
Distributed Computation Meets Design Theory:

Loal Sheduling for Disonneted Cooperation

�

Alexander Russell

y

Alexander Shvartsman

z

Abstrat

Ability to ooperate on ommon tasks in a distributed setting is key to solving a broad range of ompu-

tation problems ranging from distributed searh suh as SETI to distributed simulation and multi-agent

ollaboration. In suh settings there exists a trade-o� between omputation and ommuniation: both

resoures must be managed to derease redundant omputation and to ensure eÆient omputational

progress. This survey deals with sheduling issues for distributed ollaboration. Spei�ally, we exam-

ine the extreme situation of ollaboration without ommuniation. That is, we onsider the extent to

whih eÆient ollaboration is possible if all resoures are direted to omputation at the expense of

ommuniation. Of ourse there are also ases where suh an extreme situation is not a matter of hoie:

the network may fail, the mobile nodes may have intermittent onnetivity, and when ommuniation is

unavailable it may take a long time to (re)establish onnetivity. The results summarized here preisely

haraterize the ability of distributed agents to ollaborate on a known olletion of independent tasks

by means of loal sheduling deisions that require no ommuniation and that ahieve low redundany

in task exeutions. Suh sheduling solutions exhibit an interesting onnetion between the distributed

ollaboration problem and the mathematial design theory. The lower bounds presented here along with

the randomized and deterministi shedule onstrutions show the limitations on suh low-redundany

ooperation and show that shedules with near-optimal redundany an be eÆiently onstruted by

proessors working in isolation. We also show that when proessors start working in isolation and are

subjeted to an arbitrary pattern of network reon�gurations, e.g., fragmentations and merges, ran-

domized sheduling is ompetitive ompared to an optimal algorithm that is aware of the pattern of

reon�gurations.

�

This artile appears as: A. Russell and A. Shvartsman. \Distributed Computation Meets Design Theory: Loal Sheduling

for Disonneted Cooperation." Current Trends in Theoretial Computer Siene: The Challenge of the New Century, vol. 1:

Algorithms and Complexity, pp. 315{336, World Sienti�, 2004.

y

Department of Computer Siene and Engineering, University of Connetiut, Storrs, CT 06269, USA. Email:

ar�se.uonn.edu. The work of the �rst author is supported in part by the NSF Career Award 0093065, NSF ITR Grant

0220264, and the NSF Theory of Computing Grant 0311368,

z

Department of Computer Siene and Engineering, University of Connetiut, Storrs, CT 06269, USA and Computer

Siene and Arti�ial Intelligene Laboratory, Massahusetts Institute of Tehnology, Cambridge MA, 02139, USA. Email:

aas�se.uonn.edu. The work of the seond author is supported in part by the NSF Career Award 9984774, NSF Theory of

Computing Grants 9988304 and 0311368, and NSF ITR Grant 0121277.

1

1 Introdution

Computation and ommuniation are two basi resoure ommodities in distributed omputing. In a dis-

tributed system setting one normally omputes to perform spei� tasks. One also needs to ommuniate

in order to oordinate multiple omputation ativities, for example, to inrease omputation eÆieny by

eliminating redundant work. As an be expeted, there exists a trade-o� between the eÆieny of distributed

omputation and the amount of ommuniation needed to oordinate the omputation. Dwork, Halpern and

Waarts [8℄ have onsidered a basi problem of distributed oordination, where a number of message-passing

proessors ooperate in exeuting a olletion of independent and similarly-sized tasks (in the presene of

proessor rashes). They measure the eÆieny of the omputation in terms of its work omplexity W

(one task onsumes one work unit), and the ost of ommuniation in terms of the message omplexity M .

The authors also assess the overall performane in terms of e�ort that is de�ned as the sum of work W

and message omplexity M . Chlebus et al. [4℄ solve a similar problem and they measure the e�ort of their

solution as the sum of the number of all proessing steps performed (this inludes task-oriented work and

any bookkeeping steps) and the number of messages sent. They observe that a proessor an learn that a

task is performed either by doing the task, or by reeiving a message that tells it that the task was done. In

suh a setting, one an view omputation and ommuniation as omparable resoures.

To study aspets of the trade-o� between ommuniation and omputation in distributed ooperative

appliations, we onsider the following abstrat problem: n proessors must perform t tasks and learn the

results of all tasks. We assume that all tasks are known to all proessors. A ommon impediment to

e�etive oordination in distributed settings is asynhrony that manifests itself, for example, in disparate

proessor speeds and nondeterministi message lateny. Fortunately, our problem an always be solved by a

ommuniation-oblivious algorithm that fores eah proessor to perform all tasks. Suh a solution has work

W = O(t �n), an requires no ommuniation, i.e.,M = 0. On the other hand,
(t) is the obvious lower bound

on work and the best known lower bound is W =
(t+n logn), f. [16℄. Therefore the trade-o� expetation

is that if we gradually inrease the number of messages we should be able to derease the amount of work

performed.

Let us onsider an asynhronous setting, where proessors ommuniate by means of a rendezvous, i.e.,

two proessors that are able to ommuniate an perform state exhange. The proessors that are not able

to ommuniate via rendezvous have no hoie but to perform all t tasks. Consider the omputation with a

single rendezvous. There are n � 2 proessors that are unable to ommuniate, and they olletively must

perform exatly t � (n� 2) work units to learn all results. Now what about the remaining pair of proessors

that are able to rendezvous? In the worst ase they rendezvous after performing all tasks individually. In

this ase no savings in work are realized. Suppose they rendezvous having performed t=2 tasks eah. In

the best ase, the two proessors performed mutually-exlusive subsets of tasks and they learn the omplete

set of results as a onsequene of the rendezvous. In partiular if these two proessors know that they will

be able to rendezvous in the future, the ould shedule their work as follows: one proessors performs the

tasks in the order 1; 2; : : : ; t, the other in the order t; t� 1; : : : ; 1. No matter when they happen rendezvous,

the number of tasks they both perform is minimized. Of ourse the proessors do not know a priori what

pair will be able to rendezvous. Thus it is interesting to produe task exeution shedules for all proessors,

suh that upon the �rst rendezvous of any two proessors the number of tasks performed redundantly is

minimized.

This setting we have just desribed is interesting for several reasons. If the ommuniation links are

subjet to failures, then eah proessor must be ready to exeute all of the t tasks, whether or not it

is able to ommuniate. In realisti settings the proessors may not initially be aware of the network

on�guration, whih would require expenditure of omputation resoures to establish ommuniation, for

example in radio networks. In distributed environments involving autonomous agents, proessors may hoose

not to ommuniate either beause they need to onserve power or beause they must maintain radio silene.

Finally, during the initial on�guration of a dynami network or a middleware servie (suh as a group

ommuniation servie [7℄) the individual proessors may start working in isolation pending the ompletion

of system on�guration. Regardless of the reasons, it is important to diret any available omputation

resoures to performing the required tasks as soon as possible. In all suh senarios, the t tasks have to be

2

sheduled for exeution by all proessors. The goal of suh sheduling must be to ontrol redundant task

exeutions in the absene of ommuniation and during the period of time when the ommuniation hannels

are being (re)established.

Related work: Cooperation with limited ommuniation. The eÆieny of work-performing algo-

rithms depends on how well the loads are balaned among the partiipating proessors and on the ability of

the proessors to disseminate information on the progress of the omputation.

Papadimitriou and Yannakakis [22℄ study how limited patterns of ommuniation a�et load-balaning.

They onsider a problem where there are 3 agents, eah of whih has a job of a size drawn uniformly at

random from [0; 1℄, and this distribution of job sizes is known to every agent. Any agent A an learn the

sizes of jobs of some other agents as given by a direted graph of three nodes. Based on this information eah

agent has to deide to whih of the two servers its job will be sent for proessing. Eah server has apaity

1, and it may happen that when two or more agents deide to send their jobs to the same server the server

will be overloaded. The goal is to devise ooperative strategies for agents that will minimize the hanes

of overloading any server. The authors present several strategies for agents for this purpose. They show

that adding an edge to a graph an improve load balaning. These strategies depend on the ommuniation

topology. This problem is similar to our sheduling problem. Sending a job to server number x 2 f0; 1g

resembles doing task number x in our problem. The goal to avoid overloading servers resembles avoiding

overlaps between tasks. The problem of Papadimitriou and Yannakakis is di�erent beause in our problem

we are interested in struturing job exeution where the number of tasks an be arbitrary t � 1.

Georgiades, Mavroniolas, and Spirakis [10℄ study a similar load-balaning problem. On the one hand

their treatment is more general in the sense that they onsider arbitrary number of agents n, and arbitrary

omputable deision algorithms. However it is more restritive in the sense that they onsider only one

type of ommuniation topology where there is no ommuniation between proessors whatsoever. The two

servers that proess jobs have some given apaity that is not neessarily 1. They study two families of

deision algorithms: algorithms that annot see the size of jobs before making a deision whih server to

send a job to for proessing, and algorithms that an make deisions based on the size of the job. They

ompletely settle these ases by showing that their deision protools minimize the hanes of overloading

any server.

For a variation of the problem we deal with in this report, Dolev et al. [6℄ showed that for the ase

of dynami hanges in onnetivity, the termination time of any on-line task assignment algorithm an be

greater than the termination time of an o�-line task assignment algorithm by a fator linear in n. This means

that an on-line algorithm may not be able to do better than the trivial solution that inurs linear overhead

by having eah proessor perform all the tasks. With this observation [6℄ develops an e�etive strategy for

managing the task exeution redundany and proves that the strategy provides eah of the n proessors with

a shedule of �(n

1=3

) tasks suh that at most one task is performed redundantly by any two proessors.

Struture of this report. In Setion 2 we introdue our shedules, the \waste" measure and design. In

Setion 3 we present and prove the main lower bound on waste of shedules. Setion 4 ontains material

showing that random shedules have good waste properties and that they furthermore behave ompetitively

for arbitrary patterns of proessor rendezvous. In Setion 5 we present design-theoreti onstrutions that

yield deterministi shedules with good waste properties. We onlude in Setion 6.

2 Shedules, waste, and designs

We onsider the abstrat setting where n proessors need to perform t independent and idempotent tasks.

A task is idempotent if the exeution of the task yields the same result when it is performed more than one.

A task is independent if the result of its exeution does not depend on the order in whih other tasks are

exeuted. The proessors have unique identi�ers from the set [n℄ = f1; : : : ; ng, and the tasks have unique

identi�ers from the set [t℄ = f1; : : : ; tg. Initially eah proessor knows the tasks that need to be performed

and their identi�ers.

3

We shall fous on the sheduling problem disussed above, abstrated as follows. An (n; t)-shedule is a

tuple (�

1

; : : : ; �

n

) of n permutations of the set [t℄. When n = 1 it is elided and we simply write t-shedule.

An (n; t)-shedule immediately gives rise to a strategy for n isolated proessors who must omplete t

tasks until ommuniation between some pair (or group) is established: the proessor i simply proeeds to

omplete the tasks in the order presribed by �

i

. Suppose now that some k of these proessors, say q

1

; : : : ; q

k

,

should rendezvous at a time when the ith proessor in this group, q

i

, has ompleted a

i

tasks. Ideally, the

proessors would have ompleted disjoint sets of tasks, so that the total number of tasks ompleted is

P

i

a

i

.

As this is too muh to hope for in general, it is natural to attempt to bound the gap between

P

i

a

i

and the

atual number of distint tasks ompleted. This gap we all waste:

De�nition 2.1. If S is a (n; t)-shedule and (a

1

; : : : ; a

k

) 2 N

k

, the waste funtion for S is

W

S

(a

1

; : : : ; a

k

) = max

(q

1

;:::;q

k

)

k

X

i

a

i

�

�

�

�

�

�

k

[

i

�

q

i

([a

i

℄)

�

�

�

�

�

!

;

this maximum taken over all k tuples (q

1

; : : : ; q

k

) of distint elements of [n℄.

Here (and throughout), if � : X ! Y is a funtion and S � X , we let �(S) = f�(x) j x 2 Sg. For a

spei� vetor a = (a

1

; : : : ; a

k

), W

S

(a) aptures the worst-ase number of redundant tasks performed by any

olletion of k proessors when the ith proess has ompleted the �rst a

i

tasks of its shedule.

One immediate observation is that bounds on pairwise wasteW

S

(�; �) an be naturally extended to bounds

on k-wise waste W

S

(�; : : : ; �

| {z }

k

): spei�ally, note that if S is an (n; t)-shedule then

W

S

(a

1

; : : : ; a

k

) �

X

i<j

W

S

(a

i

; a

j

)

just by onsidering the �rst two terms of the standard inlusion-exlusion rule. Moreover, it appears that

this relationship is fairly tight as it is nearly attained by randomized shedules|see Setion 4.2. With this

justi�ation we shall ontent ourselves to fous the investigation on pairwise waste|the funtion W

S

(a; b).

Set systems with presribed intersetion properties have been the objet of intense study by both the

design theory ommunity and the extremal set theory ommunity (see, e.g., [14℄ for a survey). Despite this,

the study of waste appears to be new. We shall, however, make substantial use of some design-theoreti

onstrutions, whih we desribe below.

De�nition 2.2. A `-(v; k; �) design is a family of subsets S = (S

1

; : : : ; S

n

) of the set [v℄ with the property

that eah jS

i

j = k and any set of ` elements of [v℄ is a subset of preisely � of the S

i

. (N.B. The subsets S

i

are typially referred to as bloks.)

Observe that if S is a `-(v; k; �) design, then it is also a (`� 1)-(v; k;

^

�) design where

^

� = �

(v � `+ 1)

(k � `+ 1)

:

To see this, note that if T is a subset of elements of size `� 1, then there are exatly v � (`� 1) sets of size

` whih ontain T ; let U

i

; i 2 [v � (`� 1)℄; denote these sets. By assumption, eah U

i

appears in exatly �

of the S

j

. Of ourse, if U

i

is a subset of some S

j

, then in fat exatly k � (`� 1) if the U

i

are subsets of S

j

.

Hene T appears in exatly �(v � `+ 1)=(k � `+ 1) of the S

j

, as desired.

To see the onnetion between suh designs and our problem, let D be a 2-(n; k; �) design onsisting of t

sets S

1

; : : : ; S

t

. For eah i 2 [n℄, let T

i

= fj j i 2 S

j

g. Note now that for any i 6= j,

T

i

\ T

j

= fk j fi; jg � S

k

g

4

and hene that jT

i

\ T

j

j = �. Based on the observation above, we see also that 8i; j; jT

i

j = jT

j

j and let a

denote this ommon ardinality. Now, let � = (�

1

; : : : ; �

n

) be any sequene of permutations of [t℄ for whih

�

i

([a℄) = T

i

. It is lear that these form an (n; t)-shedule for whih

W

�

(a; a) = �:

Unfortunately, the above onstrution o�ers satisfatory ontrol of 2-waste only for the spei� pair

(a; a). Furthermore, onsidering that the onstrution only determines the sets �

i

([a℄) and �

i

([n℄ n [a℄), the

ordering of these an be onspiratorially arranged to yield poor bounds on waste for other values. Our goal

is onstrut shedules with satisfatory ontrol on waste for all pairs (a; b).

While designs do not appear to immediately indue a solution to this problem, we will apply the following

design-theoreti onstrution several times in the sequel. Let GF(q) denote the �nite �eld with q elements,

where q is a prime power. Treating GF(q)

3

as a vetor spae over GF(q), the design will be given by the lattie

of linear subspaes of GF(q)

3

. It is easy to hek that there are n = q

2

+ q + 1 distint one dimensional

subspaes of GF(q)

3

, whih we denote `

1

; : : : ; `

n

. We say that two subspaes `

i

and `

j

are orthogonal if

8u 2 `

1

;8v 2 `

2

, hu; vi =

P

u

j

v

j

mod p = 0; in this ase we write `

i

? `

j

. It is a fat that for any one

dimensional subspae there are exatly q+1 one dimensional subspaes to whih it is orthogonal. The design

onsists of the n = q

2

+ q + 1 sets S

u

= f`

i

j `

i

? `

u

g. It is easy to show that any pair of suh sets interset

at a single `

i

, and that this forms a 2-(q

2

+ q + 1; q + 1; 1) design. See [14℄ for a proof and more disussion.

For onreteness, we �x a spei� (arbitrary) ordering of eah of these sets S

u

: let L

u

denote a anonial

sequene ht

1

u

; : : : ; t

r

u

i where S

u

= f`

t

i

u

j 1 � i � q+1g; i.e., the one dimensional subspaes `

t

i

u

, i = 1; : : : ; q+1,

are preisely those orthogonal to `

u

. For onveniene, for two sequenes A and B, we let A \ B and A [B

denote the orresponding union or intersetion of the sets of objets in the sequenes. We reord the above

disussion in the following theorem.

Theorem 2.1. Let n = q

2

+ q+1, where q is a prime power. Then the sequenes L

n

= hL

1

; : : : ; L

n

i possess

the following properties: eah L

u

has length q + 1, for eah u 6= v, jL

u

\ L

v

j = 1, and any element appears

in exatly q+1 distint sequenes. We note also that if q is prime, the �rst element of eah sequene an be

alulated in O(log n) time; eah subsequent element an be alulated in O(1) time.

(We assume throughout that addition or multipliation of two log (maxfn; tg)-bit numbers an be per-

formed in O(1) time.)

3 Redundany without ommuniation: a lower bound

Controlling global omputation redundany in the absene of ommuniation is a futile task. This is beause

no amount of algorithmi sophistiation an ompensate for the possibility of individual proessors, or

groups of proessors, beoming disonneted during the omputation. In general, an adversary that is able

to partition the proessors into g groups that annot ommuniate with eah other will ause any task-

performing algorithm to have work
(t � g), even if eah group of proessors performs no more than the

optimal number of tasks, t. In the extreme ase where all proessors are isolated from the beginning, the

work of any algorithm is
(t � n), whih is at least the work of an oblivious algorithm, where eah proessor

performs all tasks.

Of ourse it is not surprising that substantial redundany annot be avoided in the absene of ommu-

niation, furthermore, the lower bound on work of
(t � n) is not very interesting. However, as we pointed

out earlier, it is possible to shedule the work of a pair of proessors so that eah an perform up to t=2

tasks without a single task performed redundantly. Thus it is very interesting to onsider the intersetion

properties of pairs of proessor shedules, i.e., 2-waste.

If we insist that among the n total proessors, any two proessors, having exeuted the same number of

tasks t

0

, where t

0

< t, perform no redundant work, then it must be the ase that t

0

� bt=n. In partiular, if

n = t, then the pairwise waste jumps to one if any proessor exeutes more than one task. The next natural

question is: how many tasks an proessors omplete before the lower bound on pairwise redundant work is

5

2? In general, if any two proessors perform t

1

and t

2

tasks respetively, what is the lower bound on pairwise

redundant work? In this setion we answer these questions. The answers ontain both good and bad news:

given a �xed t, the lower bound on pairwise redundant work starts growing slowly for small t

1

and t

2

, then

grows quadratially in the shedule length as t

1

and t

2

approah t.

We begin with a short geometri lemma.

Lemma 3.1. Let a;b 2 R

t

and suppose that 8i; 0 � a

i

� b

i

� M and that kbk

1

� kak

1

= �M for some

positive � 2 N. Then

ha;bi �

kak

2

1

t� �

:

Proof. We say that a vetor x 2 R

t

is non-negative if 8i; x

i

� 0; for two vetors x;y 2 R

t

, we write x � y if

y� x is non-negative. Let e

i

denote the standard basis vetors for R

n

. For the non-negative vetor b 2 R

t

,

onsider the following family of transformations: for eah distint r; s 2 [t℄ and non-negative x � b, de�ne

T

rs

b

(x) = x+� � (e

r

� e

s

)

where � = min(b

r

� x

r

; x

s

). Note that kT

rs

b

(x)k

1

= kxk

1

and T

rs

b

(x) � b. Evidently, if x and b satisfy the

onditions of the theorem above, then so do T

rs

b

(x) and b, with the same �. Note further that if b

r

� b

s

then

hT

rs

b

(x);bi = hx;bi +� � (b

r

� b

s

) � hx;bi:

Let Z � [n℄ denote a set of � indies so that b

i

� b

j

for all i 2 Z and j 62 Z. Now, if a

z

= 0 for all z 2 Z

then a is supported on the set [n℄ n Z of size t� � so that

hb; ai � ha; ai �

kak

2

1

t� �

;

by the Cauhy-Shwarz inequality. Otherwise there is an index z 2 Z so that a

z

> 0, and in this ase there

must be an index y 62 Z so that a

y

< b

y

sine kb � ak

1

= �M but

P

i2Z

(b

i

� a

i

) � �M � a

z

< �M . Let

a

0

= a

(1)

= T

yz

b

(a), and observe that

P

i2Z

a

0

i

<

P

i2Z

a

i

. A �nite number of iterations of this proess

results in a vetor a

(k)

� b for whih a

(k)

i

= 0 for all i 2 Z, kak

1

= ka

(k)

k

1

and hb; ai � hb; a

(k)

i. Then, by

the same reasoning as above,

hb; ai � hb; a

(k)

i � ha

(k)

; a

(k)

i �

ka

(k)

k

2

1

t� �

=

kak

2

1

t� �

:

Now we proeed to the lower bound, whih generalizes the seond Johnson Bound [15℄ for the ase when

two proessors exeute di�erent number of tasks prior to their rendezvous.

Theorem 3.2 ([18℄). Let P = h�

1

; : : : ; �

n

i be an (n; t)-shedule and let 0 � a � b � t. Then

W

P

(a; b) �

na

2

(n� 1)(t� b+ a)

�

a

n� 1

:

Proof. We obtain the lower bound by omputing the expeted waste of a pair of t-shedules seleted at

random from P . Let � = W

P

(a; b). Consider seletion of i and j independently at random in the set [n℄.

We fous on the expeted value of the random variable

j�

i

([a℄) \ �

j

([b℄)j:

There are a total of n

2

pairs for i and j; if i 6= j then the ardinality of the intersetion is bounded above

by �. If i = j then this ardinality is obviously a. Hene

E[j�

i

([a℄) \ �

j

([b℄)j℄ �

n(n� 1)�+ n � a

n

2

=

�(n� 1) + a

n

: (1)

6

Consider now the t random variables X

�

, indexed by � 2 [t℄, de�ned as follows: X

�

= 1 if � 2 �

i

([a℄) \

�

j

([b℄), and 0 otherwise. Then E[j�

i

([a℄) \ �

j

([b℄)j℄ = E[

P

�2[t℄

X

�

℄ and by linearity of expetation,

E[j�

i

([a℄) \ �

j

([b℄)j℄ =

X

�2[t℄

E[X

�

℄ =

X

�2[t℄

Pr [� 2 �

i

([a℄)℄ � Pr [� 2 �

j

([b℄)℄ ;

sine i and j are independent.

Now we introdue the funtion x

m

(�), equal to the number of pre�xes of shedules of length m to whih

� belongs, i.e., x

m

(�) = jfi : � 2 �

i

([m℄)gj. Then

E[j�

i

([a℄) \ �

j

([b℄)j℄ =

X

�2[t℄

Pr [� 2 �

i

([a℄)℄ � Pr [� 2 �

j

([b℄)℄ =

X

�2[t℄

x

a

(�)x

b

(�)

n

2

=

1

n

2

X

�2[t℄

x

a

(�)x

b

(�) : (2)

Noting that

P

x

a

(�) = an and

P

x

b

(�) = bn, we apply Lemma 3.1 to the last expression in (2) above and

ombine this with the bound of (1):

1

n

2

�

(na)

2

(t� b+ a)

�

1

n

2

X

�2[t℄

x

a

(�)x

b

(�) � E[j�

i

([a℄) \ �

j

([b℄)j℄ �

(n� 1)�+ a

n

whene

� �

a

n� 1

�

na

t� b+ a

� 1

�

;

as desired.

For example, when proessors perform the same number of tasks a = b and n = t, then the worst ase

number of redundant tasks for any pair is at least

a

2

�a

t�1

. This means that (for n = t) if a exeeds

p

t + 1,

then the number of redundant task is at least 2.

Corollary 3.3 ([18℄). For t = n, if a >

p

n� 3=4+

1

2

then any n-proessor shedule of length a for t tasks

has worst ase pairwise waste at least 2.

4 Random shedules

As one would expet, shedules hosen at random perform quite well. In this setion we explore the behavior

of the (n; t)-shedules obtained when eah permutation is seleted uniformly (and independently) at random

among all permutations of [t℄.

4.1 Randomized shedules

When the proessors are endowed with a reasonable soure of randomness, a natural andidate sheduling

algorithm is one where proessors selet tasks by hoosing them uniformly among all tasks they have not

yet ompleted. This amounts to the seletion, by eah proessor i, of a random permutation �

i

2 S

[t℄

whih determines the order in whih this proessor will omplete the tasks. (S

[t℄

denotes the olletion of all

permutations of the set [t℄.) We let R be the resulting system of shedules.

Our objetive now is to show that random shedules R have ontrolled waste with high probability. This

amounts to bounding, for eah pair i; j and eah pair of numbers a; b, the overlap j�

i

([a℄) \ �

j

([b℄)j : Observe

that when these �

i

are seleted at random, the expeted size of this intersetion is ab=t. By showing that

the atual waste is very likely to be lose to this expeted value, one an onlude the waste if bounded for

all long enough pre�xes.

7

Theorem 4.1 ([18℄). Let R be a system of n random shedules for t tasks onstruted as above. Then with

probability at least 1�

1

nt

,

8a; b suh that 7

p

t ln (2nt) � a; b � t; W

R

(a; b) �

ab

t

+�(a; b) ;

where �(a; b) = 11

q

ab

t

ln(2nt)

Observe that Theorem 3.2 shows that (n; t)-shedules must have waste W(a; a) =
(a

2

=t) (as n ! 1);

hene suh randomized shedules o�er nearly optimal waste for this ase.

4.2 k-Waste for random shedules

For random shedules, one an apply martingale tehniques to diretly ontrol k-wise waste. We mention

one suh result below.

Theorem 4.2. Consider the random shedule R from above. Then with probability at least 1� 1=n,

W

R

(a; : : : ; a) �

k

X

s=2

(�1)

s

�

k

s

�

a

s

t

s�1

+�

a;k

;

where �

a;k

= (2k + 1)

p

a lnn.

Note that again this bounds the distane of the k-waste from its expeted value, whih an be omputed

by inlusion-exlusion to be

P

k

s=2

(�1)

s

�

k

s

�

a

s

t

s�1

. The proof, whih we omit, proeeds by onsidering the

martingale whih exposes the ith element of all shedules at step i. The theorem then follows by noting

that the expeted value an hange by at most k during a single exposure and applying Azuma's inequality.

(See [1℄ for a disussion of disrete exposure martingales and Azuma's inequality.)

4.3 Arbitrary rendezvous patterns

Thus far we have established bounds on wasted work for a single rendezvous. It is naturally interesting to

study the general ase allowing arbitrary patterns of (not neessarily pairwise) rendezvous. Of ourse, an

adversary that partitions the proessors into g disonneted omponents during the entire the life of the

omputation auses any task-performing algorithm to have work
(t � g), even if eah group of proessors

performs no more than the optimal number of �(t) tasks. This lower bound would appear to form a

somewhat pessimisti landsape for our problem. Considering, however, that no algorithm an maintain

low total work in the presene of suh pathologial ommuniation failures, it seems reasonable to pursue

a ompetitive analysis [21℄ for this general framework, and ompare the behavior of a given algorithm with

that of an optimal algorithm.

In partiular, we onsider the partitionable network senario onsisting of n asynhronous proessors

with a ommuniation medium that is subjet to arbitrary partitions during the life of the omputation.

This model is motivated by the abstration provided by a typial group ommuniation sheme; see, for

example, [3℄ and the surveys in [5℄. Spei�ally, at eah point of the omputation, we assume that the om-

muniation medium e�etively partitions the proessors into non-overlapping groups : ommuniation within

a group is instantaneous and reliable, ommuniation aross groups is impossible. Naturally, proessors in

the same group an share their knowledge of ompleted tasks and, while they remain onneted, avoid doing

redundant work. We refer to a transition from one partition to another as a reon�guration.

Our goal is to design shedules that minimize the total work, where work is de�ned to be the number

of tasks exeuted by all the proessors during the entire omputation (ounting multipliities). Ideally, when

two proessors \meet" in a new group (during a reon�guration) the sets of tasks they know to be omplete

would be disjoint to avoid wasted e�ort. This is impossible in general, as proessors must shedule their

8

work in ignorane of future reon�gurations and, moreover, irumstanes where two proessors meet who

have olletively ompleted more than t tasks will neessitate wasted work. (It is, of ourse, also possible

that the two proessors were members of a ommon group during a previous portion of the omputation,

resulting in shared knowledge.) A proessor may ease exeuting tasks only when it knows the results of all

tasks. We refer to this problem as Omni-Do.

We do not harge for oordination within a group, simply treating grouped proessors as a single (virtual)

asynhronous proessor. In partiular, if a group of proessors performs a set of t tasks during the lifetime

of the group, we harge this group t units of work, ignoring, for example, partially ompleted tasks whih

may remain at the group's demise or the ost of synhronizing proessors' knowledge during the group's

ineption. Note that while proessors are asynhronous, they do not rash.

An algorithm in this model is a rule whih, given a group of proessors and a set of tasks known by this

group to be omplete, determines a task for the group to omplete next. In the ase where all proessors are

disonneted during the entire omputation, any algorithm must inur �(t � n) work. On the other hand,

any reasonable algorithm should attain t work in the ase where all proessors remain onneted during the

omputation.

We onsider the behavior of an algorithm in the fae of an adversary (whih is oblivious in the sense of

[2℄) that determines both the sequene of reon�gurations and the number of tasks ompleted by eah group

before it is involved in another reon�guration. Taken together, this information determines a omputation

pattern: this is a direted ayli graph (DAG), eah vertex of whih orresponds to a group G of proessors

that existed during the omputation; a direted edge is plaed from G

1

to G

2

if G

2

was reated by a

reon�guration involving G

1

and the two groups have at least one proessor in ommon. We label eah

vertex of the DAG with the group of proessors assoiated with that vertex and the total number of tasks

that the adversary allows the group of proessors to perform before the next reon�guration ours. Note that

di�erent adversaries (ausing di�erent sequenes of reon�gurations) may give rise to the same omputation

pattern; the work aused by an adversary, however, depends only on the omputation pattern determined

by that adversary.

Spei�ally, if t is the number of tasks and n the number of proessors, then suh a omputation pattern

is a labeled and weighted direted ayli graph, that we all a (n; t)-DAG:

De�nition 4.1. A (n; t)-DAG is a direted ayli graph C = (V;E) augmented with a weight funtion

h : V ! N and a labeling g : V ! 2

[n℄

n f;g so that:

(i) For any maximal path p = (v

1

; : : : ; v

k

) in C,

P

h(v

i

) � t. (This guarantees that any algorithm

terminates during the omputation desribed by the DAG.)

(ii) g possesses the following \initial onditions":

[n℄ =

_

[

v: in(v)=0

g(v):

(iii) g respets the following \onservation law": there is a funtion � : E ! 2

[n℄

nf;g so that for eah v 2 V

with in(v) > 0,

g(v) =

_

[

(u;v)2E

�

�

(u; v)

�

;

and for eah v 2 V with out(v) > 0,

g(v) =

_

[

(v;u)2E

�

�

(v; u)

�

:

Here

_

[denotes disjoint union and in(v) and out(v) denote the in-degree and out-degree of v, respetively.

9

��

��

��

��

��

��

��

��

g

1

; 5 g

3

; 8

g

4

; t

g

5

; 2

��

��

g

2

; 3

��

��

g

6

; 4

��

��

g

7

; 5

��

��

g

8

; 6

��

��

g

10

; t

��

��

g

11

; t

��

��

g

9

; t

R

j?� 	 w

s U+ �

Figure 1: An example of a (12; t)-DAG

Example. A sample (12; t)-DAG is shown in Figure 1. Here we have g

1

= fp

1

g, g

2

= fp

2

; p

3

; p

4

g, g

3

=

fp

5

; p

6

g, g

4

= fp

7

g, g

5

= fp

8

; p

9

; p

10

; p

11

; p

12

g, g

6

= fp

1

; p

2

; p

3

; p

4

; p

6

g, g

7

= fp

8

; p

10

g, g

8

= fp

9

; p

11

; p

12

g,

g

9

= fp

1

; p

2

; p

3

; p

4

; p

6

; p

8

; p

10

g, g

10

= fp

5

; p

11

g, and g

11

= fp

9

; p

12

g.

This omputation pattern models all asynhronous omputations (adversaries) with the following be-

havior: (i) The proessors in groups g

1

and g

2

and proessor p

6

of group g

3

are regrouped during some

reon�guration to form group g

6

. Proessor p

5

of group g

3

beomes a member of group g

10

during the

same reon�guration (see below). Prior to this reon�guration, proessor p

1

(the singleton group g

1

) has

performed exatly 5 tasks, the proessors in g

2

have ooperatively performed exatly 3 tasks and the proes-

sors in g

3

have ooperatively performed exatly 8 tasks (assuming that t > 8). (ii) Group g

5

is partitioned

during some reon�guration into two new groups, g

7

and g

8

. Prior to this reon�guration, the proessors

in g

5

have performed exatly 2 tasks. (iii) Groups g

6

and g

7

merge during some reon�guration and form

group g

9

. Prior to this merge, the proessors in g

6

have performed exatly 4 tasks (ounting only the ones

performed after the formation of g

6

and assuming that there are at least 4 tasks remaining to be done) and

the proessors in g

7

have performed exatly 5 tasks. (iv) The proessors in group g

8

and proessor p

5

of

group g

3

are regrouped during some reon�guration into groups g

10

and g

11

. Prior to this reon�guration,

the proessors in group g

8

have performed exatly 6 tasks (assuming that there are at least 6 tasks remaining,

otherwise they would have performed the remaining tasks). (v) The proessors in g

9

, g

10

, and g

11

run until

ompletion with no further reon�gurations. (vi) Proessor p

7

(the singleton group g

4

) runs in isolation for

the entire omputation. �

We say that two groups G and G

0

are independent if there is no direted path onneting one to the

other. For a omputation pattern C, the omputation width of C, denoted w(C), is the maximum number

of independent groups reahable (along direted paths) in this DAG from any vertex.

We onsider a ompetitive analysis that ompares the work of a randomized algorithm with the work of

an optimal algorithm that has omplete information about the omputation history (and hene the future

pattern of reon�gurations).

Let D be a deterministi algorithm for Omni-Do and C a omputation pattern, we let W

D

(C) denote the

total work expended by algorithm D, where reon�gurations are determined aording to the omputation

pattern C. Work is formally de�ned as follows:

De�nition 4.2. Let C be a (n; t)-DAG and D a deterministi algorithm for Omni-Do. W

D

(C) is de�ned

indutively as follows. For a vertex v of C with in(v) = 0, de�ne L

v

to be the set ontaining the �rst h(v)

tasks ompleted by group g(v) aording to D. Otherwise, in(v) > 0; in this ase, let

�

L

v

=

S

u<v

L

u

denote

the olletion of all tasks known to be omplete at the ineption of the group g(v). Then let L

v

be the �rst

h(v) tasks ompleted by group g(v) aording to D starting with knowledge

�

L

v

. If h(v) > t � j

�

L

v

j, de�ne

L

v

= [t℄ n

�

L

v

. Then W

D

(C) =

P

v2C

jL

v

j.

10

We treat randomized algorithms as distributions over deterministi algorithms; for a set � and a family

of deterministi algorithms fD

r

j r 2 �g we let R = R(fD

r

j r 2 �g) denote the randomized algorithm

where r is seleted uniformly at random from � and sheduling is done aording to D

r

. For a real-valued

random variable X , we let E[X ℄ denote its expeted value. We let opt denote the optimal o�-line algorithm,

whih may shedule tasks with full knowledge of the pattern of reon�gurations. Spei�ally, for eah C we

de�ne W

opt

(C) = min

D

W

D

(C).

De�nition 4.3 ([21, 9, 2℄). Let � be a real valued funtion de�ned on the set of all (n; t)-DAGs (for all n

and t). A randomized algorithm R is �-ompetitive if for all omputation patterns C,

E

r

[W

D

r

(C)℄ � �(C)W

opt

(C);

this expetation being taken over uniform hoie of r 2 �. The de�nition speializes naturally to the ase of

a deterministi algorithm.

We begin with a lower bound for deterministi algorithms. This is then applied to give a lower bound

for randomized algorithms in Corollary 4.4.

Theorem 4.3 ([11℄). Let a : N ! R and D be a deterministi sheduling algorithm for Omni-Do so that

D is a(w(�))-ompetitive (that is, D is �-ompetitive for a funtion � = a Æ w). Then a() � 1 + =e.

This theorem is proved by onsidering a distribution on omputation patterns C that is independent of

the deterministi algorithm D|this immediately gives rise to a lower bound for randomized algorithms:

Corollary 4.4 ([11℄). Let R(fD

r

j r 2 �g) be a randomized sheduling algorithm for the Omni-Do problem

that is (a Æ w)-ompetitive. Then a() � 1 + =e.

Unless the above lower bound is \too weak", it suggests that it is worthwhile to seek algorithms that are

very ompetitive, despite the potentially high bounds on \absolute" work.

We onsider the natural randomized algorithm rs where a proessor (or group) with knowledge that the

tasks in a set K � [t℄ have been ompleted selets to next omplete a task at random from the set [t℄ nK.

More formally, let � = (�

1

; : : : ; �

n

) be a n-tuple of permutations, where eah �

i

is a permutation of [t℄). We

desribe a deterministi algorithm D

�

so that

rs = R(fD

�

j � 2 (S

[t℄

)

n

g);

where S

[t℄

is the olletion of permutations on [t℄. Let G be a group of proessors and 2 G the proessor

in G with the lowest proessor identi�er. Then the deterministi algorithm D

�

spei�es that the group G,

should it know that the tasks in K � [t℄ have been ompleted, next ompletes the �rst task in the sequene

�

(1); : : : ; �

(t) whih is not in K.

It turns out that this algorithm is optimal with respet to the lower bound on ompetitive ratios.

Theorem 4.5 ([11℄). Algorithm rs is (1 + w(C)=e)-ompetitive for any omputation pattern C.

5 Derandomization via �nite geometries

We now onsider a method for derandomizing these shedules using the design disussed in Setion 2.

5.1 Shedules for n = t

We onstrut a system of shedules of length n by arranging tasks from the sequenes of L

n

in a reursive

fashion. (Reall that while the sequenes of L

n

have strong intersetion properties, they are only roughly

p

n

in length.) In preparation for the reursive onstrution, we reord the following lemma about the pairwise

intersetions of the elements in the sequene of L

n

indexed by a spei� subspae L

u

.

11

Lemma 5.1. Let L

n

= hL

1

; : : : ; L

n

i be the olletion of sequenes onstruted in Theorem 2.1, and let

L

u

= ht

1

u

; : : : ; t

q+1

u

i, 1 � u � n. Then for any i 6= j, we have L

t

i

u

\ L

t

j

u

= fug.

Proof. Consider any two distint sequenes L

t

i

u

and L

t

j

u

, where i 6= j. By onstrution these sequenes

ontain the indies orresponding to the one dimensional subspaes that are orthogonal to lines `

t

i

u

and `

t

j

u

,

respetively. Sine t

i

u

is appears in L

u

, line `

t

i

u

is orthogonal to line `

u

. By the same argument line t

j

u

is

orthogonal to line `

u

. Hene u appears in both L

t

i

u

and L

t

j

u

, but jL

t

i

u

\L

t

j

u

j = 1 by Theorem 2.1 so that the

intersetion annot ontain any other element.

As a result of this lemma, there is only a single repeated element in the sequenes L

t

1

u

, L

t

2

u

; : : : ; L

t

q+1

u

; this

element is u. This fat suggests the following onstrution of a system of shedules P

n

. Let P

u

, 1 � u � n,

be the sequene whose �rst element is u, and whose remaining elements are given by onatenating the q+1

sequenes L

t

1

u

; : : : ; L

t

q+1

u

after removing u from eah. Spei�ally,

P

u

= hui Æ (

i2L

u

(L

i

� u));

where Æ denotes onatenation and L

i

� u denotes the sequene L

i

with u deleted. Note now that sine the

total length of P

u

is evidently (q+1)q+1 = n, eah element of [n℄ must appear exatly one in eah P

u

; these

P

u

thus rive rise to a family of permutations �

u

, where �

u

(k) is the k element of P

u

. Let P = (�

1

; : : : ; �

n

).

We oneptually divide the sequenes P

u

(assoiated with the permutations �

u

) into q + 1 segments of

elements. The �rst segment ontains the �rst q+1 elements (inluding the initial element u); the remaining

q segments ontain q onseutive elements eah.

This reursive onstrution yields a straightforward bound on pairwise waste, reorded below.

Theorem 5.2. Let q be a prime power, n = q

2

+ q + 1. Let a = 1 + iq, b = 1 + jq, 0 � i; j � q + 1. Then

W

P

n

(a; b) �

8

>

<

>

:

0; i+ j = 0;

1; i = 0; j � 1 or i � 1; j = 0;

q + ij; i � j � 1:

Proof. Consider any two t-shedules �

u

and �

v

of P

n

; let P

u

and P

v

be the orresponding sequenes. As the

�rst elements in these shedules are distint, the intersetion for i = j = 0 is zero. The ase when i or j is

zero is easy. Assume now that i; j � 1. Consider the i � j pairs of segments (I; J), where I (or J) is one of

the �rst i (or j) segments of P

u

(or P

v

). The reursive onstrution guarantees that only one pair may have

segments where I � J or J � I . For this pair the overlap is at most q + 1 beause these may be the �rst

segments in the shedules. For the remaining ij � 1 pairs the overlap is at most 1. The result follows.

We mention that the onstrution an be done on-line. For eah shedule the �rst element an be

alulated in O(1) time. For the remaining q(q + 1) elements, at the beginning of every sequene of q

elements we need to invert at most two elements in GF(q). When q is prime this an be done in O(log n)

using the extended Eulidean algorithm. Other elements of the shedule an be found in O(1) time.

Note that when t = �n for some � 2 N, the above onstrution an be trivially applied by plaing

the t tasks into n hunks of size �. In this ase, of ourse, when a single overlap ourred in the original

onstrution, this penalty is ampli�ed by �.

5.2 Controlling waste for short pre�xes

One disadvantage of P

n

is that the �rst segment may repeat, so that (q +1) waste may be inurred when a

pre�x of length â = (q + 1) is exeuted. To postpone this inrease one would like to rearrange the segments

in eah P

u

so that the �rst segment is distint aross the resulting shedules. This an be aomplished by

�nding a permutation � : [n℄ ! [n℄ suh that the sequene L

u

ontains task �(u). (In other words `

u

must

be orthogonal to `

�(u)

.) This permutation an then be used to selet distint segments as the �rst segments

of shedules in P

n

.

12

Consider the bipartite graph G

n

= (U

n

; V

n

; E

n

) where U

n

= V

n

= [n℄ and n = q

2

+ q + 1; here q is

a prime power. Both U

n

and V

n

an be plaed in one-to-one orrespondene with the one dimensional

subspaes of GF(q)

3

. An edge is plaed between `

u

2 U

n

and `

v

2 V

n

when they are orthogonal. Based

on the struture of GF(q)

3

, it is not hard to show that G

n

is (q + 1)-regular. By Hall's theorem (see, e.g.,

[12℄), there is always a perfet mathing in a d-regular bipartite graph and note that suh a mathing yields

a permutation � with the desired properties. In partiular if the edge (u; v) appears in the perfet mathing,

then we put �(u) = v. This mathing an be found using the Hoproft-Karp algorithm [13℄ that runs in time

O(

p

jU j+ jV j � jEj) = O(n

2

).

We use � to onstrut the system of shedules G

n

suh that the �rst segments are distint. Spei�ally,

given L

n

, the system of shedules G

n

= h

1

; : : : ;

n

i is de�ned as follows. For any 1 � u � n, the sequene

G

u

is given by

G

u

= hui Æ (L

�(u)

� fug) Æ (

i2L

u

��(u)

(L

i

� u)):

Then

u

is the permutation assoiated with G

u

.

Theorem 5.3. Let q be a prime power, n = q

2

+ q + 1. Let a = 1 + iq, b = 1 + jq, 0 � i; j � q + 1. Then:

W

G

n

(a; b) �

8

>

>

>

<

>

>

>

:

0; i+ j = 0;

1; i = 0; j � 1 or i � 1; j = 0;

1; i � j = 1;

q + ij; i � j > 1:

Proof. When i = j = 1 observe that by the onstrution of G

n

the �rst segments of the shedules are distint.

The other ases follow the proof of Theorem 5.2.

Observe that this onstrution is time-optimal as it produes n

2

elements and runs in O(n

2

) time.

However, the algorithm requires O(n

2

) time to onstrut even a single permutation.

6 Conlusions

We surveyed results that haraterize the ability of n isolated proessors to ollaborate on a ommon known

set of t tasks. The good news is that the isolated proessors an deterministially onstrut shedules

loally, equipped only with the knowledge of n, t, and their unique proessor identi�ers in [n℄. Moreover,

the ost of onstruting suh shedules an be amortized over the performane of tasks. Although the lower

bounds on wasted work mandate that waste must grow quadratially with the number of exeuted tasks

(from 1 to n), suh shedules ontrol wasted work for surprisingly long pre�xes of tasks. We also show that

when proessors start working in isolation and are subjeted to an arbitrary pattern of merges, randomized

sheduling is ompetitive ompared to an optimal algorithm that is aware of the pattern of merges.

Aknowledgements. Several results surveyed in this report were developed in ollaboration with Greg

Malewiz and Chryssis Georgiou. Additional related results and details are presented in Malewiz's dotoral

dissertation [17℄.

Referenes

[1℄ Alon, N. and Spener, J.-H.: The probabilisti method. John Wiley & Sons In., New York, 1992. With

an appendix by Paul Erd}os, A Wiley-Intersiene Publiation.

[2℄ Ben-David, S, Borodin, A., Karp, R., Tardos, G. and Wigderson, A.: On the power of randomization

in on-line algorithms. Algorithmia, 11(1):2{14, 1994.

13

[3℄ Birman, K.: The Proess Group Approah to Reliable Distributed Computing. Communiations of the

ACM, 36(12):37{53, 1993.

[4℄ Chlebus, B., G�asienie, L., Kowalski, D., Shvartsman, A.A.: Bounding work and ommuniation in ro-

bust ooperative omputation. Pro. of 16th Int. Symposium on Distributed Computing, (2002) Springer

LNCS 2508, 295{310

[5℄ Comm. of the ACM, Speial Issue on Group Communiation Servies, vol. 39, no. 4, 1996.

[6℄ Dolev, S., Segala, R., Shvartsman, A.: Dynami Load Balaning with Group Communiation. 6th

International Colloquium on Strutural Information and Communiation Complexity (1999) 111-125

(to appear in Theoretial Computer Siene).

[7℄ Dolev, D. and Malki, D.: \The Transis Approah to High Availability Cluster Communiations", Comm.

of the ACM, vol. 39, no. 4, pp. 64{70, 1996.

[8℄ Dwork, C., Halpern, J., Waarts, O.: Performing Work EÆiently in the Presene of Faults. SIAM J. on

Computing, Vol. 27 5 (1998) 1457{1491.

[9℄ Fiat, A., Karp, R.M., Luby, M., MGeoh, L.A., Sleator, D.D., and Young N.E.: Competitive paging

algorithms. Journal of Algorithms, 12(4):685{699, 1991.

[10℄ Georgiades, S., Mavroniolas, M., Spirakis, P.: Optimal, Distributed Deision-Making: The Case of No

Communiation. Intl Symposium on Fundamentals of Computation Theory. (1999) 293{303

[11℄ Georgiou, Ch., Russell, A., and Shvartsman, A.A.: Work-ompetitive sheduling for ooperative om-

puting with dynami groups. In Pro. of the 35

th

ACM Symposium on Theory of Computing (STOC

2003), to appear, 2003. (Prelim. results reported in the brief paper: Optimally work-ompetitive shedul-

ing for ooperative omputing with merging groups. In Pro. of the 21

st

ACM Symp. on Priniples of

Distributed Computing (PODC 2002), 2002.)

[12℄ Harary, F.: Graph Theory. Reading, MA: Addison-Wesley (1994)

[13℄ Hoproft, J.E., Karp., R.M.: A O(n

5=2

) algorithm for maximum mathing in bipartite graphs. SIAM

Journal on Computing, Vol. 2. (1973) 225{231

[14℄ Hughes, D.R. and Piper, F.C.: Design Theory, Cambridge University Press, 1985.

[15℄ Johnson, S.M.: A New Upper Bound for Error-Correting Codes. IEEE Transations on Information

Theory, Vol. 8 (1962) 203{207

[16℄ Kanellakis, P.C., Shvartsman, A.A.: Fault-Tolerant Parallel Computation. Kluwer Aademi Publishers

(1997) ISBN 0-7923-9922-6.

[17℄ Malewiz, G.: Distributed Sheduling for Disonneted Cooperation Dotoral Dissertation, Computer

Siene and Engineering, University of Connetiut (2003).

[18℄ Malewiz, G., Russell, A., Shvartsman, A.A.: Distributed Cooperation During the Absene of Commu-

niation. 14th International Conferene on Distributed Computing, LNCS Vol. 1914 (2000) 119{133

[19℄ Malewiz, G., Russell, A., Shvartsman, A.A.: Optimal Sheduling for Disonneted Cooperation. 8th

International Colloquium on Strutural Information and Communiation Complexity (2001) 259-274

(Brief announement. ACM Symposium on Priniples of Distributed Computing. (2001))

[20℄ Malewiz, G., Russell, A., Shvartsman, A.: Loal Sheduling for Distributed Cooperation. Invited paper,

IEEE International Symposium on Network Computing and Appliations, NCA'01 (2001)

14

[21℄ Sleator, D. and Tarjan, R.: Amortized eÆieny of list update and paging rules. Communiations of

the ACM, 28(2):202{208, 1985.

[22℄ Papadimitriou, C.H., Yannakakis, M.: On the value of information in distributed deision-making. ACM

Symposium on Priniples of Distributed Computing. (1991) 61{64

15

