Work-Competitive Scheduling for
Cooperative Computing with Dynamic Groups’

Chryssis Georgiou!
cg2@cse.uconn.edu

!Dept. of Computer Science & Engineering
University of Connecticut
Storrs, CT 06269

ABSTRACT

The problem of cooperatively performing a set of ¢ tasks
in a decentralized setting where the computing medium is
subject to failures is one of the fundamental problems in
distributed computing. The setting with partitionable net-
works is especially challenging, as algorithmic solutions must
accommodate the possibility that groups of processors be-
come disconnected (and, perhaps, reconnected) during the
computation. The efficiency of task-performing algorithms
is often assessed in terms of their work: the total number of
tasks, counting multiplicities, performed by all of the pro-
cessors during the computation. In general, an adversary
that is able to partition the network into g components can
cause any task-performing algorithm to have work Q(¢ - g)
even if each group of processors performs no more than the
optimal number of ©(t) tasks.

Given such pessimistic lower bounds, and in order to
understand better the practical implications of perform-
ing work in partitionable settings, we study distributed
work-scheduling and pursue a competitive analysis. Specifi-
cally, we study a simple randomized scheduling algorithm
for p asynchronous processors, connected by a dynami-
cally changing communication medium, to complete ¢t known
tasks. We compare the performance of the algorithm against
that of an “off-line” algorithm with full knowledge of the fu-
ture changes in the communication medium. We describe
a notion of computation width, which associates a natural
number with a history of changes in the communication
medium, and show both upper and lower bounds on com-
petitiveness in terms of this quantity. Specifically, we show
that a simple randomized algorithm obtains the competitive

*This research is supported in part by the NSF ITR Grant
0121277. The work of the second author is supported in
part by the NSF CAREER Award 0093065 and NSF Grants
0220264 and 0218443. The work of the third author is sup-
ported in part by the NSF CAREER Award 9984778 and the
NSF Grant 9988304.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

STOC' 03, June 9-11, 2003, San Diego, California, USA.

Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

Alexander Russell*
acr@cse.uconn.edu

251

Alex A. Shvartsman'-?
aas@cse.uconn.edu

ZLaboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

ratio (1 + cw/e), where cw is computation width; we then
show that this ratio is tight.

Categories and Subject Descriptors

F.2.m [Analysis of Algorithms and Problem Com-
plexity]: Miscellaneous; F.1.2 [Computation by Ab-
stract Devices]: Modes of Computation—parallelism and
concurrency, probabilistic computation

General Terms
Algorithms, Theory

Keywords

On-line algorithms, competitive analysis, partitionable net-
works, distributed computation, independent tasks, random-
ized algorithms, work complexity

1. INTRODUCTION

The problem of cooperatively performing a known set of
tasks in a decentralized setting where the computing medium
is subject to failures is one of the fundamental problems
in distributed computing. Variations on this problem have
been studied in a variety of settings, for example, in message-
passing models [6, 7, 10] and in partitionable network mod-
els [9, 16]. In the settings where network partitions may
interfere with the progress of computation, the challenge is
to maintain efficiency despite the dynamically changing pro-
cessor connectivity.

This problem is normally abstracted in terms of a set of ¢
tasks that must be performed in a distributed environment
consisting of p processors, subject to processor failures and
communication disruptions. Algorithmic solutions for this
problem are typically evaluated by determining their worst-
case work, the total number of computation steps performed
by all processors during the computation. We consider the
situation where the tasks are similar, that is, completion
of each each task requires the same number of computation
steps, and where task-oriented work dominates local book-
keeping. In this case the work incurred by an algorithm
is simply the total number of tasks, counting multiplicities,
completed by the processors.

The details of the computation model naturally have a
dramatic impact on the existence of efficient (or even inter-
esting) algorithms for the problem. In this paper, we con-



sider the partitionable network scenario consisting of p asyn-
chronous processors with a communication medium that is
subject to arbitrary partitions during the life of the compu-
tation. This model is motivated by the abstraction provided
by a typical group communication scheme; see, for example,
the surveys in [18]. Specifically, at each point of the com-
putation, we assume that the communication medium effec-
tively partitions the processors into non-overlapping groups:
communication within a group is instantaneous and reliable,
communication across groups is impossible. Naturally, pro-
cessors in the same group can share their knowledge of com-
pleted tasks and, while they remain connected, avoid doing
redundant work. For the remainder of the paper we refer to
a transition from one partition to another as a reconfigura-
tion.

We do not charge for coordination within a group, sim-
ply treating grouped processors as a single (virtual) asyn-
chronous processor. In particular, if a group of processors
performs a set of ¢ tasks during the lifetime of the group,
we charge this group ¢ units of work, ignoring, for example,
partially completed tasks which may remain at the group’s
demise or the cost of synchronizing processors’ knowledge
during the group’s inception. Each processor may cease ex-
ecuting tasks only when it knows the results of all tasks.
While processors are asynchronous, they do not crash.

An algorithm in this model is a rule which, given a group
of processors and a set of tasks known by this group to be
complete, determines a task for the group to complete next.
In the case where all processors are disconnected during the
entire computation, any algorithm must incur Q(tp) work.
On the other hand, any reasonable algorithm should attain
O(t) work in the case where all processors remain connected
during the computation. Considering that every algorithm
performs poorly in the totally disconnected case, it seems
reasonable to treat the problem as an on-line problem and
pursue competitive analysis.

Fix, for the moment, an algorithm A. For expository pur-
poses, let us treat both the processors’ asynchrony and the
dynamics of the network as if they were determined by an
adversary A. The adversary determines an initial partition
P1 of the processors into groups and determines how many
tasks each group of P; completes before the next reconfigu-
ration; while the number of tasks completed by each group is
determined by the adversary, the actual subset of tasks (that
is, the identity of the tasks) so completed by each group is
determined by the algorithm A. The adversary then de-
termines a reconfiguration of the processors, giving rise to
a new partition P2, and, as before, determines how many
tasks each group of P2 completes before the next reconfig-
uration. Any group created during such a reconfiguration
is assumed to have the combined knowledge of all its mem-
bers: any task known to be complete by a processor of the
group G is known to be complete by all processors of G.
This process of reconfiguration and computation continues
until every processor is aware of the outcome of every task.
Groups with knowledge of the outcome of all tasks cause no
work: in effect, they may “idle” until the next reconfigura-
tion. Note that for this algorithm A, the work caused by
the adversary A is completely determined by (i) the collec-
tion of groups that existed during the computation, (ii) the
number of tasks A allots to each group, and (iii) for each
group G, the identities of all those groups in which proces-
sors of G have previously been members. (Note that the

initial knowledge of the group G is determined in part by
(iii).) These characteristics can be captured by a certain
directed acyclic graph, to which we refer as a computation
pattern. This is formally defined in the next section. Note
that different sequences of reconfigurations can in fact give
rise to the same computation pattern.

As an example, consider the scenario with 3 processors
which, starting from isolation, are permitted to proceed syn-
chronously until each has completed ¢/2 tasks; at this point
an adversary chooses a pair of processors to merge into a
group. It is easy to show that if A1, A2, and As are subsets
of [t] of size t/2, then there is a pair (A4;, A;) (where i # j) so
that |A; N A;| > t/6: in particular, for any scheduling algo-
rithm, there is a pair of processors which, if merged at this
point, will have t/6 duplicated tasks; this pair alone must
then expend ¢ + ¢/6 work to complete all ¢ tasks. The opti-
mal off-line algorithm that schedules tasks with full knowl-
edge of future merges, of course, accrues only ¢t work for the
merged pair, as it can arrange for zero overlap. Further-
more, if the adversary partitions the two merged processors
immediately after the merge (after allowing the processors
to exchanged information about task executions), then the
work performed by the merged and then partitioned pair is
t + t/3; the work performed by the optimal algorithm re-
mains unchanged, since it terminates at the merge.

Contributions. We analyze the natural randomized algo-
rithm Random Select (RS) where each processor (or group)
determines the next task to complete by randomly selecting
the task from the set of tasks this group does not know to
be completed. We compare the expected work of this algo-
rithm to the work of an optimal off-line algorithm, which
may schedule tasks with full knowledge of future partitions.

In order to precisely state the results of the paper, we
pause to introduce some notation. In the literature, groups
of processors are given structured names, such that a group
G is a pair (G.id, G.set), where G.id is the unique identifier
of G and G.set is the set of processor identifiers that con-
stitute the membership of the group. To reduce notation
clutter, given a group named G, we use G to stand for G.set
in this paper (e.g., if two, possibly distinct, groups G' and
G’ have identical membership, we express this by G = G’).

As discussed previously, an adversary determines a com-
putation pattern C' in a natural way; this is a directed acyclic
graph, each vertex corresponding to a group of processors
that exists during some point of the computation; a directed
edge is placed between group G and group G’ if G’ NG # ()
and G’ was formed by a reconfiguration involving processors
in G (this is discussed in more detail in the next section).
We say that two groups G and G’ are independent if there
is no directed path connecting one to the other. For such
a pattern C, the computation width of C, denoted cw(C),
is the maximum number of independent groups reachable
(along directed paths) in this DAG from any vertex. We
show the following;:

e (Upper bound.) For any computation pattern C, the
randomized algorithm RS discussed above is (1 +
cw(C)/e)-work competitive.

e (Lower bound.) For any scheduling algorithm A(p,t),
any € > 0, and any nonzero k € N, there exists p,
t, and a computation pattern C so that cw(C) = k
and the work performed by algorithm A(p, t) is at least



(1+k/e—e) times that of the off-line algorithm. Specif-
ically, RS achieves the optimal competitive ratio over
the set of all computation patterns with a given com-
putation width.

Prior and related work; motivation. Though this prob-
lem has been the subject of active research, known solu-
tions address narrow special cases, or provide substantially
weaker bounds. Malewicz, Russell and Shvartsman [16] in-
troduced the notion of h-waste that measures the worst-case
redundant work performed by h groups (or processors) when
started in isolation and merged into a single group at some
later time. While these results are deterministic, they only
adequately describe such computation to the point of the
first reconfiguration, where the reconfiguration is further as-
sumed to simply merge groups together. Dolev, Segala, and
Shvartsman [9] model ultimately diverging reconfiguration
patterns for which the termination time of any on-line task-
performing algorithm is greater than the termination time
of an off-line task-performing algorithm by a factor linear
in p. Georgiou and Shvartsman [14] give upper bounds on
work for an algorithm that performs work in the presence of
network fragmentations and merges (i.e., limited patterns
of reconfigurations) using a group communication service
where processors initially start in a single group. They es-
tablish an upper bound of O(min(¢ - p, t + ¢ - g(C))) where
g(C) is the total number of new groups formed during the
computation pattern C'. Note that there can be an arbitrary
gap between cw(C) and g(C).

Thus prior work established reasonably tight (in the length
of the processor schedule) results for a single merge, illus-
trated the fact that on-line algorithms subject to diverging
reconfiguration patterns incur linear (in p) overhead relative
to an off-line algorithm, and showed an upper bound for an
algorithm using group communication services for a limited
pattern of reconfigurations starting with a single group.

The problem of cooperation on a common set of tasks
in distributed settings has been studied in message-passing
models [6, 7, 10], using group communications [9, 14], and
in shared-memory models [15]. Our definition of work fol-
lows that of Dwork, Halpern and Waarts [10]. These studies
present various load-balancing techniques for structuring the
work for the computing devices that are able to communi-
cate by some means. The studies of Georgiades, Mavronico-
las, and Spirakis [12] and Papadimitriou and Yannakakis [17]
investigate the impact of communication topology on the ef-
fectiveness of load-balancing. A related problem, called col-
lect, has been studied in the shared-memory model of com-
putation. This problem was originally abstracted by Saks,
Shavit, and Woll [19].

The notion of competitiveness was introduced by Sleator
and Tarjan [20] (see also Fiat and Rabani [4], Awer-
buch, Kutten and Peleg [2], and Ajtai, Aspnes, Dwork and
Waarts [1]).

Group communication services have become important as
building blocks for fault-tolerant distributed systems. Such
services enable processors located in a fault-prone network
to operate collectively as a group, using the services to multi-
cast messages to group members (see the special issue [18]).
To evaluate the effectiveness of partitionable group com-
munication services, Sussman and Marzullo [21] proposed a
measure (cushion) precipitated by a simple partition-aware
application. Babaoglu et al. [3] study systematic support for

253

partition awareness based on group communication services
in a wide range of application areas.

The structure of this paper is as follows. In Section 2 we
define the problem and model of computation. In Section 3
we present and analyze the randomized algorithm RS. In
Section 4 we prove a lower bound for the problem. We
conclude in Section 5. A summary of preliminary results for
merges appears in [13].

2. MODEL AND DEFINITIONS

We consider a distributed system consisting of p asyn-
chronous processors connected by communication links;
each processor has a unique identifier from the set [p] =
{1,2,...,p}; the value p is known to all processors. The
problem is then defined in terms of ¢ tasks with unique iden-
tifiers, initially known to all processors. The tasks are inde-
pendent and idempotent—multiple executions of the same
task have the same effect as a single execution. Processors
may only cease executing tasks when they know the results
of all tasks. This general problem is often referred to as
Do-AllL

The model is complicated by subjecting the processors to
dynamic changes in the communication medium. In par-
ticular, at each instant of time, the network is partitioned
into a collection of groups. Communication between pro-
cessors in the same group is instantaneous and reliable, so
that grouped processors may perfectly cooperate to com-
plete tasks; communication across groups, however, is not
possible. We consider the dynamic case where communica-
tion can be arbitrarily lost and re-established. In particular,
the computation of the processors is punctuated by a se-
quence of reconfigurations; each reconfiguration may induce
an arbitrary change in the partition of the processors into
groups. We shall assume that reconfigurations are atomic
with respect to task executions. That is, a reconfiguration
does not occur when some tasks are half-way through exe-
cution.

In order to focus on scheduling issues, we assume that
processors in a single group work as a single virtual unit; in-
deed, we will treat them as a single asynchronous processor.
In particular, upon the establishment of a new group by a re-
configuration, the processors in the group share their knowl-
edge (of completed tasks) before they continue processing.
A deterministic algorithm D in this model is a rule which,
given a processor (or group of processors) and a collection
of tasks known to be completed, determines the next task
for this processor (or group) to complete. Specifically, an
algorithm is a function D : 2P! x 2!/ — [t]; we note that the
lower bounds proved in this paper actually apply to a wider
class of algorithms that may in fact take into account the en-
tire history of the computation of the group in question. For
simplicity, we assume that VP C [p|,VT C [t], D(P,T) ¢ T,
which is to say that the algorithm never chooses to com-
plete a task it already knows to be completed. Our goal
will be to design algorithms which schedule the execution
of the tasks to minimize the total work, where work is de-
fined to be the number of tasks executed by all the processors
during the entire computation (counting multiplicities). Ide-
ally, the sets of tasks completed by two groups of processors
when these groups are merged should be disjoint to avoid
wasted effort. This is impossible in general, as processors
must schedule their work in ignorance of future reconfigu-



rations and, moreover, circumstances where two groups of
processors merge who have collectively completed more than
t tasks will necessitate wasted work. A processor may cease
executing tasks only when it knows the results of all tasks.
We refer to this version of the Do-All problem as Omni-Do.

We will consider the behavior of an algorithm in the face
of an adversary (which is oblivious in the sense of [5]) that
determines both the sequence of reconfigurations and the
number of tasks completed by each group before it is involved
in another reconfiguration. Taken together, this information
determines a computation pattern: this is a directed acyclic
graph (DAG), each vertex of which corresponds to a group
G of processors that existed during the computation; a di-
rected edge is placed from G1 to G2 if G2 was created by
a reconfiguration involving G1. We label each vertex of the
DAG with the group of processors associated with that ver-
tex and the total number of tasks that the adversary allows
the group of processors to perform before the next reconfig-
uration occurs. As mentioned before, different adversaries
(causing different sequences of reconfigurations) may give
rise to the same computation pattern; the work caused by
an adversary, however, depends only on the computation
pattern determined by that adversary.

Specifically, if ¢ is the number of tasks and p the number of
processors, then such a computation pattern is a labeled and
weighted directed acyclic graph, that we call a (p,t)-DAG:

Definition 1. A (p,t)-DAG is a directed acyclic graph
C = (V,E) augmented with a weight function h : V — N
and a labeling g : V — 271\ {()} so that:

e Vv € V, h(v) < t and for any maximal path p =
(v1,...,v) in C, >~ h(v;) > t. (This guarantees that
any algorithm terminates during the computation de-
scribed by the DAG.)

e g possesses the following “initial conditions”:

p= U

v: in(v)=0

g(v).

e g respects the following “conservation law”: there is a
function ¢ : E — 2[P)\ {#} so that for each v € V with
in(v) > 0,

gy = | o((wv),

(u,v)EE

and for each v € V with out(v) > 0,

gy = |J ().

(v,u)eE

Here U denotes disjoint union and in(v) and out(v) denote
the in-degree and out-degree of v, respectively. Finally, for
two vertices u,v € V, we write u < v if there is a directed
path from u to v; we then write v < v if v < v and u and v
are distinct.

Example. As an example, consider the (12,¢)-DAG shown
on Figure 1. Here we have g1 {p1}, 92 {p2,p3,pa},
gs = {ps,pe}, 92 = {p7}, g5 = {ps,p9,pir0,p11,p12},
96 = {p1,p2,p3,pa,p6}, g7 = {ps, P10}, g8 = {po, P11, P12},
g9 = {p1,p2,P3,P4,P6,Ps,P10}, gro = {ps,p11}, and gu1 =
{p97p12}.

254

Figure 1: An example of a (12,¢)-DAG

This computation pattern models all asynchronous com-
putations (adversaries) with the following behavior: (i) The
processors in groups g1 and g2 and processor pg of group
gs are regrouped during some reconfiguration to form group
ge. Processor ps of group gs becomes a member of group
g10 during the same reconfiguration (see below). Prior to
this reconfiguration, processor pi (the singleton group g1)
has performed exactly 5 tasks, the processors in g2 have co-
operatively performed exactly 3 tasks and the processors in
g3 have cooperatively performed exactly 8 tasks (assuming
that ¢ > 8). (ii) Group gs is partitioned during some re-
configuration into two new groups, g7 and gs. Prior to this
reconfiguration, the processors in g5 have performed exactly
2 tasks. (iii) Groups g¢ and g7 merge during some reconfigu-
ration and form group gg. Prior to this merge, the processors
in g¢ have performed exactly 4 tasks (counting only the ones
performed after the formation of g¢ and assuming that there
are at least 4 tasks remaining to be done) and the processors
in g7 have performed exactly 5 tasks. (iv) The processors
in group gs and processor ps of group g3 are regrouped dur-
ing some reconfiguration into groups gio and gi1. Prior to
this reconfiguration, the processors in group gs have per-
formed exactly 6 tasks (assuming that there are at least 6
tasks remaining, otherwise they would have performed the
remaining tasks). (v) The processors in gg, gi0, and g11 run
until completion with no further reconfigurations. (vi) Pro-
cessor pr (the singleton group g4) runs in isolation for the
entire computation.

Let D be a deterministic algorithm for Omni-Do and C a
computation pattern, we let Wp(C) denote the total work
expended by algorithm D, where reconfigurations are de-
termined according to the computation pattern C. Wp is
formally defined as follows:

Definition 2. Let C be a (p,t)-DAG and D a deterministic
algorithm for Omni-Do. Wp(C') is defined inductively as
follows. For a vertex v of C' with in(v) = 0, define L, to be
the set containing the first h(v) tasks completed by group
g(v) according to D. Otherwise, in(v) > 0; in this case, let
L, =\, < Lu denote the collection of all tasks known to
be complete at the inception of the group g(v). Then let L,
be the first h(v) tasks completed by group g(v) according
to D starting with knowledge Ly. Tf h(v) > t — |Ly|, define
L, = [t]\ Ly. Then Wp(C) =3, cc | Lol

We treat randomized algorithms as distributions over de-



terministic algorithms; for a set €2 and a family of determin-
istic algorithms {D, | r € Q} we let R = R({D. | r € Q})
denote the randomized algorithm where r is selected uni-
formly at random from €2 and scheduling is done according
to D,. For a real-valued random variable X, we let E[X]
denote its expected value. We let OPT denote the opti-
mal (off-line) algorithm. Specifically, for each C we define
Wopt(C) = minp Wp(C).

Definition 3. [20, 11, 5] Let « be a real valued function
defined on the set of all (p,t)-DAGs (for all p and ¢). A
randomized algorithm R is a-competitive if for all compu-
tation patterns C,

EWb, (C)] < a(C)Worr(C),
this expectation being taken over uniform choice of r € .

Note that usually, « is fixed for all inputs; we shall see
that this would be meaningless in our model. Presently, we
will use a function « that depends on a certain parameter
(see Definition 7) of the graph structure of C.

We now present some terminology that we will use in the
rest of the paper.

Definition 4. A partially ordered set or poset is a pair
(P, <) where P is a set and < is a binary relation on P for
which (i.) forall z € P, x <z, (ii.) f z <y and y < =,
then x = y, and (iii.) if z < y and y < z, then z < z. For
a poset (P, <) we overload the symbol P, letting it denote
both the set and the poset.

Definition 5. Let P be a poset. We say that two elements
x and y of P are comparable if z < y or y < x; otherwise x
and y are incomparable. A chain is a subset H of P such
that any two elements of H are comparable. An antichain
is a subset A of P such that any two distinct elements of A
are incomparable. The width of P, denoted w(P), is the
size of the largest antichain of P.

Associated with any directed acyclic graph (DAG) C =
(V,E) is the natural vertex poset (V,<) where u < v if
and only if there is a directed path from u to v. Then the
width of C, denoted w(C), is the width of the poset (V, <).

Definition 6. Given a DAG C = (V, E) and a vertex v €
V', we define the predecessor graph at v, denoted Pc(v)
(or P(v) when C is implied), to be the subgraph of C' that
is formed by the union of all paths in C' terminating at v.
Likewise, the successor graph at v, denoted Sc(v) (or
S(v) when C is implied) is the subgraph of C' that is formed
by the union of all the paths in C originating at v.

Definition 7. The computation width of a DAG C =
(V, E), denoted cw(C), is defined as

cw(C) = rvnea&(W(S(v)).

Note that the processors that comprise a group formed dur-
ing a computation pattern C' may be involved in many differ-
ent groups at later stages of the computation, but no more
than ew(C') of these groups can be computing in ignorance
of each other’s progress.

In the (12,¢)-DAG of Figure 1, the maximum width
among all successor graphs is 3: w(S((g5,2))) = 3.
Therefore, the computational width of this DAG is
3. Note that the width of the DAG is 6 (nodes
(917 5)7 (927 3)7 (937 8)7 (947 t)v (977 5) and (987 6) form an an-
tichain of maximum size).

255

3. ALGORITHM RS AND ITSANALYSIS

In this section we present algorithm Random Select (RS)
and its analysis.

3.1 Description of Algorithm rs

We consider the natural randomized algorithm RS where
a processor (or group) with knowledge that the tasks 7 in
a set K C [t] have been completed selects to next complete
a task at random from the set [t] \ K. More formally,
let II = (71,...,mp) be a p-tuple of permutations, where
each 7; is a permutation of [t]. We describe a deterministic
algorithm D so that

RS = R({DH | II € (St)p});

here S; is the collection of permutations on [¢]. Let G be a
group of processors and v € G the processor in G with the
lowest processor identifier. Then the deterministic algorithm
D specifies that the group G, should it know that the tasks
in K C [t] have been completed, next completes the first task
in the sequence 7 (1),..., 7y (¢) which is not in K.

3.2 Analysisof Algorithm rs

We now analyze the competitive ratio (in terms of work)
of algorithm RS. We write Wgrs(C') = E [Wgrs(C')], this ex-
pectation taken over the random choices of the algorithm.
Where C can be inferred from context, we simply write Wgrs
and WOPT~

We first recall Dilworth’s Lemma [8], a duality theorem
for posets:

LEMMA 1. [8] The width of a poset P is equal to the min-
imum number of chains needed to cover P. (A family of
nonempty subsets of a given set S is said to cover S if their
union is S.)

We will also use a generalized degree-counting argument:

LEMMA 2. Let G = (U,V,E) be an undirected bipartite
graph with no isolated vertices and h : V — R a non-

negative weight function on G. For a verter v, let T'(v)
denote the wvertices adjacent to v. Suppose that for some
A >0 and for each vertez u € U we have }_, p(,) h(v) < A

and that for some B > 0 and for each vertex v € V we have
> wer(wy Mu) = B, then

ZueU h(u)
2vev M)

PROOF. We compute the quantity », ,)c g h(u)h(v) by
expanding according to each side of the bipartition:

> 5
- A

A hw) = 3 (hw)- XD k)= D h(u)h()
uelU uelU vel(u) (u,v)EE
_ Z(h(v)A > hw) = BY )
veV uel(v) veV

As A>0and ) h(v) > B >0, we conclude that
2uev ()
Soev hlv)

veV ()

> B
A’

as desired. [

‘We now establish an upper bound on the competitive ratio
of the algorithm RS.



THEOREM 1. Algorithm RS ]
competitive for any (p,t)-DAG C = (V, E).

PROOF. Let C be a (p,t)-DAG; recall that associated
with C are the two functions h : V. — Nand g : V —
2Pl \ {p}. For a subgraph C’' = (V',E’) of C, we let
H(C') = Y ,cv/ h(v). Recall that Pc(v) and Sc(v) de-
note the predecessor and successor graphs of C' at v. Then,
we say that a vertex v € V is saturated if H(Pc(v)) < t;
otherwise, v is unsaturated. Note that if v is saturated, then
the group g(v) must complete h(v) tasks regardless of the
scheduling algorithm used. Along these same lines, if v is an
unsaturated vertex for which ¢ > % _ h(u), the group g(v)
must complete at least max(h(v),t — 3", _, h(u)) tasks un-
der any scheduling algorithm. As these portions of C' which
correspond to computation which must be performed by any
algorithm will play a special role in the analysis, it will be
convenient for us to rearrange the DAG so that all such work
appears on saturated vertices. To achieve this, note that if v
is an unsaturated vertex for which ) _ h(u) < t, we may
replace v with a pair of vertices, vs and v,, where all edges
directed into v are redirected to vs, all edges directed out of
v are changed to originate at v, the edge (vs,v,) is added
to E, and h is redefined so that

h(vs) =t — Y h(u)

u<v

1+ cw(C)/e)-

and h(vy) = h(v) — h(vs).

Note that the graph C’ obtained by altering C in this way
corresponds to the same computation, in the sense that
Wp(C) = Wp(C') for any algorithm D. For the remain-
der of the proof we will assume that this alteration has been
made at every relevant vertex, so that the graph C' satisfies
the condition

v unsaturated = Z h(u) > t.

u<v

(1)

Finally, for a vertex v, we let T, be the random variable
equal to the number of tasks that RS completes at vertex
v. Note that if v is saturated, then T, = h(v). Let S and
U denote the sets of saturated and unsaturated vertices,
respectively. Given the above definitions, we immediately
have

Wopr > Z h(s)
sES

and, by linearity of expectation,

Wrs = E[Z Tv] =3 " h(s)+ > E[T.]

seS ueU
< Wopr + Z E[Ty].

ueU

Our goal is to conclude that for some appropriate 3,

> T

ueU

and hence that RS is 1+ 3 competitive. We will obtain such
a bound by applying Lemma 2 to an appropriate bipartite
graph, constructed next.

Given C = (V,E) construct the (undirected) bipartite
graph G = (S,U, Eg) where Eqg = {(s,u) | s < u}. As
in Lemma 2, for a vertex v, we let I'(v) denote the set of
vertices adjacent to v. Now assign weights to the vertices

E Sﬁ‘Zh(S)Sﬁ‘WCPT

sES

256

of G according to the rule h*(v) = E[T,]. Note that for
s € §,h"(s) = h(s) and hence by condition (1) above, we
immediately have the bound

Yu € U, Z h*(s) > t.
sel(u)
We now show that Vs € S,

S () < ew(C) - L.

(&
u€el(s)

3)

(4)

Before proceeding to establish this bound, note that equa-
tions (3) and (4), together with Lemma 2 imply that

Wis(C) < S h(s)+ > b (w) < (14 Le(c)) S h(s)
seES ueU SES
< (1 + Le(C))VVOPT(C)7
as desired.

Returning now to equation (4), let s € S be a satu-
rated vertex and consider the successor graph (of C) at
s, Sc(s). By Lemma 1 (Dilworth’s Lemma), there exist
w = w(Sc(s)) < ew(C) paths in Sc(s), P, Ps,... Py so
that their union covers Sc(s). Let X; be the random vari-
able whose value is the number of tasks performed by RS
on the portion of the path P; consisting of unsaturated ver-
tices. Note that if v € V is unsaturated and u < v, then
v is unsaturated and hence, for each path P;, there is a
first unsaturated vertex u? after which every vertex of P; is
unsaturated. Note now that for a fixed individual task 7,
conditioned upon the event that 7 is not yet complete, the
probability that 7 is not chosen by RS for completion at a
given selection point in Po(u!) is no more than (1 — 1/t).
Let L; be the random variable whose value is the set of tasks
left incomplete by RS at the formation of the group g(u?).
As 4l is unsaturated, EKU? h(v) > t by condition (1) and
hence, for each i,

Prjr € Li] < (1 —1/t)" < 1/e.
As there are a total of ¢ tasks,
E[|Li]] < t/e.

Of course, since RS completes a new task at each step, X; <
|L;| so that E[X;] < ¢/e and by the linearity of expectation

E[sz} <w-t/e.

Now every unsaturated vertex in Sc(s) appears in some P;
and hence

Z h*(u) < E[Z XZ} <wt/e < cw(C) - t/e,
u€el(s) i

as desired. [

Theorem 1 implies a constant upper bound for patterns
that consist entirely of merges (that is, where all reconfigu-
rations are given by taking unions of existing groups). This
subsumes the results reported in [13].

COROLLARY 1. Algorithm RS is (1 + é)—competitive for
any (p,t)-DAG C with cw(C) = 1.



4. ALOWERBOUND

We begin with a lower bound for deterministic algorithms.
This is then applied to give a lower bound for randomized
algorithms in Corollary 2.

THEOREM 2. Let a : N — R and D be a deterministic
scheduling algorithm for Omni-Do so that D is a(cw(-))-
competitive (that is D is a-competitive, for a function o =
aocw)). Then a(c) > 1+ c/e.

Proor. Fix k € N. Consider the case when t = p =g >
k and t mod k = 0, g being the number of initial groups.
We consider a computation pattern Cg determined by a
tuple G = (G1,...,Gy/i) where each G; C [t] is a set of
size k and |J; Gi = [t]. Initially, the computation pattern
Cg has the processors synchronously proceed until each has
completed t/k tasks; at this point, the processors in G; are
merged and allowed to exchange information about task ex-
ecutions. Each G; is then immediately partitioned into ¢
groups. Note that the off-line optimal algorithm accrues ex-
actly t?/k work for this computation history (it terminates
prior to the partitions of the G;).

We will show that for any D, there is a selection of the
G so that

2 1k
Wp(Ce) >t /k |14 c(1— E) —o(1)|,

and hence that a(c) > 1+ ¢/e. Consider the behavior of D
when the G is selected at random, uniformly among all such
tuples. Let P; C [t] be the subset of ¢/k tasks completed
by processor i before the merges take place; these sets are
determined by the algorithm D. We begin by bounding

To this end, consider an experiment where we select k sets
Q1, ..., Qk, each Q; selected independently and uniformly
from the set {P;}. Now, for a specific task 7, let p, =
Pro, [r € Q1], so that Pro, [r € U, Qi] = p¥. As the Q; are
selected independently,

E|l1n- UQ\] =Xk

1€Gy

Observe now that

Z(l —pr) =

T

2 gf[T eE@i] = CIQEIHQIH =t/k

and hence Y _pr = t(1 — 1/k). As the function = — z* is
convex on [0,00), > p” is minimized when the p, are equal
and we must have

llo-Qall=(-5)

Now observe that, conditioned on the @; being distinct,
the distribution of (Q1,...,Qk) is identical to that of
(Pg% e Pgi) where the random variable G1 = {gi,...,9}}.

Considering that Pr[3i # j, Q; = Q;] < k?/t, we have

gi[y[t]{i)@i\] < <17_> -1U P‘]+1

1€Gy

257

and hence as t — oo we see that the expected number of
tasks remaining for those processors in group G is

t—‘U

i€G

> (1 - 1/k)* — o(1).

Of course, the distribution of each G; is the same, so that

fE-10 7] = (1) (-

In particular, there must exist a specific selection of G =
(G1,...,Gyy) which achieves this bound. Recall that every
G; is partitioned into ¢ groups. Therefore, for such G, the
total work is at least

t2 1

T (1+[170(1)]4c.(17E)k>.

O

As limg oo (1 — 1)F =

% %, this completes the proof.

As the above stochastic computation pattern Cq is inde-
pendent of the deterministic algorithm D, this immediately
gives rise to a lower bound for randomized algorithms:

COROLLARY 2. Let R({D, | r € Q}) be a random-
1zed scheduling algorithm for Omni-Do that is (a o cw)-
competitive. Then a(c) > 1+ c/e.

PROOF. Assume for contradiction that for some ¢, a(c) <
1+c/e and let k be large enough so that (1—1)* > a(c) — 1.
For this & we proceed as in the proof above, considering a
random G and the computation pattern Cq witht =g =p
congruent to 0 mod k, g being the number of initial groups.
Then, as above,

E[EWp, (Ca)] = E[EWn, (o)

> min [E[Wp, (Ca))]
> %~(1+[1—0(1)]~c-(1—%)k).

2

Hence there exists a G so that E,[Wp,(Cg)] > %

(1+[1—0(1)]<), which completes the proof. [J

5. CONCLUSIONS & OPEN PROBLEMS

We established bounds on the competitive ratio of a nat-
ural randomized algorithm for scheduling in partitionable
networks and show, furthermore, that for the relevant grada-
tion of computation patterns these bounds are tight. These
results lead to a better understanding of the effectiveness
of computation in group communication schemes, a widely
used paradigm for computing in distributed environments.

One outstanding open question is to derandomize the
schedules used by task-performing algorithms in this work.
Another promising direction is to study the task-performing
paradigm in the models of computation that combine net-
work reconfigurations with processor failures. The goal is to
establish complexity results that show how performance of
task-performing algorithms depends both on the extent of
the network reconfiguration and on the number of processor
failures.



6.
(1]

2]

3

[4

[5]

[6]

REFERENCES

M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. A
theory of competitive analysis for distributed
algorithms. In Proceedings of the 35" Symposium on
Foundations of Computer Science (FOCS 1994), pages
401-411, 1994.

B. Awerbuch, S. Kutten, and D. Peleg. Competitive
distributed job scheduling. In Proceedings of the 24"
ACM Symposium on Theory of Computing (STOC
1992), pages 571-580, 1992.

O. Babaoglu, R. Davoli, A. Montresor, and R. Segala.
System support for partition-aware network
applications. In Proceedings of the 18" IEEE
International Conference on Distributed Computing
Systems (ICDCS 1998), pages 184-191, 1998.

Y. Bartal, A. Fiat, and Y. Rabani. Competitive
algorithms for distributed data management. In
Proceedings of the 248" ACM Symposium on Theory of
Computing (STOC 1992), pages 39-50, 1992.

S. Ben-David, A. Borodin, R. Karp, G. Tardos, and
A. Wigderson. On the power of randomization in
on-line algorithms. Algorithmica, 11(1):2-14, 1994.

B. Chlebus, R. De Prisco, and A.A. Shvartsman.
Performing tasks on restartable message-passing
processors. Distributed Computing, 14(1):49-64, 2001.
R. De Prisco, A. Mayer, and M. Yung. Time-optimal
message-efficient work performance in the presence of
faults. In Proceedings of the 13" ACM Symposium on
Principles of Distributed Computing (PODC 1994),
pages 161-172, 1994.

R.P. Dilworth. A decomposition theorem for partially
ordered sets. Annals of Mathematics, 51:161-166,
1950.

S. Dolev, R. Segala, and A.A. Shvartsman. Dynamic
load balancing with group communication. In
Proceedings of the 6" International Colloquium on
Structural Information and Communication
Complezity (SIROCCO 1999), pages 111-125, 1999.
C. Dwork, J. Halpern, and O. Waarts. Performing
work efficiently in the presence of faults. STAM
Journal on Computing, 27(5):1457-1491, 1998. A
preliminary version appears as “Accomplishing work
in the presence of failures” in the Proceedings of the
11" ACM Symposium on Principles of Distributed
Computing (PODC 1992), pages 91-102, 1992.

A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch, D.D.
Sleator, and N.E. Young. Competitive paging
algorithms. Journal of Algorithms, 12(4):685-699,
1991.

258

(12]

(15]

(16]

(17]

(18]

(19]

S. Georgiades, M. Mavronicolas, and P. Spirakis.
Optimal, distributed decision-making: The case of no
communication. In Proceedings of the 12" Int-l
Symposium on Foundamentals of Computation Theory
(FCT 1999), pages 293-303, 1999.

Ch. Georgiou, A. Russell, and A.A. Shvartsman.
Optimally work-competitive scheduling for
cooperative computing with merging groups (brief
announcement). In Proceedings of the 22" ACM
Symposium on Principles of Distributed Computing
(PODC 2002), 2002.

Ch. Georgiou and A.A. Shvartsman. Cooperative
computing with fragmentable and mergeable groups.
Journal of Discrete Algorithms, to appear. (Also in
Proc. of the " Int-l Colloguium on Structural
Information and Communication Complexity
(SIROCCO 2000), pages 141-156, 2000).

P.C. Kanellakis and A.A. Shvartsman. Fault-Tolerant
Parallel Computation. Kluwer Academic Publishers,
1997.

G.G. Malewicz, A. Russell, and A. A. Shvartsman.
Distributed cooperation during the absence of
communication. In Proceedings of the 14"
International Symposium on Distributed Computing
(DISC 2000), pages 119-133, 2000.

C.H. Papadimitriou and M. Yannakakis. On the value
of information in distributed decision-making. In
Proceedings of the 10" ACM Symposium on
Principles of Distributed Computing (PODC 1991),
pages 61-64, 1991.

D. Powell, editor. Special Issue on Group
Communication Services, volume 39(4) of
Communications of the ACM. ACM Press, 1996.

M. Saks, N. Shavit, and H. Woll. Optimal time
randomized consensus — making resilient algorithms
fast in practice. In Proceedings of the 2" ACM-SIAM
Symposium on Discrete Algorithms (SODA 1991),
pages 351-362, 1991.

D. Sleator and R. Tarjan. Amortized efficiency of list
update and paging rules. Communications of the
ACM, 28(2):202-208, 1985.

J.B. Sussman and K. Marzullo. The bancomat
problem: An example of resource allocation in a
partitionable asynchronous system. In Proceedings of
the 12" International Symposium on Distributed
Computing (DISC 1998), pages 363-377, 1998.



