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Abstra
t

Ability to 
ooperate on 
ommon tasks in a distributed setting is key to solving a broad range of 
ompu-

tation problems ranging from distributed sear
h su
h as SETI to distributed simulation and multi-agent


ollaboration. In su
h settings there exists a trade-o� between 
omputation and 
ommuni
ation: both

resour
es must be managed to de
rease redundant 
omputation and to ensure eÆ
ient 
omputational

progress. This survey deals with s
heduling issues for distributed 
ollaboration. Spe
i�
ally, we exam-

ine the extreme situation of 
ollaboration without 
ommuni
ation. That is, we 
onsider the extent to

whi
h eÆ
ient 
ollaboration is possible if all resour
es are dire
ted to 
omputation at the expense of


ommuni
ation. Of 
ourse there are also 
ases where su
h an extreme situation is not a matter of 
hoi
e:

the network may fail, the mobile nodes may have intermittent 
onne
tivity, and when 
ommuni
ation is

unavailable it may take a long time to (re)establish 
onne
tivity. The results summarized here pre
isely


hara
terize the ability of distributed agents to 
ollaborate on a known 
olle
tion of independent tasks

by means of lo
al s
heduling de
isions that require no 
ommuni
ation and that a
hieve low redundan
y

in task exe
utions. Su
h s
heduling solutions exhibit an interesting 
onne
tion between the distributed


ollaboration problem and the mathemati
al design theory. The lower bounds presented here along with

the randomized and deterministi
 s
hedule 
onstru
tions show the limitations on su
h low-redundan
y


ooperation and show that s
hedules with near-optimal redundan
y 
an be eÆ
iently 
onstru
ted by

pro
essors working in isolation. We also show that when pro
essors start working in isolation and are

subje
ted to an arbitrary pattern of network re
on�gurations, e.g., fragmentations and merges, ran-

domized s
heduling is 
ompetitive 
ompared to an optimal algorithm that is aware of the pattern of

re
on�gurations.
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1 Introdu
tion

Computation and 
ommuni
ation are two basi
 resour
e 
ommodities in distributed 
omputing. In a dis-

tributed system setting one normally 
omputes to perform spe
i�
 tasks. One also needs to 
ommuni
ate

in order to 
oordinate multiple 
omputation a
tivities, for example, to in
rease 
omputation eÆ
ien
y by

eliminating redundant work. As 
an be expe
ted, there exists a trade-o� between the eÆ
ien
y of distributed


omputation and the amount of 
ommuni
ation needed to 
oordinate the 
omputation. Dwork, Halpern and

Waarts [8℄ have 
onsidered a basi
 problem of distributed 
oordination, where a number of message-passing

pro
essors 
ooperate in exe
uting a 
olle
tion of independent and similarly-sized tasks (in the presen
e of

pro
essor 
rashes). They measure the eÆ
ien
y of the 
omputation in terms of its work 
omplexity W

(one task 
onsumes one work unit), and the 
ost of 
ommuni
ation in terms of the message 
omplexity M .

The authors also assess the overall performan
e in terms of e�ort that is de�ned as the sum of work W

and message 
omplexity M . Chlebus et al. [4℄ solve a similar problem and they measure the e�ort of their

solution as the sum of the number of all pro
essing steps performed (this in
ludes task-oriented work and

any bookkeeping steps) and the number of messages sent. They observe that a pro
essor 
an learn that a

task is performed either by doing the task, or by re
eiving a message that tells it that the task was done. In

su
h a setting, one 
an view 
omputation and 
ommuni
ation as 
omparable resour
es.

To study aspe
ts of the trade-o� between 
ommuni
ation and 
omputation in distributed 
ooperative

appli
ations, we 
onsider the following abstra
t problem: n pro
essors must perform t tasks and learn the

results of all tasks. We assume that all tasks are known to all pro
essors. A 
ommon impediment to

e�e
tive 
oordination in distributed settings is asyn
hrony that manifests itself, for example, in disparate

pro
essor speeds and nondeterministi
 message laten
y. Fortunately, our problem 
an always be solved by a


ommuni
ation-oblivious algorithm that for
es ea
h pro
essor to perform all tasks. Su
h a solution has work

W = O(t �n), an requires no 
ommuni
ation, i.e.,M = 0. On the other hand, 
(t) is the obvious lower bound

on work and the best known lower bound is W = 
(t+n logn), 
f. [16℄. Therefore the trade-o� expe
tation

is that if we gradually in
rease the number of messages we should be able to de
rease the amount of work

performed.

Let us 
onsider an asyn
hronous setting, where pro
essors 
ommuni
ate by means of a rendezvous, i.e.,

two pro
essors that are able to 
ommuni
ate 
an perform state ex
hange. The pro
essors that are not able

to 
ommuni
ate via rendezvous have no 
hoi
e but to perform all t tasks. Consider the 
omputation with a

single rendezvous. There are n � 2 pro
essors that are unable to 
ommuni
ate, and they 
olle
tively must

perform exa
tly t � (n� 2) work units to learn all results. Now what about the remaining pair of pro
essors

that are able to rendezvous? In the worst 
ase they rendezvous after performing all tasks individually. In

this 
ase no savings in work are realized. Suppose they rendezvous having performed t=2 tasks ea
h. In

the best 
ase, the two pro
essors performed mutually-ex
lusive subsets of tasks and they learn the 
omplete

set of results as a 
onsequen
e of the rendezvous. In parti
ular if these two pro
essors know that they will

be able to rendezvous in the future, the 
ould s
hedule their work as follows: one pro
essors performs the

tasks in the order 1; 2; : : : ; t, the other in the order t; t� 1; : : : ; 1. No matter when they happen rendezvous,

the number of tasks they both perform is minimized. Of 
ourse the pro
essors do not know a priori what

pair will be able to rendezvous. Thus it is interesting to produ
e task exe
ution s
hedules for all pro
essors,

su
h that upon the �rst rendezvous of any two pro
essors the number of tasks performed redundantly is

minimized.

This setting we have just des
ribed is interesting for several reasons. If the 
ommuni
ation links are

subje
t to failures, then ea
h pro
essor must be ready to exe
ute all of the t tasks, whether or not it

is able to 
ommuni
ate. In realisti
 settings the pro
essors may not initially be aware of the network


on�guration, whi
h would require expenditure of 
omputation resour
es to establish 
ommuni
ation, for

example in radio networks. In distributed environments involving autonomous agents, pro
essors may 
hoose

not to 
ommuni
ate either be
ause they need to 
onserve power or be
ause they must maintain radio silen
e.

Finally, during the initial 
on�guration of a dynami
 network or a middleware servi
e (su
h as a group


ommuni
ation servi
e [7℄) the individual pro
essors may start working in isolation pending the 
ompletion

of system 
on�guration. Regardless of the reasons, it is important to dire
t any available 
omputation

resour
es to performing the required tasks as soon as possible. In all su
h s
enarios, the t tasks have to be
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s
heduled for exe
ution by all pro
essors. The goal of su
h s
heduling must be to 
ontrol redundant task

exe
utions in the absen
e of 
ommuni
ation and during the period of time when the 
ommuni
ation 
hannels

are being (re)established.

Related work: Cooperation with limited 
ommuni
ation. The eÆ
ien
y of work-performing algo-

rithms depends on how well the loads are balan
ed among the parti
ipating pro
essors and on the ability of

the pro
essors to disseminate information on the progress of the 
omputation.

Papadimitriou and Yannakakis [22℄ study how limited patterns of 
ommuni
ation a�e
t load-balan
ing.

They 
onsider a problem where there are 3 agents, ea
h of whi
h has a job of a size drawn uniformly at

random from [0; 1℄, and this distribution of job sizes is known to every agent. Any agent A 
an learn the

sizes of jobs of some other agents as given by a dire
ted graph of three nodes. Based on this information ea
h

agent has to de
ide to whi
h of the two servers its job will be sent for pro
essing. Ea
h server has 
apa
ity

1, and it may happen that when two or more agents de
ide to send their jobs to the same server the server

will be overloaded. The goal is to devise 
ooperative strategies for agents that will minimize the 
han
es

of overloading any server. The authors present several strategies for agents for this purpose. They show

that adding an edge to a graph 
an improve load balan
ing. These strategies depend on the 
ommuni
ation

topology. This problem is similar to our s
heduling problem. Sending a job to server number x 2 f0; 1g

resembles doing task number x in our problem. The goal to avoid overloading servers resembles avoiding

overlaps between tasks. The problem of Papadimitriou and Yannakakis is di�erent be
ause in our problem

we are interested in stru
turing job exe
ution where the number of tasks 
an be arbitrary t � 1.

Georgiades, Mavroni
olas, and Spirakis [10℄ study a similar load-balan
ing problem. On the one hand

their treatment is more general in the sense that they 
onsider arbitrary number of agents n, and arbitrary


omputable de
ision algorithms. However it is more restri
tive in the sense that they 
onsider only one

type of 
ommuni
ation topology where there is no 
ommuni
ation between pro
essors whatsoever. The two

servers that pro
ess jobs have some given 
apa
ity that is not ne
essarily 1. They study two families of

de
ision algorithms: algorithms that 
annot see the size of jobs before making a de
ision whi
h server to

send a job to for pro
essing, and algorithms that 
an make de
isions based on the size of the job. They


ompletely settle these 
ases by showing that their de
ision proto
ols minimize the 
han
es of overloading

any server.

For a variation of the problem we deal with in this report, Dolev et al. [6℄ showed that for the 
ase

of dynami
 
hanges in 
onne
tivity, the termination time of any on-line task assignment algorithm 
an be

greater than the termination time of an o�-line task assignment algorithm by a fa
tor linear in n. This means

that an on-line algorithm may not be able to do better than the trivial solution that in
urs linear overhead

by having ea
h pro
essor perform all the tasks. With this observation [6℄ develops an e�e
tive strategy for

managing the task exe
ution redundan
y and proves that the strategy provides ea
h of the n pro
essors with

a s
hedule of �(n

1=3

) tasks su
h that at most one task is performed redundantly by any two pro
essors.

Stru
ture of this report. In Se
tion 2 we introdu
e our s
hedules, the \waste" measure and design. In

Se
tion 3 we present and prove the main lower bound on waste of s
hedules. Se
tion 4 
ontains material

showing that random s
hedules have good waste properties and that they furthermore behave 
ompetitively

for arbitrary patterns of pro
essor rendezvous. In Se
tion 5 we present design-theoreti
 
onstru
tions that

yield deterministi
 s
hedules with good waste properties. We 
on
lude in Se
tion 6.

2 S
hedules, waste, and designs

We 
onsider the abstra
t setting where n pro
essors need to perform t independent and idempotent tasks.

A task is idempotent if the exe
ution of the task yields the same result when it is performed more than on
e.

A task is independent if the result of its exe
ution does not depend on the order in whi
h other tasks are

exe
uted. The pro
essors have unique identi�ers from the set [n℄ = f1; : : : ; ng, and the tasks have unique

identi�ers from the set [t℄ = f1; : : : ; tg. Initially ea
h pro
essor knows the tasks that need to be performed

and their identi�ers.
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We shall fo
us on the s
heduling problem dis
ussed above, abstra
ted as follows. An (n; t)-s
hedule is a

tuple (�

1

; : : : ; �

n

) of n permutations of the set [t℄. When n = 1 it is elided and we simply write t-s
hedule.

An (n; t)-s
hedule immediately gives rise to a strategy for n isolated pro
essors who must 
omplete t

tasks until 
ommuni
ation between some pair (or group) is established: the pro
essor i simply pro
eeds to


omplete the tasks in the order pres
ribed by �

i

. Suppose now that some k of these pro
essors, say q

1

; : : : ; q

k

,

should rendezvous at a time when the ith pro
essor in this group, q

i

, has 
ompleted a

i

tasks. Ideally, the

pro
essors would have 
ompleted disjoint sets of tasks, so that the total number of tasks 
ompleted is

P

i

a

i

.

As this is too mu
h to hope for in general, it is natural to attempt to bound the gap between

P

i

a

i

and the

a
tual number of distin
t tasks 
ompleted. This gap we 
all waste:

De�nition 2.1. If S is a (n; t)-s
hedule and (a

1

; : : : ; a

k

) 2 N

k

, the waste fun
tion for S is

W

S

(a

1

; : : : ; a

k

) = max

(q

1

;:::;q

k

)

 

k

X

i

a

i

�

�

�

�

�

�

k

[

i

�

q

i

([a

i

℄)

�

�

�

�

�

!

;

this maximum taken over all k tuples (q

1

; : : : ; q

k

) of distin
t elements of [n℄.

Here (and throughout), if � : X ! Y is a fun
tion and S � X , we let �(S) = f�(x) j x 2 Sg. For a

spe
i�
 ve
tor a = (a

1

; : : : ; a

k

), W

S

(a) 
aptures the worst-
ase number of redundant tasks performed by any


olle
tion of k pro
essors when the ith pro
ess has 
ompleted the �rst a

i

tasks of its s
hedule.

One immediate observation is that bounds on pairwise wasteW

S

(�; �) 
an be naturally extended to bounds

on k-wise waste W

S

(�; : : : ; �

| {z }

k

): spe
i�
ally, note that if S is an (n; t)-s
hedule then

W

S

(a

1

; : : : ; a

k

) �

X

i<j

W

S

(a

i

; a

j

)

just by 
onsidering the �rst two terms of the standard in
lusion-ex
lusion rule. Moreover, it appears that

this relationship is fairly tight as it is nearly attained by randomized s
hedules|see Se
tion 4.2. With this

justi�
ation we shall 
ontent ourselves to fo
us the investigation on pairwise waste|the fun
tion W

S

(a; b).

Set systems with pres
ribed interse
tion properties have been the obje
t of intense study by both the

design theory 
ommunity and the extremal set theory 
ommunity (see, e.g., [14℄ for a survey). Despite this,

the study of waste appears to be new. We shall, however, make substantial use of some design-theoreti



onstru
tions, whi
h we des
ribe below.

De�nition 2.2. A `-(v; k; �) design is a family of subsets S = (S

1

; : : : ; S

n

) of the set [v℄ with the property

that ea
h jS

i

j = k and any set of ` elements of [v℄ is a subset of pre
isely � of the S

i

. (N.B. The subsets S

i

are typi
ally referred to as blo
ks.)

Observe that if S is a `-(v; k; �) design, then it is also a (`� 1)-(v; k;

^

�) design where

^

� = �

(v � `+ 1)

(k � `+ 1)

:

To see this, note that if T is a subset of elements of size `� 1, then there are exa
tly v � (`� 1) sets of size

` whi
h 
ontain T ; let U

i

; i 2 [v � (`� 1)℄; denote these sets. By assumption, ea
h U

i

appears in exa
tly �

of the S

j

. Of 
ourse, if U

i

is a subset of some S

j

, then in fa
t exa
tly k � (`� 1) if the U

i

are subsets of S

j

.

Hen
e T appears in exa
tly �(v � `+ 1)=(k � `+ 1) of the S

j

, as desired.

To see the 
onne
tion between su
h designs and our problem, let D be a 2-(n; k; �) design 
onsisting of t

sets S

1

; : : : ; S

t

. For ea
h i 2 [n℄, let T

i

= fj j i 2 S

j

g. Note now that for any i 6= j,

T

i

\ T

j

= fk j fi; jg � S

k

g
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and hen
e that jT

i

\ T

j

j = �. Based on the observation above, we see also that 8i; j; jT

i

j = jT

j

j and let a

denote this 
ommon 
ardinality. Now, let � = (�

1

; : : : ; �

n

) be any sequen
e of permutations of [t℄ for whi
h

�

i

([a℄) = T

i

. It is 
lear that these form an (n; t)-s
hedule for whi
h

W

�

(a; a) = �:

Unfortunately, the above 
onstru
tion o�ers satisfa
tory 
ontrol of 2-waste only for the spe
i�
 pair

(a; a). Furthermore, 
onsidering that the 
onstru
tion only determines the sets �

i

([a℄) and �

i

([n℄ n [a℄), the

ordering of these 
an be 
onspiratorially arranged to yield poor bounds on waste for other values. Our goal

is 
onstru
t s
hedules with satisfa
tory 
ontrol on waste for all pairs (a; b).

While designs do not appear to immediately indu
e a solution to this problem, we will apply the following

design-theoreti
 
onstru
tion several times in the sequel. Let GF(q) denote the �nite �eld with q elements,

where q is a prime power. Treating GF(q)

3

as a ve
tor spa
e over GF(q), the design will be given by the latti
e

of linear subspa
es of GF(q)

3

. It is easy to 
he
k that there are n = q

2

+ q + 1 distin
t one dimensional

subspa
es of GF(q)

3

, whi
h we denote `

1

; : : : ; `

n

. We say that two subspa
es `

i

and `

j

are orthogonal if

8u 2 `

1

;8v 2 `

2

, hu; vi =

P

u

j

v

j

mod p = 0; in this 
ase we write `

i

? `

j

. It is a fa
t that for any one

dimensional subspa
e there are exa
tly q+1 one dimensional subspa
es to whi
h it is orthogonal. The design


onsists of the n = q

2

+ q + 1 sets S

u

= f`

i

j `

i

? `

u

g. It is easy to show that any pair of su
h sets interse
t

at a single `

i

, and that this forms a 2-(q

2

+ q + 1; q + 1; 1) design. See [14℄ for a proof and more dis
ussion.

For 
on
reteness, we �x a spe
i�
 (arbitrary) ordering of ea
h of these sets S

u

: let L

u

denote a 
anoni
al

sequen
e ht

1

u

; : : : ; t

r

u

i where S

u

= f`

t

i

u

j 1 � i � q+1g; i.e., the one dimensional subspa
es `

t

i

u

, i = 1; : : : ; q+1,

are pre
isely those orthogonal to `

u

. For 
onvenien
e, for two sequen
es A and B, we let A \ B and A [ B

denote the 
orresponding union or interse
tion of the sets of obje
ts in the sequen
es. We re
ord the above

dis
ussion in the following theorem.

Theorem 2.1. Let n = q

2

+ q+1, where q is a prime power. Then the sequen
es L

n

= hL

1

; : : : ; L

n

i possess

the following properties: ea
h L

u

has length q + 1, for ea
h u 6= v, jL

u

\ L

v

j = 1, and any element appears

in exa
tly q+1 distin
t sequen
es. We note also that if q is prime, the �rst element of ea
h sequen
e 
an be


al
ulated in O(log n) time; ea
h subsequent element 
an be 
al
ulated in O(1) time.

(We assume throughout that addition or multipli
ation of two log (maxfn; tg)-bit numbers 
an be per-

formed in O(1) time.)

3 Redundan
y without 
ommuni
ation: a lower bound

Controlling global 
omputation redundan
y in the absen
e of 
ommuni
ation is a futile task. This is be
ause

no amount of algorithmi
 sophisti
ation 
an 
ompensate for the possibility of individual pro
essors, or

groups of pro
essors, be
oming dis
onne
ted during the 
omputation. In general, an adversary that is able

to partition the pro
essors into g groups that 
annot 
ommuni
ate with ea
h other will 
ause any task-

performing algorithm to have work 
(t � g), even if ea
h group of pro
essors performs no more than the

optimal number of tasks, t. In the extreme 
ase where all pro
essors are isolated from the beginning, the

work of any algorithm is 
(t � n), whi
h is at least the work of an oblivious algorithm, where ea
h pro
essor

performs all tasks.

Of 
ourse it is not surprising that substantial redundan
y 
annot be avoided in the absen
e of 
ommu-

ni
ation, furthermore, the lower bound on work of 
(t � n) is not very interesting. However, as we pointed

out earlier, it is possible to s
hedule the work of a pair of pro
essors so that ea
h 
an perform up to t=2

tasks without a single task performed redundantly. Thus it is very interesting to 
onsider the interse
tion

properties of pairs of pro
essor s
hedules, i.e., 2-waste.

If we insist that among the n total pro
essors, any two pro
essors, having exe
uted the same number of

tasks t

0

, where t

0

< t, perform no redundant work, then it must be the 
ase that t

0

� bt=n
. In parti
ular, if

n = t, then the pairwise waste jumps to one if any pro
essor exe
utes more than one task. The next natural

question is: how many tasks 
an pro
essors 
omplete before the lower bound on pairwise redundant work is

5



2? In general, if any two pro
essors perform t

1

and t

2

tasks respe
tively, what is the lower bound on pairwise

redundant work? In this se
tion we answer these questions. The answers 
ontain both good and bad news:

given a �xed t, the lower bound on pairwise redundant work starts growing slowly for small t

1

and t

2

, then

grows quadrati
ally in the s
hedule length as t

1

and t

2

approa
h t.

We begin with a short geometri
 lemma.

Lemma 3.1. Let a;b 2 R

t

and suppose that 8i; 0 � a

i

� b

i

� M and that kbk

1

� kak

1

= �M for some

positive � 2 N. Then

ha;bi �

kak

2

1

t� �

:

Proof. We say that a ve
tor x 2 R

t

is non-negative if 8i; x

i

� 0; for two ve
tors x;y 2 R

t

, we write x � y if

y� x is non-negative. Let e

i

denote the standard basis ve
tors for R

n

. For the non-negative ve
tor b 2 R

t

,


onsider the following family of transformations: for ea
h distin
t r; s 2 [t℄ and non-negative x � b, de�ne

T

rs

b

(x) = x+� � (e

r

� e

s

)

where � = min(b

r

� x

r

; x

s

). Note that kT

rs

b

(x)k

1

= kxk

1

and T

rs

b

(x) � b. Evidently, if x and b satisfy the


onditions of the theorem above, then so do T

rs

b

(x) and b, with the same �. Note further that if b

r

� b

s

then

hT

rs

b

(x);bi = hx;bi +� � (b

r

� b

s

) � hx;bi:

Let Z � [n℄ denote a set of � indi
es so that b

i

� b

j

for all i 2 Z and j 62 Z. Now, if a

z

= 0 for all z 2 Z

then a is supported on the set [n℄ n Z of size t� � so that

hb; ai � ha; ai �

kak

2

1

t� �

;

by the Cau
hy-S
hwarz inequality. Otherwise there is an index z 2 Z so that a

z

> 0, and in this 
ase there

must be an index y 62 Z so that a

y

< b

y

sin
e kb � ak

1

= �M but

P

i2Z

(b

i

� a

i

) � �M � a

z

< �M . Let

a

0

= a

(1)

= T

yz

b

(a), and observe that

P

i2Z

a

0

i

<

P

i2Z

a

i

. A �nite number of iterations of this pro
ess

results in a ve
tor a

(k)

� b for whi
h a

(k)

i

= 0 for all i 2 Z, kak

1

= ka

(k)

k

1

and hb; ai � hb; a

(k)

i. Then, by

the same reasoning as above,

hb; ai � hb; a

(k)

i � ha

(k)

; a

(k)

i �

ka

(k)

k

2

1

t� �

=

kak

2

1

t� �

:

Now we pro
eed to the lower bound, whi
h generalizes the se
ond Johnson Bound [15℄ for the 
ase when

two pro
essors exe
ute di�erent number of tasks prior to their rendezvous.

Theorem 3.2 ([18℄). Let P = h�

1

; : : : ; �

n

i be an (n; t)-s
hedule and let 0 � a � b � t. Then

W

P

(a; b) �

na

2

(n� 1)(t� b+ a)

�

a

n� 1

:

Proof. We obtain the lower bound by 
omputing the expe
ted waste of a pair of t-s
hedules sele
ted at

random from P . Let � = W

P

(a; b). Consider sele
tion of i and j independently at random in the set [n℄.

We fo
us on the expe
ted value of the random variable

j�

i

([a℄) \ �

j

([b℄)j:

There are a total of n

2

pairs for i and j; if i 6= j then the 
ardinality of the interse
tion is bounded above

by �. If i = j then this 
ardinality is obviously a. Hen
e

E[j�

i

([a℄) \ �

j

([b℄)j℄ �

n(n� 1)�+ n � a

n

2

=

�(n� 1) + a

n

: (1)
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Consider now the t random variables X

�

, indexed by � 2 [t℄, de�ned as follows: X

�

= 1 if � 2 �

i

([a℄) \

�

j

([b℄), and 0 otherwise. Then E[j�

i

([a℄) \ �

j

([b℄)j℄ = E[

P

�2[t℄

X

�

℄ and by linearity of expe
tation,

E[j�

i

([a℄) \ �

j

([b℄)j℄ =

X

�2[t℄

E[X

�

℄ =

X

�2[t℄

Pr [� 2 �

i

([a℄)℄ � Pr [� 2 �

j

([b℄)℄ ;

sin
e i and j are independent.

Now we introdu
e the fun
tion x

m

(�), equal to the number of pre�xes of s
hedules of length m to whi
h

� belongs, i.e., x

m

(�) = jfi : � 2 �

i

([m℄)gj. Then

E[j�

i

([a℄) \ �

j

([b℄)j℄ =

X

�2[t℄

Pr [� 2 �

i

([a℄)℄ � Pr [� 2 �

j

([b℄)℄ =

X

�2[t℄

x

a

(�)x

b

(�)

n

2

=

1

n

2

X

�2[t℄

x

a

(�)x

b

(�) : (2)

Noting that

P

x

a

(�) = an and

P

x

b

(�) = bn, we apply Lemma 3.1 to the last expression in (2) above and


ombine this with the bound of (1):

1

n

2

�

(na)

2

(t� b+ a)

�

1

n

2

X

�2[t℄

x

a

(�)x

b

(�) � E[j�

i

([a℄) \ �

j

([b℄)j℄ �

(n� 1)�+ a

n

when
e

� �

a

n� 1

�

na

t� b+ a

� 1

�

;

as desired.

For example, when pro
essors perform the same number of tasks a = b and n = t, then the worst 
ase

number of redundant tasks for any pair is at least

a

2

�a

t�1

. This means that (for n = t) if a ex
eeds

p

t + 1,

then the number of redundant task is at least 2.

Corollary 3.3 ([18℄). For t = n, if a >

p

n� 3=4+

1

2

then any n-pro
essor s
hedule of length a for t tasks

has worst 
ase pairwise waste at least 2.

4 Random s
hedules

As one would expe
t, s
hedules 
hosen at random perform quite well. In this se
tion we explore the behavior

of the (n; t)-s
hedules obtained when ea
h permutation is sele
ted uniformly (and independently) at random

among all permutations of [t℄.

4.1 Randomized s
hedules

When the pro
essors are endowed with a reasonable sour
e of randomness, a natural 
andidate s
heduling

algorithm is one where pro
essors sele
t tasks by 
hoosing them uniformly among all tasks they have not

yet 
ompleted. This amounts to the sele
tion, by ea
h pro
essor i, of a random permutation �

i

2 S

[t℄

whi
h determines the order in whi
h this pro
essor will 
omplete the tasks. (S

[t℄

denotes the 
olle
tion of all

permutations of the set [t℄.) We let R be the resulting system of s
hedules.

Our obje
tive now is to show that random s
hedules R have 
ontrolled waste with high probability. This

amounts to bounding, for ea
h pair i; j and ea
h pair of numbers a; b, the overlap j�

i

([a℄) \ �

j

([b℄)j : Observe

that when these �

i

are sele
ted at random, the expe
ted size of this interse
tion is ab=t. By showing that

the a
tual waste is very likely to be 
lose to this expe
ted value, one 
an 
on
lude the waste if bounded for

all long enough pre�xes.
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Theorem 4.1 ([18℄). Let R be a system of n random s
hedules for t tasks 
onstru
ted as above. Then with

probability at least 1�

1

nt

,

8a; b su
h that 7

p

t ln (2nt) � a; b � t; W

R

(a; b) �

ab

t

+�(a; b) ;

where �(a; b) = 11

q

ab

t

ln(2nt)

Observe that Theorem 3.2 shows that (n; t)-s
hedules must have waste W(a; a) = 
(a

2

=t) (as n ! 1);

hen
e su
h randomized s
hedules o�er nearly optimal waste for this 
ase.

4.2 k-Waste for random s
hedules

For random s
hedules, one 
an apply martingale te
hniques to dire
tly 
ontrol k-wise waste. We mention

one su
h result below.

Theorem 4.2. Consider the random s
hedule R from above. Then with probability at least 1� 1=n,

W

R

(a; : : : ; a) �

k

X

s=2

(�1)

s

�

k

s

�

a

s

t

s�1

+�

a;k

;

where �

a;k

= (2k + 1)

p

a lnn.

Note that again this bounds the distan
e of the k-waste from its expe
ted value, whi
h 
an be 
omputed

by in
lusion-ex
lusion to be

P

k

s=2

(�1)

s

�

k

s

�

a

s

t

s�1

. The proof, whi
h we omit, pro
eeds by 
onsidering the

martingale whi
h exposes the ith element of all s
hedules at step i. The theorem then follows by noting

that the expe
ted value 
an 
hange by at most k during a single exposure and applying Azuma's inequality.

(See [1℄ for a dis
ussion of dis
rete exposure martingales and Azuma's inequality.)

4.3 Arbitrary rendezvous patterns

Thus far we have established bounds on wasted work for a single rendezvous. It is naturally interesting to

study the general 
ase allowing arbitrary patterns of (not ne
essarily pairwise) rendezvous. Of 
ourse, an

adversary that partitions the pro
essors into g dis
onne
ted 
omponents during the entire the life of the


omputation 
auses any task-performing algorithm to have work 
(t � g), even if ea
h group of pro
essors

performs no more than the optimal number of �(t) tasks. This lower bound would appear to form a

somewhat pessimisti
 lands
ape for our problem. Considering, however, that no algorithm 
an maintain

low total work in the presen
e of su
h pathologi
al 
ommuni
ation failures, it seems reasonable to pursue

a 
ompetitive analysis [21℄ for this general framework, and 
ompare the behavior of a given algorithm with

that of an optimal algorithm.

In parti
ular, we 
onsider the partitionable network s
enario 
onsisting of n asyn
hronous pro
essors

with a 
ommuni
ation medium that is subje
t to arbitrary partitions during the life of the 
omputation.

This model is motivated by the abstra
tion provided by a typi
al group 
ommuni
ation s
heme; see, for

example, [3℄ and the surveys in [5℄. Spe
i�
ally, at ea
h point of the 
omputation, we assume that the 
om-

muni
ation medium e�e
tively partitions the pro
essors into non-overlapping groups : 
ommuni
ation within

a group is instantaneous and reliable, 
ommuni
ation a
ross groups is impossible. Naturally, pro
essors in

the same group 
an share their knowledge of 
ompleted tasks and, while they remain 
onne
ted, avoid doing

redundant work. We refer to a transition from one partition to another as a re
on�guration.

Our goal is to design s
hedules that minimize the total work, where work is de�ned to be the number

of tasks exe
uted by all the pro
essors during the entire 
omputation (
ounting multipli
ities). Ideally, when

two pro
essors \meet" in a new group (during a re
on�guration) the sets of tasks they know to be 
omplete

would be disjoint to avoid wasted e�ort. This is impossible in general, as pro
essors must s
hedule their

8



work in ignoran
e of future re
on�gurations and, moreover, 
ir
umstan
es where two pro
essors meet who

have 
olle
tively 
ompleted more than t tasks will ne
essitate wasted work. (It is, of 
ourse, also possible

that the two pro
essors were members of a 
ommon group during a previous portion of the 
omputation,

resulting in shared knowledge.) A pro
essor may 
ease exe
uting tasks only when it knows the results of all

tasks. We refer to this problem as Omni-Do.

We do not 
harge for 
oordination within a group, simply treating grouped pro
essors as a single (virtual)

asyn
hronous pro
essor. In parti
ular, if a group of pro
essors performs a set of t tasks during the lifetime

of the group, we 
harge this group t units of work, ignoring, for example, partially 
ompleted tasks whi
h

may remain at the group's demise or the 
ost of syn
hronizing pro
essors' knowledge during the group's

in
eption. Note that while pro
essors are asyn
hronous, they do not 
rash.

An algorithm in this model is a rule whi
h, given a group of pro
essors and a set of tasks known by this

group to be 
omplete, determines a task for the group to 
omplete next. In the 
ase where all pro
essors are

dis
onne
ted during the entire 
omputation, any algorithm must in
ur �(t � n) work. On the other hand,

any reasonable algorithm should attain t work in the 
ase where all pro
essors remain 
onne
ted during the


omputation.

We 
onsider the behavior of an algorithm in the fa
e of an adversary (whi
h is oblivious in the sense of

[2℄) that determines both the sequen
e of re
on�gurations and the number of tasks 
ompleted by ea
h group

before it is involved in another re
on�guration. Taken together, this information determines a 
omputation

pattern: this is a dire
ted a
y
li
 graph (DAG), ea
h vertex of whi
h 
orresponds to a group G of pro
essors

that existed during the 
omputation; a dire
ted edge is pla
ed from G

1

to G

2

if G

2

was 
reated by a

re
on�guration involving G

1

and the two groups have at least one pro
essor in 
ommon. We label ea
h

vertex of the DAG with the group of pro
essors asso
iated with that vertex and the total number of tasks

that the adversary allows the group of pro
essors to perform before the next re
on�guration o

urs. Note that

di�erent adversaries (
ausing di�erent sequen
es of re
on�gurations) may give rise to the same 
omputation

pattern; the work 
aused by an adversary, however, depends only on the 
omputation pattern determined

by that adversary.

Spe
i�
ally, if t is the number of tasks and n the number of pro
essors, then su
h a 
omputation pattern

is a labeled and weighted dire
ted a
y
li
 graph, that we 
all a (n; t)-DAG:

De�nition 4.1. A (n; t)-DAG is a dire
ted a
y
li
 graph C = (V;E) augmented with a weight fun
tion

h : V ! N and a labeling g : V ! 2

[n℄

n f;g so that:

(i) For any maximal path p = (v

1

; : : : ; v

k

) in C,

P

h(v

i

) � t. (This guarantees that any algorithm

terminates during the 
omputation des
ribed by the DAG.)

(ii) g possesses the following \initial 
onditions":

[n℄ =

_

[

v: in(v)=0

g(v):

(iii) g respe
ts the following \
onservation law": there is a fun
tion � : E ! 2

[n℄

nf;g so that for ea
h v 2 V

with in(v) > 0,

g(v) =

_

[

(u;v)2E

�

�

(u; v)

�

;

and for ea
h v 2 V with out(v) > 0,

g(v) =

_

[

(v;u)2E

�

�

(v; u)

�

:

Here

_

[ denotes disjoint union and in(v) and out(v) denote the in-degree and out-degree of v, respe
tively.
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Figure 1: An example of a (12; t)-DAG

Example. A sample (12; t)-DAG is shown in Figure 1. Here we have g

1

= fp

1

g, g

2

= fp

2

; p

3

; p

4

g, g

3

=

fp

5

; p

6

g, g

4

= fp

7

g, g

5

= fp

8

; p

9

; p

10

; p

11

; p

12

g, g

6

= fp

1

; p

2

; p

3

; p

4

; p

6

g, g

7

= fp

8

; p

10

g, g

8

= fp

9

; p

11

; p

12

g,

g

9

= fp

1

; p

2

; p

3

; p

4

; p

6

; p

8

; p

10

g, g

10

= fp

5

; p

11

g, and g

11

= fp

9

; p

12

g.

This 
omputation pattern models all asyn
hronous 
omputations (adversaries) with the following be-

havior: (i) The pro
essors in groups g

1

and g

2

and pro
essor p

6

of group g

3

are regrouped during some

re
on�guration to form group g

6

. Pro
essor p

5

of group g

3

be
omes a member of group g

10

during the

same re
on�guration (see below). Prior to this re
on�guration, pro
essor p

1

(the singleton group g

1

) has

performed exa
tly 5 tasks, the pro
essors in g

2

have 
ooperatively performed exa
tly 3 tasks and the pro
es-

sors in g

3

have 
ooperatively performed exa
tly 8 tasks (assuming that t > 8). (ii) Group g

5

is partitioned

during some re
on�guration into two new groups, g

7

and g

8

. Prior to this re
on�guration, the pro
essors

in g

5

have performed exa
tly 2 tasks. (iii) Groups g

6

and g

7

merge during some re
on�guration and form

group g

9

. Prior to this merge, the pro
essors in g

6

have performed exa
tly 4 tasks (
ounting only the ones

performed after the formation of g

6

and assuming that there are at least 4 tasks remaining to be done) and

the pro
essors in g

7

have performed exa
tly 5 tasks. (iv) The pro
essors in group g

8

and pro
essor p

5

of

group g

3

are regrouped during some re
on�guration into groups g

10

and g

11

. Prior to this re
on�guration,

the pro
essors in group g

8

have performed exa
tly 6 tasks (assuming that there are at least 6 tasks remaining,

otherwise they would have performed the remaining tasks). (v) The pro
essors in g

9

, g

10

, and g

11

run until


ompletion with no further re
on�gurations. (vi) Pro
essor p

7

(the singleton group g

4

) runs in isolation for

the entire 
omputation. �

We say that two groups G and G

0

are independent if there is no dire
ted path 
onne
ting one to the

other. For a 
omputation pattern C, the 
omputation width of C, denoted 
w(C), is the maximum number

of independent groups rea
hable (along dire
ted paths) in this DAG from any vertex.

We 
onsider a 
ompetitive analysis that 
ompares the work of a randomized algorithm with the work of

an optimal algorithm that has 
omplete information about the 
omputation history (and hen
e the future

pattern of re
on�gurations).

Let D be a deterministi
 algorithm for Omni-Do and C a 
omputation pattern, we let W

D

(C) denote the

total work expended by algorithm D, where re
on�gurations are determined a

ording to the 
omputation

pattern C. Work is formally de�ned as follows:

De�nition 4.2. Let C be a (n; t)-DAG and D a deterministi
 algorithm for Omni-Do. W

D

(C) is de�ned

indu
tively as follows. For a vertex v of C with in(v) = 0, de�ne L

v

to be the set 
ontaining the �rst h(v)

tasks 
ompleted by group g(v) a

ording to D. Otherwise, in(v) > 0; in this 
ase, let

�

L

v

=

S

u<v

L

u

denote

the 
olle
tion of all tasks known to be 
omplete at the in
eption of the group g(v). Then let L

v

be the �rst

h(v) tasks 
ompleted by group g(v) a

ording to D starting with knowledge

�

L

v

. If h(v) > t � j

�

L

v

j, de�ne

L

v

= [t℄ n

�

L

v

. Then W

D

(C) =

P

v2C

jL

v

j.
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We treat randomized algorithms as distributions over deterministi
 algorithms; for a set � and a family

of deterministi
 algorithms fD

r

j r 2 �g we let R = R(fD

r

j r 2 �g) denote the randomized algorithm

where r is sele
ted uniformly at random from � and s
heduling is done a

ording to D

r

. For a real-valued

random variable X , we let E[X ℄ denote its expe
ted value. We let opt denote the optimal o�-line algorithm,

whi
h may s
hedule tasks with full knowledge of the pattern of re
on�gurations. Spe
i�
ally, for ea
h C we

de�ne W

opt

(C) = min

D

W

D

(C).

De�nition 4.3 ([21, 9, 2℄). Let � be a real valued fun
tion de�ned on the set of all (n; t)-DAGs (for all n

and t). A randomized algorithm R is �-
ompetitive if for all 
omputation patterns C,

E

r

[W

D

r

(C)℄ � �(C)W

opt

(C);

this expe
tation being taken over uniform 
hoi
e of r 2 �. The de�nition spe
ializes naturally to the 
ase of

a deterministi
 algorithm.

We begin with a lower bound for deterministi
 algorithms. This is then applied to give a lower bound

for randomized algorithms in Corollary 4.4.

Theorem 4.3 ([11℄). Let a : N ! R and D be a deterministi
 s
heduling algorithm for Omni-Do so that

D is a(
w(�))-
ompetitive (that is, D is �-
ompetitive for a fun
tion � = a Æ 
w). Then a(
) � 1 + 
=e.

This theorem is proved by 
onsidering a distribution on 
omputation patterns C that is independent of

the deterministi
 algorithm D|this immediately gives rise to a lower bound for randomized algorithms:

Corollary 4.4 ([11℄). Let R(fD

r

j r 2 �g) be a randomized s
heduling algorithm for the Omni-Do problem

that is (a Æ 
w)-
ompetitive. Then a(
) � 1 + 
=e.

Unless the above lower bound is \too weak", it suggests that it is worthwhile to seek algorithms that are

very 
ompetitive, despite the potentially high bounds on \absolute" work.

We 
onsider the natural randomized algorithm rs where a pro
essor (or group) with knowledge that the

tasks in a set K � [t℄ have been 
ompleted sele
ts to next 
omplete a task at random from the set [t℄ nK.

More formally, let � = (�

1

; : : : ; �

n

) be a n-tuple of permutations, where ea
h �

i

is a permutation of [t℄). We

des
ribe a deterministi
 algorithm D

�

so that

rs = R(fD

�

j � 2 (S

[t℄

)

n

g);

where S

[t℄

is the 
olle
tion of permutations on [t℄. Let G be a group of pro
essors and 
 2 G the pro
essor

in G with the lowest pro
essor identi�er. Then the deterministi
 algorithm D

�

spe
i�es that the group G,

should it know that the tasks in K � [t℄ have been 
ompleted, next 
ompletes the �rst task in the sequen
e

�




(1); : : : ; �




(t) whi
h is not in K.

It turns out that this algorithm is optimal with respe
t to the lower bound on 
ompetitive ratios.

Theorem 4.5 ([11℄). Algorithm rs is (1 + 
w(C)=e)-
ompetitive for any 
omputation pattern C.

5 Derandomization via �nite geometries

We now 
onsider a method for derandomizing these s
hedules using the design dis
ussed in Se
tion 2.

5.1 S
hedules for n = t

We 
onstru
t a system of s
hedules of length n by arranging tasks from the sequen
es of L

n

in a re
ursive

fashion. (Re
all that while the sequen
es of L

n

have strong interse
tion properties, they are only roughly

p

n

in length.) In preparation for the re
ursive 
onstru
tion, we re
ord the following lemma about the pairwise

interse
tions of the elements in the sequen
e of L

n

indexed by a spe
i�
 subspa
e L

u

.
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Lemma 5.1. Let L

n

= hL

1

; : : : ; L

n

i be the 
olle
tion of sequen
es 
onstru
ted in Theorem 2.1, and let

L

u

= ht

1

u

; : : : ; t

q+1

u

i, 1 � u � n. Then for any i 6= j, we have L

t

i

u

\ L

t

j

u

= fug.

Proof. Consider any two distin
t sequen
es L

t

i

u

and L

t

j

u

, where i 6= j. By 
onstru
tion these sequen
es


ontain the indi
es 
orresponding to the one dimensional subspa
es that are orthogonal to lines `

t

i

u

and `

t

j

u

,

respe
tively. Sin
e t

i

u

is appears in L

u

, line `

t

i

u

is orthogonal to line `

u

. By the same argument line t

j

u

is

orthogonal to line `

u

. Hen
e u appears in both L

t

i

u

and L

t

j

u

, but jL

t

i

u

\L

t

j

u

j = 1 by Theorem 2.1 so that the

interse
tion 
annot 
ontain any other element.

As a result of this lemma, there is only a single repeated element in the sequen
es L

t

1

u

, L

t

2

u

; : : : ; L

t

q+1

u

; this

element is u. This fa
t suggests the following 
onstru
tion of a system of s
hedules P

n

. Let P

u

, 1 � u � n,

be the sequen
e whose �rst element is u, and whose remaining elements are given by 
on
atenating the q+1

sequen
es L

t

1

u

; : : : ; L

t

q+1

u

after removing u from ea
h. Spe
i�
ally,

P

u

= hui Æ (


i2L

u

(L

i

� u));

where Æ denotes 
on
atenation and L

i

� u denotes the sequen
e L

i

with u deleted. Note now that sin
e the

total length of P

u

is evidently (q+1)q+1 = n, ea
h element of [n℄ must appear exa
tly on
e in ea
h P

u

; these

P

u

thus rive rise to a family of permutations �

u

, where �

u

(k) is the k element of P

u

. Let P = (�

1

; : : : ; �

n

).

We 
on
eptually divide the sequen
es P

u

(asso
iated with the permutations �

u

) into q + 1 segments of

elements. The �rst segment 
ontains the �rst q+1 elements (in
luding the initial element u); the remaining

q segments 
ontain q 
onse
utive elements ea
h.

This re
ursive 
onstru
tion yields a straightforward bound on pairwise waste, re
orded below.

Theorem 5.2. Let q be a prime power, n = q

2

+ q + 1. Let a = 1 + iq, b = 1 + jq, 0 � i; j � q + 1. Then

W

P

n

(a; b) �

8

>

<

>

:

0; i+ j = 0;

1; i = 0; j � 1 or i � 1; j = 0;

q + ij; i � j � 1:

Proof. Consider any two t-s
hedules �

u

and �

v

of P

n

; let P

u

and P

v

be the 
orresponding sequen
es. As the

�rst elements in these s
hedules are distin
t, the interse
tion for i = j = 0 is zero. The 
ase when i or j is

zero is easy. Assume now that i; j � 1. Consider the i � j pairs of segments (I; J), where I (or J) is one of

the �rst i (or j) segments of P

u

(or P

v

). The re
ursive 
onstru
tion guarantees that only one pair may have

segments where I � J or J � I . For this pair the overlap is at most q + 1 be
ause these may be the �rst

segments in the s
hedules. For the remaining ij � 1 pairs the overlap is at most 1. The result follows.

We mention that the 
onstru
tion 
an be done on-line. For ea
h s
hedule the �rst element 
an be


al
ulated in O(1) time. For the remaining q(q + 1) elements, at the beginning of every sequen
e of q

elements we need to invert at most two elements in GF(q). When q is prime this 
an be done in O(log n)

using the extended Eu
lidean algorithm. Other elements of the s
hedule 
an be found in O(1) time.

Note that when t = �n for some � 2 N, the above 
onstru
tion 
an be trivially applied by pla
ing

the t tasks into n 
hunks of size �. In this 
ase, of 
ourse, when a single overlap o

urred in the original


onstru
tion, this penalty is ampli�ed by �.

5.2 Controlling waste for short pre�xes

One disadvantage of P

n

is that the �rst segment may repeat, so that (q +1) waste may be in
urred when a

pre�x of length â = (q + 1) is exe
uted. To postpone this in
rease one would like to rearrange the segments

in ea
h P

u

so that the �rst segment is distin
t a
ross the resulting s
hedules. This 
an be a

omplished by

�nding a permutation � : [n℄ ! [n℄ su
h that the sequen
e L

u


ontains task �(u). (In other words `

u

must

be orthogonal to `

�(u)

.) This permutation 
an then be used to sele
t distin
t segments as the �rst segments

of s
hedules in P

n

.

12



Consider the bipartite graph G

n

= (U

n

; V

n

; E

n

) where U

n

= V

n

= [n℄ and n = q

2

+ q + 1; here q is

a prime power. Both U

n

and V

n


an be pla
ed in one-to-one 
orresponden
e with the one dimensional

subspa
es of GF(q)

3

. An edge is pla
ed between `

u

2 U

n

and `

v

2 V

n

when they are orthogonal. Based

on the stru
ture of GF(q)

3

, it is not hard to show that G

n

is (q + 1)-regular. By Hall's theorem (see, e.g.,

[12℄), there is always a perfe
t mat
hing in a d-regular bipartite graph and note that su
h a mat
hing yields

a permutation � with the desired properties. In parti
ular if the edge (u; v) appears in the perfe
t mat
hing,

then we put �(u) = v. This mat
hing 
an be found using the Hop
roft-Karp algorithm [13℄ that runs in time

O(

p

jU j+ jV j � jEj) = O(n

2

).

We use � to 
onstru
t the system of s
hedules G

n

su
h that the �rst segments are distin
t. Spe
i�
ally,

given L

n

, the system of s
hedules G

n

= h


1

; : : : ; 


n

i is de�ned as follows. For any 1 � u � n, the sequen
e

G

u

is given by

G

u

= hui Æ (L

�(u)

� fug) Æ (


i2L

u

��(u)

(L

i

� u)):

Then 


u

is the permutation asso
iated with G

u

.

Theorem 5.3. Let q be a prime power, n = q

2

+ q + 1. Let a = 1 + iq, b = 1 + jq, 0 � i; j � q + 1. Then:

W

G

n

(a; b) �

8

>

>

>

<

>

>

>

:

0; i+ j = 0;

1; i = 0; j � 1 or i � 1; j = 0;

1; i � j = 1;

q + ij; i � j > 1:

Proof. When i = j = 1 observe that by the 
onstru
tion of G

n

the �rst segments of the s
hedules are distin
t.

The other 
ases follow the proof of Theorem 5.2.

Observe that this 
onstru
tion is time-optimal as it produ
es n

2

elements and runs in O(n

2

) time.

However, the algorithm requires O(n

2

) time to 
onstru
t even a single permutation.

6 Con
lusions

We surveyed results that 
hara
terize the ability of n isolated pro
essors to 
ollaborate on a 
ommon known

set of t tasks. The good news is that the isolated pro
essors 
an deterministi
ally 
onstru
t s
hedules

lo
ally, equipped only with the knowledge of n, t, and their unique pro
essor identi�ers in [n℄. Moreover,

the 
ost of 
onstru
ting su
h s
hedules 
an be amortized over the performan
e of tasks. Although the lower

bounds on wasted work mandate that waste must grow quadrati
ally with the number of exe
uted tasks

(from 1 to n), su
h s
hedules 
ontrol wasted work for surprisingly long pre�xes of tasks. We also show that

when pro
essors start working in isolation and are subje
ted to an arbitrary pattern of merges, randomized

s
heduling is 
ompetitive 
ompared to an optimal algorithm that is aware of the pattern of merges.
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