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Abstract 

In this paper we examine reliable transport level pro- 
tocols for efficient transactions across a network. A 
typical transaction is a request from a client and a re- 
sponse from a server. The canonical example being re- 
mote procedure call. Transport level protocols such as 
TCP [14] and IS0 TP-4 [9] work well for data stream- 
ing, but are inefficient for transactions. However, sev- 
eral protocols [19, 11, 171 have been designed to meet 
both needs, including a proposed extension of TCP call 
T/TCP [4, 51. The goal of T/TCP is not to perform 
efficient transactions all the time, but only under cer- 
tain conditions. However, in examining T/TCP [18] we 
observed that in certain situations the protocol may de- 
liver the same message twice, even when efficient trans- 
actions are not required. This observation lead us to 
consider whether any protocol can deliver streams of 
data reliablely and still have fast transactions under 
the same conditions required by T/TCP. We present 
a formal definition of what it means to provide both 
services under the conditions proposed by the designers 
of T/TCP, and prove that without “accurate” clocks, it 
is impossible for any protocol to solve this problem. We 
also present a precise formal model that we use to de- 
scribe the system and present the proofs. The model is 
a novel combination of a model with liveness properties 
and a model that allows local clocks. 

1 Introduction 

TCP/IP transport level protocols are responsible for re- 
liable delivery of data between users that are typically 
application programs such as ftp, telnet, or email. On 
the Internet packets sent from one user application to 
another may get duplicated, lost, or arrive out of or- 
der. Reliable transport level protocols like TCP [14] 
and IS0 TP-4 [9] are designed to ensure that the appli- 
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cation programs receive messages’ without duplication, 
without loss, and in the correct order. While these pro- 
tocols work well for data streaming, they do not work 
well for transactions because they use a connection man- 
agement mechanism that forces two round trips across 
the network for a client application to send a request 
and get a response from a server application. Ideally 
the request and response should be done in one round 
trip across the network. In order to have transactions in 
one round-trip across the network, a one way trip across 
the network must be sufficient for the server to deliver 
a message from the client. TCP and IS0 TP-4 rely on 
unique identifiers (UID’s) and a three-way handshake 
protocol to establish connection and ensure reliable mes- 
sage delivery. That is, to send a message the client first 
generates a UID z which it sends to the server; when 
the server receives this UID, it generates a UID y and 
sends back (z, y) to the client; the client then sends the 
request message together with y. In this way the server 
knows the message is not a duplicate. The server can 
then send the response with either z or y. 

In order to ensure reliable delivery, hosts maintain 
some state information for each incarnation of a connec- 
tion. However, in typical network situations, client and 
server hosts may have many different connections in par- 
allel. Additionally, there may be different incarnations 
of the same connection, as the connection is opened 
closed and then opened again. Therefore, because of 
the number of connections a host may be involved with, 
this state information cannot be maintained forever. 
Therefore, hosts will periodically quiesce, that is, delete 
state information associated with a connection. In TCP 
whenever a connection is closed the state information 
associated with that connection is deleted. However, 
if the server does not immediately quiesce when a con- 
nection closes then timer-based mechanisms can be used 
for reliable transport level protocols. For example, Wat- 
son’s Delta-t protocol [19] relies on clocks that run at the 
rate of real time and exploits the knowledge of the max- 
imum packet lifetime (MPL) to achieve transactions in 
one round trip across the network. For the Delta-t pro- 
tocol, quiesce time is based on the MPL. If the client and 
server hosts are assumed to have approximately syn- 
chronized clocks, then the protocol by Liskov, Shrira, 
and Wroclawski [ll] also only requires one round trip 

‘We use the term “message” or “data” for user-meaningful 
data and the term “packet” to denote ob.jects sent over the chan- 
nels by a protocol 
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across the network for transactions, and quiesce time 
depends on the message delivery time. 

Braden and Clark [4, 51 have also designed a pro- 
tocol to achieve efficient transactions and work well for 
data streaming. Their protocol does not rely on ap- 
proximately synchronized clocks or strict enforcement 
of MPL. Their approach is based on the idea that some 
information related to incarnations can be stored indefi- 
nitely and efficiently in caches when a connection closes, 
and that the protocol while ensuring efficient transac- 
tions most of the time, is allowed to be inefficient in 
some situations - typically after crashes. Their proto- 
col is an extension of TCP, and because it is designed to 
perform transactions efficiently, it is called T/TCP. In 
most circumstances T/TCP can complete a transaction 
in one round trip across the network. However, it reverts 
to two round trips if the cached state is inappropriate. 
In [17] Shankar and Lee design a class of “caching” pro- 
tocols that are similar to T/TCP. However, the class 
of protocols they design make explicit use of MPL and 
other timing information. In studying T/TCP [18] we 
noticed that under certain circumstance T/TCP may 
deliver the same message twice if timing information is 
not used. This observation lead us to consider whether 
it is possible for any protocol to perform transactions ef- 
ficiently under the same circumstances in which T/TCP 
is required to perform efficient transactions and still de- 
liver messages reliablely. 

1.1 Our work 

In this paper we present a formal definition of the cor- 
rectness requirements for protocols that are allowed to 
keep data between incarnations indefinitely and allow 
inefficient transactions sometimes, but must always de- 
liver data reliably. Our formal definition of the problem 
is based on the requirements for T/TCP. Let d be the 
maximum time it takes for a packet to traverse the net- 
work in an execution of the system. We prove that in 
a system where the client and the server have UID’s 
and local clocks, that even if we require fast delivery 
only when the processes have appropriate state infor- 
mation, the clocks are accurate, and packets are not 
lost, then any protocol that takes time less than 2d for 
the server to deliver a message from the client may not 
deliver data reliably if the local clocks may sometimes 
run at arbitrary rates. If there is no maximum packet 
lifetime, then we prove that if the client and server have 
clocks that run at the rate of real time, but whose val- 
ues maybe shifted by some arbitrary amount, again it 
is impossible to solve the problem without using a de- 
livery time of at least 2d. The 2d bound means that it 
is impossible for any protocol to complete transactions 
in one round trip across the network and still deliver 
messages reliably when the above mentioned timing un- 
certainties exist, even when fast transactions are only 
required under somewhat ideal conditions. 

1.2 Related work 

In addition to the practical work mentioned above, 
there has also been significant theoretical work in the 
study of reliable message delivery protocols. The ear- 
lier work in the area considered just the possibility of 

reliable message delivery and mostly in a purely asyn- 
chronous setting. This is the case for the impossibility 
results of Afek et al. [l] and Fekete, Lynch, Mansour, 
and Spinelli [6]. In [a], Attiya, Dolev, and Welch at- 
tain further results for the asynchronous model based 
on the minimum amount of information that must be 
maintained between incarnations of a connection in the 
presence of crashes. None of these papers examines the 
amount of time or the number of trips across the net- 
work required to reliably deliver messages. 

The closest results to the work presented in this pa- 
per are the papers by Kleinberg, Attiya, and Lynch [lo] 
and by Attiya and Rapport [3]. In [lo] several impos- 
sibility results are obtained for connection management 
for various timing and failure assumptions. Addition- 
ally, upper and lower bounds are proved for trade-offs 
between message delivery and quiesce times for connec- 
tion management protocols. A recent paper by Mavron- 
icoles and Papadakis [13] extends the results of [lo] by 
improving the time bounds in some of the trade-offs. 
Attiya and Rappoport [3] prove that in the absence of 
crashes, in an asynchronous setting where the client and 
server both have an infinite set of UID’s and must qui- 
esce, a three-way handshake is necessary to guarantee 
reliable message delivery. This result means that in such 
a setting it is not possible to always have transactions 
in one round across the network and still have reliable 
message delivery. They also show that if the server re- 
tains information between incarnations and there are no 
crashes, or if the MPL is known then fast transactions 
are possible. 

The work presented in this paper differs form the re- 
sults of [lo] and [3] and other works in the literature in 
that we consider a more restricted problem. The prob- 
lem is different because we do not require that trans- 
actions are fast at all times. We also treat packet loss 
differently. For example, in [lo] the results for the model 
where packets may get lost are based the probability dis- 
tribution of executions where packets are lost. In our 
work we take a simpler approach to packet loss. Our 
approach is to require fast transactions only if no pack- 
ets are lost, and just eventual delivery otherwise. Our 
model of the client and server processes is also different 
than the models in [lo] and [3] in that we allow either 
or both hosts to initiate a connection. In the models 
of [lo] and [3] only the client can initiate a connection. 
While the problem we define is different from typical 
problem descriptions in the theoretical literature, it is 
not a contrived definition as it is based on the require- 
ments for T/TCP. 

1.3 Organization of paper 

The rest of the paper is organized as follows. In Sec- 
tion 2 we present the formal model we use to describe 
clients, servers, channels and protocols. Section 2 also 
contains our formal definition of the problem. We state 
and prove the impossibility results in Section 3, and we 
make some concluding remarks in Section 4. 

2 Formal models 

In this section we present a brief overview of the for- 
mal model used in this paper. For full details of the 
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model the reader is referred to [18]. The basic underly- 
ing model is the general timed automaton (GTA) model 
of Lynch [12]. A GTA A consists of four components; 
a set,, states(A), of states; a nonempty set, start(A) C 
states(A), of start states; a set, acts(A), of actions; and 
a set., steps(A) c states(A) x acts(A) x states(A), of 
steps. The set acts(A) can be partitioned into four dis- 
joint sets of input actions, output actions, internal ac- 
tions, and time-passage actions. Time-passage actions 
are of the form v(t), t E R+, where R+ is the set of 
positive reals. Parallel composition in this model uses 
a synchronization style where automata synchronize on 
their common actions and evolve independently on the 
others. 

A timed execution fragment of a GTA A is a finite 
or infinite alternating sequence a = so,al, sl,az, . . , 
where, the s’s are states of A and the a’s are actions 
of A, and (sl, ol+l, s,+l) is a step of A for every i. The 
sequence must begin with a state, and if it is finite must 
end with a state. For a timed execution fragment cy, 
define ltime(cr), the last time of (Y, to be the supremum 
of the sum of all the time passage actions in cr. A timed 
execution fragment (Y is defined to be finite if it is a 
finite sequence and Ztime(cu) is finite. It is defined to be 
admissible if Itime = co. 

Let cx be a timed execution fragment of a timed au- 
tomaton that is the parallel composition of timed au- 
tomata, and let A be one of the component timed au- 
tomata. We define the projection of a on A to be the 
sequence obtained by projecting all states of the com- 
posed system onto those of A and removing actions not 
belonging to A. We use the notation CYIA for the re- 
sult of this operation. Informally, cuJA is automaton 
A’s view of timed execution fragment LY. If crlA differs 
from &IA only because of the splitting and combing 
of time-passage actions, then these are essentially the 
same views, and are said to be time-passage equivalent. 

2.1 The clock GTA model 

In the system we want to model, the client and server 
have access to local clocks, but are not able to use real 
time. However, a standard GTA automaton has ac- 
cess to real time. Thus, to get the “local clock” prop- 
erty, we use the clock general timed automaton (CGTA) 
model of De Prisco [15] which is a special case of the 
GTA model. A CGTA, A, is a GTA with a special vari- 
able clockA that has type R>’ and is the local time of 
that automaton. The local time may or may not be the 
same as real time. A CGTA A has the following three 
axioms: (1) clockA changes only with time passage ac- 
tions, (2) ClockA is monotonically non-decreasing, and 
(3) if (s,v(t), 8’) is a step then V t' > 0, (s, v(t'), s’) is 
also a step. Since clockA is supposed to represent, the 
local time of a process, real time should not affect the 
actions of the process in any manner. This property 
is captured by the third axiom. We also refer to this 
property as real time independence. 

We introduce clock junction3 to specify the values 
that ClockA takes on for a timed execution fragment for 
a given a CGTA A. These functions take real time as 
input and return values for the clockA variable of A. A 
clock function cf : R2’ + R must be monotonically 
non-decreasing and it must be unbounded. Let A,f be 
the CGTA we get by applying the clock function cf 

to A. 

2.2 Liveness 

The general timed automaton model is useful for prov- 
ing safety properties and some liveness properties. How- 
ever, for the impossibility results we prove, we need 
more general liveness properties than can be expressed 
by the GTA model. In particular, we want the automa- 
ton to not block time. To get this property we use a 
model defined by Segala et al. in [16]. We call it the 
live GTA model because its first component is a GTA. 
The second component of the model is a liveness condi- 
tion. A liveness condition L for a GTA A is a subset of 
the timed execution fragments of A such that any finite 
timed execution of A has an extension in L. Thus, a 
live GTA is a pair (A, L) where A is a GTA and L is a 
liveness condition. For each live GTA we describe later 
in this work, the liveness condition is equal to the set of 
admissible timed executions of the GTA. Thus, we do 
not allow protocols that solve the problem by blocking 
time. 

To get the liveness property we want and local clocks 
in the model, we combine the CGTA with the liveness 
property from the live GTA model to get the live CGTA 
model. For the proofs later in this work, we need a live- 
ness property that relates admissible timed executions 
of live GTA to clock functions. Thus, our definition for 
a live CGTA is the following: 

Definition 1 (Live CGTA) 
A live CGTA is a pair (A, L) such that for every clock 
function cf, (A,!, L) is a live GTA. 0 

2.3 Channels and client/server processes 

We model the client and server as live CGTA and the 
channels as live GTA. When we describe a particular 
execution of the system, we apply clock functions to the 
CGTA to get values for clock variables. The parallel 
composition of the client,, channels, and server forms 
the system. Because parallel composition of live GTA 
is closed [16], the resulting composed system is also a 
live GTA. 

The communication channels have the following 
properties: packets placed in a channel are delivered 
in FIFO order; packets are not duplicated; and if in- 
finitely many copies of a packet p get sent on a channel, 
then infinitely many copies of p are received. The last 
property is the strong loss limitation (SLL) property 
of channels defined by Lynch in [12]. If the channels 
have a maximum packet lifetime, /.A, we refer to them 
as p-SLL-FIFO channels, otherwise we refer to them as 
SLL-FIFO channels. The channels we describe here are 
more reliable than the typical representation of unre- 
liable network channels in that they are FIFO and do 
not duplicate packets. Thus, our results are technically 
stronger than results that require non-FIFO channels 
that may duplicate messages. 

The client and server processes are modeled by live 
CGTA (C, ~5) and (S, L’) respectively, where L is the set 
of admissible timed executions of C and L’ is the set of 
admissible timed executions of S. The client and server 
each has a set of UID’s. We model the UID’s by aug- 
menting the state of C and the state of S with the addi- 
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tional components Zc and Is respectively. These com- 
ponents are infinite sets of abstract identifiers. Since 
only the internal component of the states of a process 
is reset after it crashes, the sets of UID’s are not af- 
fected by crashes. The UID’s can be copied and in- 
cluded in packets. However, each process can only per- 
form the following operations on its own set: generate0 
which nondeterministically returns a new UID from the 
host’s set of UID’s and removes that id from the set, 
and same(x, y) which returns true if and only if 5 = y, 
where z and y are UID’s, and false otherwise. 

In an admissible timed execution where clock values 
are determined by clock functions, after a crash there 
is an eventual recovery that returns the crashed host to 
an initial state. We assume that local clocks are not 
affected by crashes. Since we are concerned only with 
the delivery of messages by the server, and for our proofs 
we need to allow crashes only at the server, we use the 
following user interface actions: send(m) is the input 
action at the client to send a message m, deliver(m) is 
the output action at the server that delivers m, crash is 
the input action that signals a crash at the server, and 
recover is the output action that indicates the server has 
recovered from a crash. Additionally, both client and 
server can place packets on and receive packets from 
the channels. 

2.4 Formal definition of the problem 

We now present a formal abstract definition of the prob- 
lem that T/TCP was designed to solve. We call it 
the conditionally-fast reliable message delivery problem. 
Recall that T/TCP is only expected to have fast trans- 
actions if the client and server have sufficient state in- 
formation. Otherwise, the protocol is just required to 
deliver messages reliably. In T/TCP, if the server suc- 
cessfully delivers a message, and there has not been a 
crash since the delivery of that message, then there is 
enough state information to perform subsequent trans- 
actions in one round trip. Thus, in our formal definition 
we use the successful delivery of a message as the user 
visible indication of sufficient state information for fast 
transactions. Let d be the maximum packet delay on 
the channels. We define the delivery of a message to be 
fast if the server delivers the message in time strictly 
less than 2d from the time the client receives the input 
to send the message. For fast transactions, a delivery 
time of less than or equal to d is actually needed. How- 
ever, for our proof we only need fast to be less than 2d, 
which makes our results technically stronger. 

Definition 2 (The Conditionally-fast reliable 
message delivery problem) 
Reliable delivery. Messages are always delivered at 
most once and in the right order. That is, for every ex- 
ecution there exists a function cause that maps deliver 
actions to preceding send actions such that for every 
deliver action rr, x and cause(n) have the same message 
argument; cause is one-to-on; and for any two deliver 
events ~1 and 7r2, if ?ri precedes 1~2, then cause(rrr) pre- 
cedes cause( r2). 
Eventual delivery. In an admissible timed execution 
where clock values are determined by clock functions the 
following two conditions hold. If there are no crashes 
then all messages are delivered, and if there are finitely 

many crashes, messages sent after the last crash action 
and the subsequent recover action are eventually deliv- 
ered. 
Conditionally-fast delivery. For any admissible 
timed execution in which there is a deliver(m’) action 
(for any message m’) and the client subsequently re- 
ceives a send(m) input, if the following conditions hold: 

the clocks of the client and server always run at 
the rate of real time; 

both sides are recovered at the time of the 
deliuer(m’) action, and there are no crash or re- 
cover events after the send(m) input; 

any packet sent by the client or server after the 
client receives the send(m) action from the user 
takes time at most d to arrive at its destination; 

then the server performs deliver(m) in time strictly less 
than 2d after the client receives the send(m) input. Cl 

3 Impossibility results 

3.1 Maximum packet lifetime exists 

The first result is for the case where there is a maximum 
packet lifetime, /.A. We get an impossibility result for this 
situation if the clocks of the client an the server may run 
at arbitrary rates. 

Theorem 1 No system consisting of p-SLL-FIFO 
channels and client/server processes can solve the 
conditionally-fast reliable message delivery problem. 

Proof: Our proof strategy is to construct executions 
that behave as required by the problem definition, and 
then show that we can construct another execution that 
is a sort of combination of the previous executions, but 
where the new execution has incorrect behavior. 

We start by assuming we have a protocol that solves 
the conditionally-fast reliable message delivery problem, 
and show that this assumption leads to a contradiction. 
Throughout the proof we mention the real time at which 
different events occur even though the client and server 
do not have access to real time. The local clocks are 
clockc and clocks for the client and server respectively. 
In an execution, the values for these clocks are deter- 
mined by the clock functions we describe. In all the 
executions we construct clockc is equal to real time; 
that is, the clock function of the client is the identity 
function for all executions. 

The first execution we construct, oi, is shown in Fig- 
ure 1. It is an admissible timed execution as are all the 
executions we construct for this proof. In this execu- 
tion, clocks is also equal to real time. Since both the 
client and server are recovered at time 0, cyi is an admis- 
sible timed execution, and there are no crash or recover 
actions after the send(m’) input, the eventual delivery 
property results in the server action deliver(m’). Let 
clocks = p, which is also real time p, be the time of 
this action. Only the packets required for the delivery 
of m’ are received up to time p. Execution cri continues 
as follows. At real time p + 26, where E is an arbitrary 
constant greater than 0, the client receives a send(m) 
input and all packets sent by both the client and server 
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client server client server 

Figure 1: Execution cy1 is on the left and execution cr2 is on the right. The numbers outside the time lines represent real time, 
the dashed lines represent packets, and the “. . . ” between packets represents a finite number (whatever the protocol needs) of 
packets in both directions. The numbers on the dashed lines represent the time it takes the packets to traverse the channel. 
Execution al is the same as 012 except that additional packets are dropped from the channels in 02. 

after this input action take time d to arrive. Because 
the value p+2t appears in several subsequent executions 
we construct, to simplify the notation we let r = p+ 2.5. 
Since we assume the protocol satisfies the conditionally- 
fast delivery property, at some real time t < r + 2d the 
server delivers the message m. For execution cyl, let UT 
and U: be the set of UID’s used by the client and the 
server respectively. 

Now consider the execution CYZ, shown in Figure 1. 
This execution is exactly the same as execution (~1 ex- 
cept that all the packets sent by the server after the 
send(m) event get dropped by the channel, and all pack- 
ets sent by the client at or after time r + d also get 
dropped from the channel. However, from time 0 up to 
and including time t, r3pl.S is time passage equivalent to 
culls. Thus, at time t in execution CYZ the server can 
deliver m. The bound of less than 2d on delivery time 
is important here because it forces the server to deliver 
the message even though the client has not received any 
packets from the server since the send(m) event. 

The next execution cr3 is shown in Figure 2. Let U,” 
be the set of UID’s used by the client, and let Uz be 
the set used by the server. For parts of this execution 
clocks runs at the rate of real time and for other parts 
it runs faster than the rate of real time. We define the 
clock function for the server by giving the rate of clocks 
relative to real time for different real time intervals. For 
the real time interval [O,p], clocks runs at the rate of 
real time and looks like execution CXZ, except for the 
fact that the UID’s used may be different. However, 
because the only two operations that can be performed 
on UID’s are generate0 and same, if in execution 02 
a host receives a packet with UID u and performs the 
operation same(u,v) for some UID v, and if at the same 
time in execution ~3, the same host receives a packet 
with UID x and performs the operation same(x,y) for 

some UID f, then same(u,u) = same(x, y). Thus, the 
fact that U, and Up are used in execution cr3 does not 
affect the behavior of cy3 relative to (~2 up to time p. 
Therefore, in execution (~3, at time p the server can 
perform the deliuer(m’) action. 

Throughout the rest of this proof we compare exe- 
cutions where packets are sent and received at the same 
local clock time, but where the packets may have dif- 
ferent sets of UID’s. The argument just presented can 
be applied to all these comparisons to show that the 
use of different sets of UID’s cannot cause the client or 
server to behave differently in our model under these 
circumstances. 

After the deliver(m’) action and up to real time p+e, 
that is, for the interval (p,p + E], clocks runs at (2~ + 

--- 
--- --- 
--- 

Time --- 
. . . 

Figure 2: Execution cys. Values of clocks are shown under 
the corresponding real time values. 
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--- 

Time 

deliver(m) ,, I---- clock, = t’+d 

--- -- 
---2 .- --__ --__ --3- 

---_ --- ---- 
--- _- r + 2d 

Figure 3: Execution ad is on the left and execution ~15 is on the right. Execution ~14 is an extension of as to include some 
additional sending and receiving of packets. It also includes an additional send action and the subsequent delivery. Execution 
ag demonstrates how the reliable delivery property can be violated. It combines parts of executions 02 and 014. 

2d)/c times the rate of real time, and from time p + c 

through the rest of the execution, that is, the interval 
(p + e, co), clocks runs at the rate of real time again. 
Now let the server receive a crash input at real time p+~. 

Because of the rate of clocks for the interval (p, p+~], at 
real time p + L, clocks = p + 2~ + 2d = r + 2d. Since (~3 
is an admissible timed execution and clockc and clocks 
are determined by clock functions, the server eventually 
recovers. The time of recovery is determined by the 
protocol, but it must happen after the crash event. Let 
k be the clocks time between crash and recovery. Since 
clocks is now running at the rate of real time, k is also 
the difference in real time between the crash input and 
the recover output. Thus, the recovery happens when 
clocks = r + 2d + k, which is real time p + e + k. 

The next execution, (~4, shown in Figure 3, starts 
out like execution CYQ except the client and server use 
the sets of UID’s U,” and Vi respectively, and the clock 
function of the server is different from the clock function 
in execution (~3. The clock functions are the same for 
the real time interval [O,p + e). However, for the real 
time interval (p + e,p + 2~1, clocks runs at k/e times 
the rate of real time. Therefore, in execution a4 when 
clocks = r + 2d + k it is real time r. Because of the real 
time independence property, we know that when clocks 
= r + 2d + k in this execution, the server can perform 
the recover action. After the recover action through real 
time r+2d+k, that is, the real time interval (r, r+2d+k], 
clocks runs at d/(2d + k) times the rate of real time. 
Therefore, at real time r + 2d + k, clocks = r + 3d + k. 

After that time through the rest of the execution, that 
is, the real time interval (r + 2d + k, co), clocks runs 
at the rate of real time. After the recover event at the 
server, the client gets the send(m) input at real time 
r at which time clocks = r + 2d + k. However, all of 
the packets that both the client and server send from 
real time r up to, but not including real time r + 2d + k 
(clocks = r $ 3d + k) are dropped from the channels. 
All packets sent by the client and server starting at real 
time r +2d+ k do not get dropped from the channels and 
take time 0 and d to arrive respectively. Execution (~4 
is an admissible timed execution, clockc and clocks are 
determined by clock functions, and m is sent after the 
last crash and recover actions. Therefore, since the pro- 
tocol satisfies the eventual delivery, property the server 
must eventually perform the deliver(m) action. Let real 
time t’ and clocks = t’ + d be the time of this event. 

Finally, we construct an execution 05 where the 
server delivers the same message twice. This execu- 
tion is shown in Figure 3. In the execution, clocks runs 
at the rate of real time for the whole execution. The 
client uses the set of UID’s U,” and the server uses the 
set Uz. On the client side, except for the use of a dif- 
ferent set of UID’s, execution 05 is exactly the same 
as execution CY~, so send(m’) happens at time 0, and 
send(m) happens at real time r. However, in execution 
cy5 the packets the client sends after the send(m) input 
and before time r + d are not dropped from the channel. 
On the server side, except for the use of a different set 
of UID’s, from time 0 to time t execution CYC, looks the 
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same as execution oz. That is, modulo the UID’s, for 
the time interval [0, t] execution cr5lS is time passage 
equivalent to oz/S. Therefore, since in execution (~2 the 
server performs deliver(m’) at time p and deliver(m) at 
time t, in execution (~5 it can do likewise. 

For the rest of ~35, the packets the client sends at or 
after time r + d until, but not including time r + 2d + k, 
are dropped from the channel, and on the server side at 
time r +2d a crash input occurs. For the real time inter- 
val [r+2d,r+2d+k], cr5IS is time passage equivalent to 
a4 IS. Therefore, because of the real time independence 
property, at clocks = r + 2d + k, the server can per- 
form the recover output action. Any packet sent by the 
server after the recover event up to, but not including 
time r+3d+ k is dropped from the channel. The packets 
that the client sends starting at time r+2d+k take time 
d to arrive at the server, and the packets that the server 
sends starting at time r + 3d + k take time 0 to arrive 
at the client. Except for the fact that packets sent and 
received may have different UID’s, in the clocks inter- 
val [r + 2d, t’ + dj in execution cyg the server receives 
exactly the same inputs as in the same clocks interval 
in execution CY~. Since the recover action returns the 
server to an initial state where it does not remember 
any previous actions in both executions, modulo packet 
UID’s, crs/S is time passage equivalent to (~41s for the 
clocks intervals [r + 2d, t’ + d]. Because of the real time 
independence property of the server, we know that at 
clocks = t’ + d the server can perform the deliver(m) 
action. Since m was already delivered, we have dupli- 
cate delivery which contradicts our assumption that the 
protocol delivers messages reliably. n 

3.2 No maximum packet lifetime 

If there is no MPL, then we get the impossibility re- 
sult with a more realistic clock model. Here we assume 
that the local clocks of the client and server always 
run at the rate of real time, but their values may be 
shifted by an unknown amount. We call these shifted 
clocks. If the values of clockc and clocks in an exe- 
cution are determined by the clock functions cf, and 
cf s respectively, then our assumption can be expressed 
by saying that for all values tl and t2 of real time, 
cf,(h) - cf,(tz) = cf,(h) - c”f,(tz) = t1 - h. 

Theorem 2 No system consisting of SLL-FIFO chan- 
nels and client/server processes with shifted clocks can 
solve the conditionally-fast reliable message delivery 
problem. 

Proof: The proof is very similar to the proof of Theo- 
rem 1. First we construction an execution were fast de- 
liver occurs. This execution, pi is similar to execution 
oz and is shown in Figure 4. Execution pi is an admissi- 
ble timed execution as are all the executions constructed 
in this proof. For this execution both the clock of the 
client and the clock of the server run at the rate of real 
time. Since both the client and server are recovered at 
time to when the client receives a send(m’) input and 
there are no crash or recover actions after this input, 
the eventual delivery property results in server action 
deliver(m’). Let this be real time p, which for this ex- 
ecution also means clocks = p. In this execution the 
packets sent by the client after the input at time to up 

--- 
--- --- P 

--- --- 
--... --- ---_ ---_ --_ 

I, <r+2d 
--_ 

Time 
t 

Figure 4: Execution 01. This execution is similar to exe- 
cution ~3iz. 

to last packet required for the delivery of m’ take time 
2d+ k to arrive, and the packets sent by the server takes 
time 0 to arrive. At some time r where r > p+2d+k, the 
client receives a send(m) input and all packets it sends 
from that time, up to, but not including time r + d take 
time d. All packets sent at or after time r + d by the 
client get dropped, as do all the packets sent by the 
server after the send(m) input. However, as we demon- 
strated in the proof of Theorem 1, because the protocol 
must satisfy the conditionally-fast delivery property, at 
some real time tl < r + 2d the server delivers the mes- 
sage m. 

The next execution we construct, /3z is similar to ex- 
ecution execution CY~ and is shown in Figure 5. In this 
execution the clock of the server is shifted forward by 
2d+k. That is, at any real time t, clocks = t+2d+k. In 
execution 02, the client still gets the send(m’) input at 
real time to. However, this time the packet it sends take 
time 0 to arrive at the server. At clocks = to, which is 
real time to - 2d - k, the server starts sending packets 
that take time 2d + k to arrive at the client. Because 
of the shift in the clock of the server, and the differ- 
ences in times the packets take to traverse the channels, 
for the clocks interval between to and p, modulo packet 
UID’s, execution ,& looks the same as execution /3i to 
the server. That is, for the clocks interval [to,p], /&IS 
is time passage equivalent to PiIS. Therefore, because 
of the real time independence property, we know the 
server can deliver m’ at clocks = p in execution /32. 
After the deliver(m’) event, the server receives a crush 
input at clocks = r + 2d which is real time r - k. At 
clocks = r+2d+k the server recovers. After the recover 
event at the server, the client gets the send(m) input at 
real time r at which time clocks = r + 2d + k. All of 
the packets that both the client and server send from 
real time r up to, but not including real time r + 2d + k 
(clocks = r + 4d + 2/c) are dropped from the channels. 
All packets sent by the client and server starting at real 
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Figure 5: Execution & is on the left and execution ,& is on the right. These executions are similar to executions 014 and 05 
respectively, 

time r + 2d + Ic do not get dropped from the channels 
and take time 0 and 2d + k to arrive respectively. Exe- 
cution /3z is an admissible timed execution, clockc and 
clocks are determined by clock functions, and m is sent 
after the last crash and recover actions. Therefore, since 
the protocol satisfies the eventual deliztery, property the 
server must eventually perform the deliver(m) action. 
Let real time tz and clocks = TV + 2d + k be the time of 
this event. 

The final execution we construct for this proof is p3. 
It is similar to execution cys and is shown in Figure 5. 
Here the clock of the server is again the same as real 
time. On the client side, except for the possible use 
of different UID’s, execution ps is exactly the same as 
execution pz. Thus, send(m’) happens at real time to 
and send(m) happens at real time r. However, in the 
this execution, for the real time interval [to, ti - d), the 
packets sent by the client have same delivery times as 
packets sent by the client in execution pi. Similarly, on 
the server side, modulo UID’s, for the interval [to, tl], 
ps1.S’ is time passage equivalent to /3r IS. Therefore, at 
time p and time tl the server can deliver m’ and m 
respectively. 

For the rest of /33, the packets the client sends at 
or after time r + d until, but not including time t + 

2d + k, are dropped from the channel, and on the server 
side at time r + 2d a crash input occurs. For the real 
time interval [r + 2d, r + 2d + k], PaIS is time passage 
equivalent to @J/S. Therefore, because of the real time 
independence property, at clocks = r+2d+k, the server 
can perform the recover output action. Any packet sent 
by the server after the recover event up to, but not 
including time r + 4d + 2k is dropped from the channel. 
The packets that the client sends starting at time r -i- 
2d + k take time 2d + k to arrive at the server, and the 
packets that the server sends starting at time r + 4d + 
2k take time 0 to arrive at the client. Except for the 
fact that packets sent and received may have different 
UID’s, in the clocks interval [r + 2d, tz + 2d + k] in 
execution /3s the server receives exactly the same inputs 
as in the same clocks interval in execution ,&. Since 
the recover action returns the server to an initial state 
where it does not remember any previous actions in both 
executions, modulo packet UID’s, p315’ is time passage 
equivalent to /321S for the clocks intervals [r + Zd, t2 + 
2d + k]. Because of the real time independence property 
of the server, we know that at clocks = tz + 2d + k 
the server can perform the deliver(m) action. Since m 
was already delivered, we have duplicate delivery which 
contradicts our assumption that the protocol delivers 
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messages reliably. 
In the executions in the proof, the delay on some 

packets is 2d + k. Since k may be some arbitrary value 
set by the server, the proof requires that there is no 
MPL. n 

4 Conclusion 

There has been significant theoretical results [l, 6, 2, 
3, 10, 131 on the limitations of connection management 
and reliable message delivery protocols under various 
timing and failure assumptions. Our work adds a new 
dimension to traditionally studied problems by adding 
conditional requirements. In our work we formally de- 
fine what we call the conditionally-fast reliable message 
delivery problem. The definition is based on require- 
ments for T/TCP which is a TCP/IP transport level 
protocol designed to support both reliable data stream- 
ing and fast transactions. When there is a maximum 
packet lifetime, we proved that it is impossible for any 
protocol to solve this problem if the local clocks may 
sometimes run at arbitrary rates. If there is no MPL, 
we prove that if the clocks run at the rate of real time, 
but may be shifted from real time by some arbitrary 
amount, then again it is impossible to solve the prob- 
lem. The problem definition and the proofs are pre- 
sented in a carefully developed formal model, which is 
a novel combination of a model with liveness properties 
and a model that allows local clocks. 
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