


ompInvo
ation1 ::= 
ompInvo
ation2


ompInvo
ation2 ::= 'fire' a
tionType 
ompName '.' a
tionName invo
ationA
tuals?

('
ase' IdOrNumeral)?

The stru
ture of the grammar of a 
omposite deterministi
 program, 
ompDetProgram, 
losely

resembles that of a primitive deterministi
 program. The ex
eption is that a 
omposite invo
ation

is required to have a 
omponent name pre�x. An alternative modi�
ation of the grammar had


ompositions being modi�ed to the following:


omposition ::= '
omponents' 
omponent;+ ('hidden' a
tionSet,+)? s
hedule?

This strategy does not make a distin
tion between a s
hedule blo
k for a primitive automaton

and a s
hedule blo
k for a 
omposite automaton. Be
ause of this, implementing this strategy

would avoid the 
reation of new non-terminal symbols 
ompDetProgram, 
ompDetStatement, and


ompDetFire. However, a �re statement would now have to bran
h to both non-pre�xed and

pre�xed invo
ations. This would require new semanti
 
he
ks to ensure that no pre�xes were

spe
i�ed in the invo
ations of NDR blo
ks of primitive automata. Thus although the 
hosen

implementation involves the 
reation of more new symbols, it is more straightforward and 
leaner.

The 
omposite s
hedule blo
k may or may not have a with blo
k. We de�ne the grammar of

a with blo
k and the de
larations inside it to be:

withBlo
k ::= 'with' de
larations

de
larations ::= de
laration,+

de
laration ::= handle EQ IDENTIFIER '[' terms,+ '℄'

handle ::= 
omponentName
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Noti
e that the �rst member of a de
laration is a handle and not an identi�er like the member

on the other side of the equals sign. This is ne
essary be
ause the handle will be used in the

s
hedule blo
k to referen
e state variables and transitions of the 
omponent. Thus it must be a

variable of type 
omponentNode and not simply an ltoken. However, the identi�er simply links

the 
omponent being de
lared here to a 
omponent tag in the 
omponents de�nition, and it is

suÆ
ient to represent the identi�er by an ltoken.

A possibility for future work would allow a more 
ompli
ated 
ode stru
ture inside the with

blo
k. For example, de
laring 
omponents inside a for loop might prove to be useful. A brief guide

on modifying the IOA Grammar appears in appendix C.

4.2 Semanti
 Che
ks

The introdu
tion of 
omponent name pre�xes in �re statements presents one new semanti
 
he
k.

The pre�x spe
i�ed in the invo
ation must exa
tly mat
h one of the 
omponent tags without

formal parameters in the 
omponents de
laration of the 
omposition, or the handle name of one

of the de
larations of the with blo
k. This semanti
 
he
k is performed along with the rest of

the semanti
 
he
ks for a 
omposite automaton. Semanti
 
he
ks that 
on�rm the existen
e of

the spe
i�ed a
tion and mat
h the validity of the type of the a
tion as well as of the parameters

spe
i�ed, already exist. These 
he
ks are invoked on the owning 
omponent on
e the new semanti



he
k has veri�ed the existen
e of the spe
i�ed 
omponent.

The 
omponent pre�x should be a variable of sort that is an aggregate over all of the transitions

of the 
omponent automaton. Its . operator should allow a

ess to all of the transitions of the


omponent automaton. Currently, the pre�x is not implemented in this way. It is simply an ltoken

that is easily parsed and veri�ed be
ause a 
omponent name is the only thing that may pre
ede an

a
tion name in an invo
ation.

The following is a list of the semanti
 
he
ks that must be performed to ensure the validity of

the IOA 
ode in a with blo
k:

1. The handle names in the de
larations must be unique.

2. Handle names must be distin
t from the names of the state variables of the s
hedule blo
k.

3. Handle names must be distin
t from the formal variables of the 
omposite automaton.
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4. The indenti�er on the right hand side of the equals sign must exa
tly mat
h one of the


omponent names in the 
omponents de�nition.

5. The length of the list of terms following the indenti�er must equal the length of the list of

formal parameters of the mat
hing 
omponent from the 
omponents de�nition.

6. The types of the terms following the identi�er must mat
h the types of the formal terms of

the mat
hing 
omponent from the 
omponents de�nition.

7. Ea
h of the terms following the identi�er must be a simple literal term.

The �rst three semanti
 
he
ks ensure that variable names remain unambiguous inside the


omposite s
hedule blo
k. The fourth semanti
 
he
k requires that ea
h de
laration 
orrespond to

some 
omponent tag established in the 
omponents se
tion. The �fth and sixth 
he
ks guarantee

that the terms in the de
laration are valid with respe
t to the terms de
lared for the 
omponent

tag in the 
omponents se
tion. Finally, the seventh 
he
k puts a restri
tion on the type of terms

that may appear here. Just as above, these semanti
 
he
ks are performed along with the rest of

the semanti
 
he
ks for a 
omposite automaton.

4.3 Code Changes

Table 4.3.1 lists the Java 
lasses in dire
tory (IOA Toolkit=Code=ioa=parser) (we will refer to

instan
es of these 
lasses as parser side obje
ts) that represent the new non-terminal symbols

introdu
ed to the grammar in Se
tion 4.1. The 
lass 
ompDetFireNode is a new 
lass that extends

the existing detFireNode and provides the set methods used to 
reate the 
omposite invo
ation

during parsing. The 
lass invo
ationNode now has a �eld representing the 
omponent name that

may be asso
iated with the invo
ation statement. Similarly, 
ompositionNode, the 
lass that

represents a 
omposition, now has a �eld that represents the s
hedule blo
k that may be asso
iated

with the 
omposite automaton.

The 
lass withNode is a new 
lass and represents a with blo
k. Its state 
onsists of a 
olle
tion

of de
larations. It has a method that retrieves a 
omponent tag name based on its handle name.

The 
lass de
larationNode is a new 
lass and represents a single de
laration in a with blo
k. Its

state 
onsists of a handle name, a 
omponent tag name, and a list of terms 
orresponding to the

formals of this 
omponent tag. The 
lass 
omponentNode is an existing 
lass. When it represents
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non-terminal symbol Java 
lass


ompS
hedule detS
heduleNode


ompDetProgram ListNode of statementNode


ompDetStatement statementNode


ompDetFire detFireNode


ompInvo
ation1 invo
ationNode


ompInvo
ation2 
ompDetFireNode

withBlo
k withNode

de
larations ListNode of de
larationNode

de
laration de
larationNode

handle 
omponentNode

Table 4.3.1: Java 
lasses representing new non-terminal symbols

a handle, it does not have the 
orre
t state upon 
reation. Its state variables get updated later

when this 
omponent is linked to the 
omponent de
lared in the 
omponents spe
i�
ation by

the 
omponent tag name. For a more detailed do
umentation of the modi�ed �les please 
onsult

Appendix A.

4.4 IL Representations

The 
lasses listed in Figure 4.3.1 all implement the method makeAbstra
t. This method 
onverts

the parser side obje
t representing an automaton 
onstituent into its 
ounterpart obje
t that is an

instan
e of a 
lass in the (IOA Toolkit=Code=ioa=automaton) dire
tory (we will refer to instan
es

of these 
lasses as automaton side obje
ts). These automaton side, 
ounterpart obje
ts are all


apable of translating their representation into intermediate language 
ode. After all semanti



he
ks have been performed, the makeAbstra
tmethod is invoked on all of the parti
ipating parser

side obje
ts and the automaton side obje
ts are 
reated.

The 
ounterparts of invo
ationNode and 
ompositionNode on the automaton side are ndrfire

and 
omposition respe
tively. These 
lasses have been modi�ed to a

ount for the possibility of

NDR blo
ks in 
omposite automata and 
omponent name pre�xes in the �re statements of those

blo
ks.

The IL representation of an ndr �re statement has been modi�ed from:
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(FIRE {transition-id (ACTUALS a
tuals+)}?)

to,

(FIRE {
omponent-name? transition-id (ACTUALS a
tuals+)}?)

where the 
apitalized words denote literal strings and lower 
ase words denote IOA notions;


urly bra
kets denote grouping and do not a
tually appear in the IL syntax. The IL representation

of a 
omposition has been modi�ed from:

((COMPOSE {(
omponent-name (ACTUALS a
tuals+))}+) (HIDDEN hiddens+))

to,

((COMPOSE {(
omponent-name (ACTUALS a
tuals+))}+) (HIDDEN hiddens+) s
hedule?)

Compared to the IL representation of a a primitive s
hedule blo
k,

(SCHEDULE (STATES states*) program)

the IL representation of a 
omposite s
hedule blo
k is,

(SCHEDULE (STATES states*) (WITH de
larations+)? program)

and the IL representation of a de
larations is,

(handle 
omponentTag a
tuals+)

where the 
apitalized words denote literal strings and lower 
ase words denote IOA notions.
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Chapter 5

Simulator Extension

In Chapter 4 we saw how the IOA language and the tools that parse it have been modi�ed to a

ount

for the possibility of 
omposite s
hedule blo
ks, 
omponent pre�xes in �re invo
ations, and with

blo
ks. We now 
on
entrate on the modi�
ations to the simulator itself ne
essary to utilize these

notions in order to support simulations of 
omposite automata. We divide this 
hapter based on the

presen
e of parameters in the 
omponents of the 
omposite automaton and on the nondeterminism

resolution strategy used to resolve nondeterminism in the 
omposite automaton.

First, we des
ribe the stru
ture of the simulator 
lasses that represent a 
omposite automaton

and its 
omponents. Se
ond, we dis
uss how this stru
ture is employed to allow more than one


omponent to be based on the same automaton during simulations of a 
omposite automaton with

parameterized 
omponents. Next, we des
ribe the 
onne
tion via the IL parser of the intermediate

language representation of an automaton to its representation in the simulator. Finally, we des
ribe

the modi�
ations to the output produ
ed by the simulator that are motivated by simulations of


omposite automata.

5.1 Representation of a Composite Automaton

The Java 
lass representation of automata 
onsists of two sides, the basi
 side and the a
tual side.

The basi
 side is 
reated during the parsing of the IL �le. It is a representation of the blueprint

of the automaton. The a
tual side is 
reated at the beginning of the a
tual simulation, and allows

for the addition of a
tual parameters to the automaton. Prior to this proje
t, the representations

of 
omposite automata on both sides were either limited or nonexistent.
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5.1.1 Basi
 Side

ILElement

Automaton

PrimitiveAutomaton CompositeAutomaton

BasicILElement

BasicAutomaton

BasicPrimitiveAutomaton

NDRPrimitiveAutomaton

SimPrimitiveAutomaton

SimAutomaton

BasicCompositeAutomaton

SimCompositeAutomaton

NDRCompositeAutomaton

Class

Abstract Class

Interface

Key

Figure 5.1.1: Basi
 side obje
t diagram

Figure 5.1.1 shows part of the basi
 side ar
hite
ture of the simulator. The 
omponents of a 
om-

posite automaton are stored as a Ve
tor of AutComponent obje
ts in Basi
CompositeAutomaton.

The NDRCompositeAutomaton and the SimCompositeAutomaton obje
ts have been added to the

ar
hite
ture. The NDRCompositeAutomaton obje
t supports a s
hedule blo
k in a 
omposite au-

tomaton. The SimCompositeAutomaton obje
t allows for instantiation of a
tual side obje
ts based

on their basi
 side representations. The method that does this is now de
lared in the SimAutomaton

interfa
e, instead of just in the SimPrimitiveAutomaton. Both NDRCompositeAutomaton and

SimCompositeAutomaton obje
ts parallel their primitive 
ounterparts.

5.1.2 A
tual Side

Just as the SimAutomaton interfa
e is an abstra
tion for a basi
 side automaton, primitive or 
om-

posite, the new interfa
e A
tualAutInterfa
e is an abstra
t 
onne
tion to an a
tual automaton,

whether primitive or 
omposite. Figure 5.1.2 shows the relevant part of the a
tual side ar
hite
ture

before the latest modi�
ations. Figure 5.1.3 displays the ar
hite
ture after them.
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During the simulation, the Simulator obje
t has a

ess only to the new

A
tualAutInterfa
e interfa
e and is not aware whether it is simulating a primitive or a 
om-

posite automaton. The A
tualCompositeAutomaton represents a 
omposite automaton, possibly

with parameters. The a
tual 
omponents of the 
omposite automaton are stored as a Ve
tor of

A
tualAutomaton obje
ts. Note that be
ause simulations of 
omposite automata whose 
ompo-

nents are themselves 
omposite automata are not 
urrently supported, this is suÆ
ient. To support

su
h simulations slight modi�
ations would have to be made, in
luding the storing of a
tual 
om-

ponents as A
tualAutInterfa
e obje
ts and not primitive A
tualAutomaton obje
ts.

ActualAutomaton

DetActualAutomatonNDRActualAutomaton

BasicILElement

Class

Abstract Class

Interface

Key

Figure 5.1.2: A
tual side obje
t diagram before 
hanges

ActualAutomaton

DetActualAutomatonNDRActualAutomaton

ActualCompositeAutomaton

ActualAutInterface

ILElement

Class

Abstract Class

Interface

Key

Figure 5.1.3: A
tual side obje
t diagram after 
hanges

5.1.3 Implementation De
isions

An alternative to the above implementation of 
omposite automata, was to 
reate obje
ts for


omposite automata that are not related to the primitive automata obje
ts. In addition to this,


reate a new simulator obje
t that spe
i�
ally simulates 
omposite automata. The biggest pro of
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this approa
h is the ease with whi
h a primitive/
omposite spe
i�
 
hange 
ould be implemented.

The major 
on of this approa
h is the double implementation and upkeep of features that are


ommon to both primitive and 
omposite simulations.

The approa
h 
hosen, avoids dupli
ate 
ode upkeep. We took 
are to avoid large 
ode blo
ks

spe
i�
 to primitive/
omposite simulations in the Simulator obje
t. When ne
essary, the distin
-

tions are handled through di�erent implementations in the primitive and 
omposite obje
ts of the

methods available to the Simulator through the interfa
e .

For a more detailed do
umentation of the modi�ed �les dis
ussed above please 
onsult Ap-

pendix B.

5.2 Copying of Components

When the simulator tool was initially 
reated, its implementation was tailored for the simulation of

a primitive automaton. The possibility of simulating a 
omposite automaton with parameterized


omponents presents the problem of 
reating more than one simulator representation of an automa-

ton based on a single IOA automaton spe
i�
ation. For example, when simulating automaton Sys

from Figure 3.3.16, the simulator would have to 
reate and tra
k four 
omponents based on the

Channel automaton. Initially, the only di�eren
e between these 
omponents are the values of the

formal parameters of the automaton Channel. However, as the simulation progresses, the state of

ea
h of these 
omponents will diverge. This ne
essitates the 
reation of a separate 
opy of ea
h


omponent.

5.2.1 Implementation De
isions

Three reasonable options for 
reating more than one simulator representation of an automaton

based on a single IOA automaton spe
i�
ation existed:

1. Augment the IOA parser to 
reate multiple IL representations of a primitive automaton

whenever the spe
i�
ation of a 
omposite automaton with parameterized 
omponents is en-


ountered.

2. Modify the IL Parser to parse the same IL automaton representation multiple times whenever

the IL representation of a 
omposite automaton with parameterized 
omponents is en
oun-

tered.
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3. Modify the Simulator, su
h that prior to the simulation, it 
reates 
opies of its representation

of an automaton, whenever the simulation about to take pla
e involves a 
omposite automaton

with parameterized 
omponents.

The de
isive disadvantage of option one is its violation of the one-to-one 
orresponden
e between

notions in an IOA �le and their IL representations. The feasibility of option two depended on the


urrent implementation of the IL Parser and the magnitude of the modi�
ations to it that would

produ
e the desired result. Currently, the IL Parser s
ans the IL �le in a top-down manner. For

example, when the parser en
ounters the automaton keyword, it expe
ts a name, a list of formals,

a list of a
tions, a list of states, and a list of transitions to follow immediately after.

In order to a
hieve the goal proposed by solution two, on
e the IL parser 
ame a
ross the

de�nition of a 
omposite automaton with parameterized 
omponents, it would have to return to

the position in the IL �le where the base automaton for that 
omponent were lo
ated, and then

parse it top-down again. Implementing the ability of the IL parser to traverse the IL �le ba
kwards,

in sear
h for the base automaton, would require extremely signi�
ant modi�
ations to it. Due to

this, option three was 
hosen.

5.2.2 Code Changes

The implemented option 
auses the simulator, prior to the simulation, to 
reate 
opies of its rep-

resentation of an automaton, whenever the simulation about to take pla
e involves a 
omposite

automaton with parameterized 
omponents. Figure 5.2.4 shows the obje
t representation of a prim-

itive automaton. Solid lines represent 
ontainment (with an asterisk denoting the 
ontainment of

multiple obje
ts), dotted lines represent read-only a

ess, and dashed lines represent read/write

a

ess.

As 
an be seen from the diagram, a primitive automaton 
ontains a 
olle
tion of transitions

whose where term, pre
ondition term, and effe
t program 
an all a

ess the state variables and

formals of the automaton. Similarly, the NDR program of the automaton 
an a

ess both the NDR

variables and the state variables of the automaton. This s
enario presents two options as to how

the automaton may be 
opied.

One possibility is to 
opy the entire automaton representation hierar
hy. After the 
opy is 
om-

plete, a s
an of the transitions is ne
essary to make them a

ess the new 
opy of the state variables

and not the original one. Sin
e the only di�eren
e between transitions of every 
omponent based
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PrimitiveAutomaton

Transiition

transitions

*Term

Program

Term

where

pre
condition

effect

Variable

* formals

State

* states

Variable Value

initial
Value

Statement

* statements

Program Term

State

Variable

Value

NDRstates

*

initial
Value

Program

Statement

* NDR
statements

Term Program

NDRProgram

Term

Action

Term

actions

*

where

Term

formals

*

actuals *

Figure 5.2.4: Partial, abstra
t representation of an automaton

on the same automaton, are the referen
es to the obje
ts representing state or formal variables,

another option is to 
opy the state and formal variables only. A single set of transitions would be

kept for all 
omponents based on the same automaton. Prior to the exe
ution of a transition, its

referen
es to variables would get modi�ed to point to those of the 
urrently a
tive 
omponent.

The advantage of the se
ond implementation is that it does not 
opy obje
ts that do not

ne
essarily need to get 
opied. Its disadvantage is the ne
essity to update transition referen
es

every time a transition is pro
essed. We de
ided that the �rst implementation is superior. The

signi�
ant advantage of the �rst implementation is that after the 
opy and update are 
omplete,

the simulation 
an 
ontinue without needing to be interrupted again for 
opy/update purposes.

This allows future modi�
ations to the me
hanism of the simulation to be independent of the


opy/update pro
ess.

The situation is a bit di�erent in the 
ase of the NDR program and its variables. NDR programs

di�er from the e�e
t programs in transitions be
ause every time the e�e
t program is ran, it runs

until 
ompletion, and if its ran again, exe
ution starts from the top. This is not the 
ase with NDR
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programs. Their exe
ution is interrupted by �re statements and resumes from the same spot on

its next iteration. Thus NDR programs must either be 
opied, or a new method to maintain ea
h


omponents' pla
e within its NDR program must be implemented. For this reason, NDR programs

are also 
opied in their entirety and their variable referen
es are updated just as is the 
ase with

transitions.

The 
opying of formals is fairly straightforward as they are shallow obje
ts; their state 
onsists

of String's, boolean's and an Entity referen
e. The 
opying of both automata and NDR state

variables, involves 
opying their initial value terms. The 
opying and updating of statements in

effe
t and NDR programs is more 
ompli
ated be
ause they are obje
ts with fairly deep state. To


opy all of the above, we must be able to 
opy the terms that appear as initial values, pre
onditions

and where 
lauses of transitions and the statements that appear in programs. Figure 5.2.5 shows

an abstra
tion of su
h terms.

Term

LiteralTerm ReferenceTermAplicationTerm QuantifierTerm

Term

opands *

Variable

Figure 5.2.5: Partial, abstra
t representation of a term

Sin
e we have ex
luded the possibility of quanti�ers in where 
lauses in Se
tion 2.2.1, we do

not worry about quanti�er terms here. Literal terms do not 
ontain any dynami
 state and do not

have to be 
opied. Thus the only work remaining is the 
opying of the opands of appli
ation terms

and updating the variable referen
e of referen
e terms.

Figure 5.2.6 shows an abstra
tion of statements. It shows what obje
ts need to be 
opied

and/or updated for ea
h type of statement. The Term's in the diagram are 
opied, the Variable's

are updated to point to the 
orre
t 
opy, and the Program's are a 
olle
tion of Statement's that

re
ursively get pro
essed in the same way.

For a more detailed do
umentation of the modi�ed �les dis
ussed above please 
onsult Ap-

pendix B.
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Statement

Conditional LoopAssignment NDRWhile

Term

value

*

NDRFire NDRYield

Value

left

value

Term Program Program

pred

icates programs *
else

program

Variable Term Program

condi
tional

Transition Term

actuals*

Term Program

Term

Figure 5.2.6: Partial, abstra
t representation of a statement

5.3 IL Parser

We saw in Se
tion 4.4 that the intermediate language representation of 
omposite automata and

their 
onstituents generated by the IOA parser has been modi�ed. The ba
k-end tool that in turn

parses this 
ode and 
reates simulator side obje
ts dis
ussed above is the IL parser,

(IOA Toolkit=Code=ioa=il=ILParser:java). The IL parser has been modi�ed to a

ount for the


hanges in the IL language.

Most of the modi�
ations o

ur in the parseCompositeAut method. The parser now 
he
ks

for the existen
e of a with blo
k in a 
omposite automaton. If it exists the parser 
reates two

maps, one from 
omponent tag names to base automaton names, and another from handle names

to 
omponent tag names. These maps are used by the NDRILFa
tory and NDRCompositeAutomaton


lasses when parsing the s
hedule blo
k of the 
omposite automaton. Finally, the parser 
reates

as many 
omponent obje
ts as are de
lared in the with blo
k. These 
omponent obje
ts are later

used by the simulator to 
reate 
opies of automata obje
ts as des
ribed in Se
tion 5.2.2. Also,

as dis
ussed in Se
tion 5.4, when 
reating simulator representations of state variables, it lets the

variable know whi
h 
omponent it belongs to. For a more detailed do
umentation of the modi�ed

�les dis
ussed above please 
onsult Appendix B.

5.4 Display of Output

The new fun
tionality of the simulator dis
ussed in the se
tions above requires some modi�
ations

to the way that its output is displayed. It is no longer suÆ
ient to list modi�ed state variables by

their name alone as that would not make it 
lear to whi
h 
omponent they belong. Also be
ause an
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output a
tion may trigger one or more input a
tions, it is now possible for more than one transition

to be exe
uted at every step of the simulation.

To solve the �rst problem the simulator representations of state variables have been modi�ed

so that they are now aware to whi
h 
omponent they belong to. In 
omposite simulations, every

time a variable is displayed, the name of the owning 
omponent of that variable is displayed in

front of it. Figure 5.4.7 illustrates this via a hypotheti
al output during the simulation of the

EnvBank automaton des
ribed in Se
tion 3.1. To solve the se
ond problem, the output transition

that initially triggers the input transitions is aware of the transitions triggered by it and it displays

this information following its own display. Figure 5.4.8 illustrates this.

%%%% Modified state variables:

%% Bank:ops --> ([lo
: 8, seqno: 1, amount: 78, reported: false℄)

%% Bank:pending_ops --> ([lo
: 8, seqno: 1, amount: 78, reported: false℄)

%% Bank:lastSeqno --> (ArraySort (ConstantValue 0) (8 1))

%% Env:a
tive --> (ArraySort (ConstantValue false) (8 true))

Figure 5.4.7: Display of state in 
omposite simulations

[[[[ Begin step 1 [[[[

transition: output requestDeposit(78, 8) in automaton Env --- Conne
ted to :

input requestDeposit(78, 8) in automaton Bank

Figure 5.4.8: Display of triggered transitions in 
omposite simulations
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Chapter 6

Test Suite Extension

The IOA toolkit 
ontains a 
omprehensive test suite for regression testing purposes. The test suite


ontains tests for every tool in the kit. For our purposes, we are most interested in the 
he
ker

and the sim tests that 
he
k the behavior of the IOA parser and the simulator respe
tively. The

test suite 
onsists of about one hundred test 
ases ea
h designed to examine spe
i�
 fun
tions of

the toolkit. The following se
tions deal with the test 
ases added to 
he
k the fun
tionality of the

tools for parsing IOA spe
i�
ations of 
omposite automata, the simulation of these automata, and

with a parameter added to enable the automation of su
h tests. Be
ause of the extra 
omplexity

involved in simulating 
omposite automata with parameterized 
omponents, we separate the tests

into those that do 
he
k su
h simulations, and those that do not.

6.1 SIMAUTOMATON Parameter

The test suite allows the user to run all tests on all of the test 
ases at on
e. The user also has

the option to run a parti
ular test on all of the test 
ases at on
e. The Makefile in the dire
tory

of ea
h test 
ase 
ontains parameters that allow the test 
ase to be 
ustomized. For example, the

SIMSTEPS parameter spe
i�es the number of steps that the test simulation should be run for and

the SIMDEBUG parameter allows the user to spe
ify the random seed to be used for the simulation.

Before the introdu
tion of 
omposite automata simulations, ea
h IOA �le in the test suite 
on-

tained the de�nition of only one automaton. The possibility of 
omposite simulations introdu
es

the situation where an IOA �le might 
ontain more than one automaton de�nition. At the sim-

ulation 
ommand line, the simulator must then be provided with the name of the automaton to
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simulate. To allow for the automated testing of 
omposite automata simulations, the Makefile

of ea
h test 
ase now 
ontains a SIMAUTOMATON parameter. When provided, this parameter

spe
i�es the name of the automaton to be simulated. Note that the introdu
tion of this parameter

does not require the modi�
ation of all existing Makefile's be
ause when this parameter is not

spe
i�ed, the simulator assumes that there is only one automaton in the IOA �le and simulates it.

6.2 Non-Parameterized Components

The test 
ases des
ribed in this se
tion involve 
omposite automata with non-parameterized 
om-

ponents. They test the simulator's behavior when using both the 
omponent s
hedule blo
k reuse

and 
omposite s
hedule blo
k strategies to resolve nondeterminism. Many of the s
enarios 
he
ked

in these tests also apply to the simulations of 
omposite automata with parameterized 
omponents.

Se
tion 6.3 des
ribes the test 
ases for su
h simulations. Those tests build on the ones des
ribed

in this se
tion by 
on
entrating on issues parti
ular to simulations of 
omposite automata with

parameterized 
omponents.

6.2.1 Testing Reuse of NDR Blo
ks

The following tests 
he
k the behavior of the simulation of 
omposite automata whi
h do not 
ontain

a 
omposite s
hedule blo
k and therefore use the NDR blo
ks of the 
omponents to resolve non-

determinism. We �rst must test that if a 
omponent name pre�x is spe
i�ed in a NDR blo
k of a

primitive automaton, the IOA 
he
ker displays an error message. The following is a list of points to

be 
he
ked on the simulator side. Note that the �rst �ve 
ases are independent of nondeterminism

resolution strategy and thus also apply to the tests in Se
tion 6.2.2.

1. All input a
tions �, whose where 
lause is satis�ed by the a
tual parameters, are exe
uted

in the same step that output a
tion � of some other 
omponent is exe
uted.

2. No input a
tions other than �, whose where 
lause is satis�ed by the a
tual parameters, are

exe
uted in the same step that output a
tion � of some other 
omponent is exe
uted.

3. Corre
t behavior of the above 
ases for a
tions with and without a
tual parameters.

4. Component invariants are veri�ed 
orre
tly.

5. Composite invariants are ver�ed 
orre
tly.
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6. Input a
tion � that is s
heduled to be �red by its 
omponent's NDR blo
k, but may also be

triggered by the exe
ution of output a
tion � of some other 
omponent, does not get exe
uted

when its NDR blo
k attempts to �re it.

7. Component NDR blo
ks that are terminating/non-terminating behave 
orre
tly.

8. Component NDR blo
ks that at some point be
ome in�nitely looping are 
orre
tly disrupted

by the NDR max steps parameter.

9. High-level nondeterminism resolution strategies - uniform, random, and weighted all behave

as expe
ted.

The following is a list of newly 
reated test 
ases that have been added to the test suite. If left

unspe
i�ed, the high-level nondeterminism resolution strategy is uniform.

� ComposedBank01 test 
ase. This test 
ase 
orresponds to the automaton dis
ussed in Se
-

tion 3.1.2. The 
omposite automaton 
ontains a bank 
omponent and an environment 
ompo-

nent. This test is similar to the Banking01 test 
ase, ex
ept here we have a dire
t simulation

of a 
omposite automaton, while there the 
omposite banking automaton is 
reated manually.

The SIMAUTOMATON parameter for this test 
ase is set to EnvBank01, the name of the


omposite automaton. The random seed, rseed, value is set to 10 just as in the Banking01

test 
ase. This test 
he
ks points 1 and 7 above.

� PushPullAut01 test 
ase. The two 
omponents of the 
omposite automaton PushPullAut are

PushAut and PullAut. Their respe
tive input/output a
tions are 
onne
ted to ea
h other.

The pre-
onditions on the output a
tions are su
h that they require the two 
omponents to

�re their output a
tions alternatively. The 
omponent PushAut, also has an input a
tion

that is 
onne
ted to PullAut. The SIMAUTOMATON parameter for this test 
ase is set to

PushPullAut. This test 
he
ks points 3, 5, 7, and 8.

� PushPullAut02 test 
ase. Here the 
omposite automaton, PushPullAut 
ontains three 
om-

ponents. The output a
tion of PushAut is 
onne
ted to input a
tions of both PullAut and

ExtraAut. The output a
tion of PullAut is only 
onne
ted to an input a
tion of PushAut.

The 
omponent ExtraAut 
ontains two output a
tions that do not trigger any input a
tions.

The SIMUATOMATON parameter for this test 
ase is set to PushPullAut. This test 
he
ks

points 2, 4, 5, 8, and 9.
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There is a diÆ
ulty involved with automated testing of the random and weighted high-level

nondeterminism resolution strategies. Be
ause the 
omponents are sele
ted based on a random

number pi
ked by the Java random number generator, there is no way to make two 
onse
utive

simulations produ
e the same output. Thus although these strategies have been tested, there are

no test 
ases in the automated test suite that 
he
k the simulator's behavior under these high-level

nondeterminism resolution strategies.

6.2.2 Testing NDR Blo
ks for Composite Automata

The following test 
he
ks the behavior of the simulation of a 
omposite automaton whi
h 
ontains

a 
omposite s
hedule blo
k. We must �rst 
he
k that the IOA parser handles su
h automata


orre
tly. The following is a list of 
ases to be veri�ed on the IOA parser side.

1. Composite s
hedule blo
ks are a

epted.

2. Component name pre�xes in 
omposite �re invo
ations are a

epted.

3. Only appropriate 
omponent name pre�xes in 
omposite �re invo
ations are a

epted (Se-

manti
 Che
k).

4. Component name pre�xes are required in 
omposite �re invo
ations.

5. A
tions invalid for the spe
i�ed 
omponent in a 
omposite �re invo
ation are dis
overed and

reported.

As mentioned in Se
tion 6.2.1, the �rst �ve simulator test points listed there also apply to

testing 
omposite automata with their own s
hedule blo
ks.

� BankCompositeS
hedule01 test 
ase. This test 
ase veri�es the simulation of a 
omposite

automaton with its own s
hedule blo
k. This test 
ase 
orresponds to the automaton EnvBank

dis
ussed in Se
tion 3.1.2. The SIMUATOMATON parameter is set to BankComposed. This

test 
ase 
he
ks all of the ne
essary 
ases for simulations of 
omposite automata with their

own NDR blo
k.

6.3 Parameterized Components

Now that we have tested the simulator's ability to handle 
omposite automata with non-parameterized


omponents we move on to expanding the test suite to 
he
k the more 
omplex 
ase of 
omposite
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automata with parameterized 
omponents. Simulations of 
omposite automata with parameter-

ized 
omponents that use the 
omponent s
hedule blo
k reuse strategy to resolve nondeterminism,

involve the 
opying and tra
king of multiple 
opies of the same s
hedule blo
k. To validate the

simulator's behavior in su
h 
ases we on
e again partition this se
tion based on nondeterminism

resolution strategy. Finally, sin
e in the 
ase of parameterized 
omponents, a 
omposite s
hedule

blo
k may have a with blo
k, we separate the 
omposite s
hedule blo
k nondeterminism resolution

strategy into two 
ases, one that does not 
ontain a with, and one that does.

6.3.1 Testing Reuse of NDR Blo
ks for Parameterized Components

The following tests 
he
k the behavior of the simulation of a 
omposite automaton with parameter-

ized 
omponents and no s
hedule blo
k. They are based on automaton Sys from Se
tion 3.2.1. They

test the simulator's ability to handle 
omponents based on the same automaton and to maintain

their independent states as they diverge during a simulation.

� Pro
Chan01 test 
ase. This is the most simple of the test 
ases. It involves only one 
ompo-

nent based on the Channel automaton and one 
omponent based on thePro
ess automaton.

This test veri�es the parsing and simulation of a 
omposite automaton whose parameterized


omponents possess their own NDR blo
ks. The test ensures the simulator's ability to make

independent 
opies of 
omponents based on their base automaton. It 
ontains 
omponent

invariants as well as 
omposite ones. Further, it veri�es the simulator's ability to tra
k these


opies as their state diverges. The 
omponents 
ontain transition and a
tion where 
lauses

that are always satis�ed. The 
orre
t intera
tion of the two 
omponents depends on the

simulator's 
orre
t handling of 
onstant parameters.

� Pro
Chan04 test 
ase. This test 
ase builds on the previous one by adding two more 
ompo-

nents based on ea
h of the base automata. This test validates the simulator's ability to 
opy


omponents and their respe
tive NDR blo
ks. In addition it tests 
omponent s
hedule blo
ks

with diverging states and e�e
t 
lauses with no program.

� IGPro
RelialbleChannel02 test 
ase. The 
omposite automaton in this 
ase represents a

reliable FIFO 
ommuni
ation. The 
omposite automaton here has two 
omponents based on

one automaton and six based on another. The test 
ase extends the above two by 
he
king

the ability of the simulator to handle 
ases where one 
omponent 
ommuni
ates with more
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than one other 
omponent based on the same base automaton.

6.3.2 Testing Composite S
hedule Blo
ks for Parameterized Components

The following test 
he
ks the behavior of the simulation of a 
omposite automaton with param-

eterized 
omponents, a s
hedule blo
k, but no with blo
k. It is based on automaton Sys from

Se
tion 3.2.2. In addition to testing the 
riteria of the above se
tion, this test also 
he
ks the sim-

ulator's ability to handle 
omponent variable a

ess and �re invo
ations in the 
omposite s
hedule

blo
k.

� Pro
Chan02 test 
ase. The 
omposite automaton in this 
ase 
ontains two 
omponents based

on ea
h of the base automata. The s
hedule blo
k of the 
omposite automaton a

esses

variables and invokes transitions of both 
omponents. Further, the test veri�es the simulator's

handling of 
onstant formals in a
tion signatures, an input a
tion triggering the 
orre
t output

a
tion based on 
onstant parameters, and a where 
lause in a transition that is violated and

thus halts the simulation. It 
ontains 
omponent invariants as well as 
omposite ones.

6.3.3 Testing With Blo
ks

The following tests 
he
k the behavior of the simulation of a 
omposite automaton with parame-

terized 
omponents, a s
hedule blo
k, and a with blo
k. They are based on automaton Sys from

Se
tion 3.3.3. In addition to testing the 
riteria of the above se
tions, these tests also 
he
k the

simulator's ability to handle 
omponents de
lared in the with blo
k.

� Pro
Chan03 test 
ase. The 
omposite automaton in this 
ase 
ontains �ve 
omponents based

on the Pro
ess automaton and four 
omponents based on the Channel automaton. This test


ase veri�es the following points:

{ An input a
tion where 
lause that 
auses an a
tion that otherwise would have been

triggered by an output a
tion of another 
omponent, not to be,

{ Constant parameters, and 
orre
t output a
tions being triggered due to the 
onstant

parameters,

{ A pre
ondition that fails and leads to the halting of the simulation,

{ Component invariants, and
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{ Composite invariants.

� IGPro
RelialbleChannel01 test 
ase. This automaton represents a reliable FIFO 
ommu-

ni
ation. In addition to testing the above points, this test 
ase also veri�es, a for loop in an

effe
ts 
lause and variable a

ess via handle names in the 
omposite s
hedule blo
k.

� WithSemanti
s01 test 
ase. This test 
ase veri�es that all of the semanti
 
he
ks for a with

blo
k in a 
omposite s
hedule blo
k dis
over the appropriate errors when those errors are

present. These semanti
 
he
ks are listed in Se
tion 4.2.
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Chapter 7

Appli
ation to Work
ow

It is possible to use formal modeling to represent a wide variety of appli
ations. The bene�ts of

doing this are a more stru
tured design, 
apability for invariant and theorem 
he
king, and the

ability to debug the system at design time.

The simulation of a single automaton allows for invariant 
he
king. The simulation of paired

automata allows for simulation relation 
he
king. The dire
t simulation of 
omposite automata,

in addition to enhan
ing the formal modeling aspe
t of the simulator, allows for 
omprehensive

debugging of distributed systems and appli
ations. These fun
tions together provide a useful tool

for design time debugging of 
omplex systems. One su
h example is work
ow appli
ations.

7.1 Work
ow Des
ription

Work
ow appli
ations expli
itly model pro
esses, most often but not limited to business pro
esses.

A work
ow system implements and automates a pro
ess by modeling the 
ow of its states. \A

work
ow is simply a set of tasks that 
o-operate to implement a business pro
ess" [OW98℄. Work-


ows abstra
t the user from a parti
ular state by establishing an API to that state. Be
ause of this,

systems with distributed sour
es of information are well modeled by work
ow systems [Ci
98℄. The

following example from [MSK

+

95℄ illustrates a work
ow model of a part of a health 
are system.

Figure 7.1.1 models the 
ow of treating a patient at a hospital. Figure 7.1.2 models the diagnosis

sub 
ow. When the Diagnosis blo
k in Figure 7.1.1 is rea
hed, the Patient work
ow waits for

a response from the Diagnosis sub work
ow before de
iding whi
h way to pro
eed. The possible

return values of the End blo
k of the Diagnosis pro
ess are \Inpatient" and \Outpatient". The
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Start
EndDiagnosis

Out-
Patient

Case
Closed

In-
Patient

Diagnosis:
Out-Patient

Diagnosis:
In-Patient

Daily Exam:
Better

Daily Exam:
Passed

Register
Patient

Daily Exam:
Worse

Daily Exam:
Passed

Figure 7.1.1: Work
ow s
hema of a patient registration pro
ess

Start Choose
Exam
Type

Perform
X-Ray

Perform
Biopsy

Analyze
Results

End:
Out P

End:
In P

Done
Examining

Output:
In Patient

Output:
Out Patient

Figure 7.1.2: Work
ow s
hema of a patient diagnosis pro
ess

Diagnosis s
hema leaves the me
hanism for 
hoosing what medi
al test (Biopsy, X-Ray) will be

performed ambiguous. The s
hema simply de
lares that on
e the Choose Exam Type diamond is

rea
hed, the work
ow will wait for input letting it know what examination was 
hosen. Later we

will see how the automaton modeling the hospital provides this information.

While the Patient work
ow is waiting for a response from the Diagnosis work
ow, it may still


ommuni
ate with other work
ows of the systems. For example, another work
ow may notify the

Patient work
ow of new information regarding the patient. The only 
ause of nondeterminism in

this model is input from the system's environment, most likely from physi
ians. For a given set of

input values from the physi
ians, the work
ow is deterministi
.

Figure 7.1.4 displays an automaton that models the Diagnosis work
ow pro
ess from Fig-

ure 7.1.2. Figure 7.1.5 displays an automaton that models the medi
al a
tivity at a hospital.

This automaton provides an interfa
e for the Diagnosis automaton to request that 
ertain tests

be performed on the patient being diagnosed. The Hospital automaton then 
ommuni
ates the

results of the test ba
k to the Diagnosis automaton. Other fun
tions of the Hospital automaton are
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Diagnosis

State Variables:

patientInfo,
examDone,
examReady,
nextExam,
res

Hospital

State Variables:

patientInfo,
nextExam

AnalyzeResults

Communication
with other
modules of

the Hospital
system

ChooseExaminationType(patientInfo)

ExaminationType(et)

XrayRequest(patientInfo)

XrayResult(result)

BiopsyRequest(patientInfo)

BiopsyResult(result)Result(result)

DiagnoseStart(patientInfo)

Figure 7.1.3: Intera
tion between Hospital and Diagnosis automata

not expli
itly modeled here. They would in
lude other medi
al pro
esses su
h as surgery, physi
al

therapy, blood transfusions, et
.

By 
omposing the Diagnosis and Hospital automata, we 
an form a new 
omposite automaton.

Figure 7.1.3 shows the intera
tion between the two 
omponents of this automaton. We 
an now

simulate this 
omposite automaton and observe the full diagnosis 
y
le. Further, we 
an model

other pro
esses that use up the Hospital's resour
es as automata. By 
omposing all of these

pro
ess modeling automata, in
luding the Diagnosis automaton, with the Hospital automaton, we


an 
reate a 
omplex system automaton. By simulating this system automaton we 
an observe the

work load pla
ed on the Hospital by various modules of the system. We 
an thus see that automata

simulation of worklfow pro
esses is useful during the design time of the work
ow pro
esses. As it


an reveal unintended and erroneous behavior in the work
ow model as well as be used for resour
e

allo
ation modeling.

7.2 Design Time Debugging of Work
ow Systems

\Simulation 
an be used to study and re�ne work
ow spe
i�
ations. Be
ause the work
ow spe
-

i�
ation 
aptures the implementation aspe
ts of a business pro
ess model, their simulation and

analysis 
an provide valuable feedba
k to the business pro
ess model evaluation [MSK

+

95℄." Given

an a

urate model of the environment of the system, this feedba
k might 
onsist of estimates of

resour
e allo
ation. In the above example, a simulation might reveal the ne
essity for more hospital

resour
es assigned to the support of the Diagnosis pro
ess. Further, a simulation of a 
ompli
ated

work
ow s
hema 
an be bene�
ial in that it 
an expose a variety of properties of the work
ow

s
hema. [Ci
98℄ These properties 
an be dis
overed through a simulation, possibly of a 
omposite
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Automaton Diagnosis

type PatInfo = tuple of name: String, biopsy, xRay: Bool, si
kLevel: Int;

type ExamType = enumeration of X-Ray, Biopsy, Done, None

type ResType = enumeration of InPatient, OutPatient

signature

input DiagnoseStart(pf:PatientInfo), BiopsyResult(result:Bool),

XRayResult(result:Bool), ExaminationType(et:ExamType)

output BiopsyRequest(pf:PatientInfo), XRayRequest(pf:PatientInfo),

ChooseExamType(pf:PatientInfo), Result(result:ResType)

internal AnalyzeResults

states patientInfo : PatInfo :=null, examDone : Bool:=false,

examReady : Bool:=false, nextExam : ExamType :=None,

res : ResType :=null

trans i t ions

input DiagnoseStart(pf)

e f f patientInfo :=pf; examReady=true

input BiopsyResult(result)

e f f patientInfo.biopsy=result ; examReady=true

input XrayResult(result)

e f f patientInfo.xRay = result ; examReady = true

input ExaminationType(et)

e f f nextExam:=et

ouput BiopsyRequest(pf)

pre nextExam=Biopsy ^ examDone=false

ouput XrayRequest(pf)

pre nextExam=Xray ^ examDone=false

output ChooseExamType(pf)

pre examReady = true e f f examReady = false

output Result(result)

pre examDone= true ^ result=res

internal AnalyzeResultIn pre NextExam=Done

e f f i f (patienfInfo.xRay=true ^ patientInfo.biopsy=true) then

res=InPatient e l se res=OutPatient f i ;

Figure 7.1.4: IOA spe
i�
ation of Diagnosis automaton

automaton, along with invariant 
he
king. These properties are similar to some of those des
ribed

in the I/O automata 
hapter of [Lyn96℄.

� rea
hability - 
an 
ertain states be rea
hed,

� safety - the work
ow/state-ma
hine does not terminate in an una

eptable state,

� deadlo
k - is it possible to rea
h a state where none of the prerequisites for its a
tions will

ever be satis�ed,

� bottlene
ks - do 
ertain states take up signi�
antly larger amounts of times than the rest. The

veri�
ation of this property would require the addition of the notion of time to the simulator.
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Automaton Hospital

type PatInfo = tuple of name: String, biopsy, xRay: Bool, si
kLevel: Int;

type ExamType = enumeration of X-Ray, Biopsy, Done, None

signature

input BiopsyRequest(pf:PatientInfo), XRayRequest(pf:PatientInfo),

ChooseExamType(pf:PatientInfo)

output BiopsyResult(result:Bool), XRayResult(result:Bool),

ExaminationType(et:ExamType)

states patientInfo : PatInfo :=null, nextExam : ExamType :=None

trans i t ions

output BiopsyResult(result) pre nextExam=Biopsy

e f f 
hosen :=
hoose x: Int where x>0 and x<11

i f (
hosen<4) then result=true e l se result=false

output XrayResult(result) pre nextExam=X-Ray

e f f 
hosen :=
hoose x: Int where x>0 and x<11

i f (
hosen<6) then result=true e l se result=false f i

output ExaminationType(et) pre nextExam=Done

e f f i f (PatInfo.si
kLevel>5) then et=Done

e l s e i f (PatInfo.si
kLevel>8) then et=X-Ray

e l s e i f (PatInfo.si
kLevel>11) then et=Biopsy f i ;

input BiopsyRequest(pf) e f f patientInfo=pf; nextExam=Biopsy

input XrayRequest(pf) e f f patientInfo=X-Ray; nextExam=Biopsy

input ChooseExamType(pf) e f f patientInfo=pf; nextExam=Done

Figure 7.1.5: IOA spe
i�
ation of Hospital automaton

The majority of work
ow systems are implemented through the use of databases, XML s
hemas,

and PLSQL pro
edures. This te
h sta
k does not lend itself as well to extensive simulation and

debugging, as does the implementation of work
ow via automata. There are two possible ways to

improve the simulation and debugging 
apabilities of 
urrent work
ow systems. One, we 
an enable

a 
urrent work
ow pa
kage to translate its representation of a s
hema to an IOA spe
i�
ation for

the purpose of debugging and invariant 
he
king. Two, implement the entire work
ow software

with IOA automata.

The bene�t of the �rst option is that it does not require any modi�
ations to be made to the

parti
ular implementation of the work
ow system. Its only diÆ
ulty is the design of the tool that

will 
onvert the work
ow s
hema to an IOA spe
i�
ation. Option two avoids the need for su
h a

tool, but it is problemati
 for two reasons. Some work
ow instan
es might have long life 
y
les and

will require a mode of permanent storage su
h as a database. Also, option two requires a 
omplete

overhaul of the 
urrent work
ow implementation.

I believe that option one is superior to option two be
ause the s
hema to IOA translator tool

should not be parti
ularly diÆ
ult to implement. Further, the parti
ular work
ow implementation

itself may be left un
hanged. Also, in the absen
e of the s
hema to IOA translator tool, it is
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plausible that work
ow designers may �rst model their systems with IOA, debug them at design

time using the simulator, and then 
reate the a
tual s
hema based on the modi�ed IOA models

that resulted after thorough debugging/simulating.
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Chapter 8

Relation to Existing Features and

Future Work

In this 
hapter we �rst dis
uss how the extension of the simulator to support 
omposite automata

has e�e
ted other features of the simulator. We then give suggestions for future work. The sugges-

tions apply to both primitive and 
omposite simulations.

8.1 Invariant Che
king

In Se
tion 1.1.1 we mentioned that the simulator supports an invariant 
he
king feature. The user

may enter a boolean predi
ate on the state variables of the automaton being simulated. This pred-

i
ate is tested after every simulation step, and an appropriate error message is displayed whenever

the predi
ate evaluates to false. During a 
omposite simulation, the simulator 
he
ks the invariants

of all 
omponents of the 
omposite automaton. The simulator also has the 
apability of 
he
k-

ing invariants written spe
i�
ally for the 
omposite automaton. The syntax for referen
ing state

variables in an invariant of a 
omposite automaton is the following:

CompositeAutomatonName.ComponentName.StateVariableName

Further, the predi
ates of invariants of primitive automata, may only refer to variables of that

one automaton. In the 
ase of invariants of 
omposite automata, the predi
ate may refer to any

of the state variables of any of the 
omponents. Thus an invariant relating the state variables of

several 
omponents is legal. For example, 
onsider the following two invariants of automaton Sys

des
ribed in Se
tion 3.2.2:
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invariant nonEmpty of Sys:

size(Sys.C1.
ontents)=0

invariant C1greaterC2 of Sys:

size(Sys.C1.
ontents)>size(Sys.C2.
ontents)

Invariant nonEmpty is a predi
ate on the state variables of 
omponent C1 only. Invariant

C1greaterC2 relates the state variables of 
omponent C1 to 
omponent C2. Referen
es to 
ompo-

nent variables in invariant predi
ates of 
omposite automata that 
ontain a with blo
k, parallel

the referen
es to these variables in the s
hedule blo
k of su
h an automaton - the handle name is

used as the 
omponent name. For example, the following is a possible invariant of automaton Sys

des
ribed in Se
tion 3.3.3 (Pro
1=P[1℄ and Pro
2=P[2℄ are de
larations in the with blo
k of that

automaton):

invariant toSendEquals of Sys:

Sys.Pro
1.toSend=Sys.Pro
2.toSend

8.2 Paired Simulation of Composite Automata

The extension of the paired simulator to support 
omposite automata has not been implemented,

and is a future work. Consider the 
ase where a 
omplex spe
i�
ation is implemented via an

algorithm des
ribed as a 
omposite automaton. We now want to verify the 
orre
tness of the

algorithm by writing a simulation relation from it to the spe
i�
ation. To evaluate this relation using

the paired simulator, we need to be able to input a 
omposite automaton as the implementation

automaton. The following 
hanges need to be made to allow su
h input to the paired simulator.

Currently the semanti
 
he
ks on the IOA parser side require both the spe
i�
ation and the

implementation automata to be primitive automata. These 
he
ks need to be relaxed. The rest

of the 
ode that runs the semanti
 
he
ks 
asts the spe
i�
ation and implementation automata as

primitive automata Java obje
ts. This 
asting needs to be 
hanged to allow 
omposite automata.

On the simulator side, the paired shell and the paired simulator need to be updated to a

ount for

the possibility of 
omposite automata.
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8.3 NDR Relinquish Control Command

In Se
tion 2.1.3 we dis
ussed the possibility of a 
omponent s
hedule blo
k 
ausing an in�nite loop

during a simulation of a 
omposite automaton that reuses 
omponent s
hedule blo
ks to resolve

nondeterminism. We proposed two solutions to this problem and des
ribed the implemented one, a

limit on the maximum number of steps that a s
hedule blo
k may run without returning an a
tion

to �re. Another alternative to solving the looping pitfall is the introdu
tion of a new keyword

to the syntax of s
hedule blo
ks. When a s
hedule blo
k would en
ounter this keyword, it would

relinquish 
ontrol ba
k to the high-level s
heduling poli
y in a 
omposite simulation, and halt the

simulation in the primitive 
ase.

8.4 User Intera
tive Nondeterminism Resolution

As an alternative method to NDR programs, this extension would allow the user to resolve nonde-

terminism as it o

urs during the simulation. Prior to beginning the simulation the user will have

to spe
ify the 
hoi
e of this option as opposed to the use of an NDR program. Then at runtime

whenever the simulation is halted by either impli
it or expli
it nondeterminism, the user will be

prompted to 
hoose whi
h bran
h the simulation should take. The user will also have the ability

to inform the simulator that similar de
isions should be made in the future without prompting the

user again.

In the 
ase of impli
it nondeterminism, the user will be presented with a list of a
tions with

satis�ed pre
onditions, if possible. The user will then 
hoose one of these a
tions. To aid the

de
ision pro
ess, it will be useful to present the user with 
ertain heuristi
s asso
iated with ea
h

valid 
hoi
e. The heuristi
 may be a partial snapshot of the resulting global state given that the

parti
ular a
tion is taken. It 
ould also be an estimate, either time or step amount, of simulation

duration remaining until a 
ertain state is rea
hed, given that the parti
ular bran
h is 
hosen.

In the 
ase of expli
it nondeterminism, the user will be presented with the 
hoose statement

that is responsible for halting the simulation. The user will then enter a value in the appropriate

range for the variable in the 
hoose statement. On
e again, some heuristi
 of the possible 
hoi
es

should be presented to the user. In the 
ase where this is not pra
ti
al (displaying heuristi
s for

every integer between 1 and 100 is not pra
ti
al for eff a := 
hoose x: Int where x>0 and

x<101), heuristi
s 
an be displayed for a subset of all valid 
hoi
es.
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8.5 Debugging Tool

The ability of the simulator to print out tra
e logs and state snapshots is naturally extended to

the 
reation of a more 
omprehensive debugging tool. This tool would 
omprise of features that

are both 
ommon to most debugging appli
ations and those that are more IOA spe
i�
. They will

in
lude runtime user intera
tive nondeterminism resolution, des
ribed in Se
tion 8.4, step-through

exe
ution and breakpoints, and intera
tive exe
ution logs.

On
e this debugger tool is implemented the user will have a spe
trum of tools that will enable

him/her to explore in detail many possible exe
utions of the system being modeled. The user

will also be able to 
onveniently modify the system until he/she is satis�ed with the observed

simulations. This will allow the user to foresee problems in the system at design time and will aid

the user in augmenting and improving the system at design time.

8.5.1 Step Through Exe
ution and Breakpoints

This feature would provide the user with more 
ontrol over the 
ow of the simulation. Both notions,

stepping through a simulation and setting up breakpoints, are 
ommon to every standard debugging

tool. Instead of only being able to observe the 
omplete tra
e log after an exe
ution has 
ompleted,

the step through feature will enable the user to observe the state of the simulation as the tra
e log

is being 
reated. More spe
i�
ally, after ea
h addition to the tra
e log, the simulation will pause

and present the user with the tra
e log up to this point and the global state of the system. The

simulation will only resume on
e the user signals that he/she has 
ompleted analyzing the 
urrent

situation and is ready for the simulation to 
ontinue.

Breakpoints will allow the user to 
hoose, prior to the simulation, either one or many a
tions of

the automaton being simulated. During the simulation whenever one of these a
tions is about to

be �red, the simulation will pause and present the user with the tra
e log up to this point and the

global state of the system. On
e again, the simulation will only 
ontinue on
e the user signals that

he/she is ready. Thus breakpoints will allow for a step through simulation that pauses at spe
i�ed

points of the simulation as opposed to pausing at every step of the simulation, as is the 
ase with

a standard step through exe
ution.

To enhan
e step through simulation, the user will have the ability to sele
t what variables are

displayed as part of the state. Thus allowing him/her to 
on
entrate on spe
i�
 variables instead

of having to look through the entire global state of the system.
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8.5.2 Intera
tive Exe
ution Logs

On
e the features of step through exe
ution, Se
tion 8.5.1, and user intera
tive nondeterminism

resolution, Se
tion 8.4 are implemented, it would be useful to enhan
e tra
e logs to allow for

simulation navigation. The user will be able to 
hoose a point in a given tra
e log and return the

simulation to this parti
ular point. The simulation will then 
ontinue from this point.

This feature is parti
ularly useful when 
oupled with user intera
tive nondeterminism resolution.

It allows the user to return to a point in the simulation prior to some nondeterminism resolution

de
ision. He/she 
an then make a di�erent de
ision and follow the simulation to see how the

bran
hes di�er. The user 
an repeat this until he/she has explored all of the desired bran
hes of

nondeterminism.

8.6 Graphi
al Improvements

The extension of the simulator's user interfa
e from a text based one to a more graphi
al one

would be a useful improvement. Combined with the features des
ribed above, a graphi
al interfa
e

would provide an engaging debugging environment. Via 
oloring, it would allow for 
omprehensive

representations of the 
omponents of a 
omposite automaton. Suggestions for the implementation

of a graphi
al user interfa
e to the simulator are mentioned in [Che98℄.
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Appendix A

IOA Parser File Modi�
ations

This 
hapter des
ribes the 
hanges made to the 
ode of the IOA parser. The se
tions are partitioned

by dire
tory and a distin
tion is made between the �les that were modi�ed and the �les that have

been 
reated.

A.1 Modi�ed Files - parser

� 
omponentNode - added two methods to modify this obje
t after 
reation as is ne
essary

for 
reating 
omponents de
lared in the with blo
k. Methods : setFormals and 
hangeName.

- 1.7

� 
ompositionNode - added getAutNameByCompName and getComponentByNamemethods and

hashtables to support them. The former retrieves the automaton name of the 
omponent

with the spe
i�ed 
omponent tag. The latter retrieves the 
omponentNode obje
t for the


omponent with the spe
i�ed 
omponent tag. Both are used in 
he
kComposition. Added

s
hedule obje
t to the makeAbstra
t method. Overloaded set method to allow for a s
hed-

ule parameter. Added a detS
heduleNode �eld to store the s
hedule for this 
omposite

automaton. Passes the s
heduleNode to the 
omposition upon makeAbstra
t, depends on

automaton/
omposition(1.26) for the latest make method. - 1.9

� detFireNode - the �re statement might now have a 
omponent name asso
iated with it.

Depends on automaton/ndrfire(1.13). - 1.13

� detS
heduleNode - added an withNode �eld to store a with bl
ok that may be asso
i-

ated with this s
hedule node. Overloaded set methods to allow for the passing of the with

blo
k. Added the with blo
k to the makeAbstra
t method. Depends on withNode(1.1),

automaton/s
hedule(1.9), automaton/de
laration(1.1). - 1.15

� grammar.sr
 - updated produ
tion rules for 
ompositions to allow s
hedule blo
ks. Com-

posite s
hdule blo
ks di�er from primitive ones in that their invo
ation 
alls must have a


omponent name pre�x. Introdu
ed produ
tion rules for the new notion of with blo
ks and

de
larations for 
omposite s
hedule blo
ks. New WITHCOMP keyword. Depends on latest

version of 
ompositionNode(1.8), detFireNode(1.13), detS
heduleNode(1.15),


ompDetFireNode(1.1), withNode(1.1), and de
larationNode(1.1). - 1.23
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� invo
ationNode - added ltoken �eld to store 
omponent name that may be asso
iated with

this invo
ation. Added a

essor for this �eld and made sure it 
opies over when thi sobje
t

is 
opied. - 1.2

� ioaTokenizer - adde the WITHCOMP = \with" keyword. - 1.10

� Make�le - added three new �les : withNode.pj, de
larationNode.pj, and


ompDetFireNode.pj. - 1.26

A.2 New Files - parser

� 
ompDetFireNode - extends detFireNode and provides analogous set methods that al-

low for the passing of a 
omponent name asso
iated with this �re statement. Depends on

invo
ationNode(1.2). - 1.1

� de
larationNode - node representing a single de
laration line in a 
omposite s
hedule blo
k

with blo
k. Fields in
lude: the 
omponent tag name, the handle name, and the a
tuals for

this 
omponent. Depends on automaton/de
laration(1.1). - 1.1

� withNode - node representing the entire with blo
k of a 
omposite s
hedule blo
k. Consists

of an array of de
larationNode obje
ts . getCompName method retrieves the 
omponent

tag of the 
omponent with the spe
i�ed handle name. Method used in 
he
kComposition.

Depends on de
larationNode(1.1), automaton/de
laration(1.1). - 1.1

A.3 Modi�ed Files - automaton

� 
omponent - updated toSValue method to in
lude formals for the 
omponent tag and the

name of the base automaton that this 
omponent is based on. - 1.19

� 
omposition updated the make method to take in a s
hedule parameter. Added the 
on-

verison of the s
hedule to an SValue in the thisKindOfAutomatonToSValue method. - 1.26

� formal Added the keyword CONST (ILParser.KEYW CONST) at the head of the SList

of the IL representation of an a
tion formal. Previously, there was no way to distinguish a


onstant parameter from a non 
onstant one. - 1.8

� Make�le added new de
laration.java �le. - 1.19

� ndr�re added �eld to store 
omponent name in the 
ase of this �re statement o

uring in a


omposite s
hedule blo
k. Added the 
omponent name to the toSValue method. - 1.13

� s
hedule added de
larations �eld to store the de
larations in a with blo
k that may be

asso
iated with the s
hedule in the 
omposite 
ase. Overloaded 
onstru
tors to in
lude this

�eld. Added this �eld to the toSValue method. Depends on de
laration(1.1). - 1.9

A.4 New Files - automaton

� de
laration represents an abstra
t de
laration blo
k in a with blo
k of a s
hedule blo
k of

a 
omposite automaton. FIX: print methods. - 1.1
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A.5 Modi�ed �les - 
he
ker

� Moved 
he
k methods from 
he
kBasi
Automaton to 
he
kAutomaton, 
hanged the a

essi-

bility of these methods to prote
ted instead of private. This allows 
he
kComposition to

inherent the 
he
k methods it now needs to 
he
k the 
omposite s
hedule blo
k.

� 
he
kComposition - 
he
kDetFire overloaded to a

ount for 
omponent name pre�x in

�re invo
ations of 
omposite s
hedule blo
ks. Added 
he
kWithBlo
k method that performs

semanti
 
he
ks on the with blo
k; builds the 
ompNodes array, whi
h is later used by

extra
tStates to make variables out of the 
omponents de
lared in the with blo
k; extends

the symbol map to make the sort of the 
omponents de
lared in thewith blo
k to be aggregate

over the state variables of the automaton that its based on. The extra
tStates method has been

extended to make the 
omponents de
lared in the with blo
k in addition to those de
lared

in the 
omponents se
tion, into variables. The 
he
kCompNDRStates 
alls the super
lass


he
kNDRStates method and also makes sure that state variable names do not 
lash with the

handle names established in the with blo
k. Depends on 
he
kAutomaton, all of the parser

modi�
ations. - 1.22
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Appendix B

Simulator File Modi�
ations

This 
hapter des
ribes the 
hanges made to the 
ode of the simulator. The se
tions are partitioned

by dire
tory and a distin
tion is made between the �les that were modi�ed and the �les that have

been 
reated.

B.1 Modi�ed Files

� A
tualAutomaton abstra
t 
lass - now implements A
tualAutInterfa
e and supports all

of its methods. - 1.12

� A
tual Transition - Now knows whether it is a 
onne
e
ted transition or initial one. Con-

tains string bu�er for 
onne
ted output. Announ
erExe
 only registers initial transitions

whi
h in turn output all of the ones 
onne
ted to them. - 1.19

� DetA
tualAutomaton - New isSimulatable variable is used in 
omposite simulations to

let the 
omposite automaton know that this automaton will never again have any enabled

transitions. - 1.4

� Exe
Control allow Exe
Controls to be made for automata other than the one a
tually

making it. (During a 
omposite simulation, the 
omposite automaton needs to 
reate an

NDR s
hedule for one of its 
omponents). Overloaded exe
ute method with one that takes

an int parameter. If the exe
ute loop is not broken after this number of steps, an ex
eption

is thrown. - 1.13

� FireProdu
t - implement the new interfa
e. Code to support 
omposite s
hedule blo
ks. -

1.2

� NDRA
tualAutomaton 
reation of s
hedule 
ontrol obje
t needs to know whi
h automa-

ton it is to simulate. nextTransition method now 
alls the exe
ution of the NDR program

with a max-steps parameter. If the NDR program does not return the next transition before

these steps have been exhausted, the NDR program stops looking for a transition. - 1.4

� SimAutomaton Interfa
e - added method to 
reate a new A
tualAutomaton from this basi


one. - 1.2

� SimPrimitiveAutomaton - now returns an A
tualAutInterfa
e instead of
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A
tualAutomaton, allowing the abstra
tion of primitive versus 
omposite atuomaton for sim-

ulation. Is now 
apable of 
reating an independent 
opy of itself used when multiple 
ompo-

nents of a 
omposition are based on the same automaton. Depends on interfa
e Copyable(1.1)

and the 
lasses that implement it. - 1.14

� SimILFa
tory - added method for 
reation of newCompositeAutomaton. Overloaded new-

State method to allow a variable to know whi
h automaton it belongs to. This allows the

automaton name to be displayed in front of its variables. - 1.17

� SimNDRFire - modi�
ations to allow 
omposite s
hedule blo
ks. - 1.6

� SimState - Now knows its owner automaton's name, for display purposes. - 1.2

� Simulator - depends on A
tualCompositeAutomaton.java(1.1) and updates to a

ount for

the new A
tualAutInterfa
e(1.1) interfa
e. Also depends on SimPrimitiveAutomaton(1.12).

- 1.31

1. Interfa
e Updates

2. doStep modi�ed to handle 
onne
ted a
tions as well as initially �red ones

3. Initial a
tions are aware of what needs to be outputed for their 
onne
ted ones

4. Overloaded newControl when a 
omposite might need a 
ontrol thats not for itself

5. Added stati
 MAX NDR STATES variable whi
h is defaulted to 500 and 
an be


hanged via a 
ommand line argument. This variable determines the maximum number

of steps a parti
ular 
all to an NDR program is exe
uted.

� shell/SimShell - Interfa
e 
hanges. Lets StepListener know that the simulation is a 
om-

posite one. Introdu
ed new 
ommand line parameter, ndrSteps. This parameter spe
i�es

the maximum number of steps to run a parti
ular 
all to an NDR program. This variable is

stati
ally stored in ioa.simulator.Simulator and is defaulted to 500. - 1.64

� shell/StepListener - Output automaton name next to state variable when the simulation

is a 
omposite one. Output all of the 
onne
ted a
tions when handling an initial a
tion that

has a
tions 
onn
e
ted to it. - 1.19

B.2 New Files - Simulator

� A
tualAutInterfa
e Interfa
e - new interfa
e on the a
tual side to abstra
t away knowledge

of 
omposite vs primitive automaton. Can ask it whether the automaton is a 
omposite one

or not. - 1.1

� A
tualCompositeAutomaton - 1.2

1. Dependen
y - SimCompositeAutmaton.

2. NextTransition method looks through 
omponents on sear
h of next a
tion to �re. Two

possible non determinism resolution strategies. One - use the blo
ks of the 
omponents.

Two - use an NDR blo
k spe
i�
ally de�ned for the 
omposite automaton.

3. �reConne
ted method looks for input transitions that might possibly be 
onne
ted to

the re
ently �red output transition. Exe
utes all su
h transitions.
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4. Lets 
onne
ted a
tions know that they are 
onne
ted. Adds the output produ
ed by


onne
ted a
tions to the a
tion that initially triggered them.

5. 
omponentSele
tionPoli
y variable determines the order in whi
h 
omponent automata

are tested for enabled transitions. Random and Uniform poli
ies have been implemented.

A Weighted poli
y is being implemented. Currently, the uniform poli
y is the default

option.

6. To do: implement toSValue.

� Copyable Interfa
e - obje
ts that implement this interfa
e are 
apable of 
opying their

reprsentations. This is used in 
ompositions where multiple 
omponents are based on the

same automaton. Classes that implement this interfa
e:

{ SimAppli
ationTerm 1.13

{ SimExistsTerm 1.4

{ SimForAllTerm 1.5

{ SimLiteralTerm 1.4

{ SimVarRefTerm 1.7

{ SimAssignment 1.7

{ SimChoi
e 1.11

{ SimConditional 1.4

{ SimPairedFire 1.7

{ SimNDRFire 1.7

{ SimNDRWhile 1.6

{ SimNDRYield 1.4

{ SimNOP 1.5

� SimCompositeAutomaton parallel of SimPrimitiveAutomaton. - 1.1

� StepsEx
eededProdu
t thrown when a parti
ular NDR program has been running for

more steps than the alloted number. Used for 
ontrol relinquishing between 
omponent NDR

programs in 
omposite simlations. - 1.1

B.3 Modi�ed Files - il

� AutComponent - made �elds and a

essor methods. Now extends Basi
ILElement. Added

�elds to store the a
tuals of a 
omponent de
lared in a with blo
k and the formals of the


omponent tag 
orresponding to this 
omponent. Its 
onstru
tor has been overloaded to allow

the passing of these �elds. To do: �x toSValue method. - 1.3

� Basi
A
tion formals are now represented as Term obje
ts as they may be 
onstants. - 1.9

� Basi
A
tionTable Added method to allow Basi
CompositeAutomaton to return a
tion

table. - 1.11

99



� Basi
CompositeAutomaton Changes dealing with new AutComponent methods. getA
-

tionTable update. - 1.6

� Basi
ILFa
tory Overloaded newState method to allow state to know whi
h automaton it

belongs to, for display purposes. - 1.9

� Basi
State Allow state to know whi
h automaton it belongs to, for display purposes. Related

to SimState. - 1.7

� Basi
Variable To allow StepListener to display information about a 
onne
ted a
tion, mod-

i�ed a method. - 1.7

� CompositeAutomaton syn
hronized addComponent method with the latest version of Aut-

Component. - 1.4

� ILFa
tory abstra
t 
lass Added newState method to allow 
reation of a variable that knows

whi
h automaton it belongs to. This enables the output of the automaotn name in front of

the variable name. - 1.10

� ILParser - 1.43

1. added 
urAut variable to keep tra
k of the automaton 
urrently being parsed,

2. parseState and parseStates modi�
ation to allow a state (variable) to know what au-

tomaton it belongs to,

3. parseTerm is aware of the possbility of a 
onstant term,

4. parseCompositeAut begins the handling of parsing a 
omposite s
hedule blo
k.

5. The TempComponent internal 
lass is ised to store the temporary representation of a


omponent when it is des
ribed in the 
omponents se
tion. It is later used when

NDRCompositeAutomaton parses the with blo
k of this 
omposite automaton to instan-

tiate 
omponents based on this temporary representation.

� HookILFa
tory Added newState method; implementing that of the ILFa
tory interfa
e. -

1.7

� NDRFire Modi�
ation to allow 
omposite s
hedule blo
k and storing of the 
omponent

name pre�x in 
omposite s
hedule blo
ks. - 1.6

� NDRILFa
tory handles the parsing of a �re statement that may appear with a 
omponent

name pre�x in a 
omosite s
hedule blo
k. - 1.5

� PrimitiveAutomaton and Basi
PrimitiveAutomaton added 
opy method that is used

by 
omposite automata that have more than 
omponent based on the same base automaton.

The meaningful implementation of this method is in

simulator/SimPrimitiveAutomaton and overrides the implementation in

Basi
PrimitiveAutomaton. - 1.5

� Variable interfa
e Added setAutName and getAutName methods to allow variables to know

what automaton they belong to. - 1.4

� Files modi�ed to allow the marking of terms as 
onstant formals of a
tion signatures:
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{ Basi
Appli
ationTerm - 1.10

{ Basi
ExistsTerm - 1.5

{ Basi
ForAllTerm - 1.7

{ Basi
LiteralTerm - 1.5

{ Basi
SortRefTerm - 1.5

{ Basi
VarRefTerm - 1.5

{ Term - 1.5

B.4 New Files - il

� NDRCompositeAutomaton parallel of NDRPrimitiveAutomaton. Handles the parsing of

the 
omposite s
hedule blo
k and the with blo
k that may appear there. - 1.2

B.5 Files where the only 
hanges involve the naming of the new

interfa
es

� 
odegen/ig/Invo
ationGenerator - 1.3

� 
odegen/ig/Invo
ationListener - 1.2

� il/ILUnparser - 1.31

� simulator/daikon/DaikonListener - 1.18

� simulator/daikon/De
lsPrinter - 1.18

� simulator/daikon/PairedDaikonListener - 1.6

� simulator/daikon/SplitterWriter - 1.4

� simulator/PairedFireProdu
t - 1.2

� simulator/PairedImplAutomaton - 1.12

� simulator/PairedSimulator - 1.6

� simulator/shell/PairedShell - 1.32

� simulator/shell/PairedSteplistener - 1.13

B.6 Test Suite

� Test/Make�le.
ommon Added SIMAUTOMATON parameter for sim testing. When spe
-

i�ed in a Makefile of a test 
ase, this parameter determines whi
h automaton is to be simu-

lated. This is ne
essary for testing of 
omposite simulations as the ioa �le may 
ontain more

than one automaton. - 1.29
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� Test/Make�le Support for the SIMAUTOMATON parameter for sim testing. When spe
-

i�ed in a Makefile of a test 
ase, this parameter determines whi
h automaton is to be

simulated. This is ne
essary for testing of 
omposite simulations as the ioa �le may 
ontain

more than one automaton. - 1.29
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Appendix C

IOA Grammar

C.1 Des
ription

The .ioa �le that is the input to the 
he
ker gets parsed a

ording to the IOA grammar. This

grammar is de�ned in /Code/ioa/parser/grammar.sr
. The grammar 
onsists of two parts, tokens

and rules. The tokens themselves are divided into two parts, terminal tokens and non terminal

tokens. The terminal tokens are the leaves of the parse tree, while the non terminal tokens are the

non-leaf nodes of the parse tree. Ea
h non terminal token must appear on the left side of a rule.

The grammar gets pro
essed by the javaCup tool. This tool 
reates �les, des
ribed in detail

below, that a
t as the parser for the IOA language.

C.1.1 Tokens

Terminal tokens are asso
iated with keywords of the IOA language; notions that do not need

to be further broken down. A terminal token is represented by an ioa.parser.ltoken obje
t. It

is de
lared using the following syntax,

terminal ltoken tokenName

For example, pun
tuation marks su
h as a 
omma and a semi
olon, key words su
h as automa-

ton and input, and operators su
h as or and and are all terminal tokens.

Non terminal tokens are asso
iated with notions that need to be further broken down. A non

terminal token is represented by a spe
i�
 sub
lass of the ioa.parser.Node obje
t. It is de
lared

using the following syntax,

non terminal 
lassName tokenName

For example, the high level notions of an IOA spe
, an automaton de�nition, and a transition

de�nition are all non terminal tokens. Figure C.1.1 displays the spe
i�
ation of automaton Fi-

bona

i. After parsing, everything other than automaton Fibona

i would be represented by the

non terminal token basi
Automaton. This token would further be broken down a

ording to the

rules des
ribed in Se
tion C.1.2.
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automaton Fibona

i

signature

internal 
ompute

states

a:Int := 0,

b:Int := 1,


:Int := 1,

d:Bool

trans i t ions

internal 
ompute

e f f a := b ;

b := 
 ;


 := a + b; }

Figure C.1.1: Fibona

i automaton

C.1.2 Rules

Rules of the IOA grammar are of the form:

non-terminal-token ::= +non-terminal-token/terminal-token method-
all()

(where + denotes, one or more)

Rules de�ne the 
onne
tion between non terminal tokens and other non terminal or terminal

tokens. The highest node in the parse tree is represented by a start token. This non terminal token

is the only one that does not appear on the right side of any rules. In our 
ase this happens to be the

spe
 token. The rule of the IOA grammar that has spe
 on its left hand side, de�nes the notions that

may make up a spe
 obje
t. Other rules further re�ne these notions until everything is represented

by a terminal token. For example, the following rule spe
i�es the notion of a basi
Automaton:

basi
Automaton ::=

SIGNATURE:l formalA
tions:a states:s transitions:t

{set(l,a,s,t)} |

SIGNATURE:l formalA
tions:a states:s transitions:t tasks:tk

{set(l,a,s,t,tk)} |

SIGNATURE:l formalA
tions:a states:s transitions:t s
hedule:s


{set(l,a,s,t,s
)} |

SIGNATURE:l formalA
tions:a states:s transitions:t tasks:tk s
hedule:s

{set(l,a,s,t,tk,s
)} ;

The non-terminal token basi
Automaton represents the main body of a primitive basi
 automa-

ton. The above rule de�nes four possible ways that the basi
Automaton may further be broken

up. The terminal token SIGNATURE, represents the IOA keyword signature and is the required

beginning in ea
h of the four possibilities. The other tokens are all non terminals. The �rst 
ase

is an automaton spe
i�
ation without tasks and a s
hedule blo
k, the se
ond with tasks but no

s
hedule blo
k, the third with a s
hedule blo
k and no tasks, and �nally the fourth is an automaton

with tasks and a s
hedule blo
k.

Ea
h token is followed by a \:" and a temporary variable assignment. These temporary vari-

ables are used in the method 
alls that follow ea
h one of the 
ases. In the de
laration se
tion of
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the non terminals, the following line 
an be found:

non terminal basi
AutomatonNode basi
Automaton;

This de
laration of the basi
Automaton token indi
ates that the basi
 automaton notion is rep-

resented by a basi
AutomatonNode obje
t. The methods that are spe
i�ed at the end of ea
h of

the four 
ases are methods of this obje
t. When this rule is triggered, a basi
AutomatonNode

is 
reated and depending on whi
h 
ase was mat
hed, the 
orresponding method is 
alled. The

arguments to these methods are the temporary variables whose type depends on the token that

they represent. Thus in the �rst 
ase, set(l,a,s,t), l (SIGNATURE) is an ltoken, a (formalA
-

tions) is a fa
toredListNode of a
tionNode and Node (des
ribed in Se
tion C.1.3), s (states) is a

statesNode, and t (transitions) is a listNode of transitionNode's.

C.1.3 Typed Lists

Some of the tokens are de
lared to be of type ListNodeXXnameYY or

Fa
toredListNodeXXname

1

ZZname

2

YY. The former denotes a typed list of name obje
ts, while

the later denotes a typed list of name

1

obje
ts whose members are in turn lists of name

2

obje
ts.

The typed lists are only supported by polyj and are not re
ognized by javaCup. Thus they are

de
lared with the XX, YY, and ZZ delimiters. These are later 
onverted to polyj representations by

the postpro
essor (des
ribed below). For example, the following de
larations of the non terminal

token operators, denotes that the operators token is represented by a list of operatorNode obje
ts.

non terminal ListNodeXXoperatorNodeYY operators;

C.1.4 Pro
essing the Grammar

The Make�le for the /Code/ioa/parser dire
tory 
ontains s
ripts that do all of the following. The

grammar.sr
 �le gets prepro
essed into grammar.
up. This �le is pro
essed by javaCup and two

�les are produ
ed, parser.java and sym.java. These �les now get post-pro
essed into polyj �les

to allow for the use of parameterized lists, lparser.pj and sym.pj are produ
ed. Finally, these

two �les get 
ompiled into what be
omes the parser tool. This pro
ess is des
ribed in more detail

in the grammar.sr
 �le.

C.2 Auxiliary �les

There are a few other �les that are involved with the IOA parser other than grammar.sr
. These

�les de�ne the IOA keywords and 
reate a mapping between them and the representation 
reated

for them by javaCup.

notions/lexi
al.java this �le de�nes the a
tual text of keyword strings. It is updated manually.

parser/sym.pj this �le is generated by the javaCup pro
ess. It 
ontains the internal representa-

tions of the tokens

parser/tokenizer.pj this �le is manually updated. It is the link between the keywords in lexi
al.java

and sym.pj.
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parser/ioaTokenizer.pj same as above, ioa spe
i�


parser/lparser.pj this �le is generated by the javaCup pro
ess. It is the a
tual parser.

C.3 Brief Guide to Modifying Grammar

If the modi�
ation required the addition of new keywords to the IOA language or the update of

existing keywords in the IOA language:

� Update lexi
al.java by adding/modifying keyword strings, and

� Create 
onne
tion between the keyword and its representation in the generated parser by

updating ioaTokenizer.java (in the 
ase of new keywords).

If the modi�
ation requires the 
reation of a new intermediary token or the modi�
ation of the

behavior of one:

� Create/update the appropriate sub
lass of Node.java, and

� Verify that the methods you intend to 
all upon the pro
essing of this obje
t during parsing

have the intended signatures/behaviors.

In all 
ases:

� Update grammar.sr
 to en
orporate the new/modi�ed keywords, tokens, and rules, and

� Re
ompile the the Code/ioa/parser and the IOA Toolkit/bin dire
tories to make all of these


hanges take e�e
t.
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