Distributed Computation Meets Design Theory:
Local Scheduling for Disconnected Cooperation*

Alexander Russellf Alexander Shvartsman?

Abstract

Ability to cooperate on common tasks in a distributed setting is key to solving a broad range of compu-
tation problems ranging from distributed search such as SETI to distributed simulation and multi-agent
collaboration. In such settings there exists a trade-off between computation and communication: both
resources must be managed to decrease redundant computation and to ensure efficient computational
progress. This survey deals with scheduling issues for distributed collaboration. Specifically, we exam-
ine the extreme situation of collaboration without communication. That is, we consider the extent to
which efficient collaboration is possible if all resources are directed to computation at the expense of
communication. Of course there are also cases where such an extreme situation is not a matter of choice:
the network may fail, the mobile nodes may have intermittent connectivity, and when communication is
unavailable it may take a long time to (re)establish connectivity. The results summarized here precisely
characterize the ability of distributed agents to collaborate on a known collection of independent tasks
by means of local scheduling decisions that require no communication and that achieve low redundancy
in task executions. Such scheduling solutions exhibit an interesting connection between the distributed
collaboration problem and the mathematical design theory. The lower bounds presented here along with
the randomized and deterministic schedule constructions show the limitations on such low-redundancy
cooperation and show that schedules with near-optimal redundancy can be efficiently constructed by
processors working in isolation. We also show that when processors start working in isolation and are
subjected to an arbitrary pattern of network reconfigurations, e.g., fragmentations and merges, ran-
domized scheduling is competitive compared to an optimal algorithm that is aware of the pattern of
reconfigurations.

*This article appears as: A. Russell and A. Shvartsman. “Distributed Computation Meets Design Theory: Local Scheduling
for Disconnected Cooperation.” Current Trends in Theoretical Computer Science: The Challenge of the New Century, vol. 1:
Algorithms and Complexity, pp. 315-336, World Scientific, 2004.

tDepartment of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA. Email:
acr@cse.uconn.edu. The work of the first author is supported in part by the NSF CAREER Award 0093065, NSF ITR Grant
0220264, and the NSF Theory of Computing Grant 0311368,

tDepartment of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA and Computer
Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge MA, 02139, USA. Email:
aas@cse.uconn.edu. The work of the second author is supported in part by the NSF CAREER Award 9984774, NSF Theory of
Computing Grants 9988304 and 0311368, and NSF ITR Grant 0121277.

1 Introduction

Computation and communication are two basic resource commodities in distributed computing. In a dis-
tributed system setting one normally computes to perform specific tasks. One also needs to communicate
in order to coordinate multiple computation activities, for example, to increase computation efficiency by
eliminating redundant work. As can be expected, there exists a trade-off between the efficiency of distributed
computation and the amount of communication needed to coordinate the computation. Dwork, Halpern and
Waarts [8] have considered a basic problem of distributed coordination, where a number of message-passing
processors cooperate in executing a collection of independent and similarly-sized tasks (in the presence of
processor crashes). They measure the efficiency of the computation in terms of its work complexity W
(one task consumes one work unit), and the cost of communication in terms of the message complexity M.
The authors also assess the overall performance in terms of effort that is defined as the sum of work W
and message complexity M. Chlebus et al. [4] solve a similar problem and they measure the effort of their
solution as the sum of the number of all processing steps performed (this includes task-oriented work and
any bookkeeping steps) and the number of messages sent. They observe that a processor can learn that a
task is performed either by doing the task, or by receiving a message that tells it that the task was done. In
such a setting, one can view computation and communication as comparable resources.

To study aspects of the trade-off between communication and computation in distributed cooperative
applications, we consider the following abstract problem: n processors must perform t tasks and learn the
results of all tasks. We assume that all tasks are known to all processors. A common impediment to
effective coordination in distributed settings is asynchrony that manifests itself, for example, in disparate
processor speeds and nondeterministic message latency. Fortunately, our problem can always be solved by a
communication-oblivious algorithm that forces each processor to perform all tasks. Such a solution has work
W = O(t-n), an requires no communication, i.e., M = 0. On the other hand, §(t) is the obvious lower bound
on work and the best known lower bound is W = Q(t +nlogn), cf. [16]. Therefore the trade-off expectation
is that if we gradually increase the number of messages we should be able to decrease the amount of work
performed.

Let us consider an asynchronous setting, where processors communicate by means of a rendezvous, i.e.,
two processors that are able to communicate can perform state exchange. The processors that are not able
to communicate via rendezvous have no choice but to perform all ¢ tasks. Consider the computation with a
single rendezvous. There are n — 2 processors that are unable to communicate, and they collectively must
perform exactly ¢ - (n — 2) work units to learn all results. Now what about the remaining pair of processors
that are able to rendezvous? In the worst case they rendezvous after performing all tasks individually. In
this case no savings in work are realized. Suppose they rendezvous having performed t/2 tasks each. In
the best case, the two processors performed mutually-exclusive subsets of tasks and they learn the complete
set of results as a consequence of the rendezvous. In particular if these two processors know that they will
be able to rendezvous in the future, the could schedule their work as follows: one processors performs the
tasks in the order 1,2, ... ¢, the other in the order ¢,¢ — 1,...,1. No matter when they happen rendezvous,
the number of tasks they both perform is minimized. Of course the processors do not know a priori what
pair will be able to rendezvous. Thus it is interesting to produce task execution schedules for all processors,
such that upon the first rendezvous of any two processors the number of tasks performed redundantly is
minimized.

This setting we have just described is interesting for several reasons. If the communication links are
subject to failures, then each processor must be ready to execute all of the ¢ tasks, whether or not it
is able to communicate. In realistic settings the processors may not initially be aware of the network
configuration, which would require expenditure of computation resources to establish communication, for
example in radio networks. In distributed environments involving autonomous agents, processors may choose
not to communicate either because they need to conserve power or because they must maintain radio silence.
Finally, during the initial configuration of a dynamic network or a middleware service (such as a group
communication service [7]) the individual processors may start working in isolation pending the completion
of system configuration. Regardless of the reasons, it is important to direct any available computation
resources to performing the required tasks as soon as possible. In all such scenarios, the ¢ tasks have to be

scheduled for execution by all processors. The goal of such scheduling must be to control redundant task
executions in the absence of communication and during the period of time when the communication channels
are being (re)established.

Related work: Cooperation with limited communication. The efficiency of work-performing algo-
rithms depends on how well the loads are balanced among the participating processors and on the ability of
the processors to disseminate information on the progress of the computation.

Papadimitriou and Yannakakis [22] study how limited patterns of communication affect load-balancing.
They consider a problem where there are 3 agents, each of which has a job of a size drawn uniformly at
random from [0, 1], and this distribution of job sizes is known to every agent. Any agent A can learn the
sizes of jobs of some other agents as given by a directed graph of three nodes. Based on this information each
agent has to decide to which of the two servers its job will be sent for processing. Each server has capacity
1, and it may happen that when two or more agents decide to send their jobs to the same server the server
will be overloaded. The goal is to devise cooperative strategies for agents that will minimize the chances
of overloading any server. The authors present several strategies for agents for this purpose. They show
that adding an edge to a graph can improve load balancing. These strategies depend on the communication
topology. This problem is similar to our scheduling problem. Sending a job to server number = € {0,1}
resembles doing task number « in our problem. The goal to avoid overloading servers resembles avoiding
overlaps between tasks. The problem of Papadimitriou and Yannakakis is different because in our problem
we are interested in structuring job execution where the number of tasks can be arbitrary ¢ > 1.

Georgiades, Mavronicolas, and Spirakis [10] study a similar load-balancing problem. On the one hand
their treatment is more general in the sense that they consider arbitrary number of agents n, and arbitrary
computable decision algorithms. However it is more restrictive in the sense that they consider only one
type of communication topology where there is no communication between processors whatsoever. The two
servers that process jobs have some given capacity that is not necessarily 1. They study two families of
decision algorithms: algorithms that cannot see the size of jobs before making a decision which server to
send a job to for processing, and algorithms that can make decisions based on the size of the job. They
completely settle these cases by showing that their decision protocols minimize the chances of overloading
any server.

For a variation of the problem we deal with in this report, Dolev et al. [6] showed that for the case
of dynamic changes in connectivity, the termination time of any on-line task assignment algorithm can be
greater than the termination time of an off-line task assignment algorithm by a factor linear in nn. This means
that an on-line algorithm may not be able to do better than the trivial solution that incurs linear overhead
by having each processor perform all the tasks. With this observation [6] develops an effective strategy for
managing the task execution redundancy and proves that the strategy provides each of the n processors with
a schedule of @(n1/3) tasks such that at most one task is performed redundantly by any two processors.

Structure of this report. In Section 2 we introduce our schedules, the “waste” measure and design. In
Section 3 we present and prove the main lower bound on waste of schedules. Section 4 contains material
showing that random schedules have good waste properties and that they furthermore behave competitively
for arbitrary patterns of processor rendezvous. In Section 5 we present design-theoretic constructions that
yield deterministic schedules with good waste properties. We conclude in Section 6.

2 Schedules, waste, and designs

We consider the abstract setting where n processors need to perform ¢ independent and idempotent tasks.
A task is idempotent if the execution of the task yields the same result when it is performed more than once.
A task is independent if the result of its execution does not depend on the order in which other tasks are
executed. The processors have unique identifiers from the set [n] = {1,...,n}, and the tasks have unique
identifiers from the set [t] = {1,...,¢}. Initially each processor knows the tasks that need to be performed
and their identifiers.

We shall focus on the scheduling problem discussed above, abstracted as follows. An (n,t)-schedule is a
tuple (o1, ...,0,) of n permutations of the set [t]. When n = 1 it is elided and we simply write ¢-schedule.

An (n,t)-schedule immediately gives rise to a strategy for n isolated processors who must complete ¢
tasks until communication between some pair (or group) is established: the processor ¢ simply proceeds to
complete the tasks in the order prescribed by ;. Suppose now that some £ of these processors, say ¢, - - -, gk,
should rendezvous at a time when the ith processor in this group, ¢;, has completed a; tasks. Ideally, the
processors would have completed disjoint sets of tasks, so that the total number of tasks completed is), a;.
As this is too much to hope for in general, it is natural to attempt to bound the gap between). a; and the
actual number of distinct tasks completed. This gap we call waste:

Definition 2.1. If S is a (n,t)-schedule and (a1, ...,a;) € N¥, the waste function for S is

Here (and throughout), if ¢ : X — Y is a function and S C X, we let ¢(S) = {é(z) | « € S}. For a
specific vector a = (a1, - .., ax), Ws(a) captures the worst-case number of redundant tasks performed by any
collection of k processors when the ith process has completed the first a; tasks of its schedule.

One immediate observation is that bounds on pairwise waste Ws(+, -) can be naturally extended to bounds
on k-wise waste Ws(+,...,-): specifically, note that if S is an (n, t)-schedule then

(3

k
Ws(as,...,ar) = max (a; —

(q15--54k)

k
Uoa (e

this mazimum taken over all k tuples (qu,...,qr) of distinct elements of [n].

k

Ws(al, RN ak) < Z Wg(ai,aj)

1<j

just by considering the first two terms of the standard inclusion-exclusion rule. Moreover, it appears that
this relationship is fairly tight as it is nearly attained by randomized schedules—see Section 4.2. With this
justification we shall content ourselves to focus the investigation on pairwise waste—the function Wg(a, b).

Set systems with prescribed intersection properties have been the object of intense study by both the
design theory community and the extremal set theory community (see, e.g., [14] for a survey). Despite this,
the study of waste appears to be new. We shall, however, make substantial use of some design-theoretic
constructions, which we describe below.

Definition 2.2. A {-(v,k,\) design is a family of subsets S = (S1,...,Syn) of the set [v] with the property
that each |S;| = k and any set of £ elements of [v] is a subset of precisely A of the S;. (N.B. The subsets S;
are typically referred to as blocks.)

Observe that if S is a ¢-(v, k, A) design, then it is also a (€ — 1)-(v, k, \) design where

oot
(k—t¢+1)
To see this, note that if 7" is a subset of elements of size £ — 1, then there are exactly v — (¢ — 1) sets of size
¢ which contain T'; let U;,i € [v — (¢ — 1)], denote these sets. By assumption, each U; appears in exactly A
of the S;. Of course, if U; is a subset of some S;, then in fact exactly k — (¢ — 1) if the U; are subsets of S;.
Hence T appears in exactly AM(v — €+ 1)/(k — £ + 1) of the S, as desired.

To see the connection between such designs and our problem, let D be a 2-(n, k, \) design consisting of ¢
sets S1,...,S:. For each i € [n], let T; = {j | i € S;}. Note now that for any i # j,

TinTj ={k|{i,j} C Sk}

and hence that |T; NT;| = A. Based on the observation above, we see also that Vi, j, |T;| = |Tj| and let a
denote this common cardinality. Now, let ¥ = (01,...,0,) be any sequence of permutations of [¢t] for which
oi([a]) = T;. Tt is clear that these form an (n,t)-schedule for which

Ws(a,a) = A

Unfortunately, the above construction offers satisfactory control of 2-waste only for the specific pair
(a,a). Furthermore, considering that the construction only determines the sets o;([a]) and o;([n] \ [a]), the
ordering of these can be conspiratorially arranged to yield poor bounds on waste for other values. Our goal
is construct schedules with satisfactory control on waste for all pairs (a, b).

While designs do not appear to immediately induce a solution to this problem, we will apply the following
design-theoretic construction several times in the sequel. Let GF(q) denote the finite field with ¢ elements,
where ¢ is a prime power. Treating GF(q)? as a vector space over GF(q), the design will be given by the lattice
of linear subspaces of GF(q)®. It is easy to check that there are n = ¢? + ¢ + 1 distinct one dimensional
subspaces of GF(g)®, which we denote (1,...,£,. We say that two subspaces ¢; and ¢; are orthogonal if
Yu € £1,Yv € {3, (u,v) = Y ujv; mod p = 0; in this case we write ¢; L ¢;. It is a fact that for any one
dimensional subspace there are exactly ¢+ 1 one dimensional subspaces to which it is orthogonal. The design
consists of the n = ¢ + ¢+ 1 sets S, = {¢; | £; L £, }. It is easy to show that any pair of such sets intersect
at a single ¢;, and that this forms a 2-(¢* + ¢ + 1,¢ + 1,1) design. See [14] for a proof and more discussion.

For concreteness we fix a specific (arbitrary) ordering of each of these sets S,: let L, denote a canonical
sequence (t&, ...) where S, = {{;i |1 <i < q+1};i.e., the one dimensional subspaces {;i , i = 1,...,q+1,
are precisely those orthogonal to ¢,. For convenience, for two sequences A and B, we let ANB and AUB
denote the corresponding union or intersection of the sets of objects in the sequences. We record the above
discussion in the following theorem.

Theorem 2.1. Let n = ¢* +q+ 1, where q is a prime power. Then the sequences L, = (L1,...,L,) possess
the following properties: each L, has length q + 1, for each u # v, |L, N L,| = 1, and any element appears
in exactly ¢+ 1 distinct sequences. We note also that if q is prime, the first element of each sequence can be
calculated in O(logn) time; each subsequent element can be calculated in O(1) time.

(We assume throughout that addition or multiplication of two log (max{n,t})-bit numbers can be per-
formed in O(1) time.)

3 Redundancy without communication: a lower bound

Controlling global computation redundancy in the absence of communication is a futile task. This is because
no amount of algorithmic sophistication can compensate for the possibility of individual processors, or
groups of processors, becoming disconnected during the computation. In general, an adversary that is able
to partition the processors into g groups that cannot communicate with each other will cause any task-
performing algorithm to have work (¢ - g), even if each group of processors performs no more than the
optimal number of tasks, . In the extreme case where all processors are isolated from the beginning, the
work of any algorithm is (¢ - n), which is at least the work of an oblivious algorithm, where each processor
performs all tasks.

Of course it is not surprising that substantial redundancy cannot be avoided in the absence of commu-
nication, furthermore, the lower bound on work of (¢ - n) is not very interesting. However, as we pointed
out earlier, it is possible to schedule the work of a pair of processors so that each can perform up to ¢/2
tasks without a single task performed redundantly. Thus it is very interesting to consider the intersection
properties of pairs of processor schedules, i.e., 2-waste.

If we insist that among the n total processors, any two processors, having executed the same number of
tasks ¢', where t' < t, perform no redundant work, then it must be the case that ¢ < |¢t/n]. In particular, if
n = t, then the pairwise waste jumps to one if any processor executes more than one task. The next natural
question is: how many tasks can processors complete before the lower bound on pairwise redundant work is

27 In general, if any two processors perform ¢; and to tasks respectively, what is the lower bound on pairwise
redundant work? In this section we answer these questions. The answers contain both good and bad news:
given a fixed ¢, the lower bound on pairwise redundant work starts growing slowly for small ¢; and t5, then
grows quadratically in the schedule length as ¢; and ¢» approach t.

We begin with a short geometric lemma.

Lemma 3.1. Let a,b € R' and suppose that Vi,0 < a; < b; < M and that ||b||y — ||al]ly = kM for some
positive k € N. Then

2
a
(a,b) Z || ||1 .
t— kK
Proof. We say that a vector x € R is non-negative if Vi, z; > 0; for two vectors x,y € Rf, we write x < y if
y — x is non-negative. Let e; denote the standard basis vectors for R*. For the non-negative vector b € Rf,
consider the following family of transformations: for each distinct 7, s € [t] and non-negative x < b, define

T8(x) =x+A-(ep —e5)

where A = min(b, — z,, xs). Note that |[T°(x)|1 = ||x||» and T;*(x) < b. Evidently, if x and b satisfy the
conditions of the theorem above, then so do T,*(x) and b, with the same . Note further that if b, < b,
then

(Th?(x),b) = (x,b) + A - (b, — bs) < (x,b).

Let Z C [n] denote a set of « indices so that b; > b; for alli € Z and j ¢ Z. Now, ifa, =0forall z € Z
then a is supported on the set [n] \ Z of size t — & so that

Jal
b,a) > >
(b,a) > (a,a) 2 ;o

by the Cauchy-Schwarz inequality. Otherwise there is an index z € Z so that a, > 0, and in this case there
must be an index y ¢ Z so that a, < b, since ||b —all; = kM but >, ,(b; —a;) < kM —a, < kM. Let
a’ = all) = T*(a), and observe that > ,.,a} < 3 ,c,a;. A finite number of iterations of this process
results in a vector a®) < b for which al*) = 0 for all i € Z, ||a]|; = |[a®||; and (b,a) > (b,a®)). Then, by
the same reasoning as above,

S 2™ _ Jallf

ba)> (b.a®) > (a® a®
(b,a) > (b,a®) > (ah),a) > 1L — &

B

O

Now we proceed to the lower bound, which generalizes the second Johnson Bound [15] for the case when
two processors execute different number of tasks prior to their rendezvous.

Theorem 3.2 ([18]). Let P = (my,...,m,) be an (n,t)-schedule and let 0 < a < b <t. Then

na? a

Wr(a,b) 2 (mn—1)(t—b+a) n—1

Proof. We obtain the lower bound by computing the expected waste of a pair of ¢t-schedules selected at
random from P. Let A = Wp(a,b). Consider selection of ¢ and j independently at random in the set [n].
We focus on the expected value of the random variable

|mi([a]) N ([b])]-

There are a total of n? pairs for i and j; if i # j then the cardinality of the intersection is bounded above
by A. If i = j then this cardinality is obviously a. Hence

nn—DA+n-a AXn—-1)+a

Bfjmi((a)) Ny (8] < W—lp e S AL (1)

Consider now the ¢ random variables X ., indexed by 7 € [t], defined as follows: X; = 1if 7 € m;([a]) N
m;([b]), and 0 otherwise. Then E[|m;([a]) Nm;([b])] = E[Zre[t] X:] and by linearity of expectation,

E[jmi([a]) N (BN = Y ElX:] = Y Prlr € m(la])] - Prlr € m;([0])],

TE[t] TE[t]

since ¢ and j are independent.
Now we introduce the function ™ (1), equal to the number of prefixes of schedules of length m to which
7 belongs, i.e., 2™(7) = [{i : 7 € m;([m])}|- Then

(1)t (1
EBllri(la) s (0] = 3 Prir € mlal)]-Prir € ()] = 32 T = LS ety . (2
TElt] TEl] Telt]

Noting that Y z%(7) = an and) 2°(7) = bn, we apply Lemma 3.1 to the last expression in (2) above and
combine this with the bound of (1):

1 (na)? 1 b (n—1)A+a

— . < a < E[|m; , <277

2 bt S %;]w (r)"(r) < Bllmi([a]) Ny (D)) <
whence

a na
> _
/_n—1<t—b+a 1)’

as desired. (]

For example, when processors perform the same number of tasks a = b and n = ¢, then the worst case
2
number of redundant tasks for any pair is at least ©=2. This means that (for n = t) if a exceeds v/t + 1,
then the number of redundant task is at least 2.

Corollary 3.3 ([18]). Fort=n, if a > \/n — 3/4+ % then any n-processor schedule of length a for t tasks
has worst case pairwise waste at least 2.

4 Random schedules

As one would expect, schedules chosen at random perform quite well. In this section we explore the behavior
of the (n,t)-schedules obtained when each permutation is selected uniformly (and independently) at random
among all permutations of [¢].

4.1 Randomized schedules

When the processors are endowed with a reasonable source of randomness, a natural candidate scheduling
algorithm is one where processors select tasks by choosing them uniformly among all tasks they have not
yet completed. This amounts to the selection, by each processor i, of a random permutation m; € Sy
which determines the order in which this processor will complete the tasks. (Sp; denotes the collection of all
permutations of the set [t].) We let R be the resulting system of schedules.

Our objective now is to show that random schedules R have controlled waste with high probability. This
amounts to bounding, for each pair ¢, j and each pair of numbers a, b, the overlap |m;([a]) N 7;([b])| . Observe
that when these m; are selected at random, the expected size of this intersection is ab/t. By showing that
the actual waste is very likely to be close to this expected value, one can conclude the waste if bounded for
all long enough prefixes.

Theorem 4.1 ([18]). Let R be a system of n random schedules for t tasks constructed as above. Then with

probability at least 1 — %,

Ya,b such that 7vtln (2nt) < a,b <t, Wg(a,b) < aTb + A(a, b) ,

where A(a,b) = 111/% In(2nt)

Observe that Theorem 3.2 shows that (n,t)-schedules must have waste W(a,a) = Q(a?/t) (as n — 00);
hence such randomized schedules offer nearly optimal waste for this case.

4.2 k-Waste for random schedules

For random schedules, one can apply martingale techniques to directly control k-wise waste. We mention
one such result below.

Theorem 4.2. Consider the random schedule R from above. Then with probability at least 1 — 1/n,

s tsfl

k
k B
Wr(a,...,a) <3 (—1)S<> S Auk,
s=2

where Ay = (2k + 1)Valnn.

Note that again this bounds the distance of the k-waste from its expected value, which can be computed
by inclusion-exclusion to be Z’:ZZ(—I)S(’;) 2. The proof, which we omit, proceeds by considering the
martingale which exposes the ith element of all schedules at step i. The theorem then follows by noting
that the expected value can change by at most k during a single exposure and applying Azuma’s inequality.

(See [1] for a discussion of discrete exposure martingales and Azuma’s inequality.)

4.3 Arbitrary rendezvous patterns

Thus far we have established bounds on wasted work for a single rendezvous. It is naturally interesting to
study the general case allowing arbitrary patterns of (not necessarily pairwise) rendezvous. Of course, an
adversary that partitions the processors into g disconnected components during the entire the life of the
computation causes any task-performing algorithm to have work (¢ - g), even if each group of processors
performs no more than the optimal number of ©(¢) tasks. This lower bound would appear to form a
somewhat pessimistic landscape for our problem. Considering, however, that no algorithm can maintain
low total work in the presence of such pathological communication failures, it seems reasonable to pursue
a competitive analysis [21] for this general framework, and compare the behavior of a given algorithm with
that of an optimal algorithm.

In particular, we consider the partitionable network scenario consisting of n asynchronous processors
with a communication medium that is subject to arbitrary partitions during the life of the computation.
This model is motivated by the abstraction provided by a typical group communication scheme; see, for
example, [3] and the surveys in [5]. Specifically, at each point of the computation, we assume that the com-
munication medium effectively partitions the processors into non-overlapping groups: communication within
a group is instantaneous and reliable, communication across groups is impossible. Naturally, processors in
the same group can share their knowledge of completed tasks and, while they remain connected, avoid doing
redundant work. We refer to a transition from one partition to another as a reconfiguration.

Our goal is to design schedules that minimize the total work, where work is defined to be the number
of tasks executed by all the processors during the entire computation (counting multiplicities). Ideally, when
two processors “meet” in a new group (during a reconfiguration) the sets of tasks they know to be complete
would be disjoint to avoid wasted effort. This is impossible in general, as processors must schedule their

work in ignorance of future reconfigurations and, moreover, circumstances where two processors meet who
have collectively completed more than ¢ tasks will necessitate wasted work. (It is, of course, also possible
that the two processors were members of a common group during a previous portion of the computation,
resulting in shared knowledge.) A processor may cease executing tasks only when it knows the results of all
tasks. We refer to this problem as Ommni-Do.

We do not charge for coordination within a group, simply treating grouped processors as a single (virtual)
asynchronous processor. In particular, if a group of processors performs a set of ¢ tasks during the lifetime
of the group, we charge this group ¢ units of work, ignoring, for example, partially completed tasks which
may remain at the group’s demise or the cost of synchronizing processors’ knowledge during the group’s
inception. Note that while processors are asynchronous, they do not crash.

An algorithm in this model is a rule which, given a group of processors and a set of tasks known by this
group to be complete, determines a task for the group to complete next. In the case where all processors are
disconnected during the entire computation, any algorithm must incur ©(¢ - n) work. On the other hand,
any reasonable algorithm should attain ¢ work in the case where all processors remain connected during the
computation.

We consider the behavior of an algorithm in the face of an adversary (which is oblivious in the sense of
[2]) that determines both the sequence of reconfigurations and the number of tasks completed by each group
before it is involved in another reconfiguration. Taken together, this information determines a computation
pattern: this is a directed acyclic graph (DAG), each vertex of which corresponds to a group G of processors
that existed during the computation; a directed edge is placed from G; to G5 if G, was created by a
reconfiguration involving G; and the two groups have at least one processor in common. We label each
vertex of the DAG with the group of processors associated with that vertex and the total number of tasks
that the adversary allows the group of processors to perform before the next reconfiguration occurs. Note that
different adversaries (causing different sequences of reconfigurations) may give rise to the same computation
pattern; the work caused by an adversary, however, depends only on the computation pattern determined
by that adversary.

Specifically, if ¢ is the number of tasks and n the number of processors, then such a computation pattern
is a labeled and weighted directed acyclic graph, that we call a (n,t)-DAG:

Definition 4.1. A (n,t)-DAG is a directed acyclic graph C = (V,E) augmented with a weight function
h:V — N and a labeling g : V — 2"\ {0} so that:

(i) For any mazimal path p = (v1,...,v;) in C, Y h(v;) > t. (This guarantees that any algorithm
terminates during the computation described by the DAG.)

(ii) g possesses the following “initial conditions”:

= | g

v: in(v)=0
(iii) g respects the following “conservation law”: there is a function ¢ : E — 21"1\ {}} so that for eachv € V
with in(v) > 0,

g)= | o(wv),

(u,v)EE

and for each v € V with out(v) > 0,

Here U denotes disjoint union and in(v) and out(v) denote the in-degree and out-degree of v, respectively.

Figure 1: An example of a (12,¢)-DAG

EXAMPLE. A sample (12,¢)-DAG is shown in Figure 1. Here we have g1 = {p1}, g2 = {p2,p3,p1}, 93 =
{ps,p6}, 94 = {pr}, 95 = {Ps,Po, P10, P11, P12}, 96 = {P1,P2,P3,P4,D6}, 97 = {Ps, P10}, g8 = {Po,P11,P12},
g9 = {p1,p2,P3,P4,P6,P8,P10}, 910 = {P5, P11}, and g11 = {po, P12}

This computation pattern models all asynchronous computations (adversaries) with the following be-
havior: (i) The processors in groups g; and g, and processor pg of group gs are regrouped during some
reconfiguration to form group gg. Processor p; of group gs becomes a member of group ¢io during the
same reconfiguration (see below). Prior to this reconfiguration, processor p; (the singleton group g¢1) has
performed exactly 5 tasks, the processors in go have cooperatively performed exactly 3 tasks and the proces-
sors in g3 have cooperatively performed exactly 8 tasks (assuming that ¢ > 8). (ii) Group g5 is partitioned
during some reconfiguration into two new groups, g7 and gs. Prior to this reconfiguration, the processors
in g5 have performed exactly 2 tasks. (iii) Groups g¢ and g7 merge during some reconfiguration and form
group go. Prior to this merge, the processors in gg have performed exactly 4 tasks (counting only the ones
performed after the formation of g¢ and assuming that there are at least 4 tasks remaining to be done) and
the processors in g7 have performed exactly 5 tasks. (iv) The processors in group gs and processor ps of
group gs are regrouped during some reconfiguration into groups gio and g¢;;. Prior to this reconfiguration,
the processors in group gs have performed exactly 6 tasks (assuming that there are at least 6 tasks remaining,
otherwise they would have performed the remaining tasks). (v) The processors in gg, g10, and gi; run until
completion with no further reconfigurations. (vi) Processor p; (the singleton group g¢4) runs in isolation for
the entire computation. (I

We say that two groups G and G’ are independent if there is no directed path connecting one to the
other. For a computation pattern C, the computation width of C, denoted cw(C'), is the maximum number
of independent groups reachable (along directed paths) in this DAG from any vertex.

We consider a competitive analysis that compares the work of a randomized algorithm with the work of
an optimal algorithm that has complete information about the computation history (and hence the future
pattern of reconfigurations).

Let D be a deterministic algorithm for Omni-Do and C a computation pattern, we let W (C') denote the
total work expended by algorithm D, where reconfigurations are determined according to the computation
pattern C'. Work is formally defined as follows:

Definition 4.2. Let C be a (n,t)-DAG and D a deterministic algorithm for Omni-Do. Wp(C) is defined
inductively as follows. For a vertex v of C with in(v) = 0, define L, to be the set containing the first h(v)
tasks completed by group g(v) according to D. Otherwise, in(v) > 0; in this case, let L, = Uwcw Lu denote
the collection of all tasks known to be complete at the inception of the group g(v). Then let L, be the first
h(v) tasks completed by group g(v) according to D starting with knowledge L,. If h(v) > t — |L,|, define
L, =[t]\ L,. Then Wp(C) =3 cc |Lo|.

10

We treat randomized algorithms as distributions over deterministic algorithms; for a set 2 and a family
of deterministic algorithms {D, | r € E} we let R = R({D, | r € =}) denote the randomized algorithm
where 7 is selected uniformly at random from = and scheduling is done according to D,. For a real-valued
random variable X, we let E[X] denote its expected value. We let OPT denote the optimal off-line algorithm,
which may schedule tasks with full knowledge of the pattern of reconfigurations. Specifically, for each C' we
define Wopr (C) = minp Wp(C).

Definition 4.3 ([21, 9, 2]). Let a be a real valued function defined on the set of all (n,t)-DAGs (for alln
and t). A randomized algorithm R is a-competitive if for all computation patterns C,

E.[Wp,(C)] < a(C)Wor: (C),

this expectation being taken over uniform choice of r € Z. The definition specializes naturally to the case of
a deterministic algorithm.

We begin with a lower bound for deterministic algorithms. This is then applied to give a lower bound
for randomized algorithms in Corollary 4.4.

Theorem 4.3 ([11]). Let a : N = R and D be a deterministic scheduling algorithm for Omni-Do so that
D is a(cw(-))-competitive (that is, D is a-competitive for a function a = aocw). Then a(c) > 1+ c/e.

This theorem is proved by considering a distribution on computation patterns C' that is independent of
the deterministic algorithm D—this immediately gives rise to a lower bound for randomized algorithms:

Corollary 4.4 ([11]). Let R({D, | r € E}) be a randomized scheduling algorithm for the Omni-Do problem
that is (a o cw)-competitive. Then a(c) > 1+ c/e.

Unless the above lower bound is “too weak”, it suggests that it is worthwhile to seek algorithms that are
very competitive, despite the potentially high bounds on “absolute” work.

We consider the natural randomized algorithm RS where a processor (or group) with knowledge that the
tasks in a set K C [t] have been completed selects to next complete a task at random from the set [t] \ K.
More formally, let II = (7y,...,m,) be a n-tuple of permutations, where each =; is a permutation of [t]). We
describe a deterministic algorithm Dy so that

RS = R({Dn | IT € (S)"}),

where Spy is the collection of permutations on [t]. Let G' be a group of processors and v € G the processor
in G with the lowest processor identifier. Then the deterministic algorithm Dy specifies that the group G,
should it know that the tasks in K C [¢t] have been completed, next completes the first task in the sequence
7y (1),...,my(t) which is not in K.

It turns out that this algorithm is optimal with respect to the lower bound on competitive ratios.

Theorem 4.5 ([11]). Algorithm RS is (1 + cw(C)/e)-competitive for any computation pattern C.

5 Derandomization via finite geometries

We now consider a method for derandomizing these schedules using the design discussed in Section 2.

5.1 Schedules for n =t

We construct a system of schedules of length n by arranging tasks from the sequences of £, in a recursive
fashion. (Recall that while the sequences of £, have strong intersection properties, they are only roughly +/n
in length.) In preparation for the recursive construction, we record the following lemma about the pairwise
intersections of the elements in the sequence of £,, indezed by a specific subspace L,,.

11

Lemma 5.1. Let £,, = (Ly,...,L,) be the collection of sequences constructed in Theorem 2.1, and let
Ly = (ty,...,t4t), 1 <u < n. Then for any i # j, we have Ly N Ly; = {u}.

Proof. Consider any two distinct sequences Ly and Ltf; , where i # j. By construction these sequences
contain the indices corresponding to the one dimensional subspaces that are orthogonal to lines ¢;; and £ 4
respectively. Since #!, is appears in L,, line {yi is orthogonal to line ¢,. By the same argument line t is
orthogonal to line /,,. Hence u appears in both L;; and Lt{n but |Lt; N Ltf;| =1 by Theorem 2.1 so that the
intersection cannot contain any other element. O

As aresult of this lemma, there is only a single repeated element in the sequences Ly, Lyz, . .. ,Lt3+1; this
element is u. This fact suggests the following construction of a system of schedules P,. Let P,, 1 < u < n,
be the sequence whose first element is v, and whose remaining elements are given by concatenating the ¢+ 1
sequences Ly, ..., Lyg+r after removing u from each. Specifically,

Py = (u) o (Oier, (Li —u)),

where o denotes concatenation and L; — u denotes the sequence L; with u deleted. Note now that since the
total length of P, is evidently (¢4 1)g+ 1 = n, each element of [r] must appear exactly once in each P,; these
P, thus rive rise to a family of permutations 7, where 7, (k) is the k element of P,. Let P = (71,...,7y)-
We conceptually divide the sequences P, (associated with the permutations) into ¢ + 1 segments of
elements. The first segment contains the first ¢ 4+ 1 elements (including the initial element u); the remaining
q segments contain ¢ consecutive elements each.
This recursive construction yields a straightforward bound on pairwise waste, recorded below.

Theorem 5.2. Let q be a prime power, n =q¢*> +q+1. Leta=1+iq, b=1+7jq, 0<4,j < g+ 1. Then

0, i+3j=0,
an(aab)s]-, 'LZO,]Z].OT'LZ]_,]:O,
q+1i3, i-j5>1.

Proof. Consider any two t-schedules m,, and 7, of P,; let P, and P, be the corresponding sequences. As the
first elements in these schedules are distinct, the intersection for ¢ = j = 0 is zero. The case when i or j is
zero is easy. Assume now that i,j > 1. Consider the i - j pairs of segments (I, J), where I (or J) is one of
the first i (or j) segments of P, (or P,). The recursive construction guarantees that only one pair may have
segments where I C J or J C I. For this pair the overlap is at most ¢ + 1 because these may be the first
segments in the schedules. For the remaining ij — 1 pairs the overlap is at most 1. The result follows. O

We mention that the construction can be done on-line. For each schedule the first element can be
calculated in O(1) time. For the remaining ¢(¢ + 1) elements, at the beginning of every sequence of ¢
elements we need to invert at most two elements in GF(g). When ¢ is prime this can be done in O(logn)
using the extended Euclidean algorithm. Other elements of the schedule can be found in O(1) time.

Note that when ¢t = kn for some x € N, the above construction can be trivially applied by placing
the t tasks into n chunks of size x. In this case, of course, when a single overlap occurred in the original
construction, this penalty is amplified by «.

5.2 Controlling waste for short prefixes

One disadvantage of P,, is that the first segment may repeat, so that (¢ + 1) waste may be incurred when a
prefix of length @ = (¢ + 1) is executed. To postpone this increase one would like to rearrange the segments
in each P, so that the first segment is distinct across the resulting schedules. This can be accomplished by
finding a permutation p : [n] — [n] such that the sequence L,, contains task p(u). (In other words ¢, must
be orthogonal to £,(,).) This permutation can then be used to select distinct segments as the first segments
of schedules in P,,.

12

Consider the bipartite graph G,, = (U,, V,, E,) where U, = V,, = [n] and n = ¢* + q + 1; here ¢ is
a prime power. Both U, and V,, can be placed in one-to-one correspondence with the one dimensional
subspaces of GF(g)®. An edge is placed between ¢, € U, and £, € V, when they are orthogonal. Based
on the structure of GF(q)?, it is not hard to show that G, is (¢ + 1)-regular. By Hall’s theorem (see, e.g.,
[12]), there is always a perfect matching in a d-regular bipartite graph and note that such a matching yields
a permutation p with the desired properties. In particular if the edge (u,v) appears in the perfect matching,
then we put p(u) = v. ThlS matching can be found using the Hopcroft-Karp algorithm [13] that runs in time

O(VIUI+|V]-|E]) = O(n?).

We use p to construct the system of schedules G,, such that the first segments are distinct. Specifically,
given L,, the system of schedules G, = (71, ...,7,) is defined as follows. For any 1 < u < n, the sequence

G, is given by
Gu = (u) o (Lpw) —{u}) o (Oier,—p(w) (Li —u)).
Then , is the permutation associated with G,.

Theorem 5.3. Let g be a prime power, n =q¢*> +q+1. Leta=1+1iq, b=1+7jq, 0<i,5 < q+ 1. Then:

0, t1+7=0,

1, =0, >1 ;> 1,5 =0,
W, (a,b) < LTI = o= S

1, 1.5 =1,

q+ij, i-j>1.

Proof. When i = j = 1 observe that by the construction of G,, the first segments of the schedules are distinct.
The other cases follow the proof of Theorem 5.2. O

Observe that this construction is time-optimal as it produces n? elements and runs in O(n?) time.
However, the algorithm requires O(n?) time to construct even a single permutation.

6 Conclusions

We surveyed results that characterize the ability of n isolated processors to collaborate on a common known
set of t tasks. The good news is that the isolated processors can deterministically construct schedules
locally, equipped only with the knowledge of n, ¢, and their unique processor identifiers in [n]. Moreover,
the cost of constructing such schedules can be amortized over the performance of tasks. Although the lower
bounds on wasted work mandate that waste must grow quadratically with the number of executed tasks
(from 1 to n), such schedules control wasted work for surprisingly long prefixes of tasks. We also show that
when processors start working in isolation and are subjected to an arbitrary pattern of merges, randomized
scheduling is competitive compared to an optimal algorithm that is aware of the pattern of merges.

Acknowledgements. Several results surveyed in this report were developed in collaboration with Greg
Malewicz and Chryssis Georgiou. Additional related results and details are presented in Malewicz’s doctoral
dissertation [17].

References

[1] Alon, N. and Spencer, J.-H.: The probabilistic method. John Wiley & Sons Inc., New York, 1992. With
an appendix by Paul Erdos, A Wiley-Interscience Publication.

[2] Ben-David, S, Borodin, A., Karp, R., Tardos, G. and Wigderson, A.: On the power of randomization
in on-line algorithms. Algorithmica, 11(1):2-14, 1994.

13

[3] Birman, K.: The Process Group Approach to Reliable Distributed Computing. Communications of the
ACM, 36(12):37-53, 1993.

[4] Chlebus, B., Gasieniec, L., Kowalski, D., Shvartsman, A.A.: Bounding work and communication in ro-
bust cooperative computation. Proc. of 16th Int. Symposium on Distributed Computing, (2002) Springer
LNCS 2508, 295-310

[5] Comm. of the ACM, Special Issue on Group Communication Services, vol. 39, no. 4, 1996.

[6] Dolev, S., Segala, R., Shvartsman, A.: Dynamic Load Balancing with Group Communication. 6th
International Colloguium on Structural Information and Communication Complexity (1999) 111-125
(to appear in Theoretical Computer Science).

[7] Dolev, D. and Malki, D.: “The Transis Approach to High Availability Cluster Communications”, Comm.
of the ACM, vol. 39, no. 4, pp. 64-70, 1996.

[8] Dwork, C., Halpern, J., Waarts, O.: Performing Work Efficiently in the Presence of Faults. SIAM J. on
Computing, Vol. 27 5 (1998) 1457-1491.

[9] Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., and Young N.E.: Competitive paging
algorithms. Journal of Algorithms, 12(4):685-699, 1991.

[10] Georgiades, S., Mavronicolas, M., Spirakis, P.: Optimal, Distributed Decision-Making: The Case of No
Communication. Intl Symposium on Fundamentals of Computation Theory. (1999) 293-303

[11] Georgiou, Ch., Russell, A., and Shvartsman, A.A.: Work-competitive scheduling for cooperative com-
puting with dynamic groups. In Proc. of the 35" ACM Symposium on Theory of Computing (STOC
2003), to appear, 2003. (Prelim. results reported in the brief paper: Optimally work-competitive schedul-
ing for cooperative computing with merging groups. In Proc. of the 215% ACM Symp. on Principles of
Distributed Computing (PODC 2002), 2002.)

[12] Harary, F.: Graph Theory. Reading, MA: Addison-Wesley (1994)

[13] Hopcroft, J.E., Karp., R.M.: A O(n°/?) algorithm for maximum matching in bipartite graphs. SIAM
Journal on Computing, Vol. 2. (1973) 225-231

[14] Hughes, D.R. and Piper, F.C.: Design Theory, Cambridge University Press, 1985.

[15] Johnson, S.M.: A New Upper Bound for Error-Correcting Codes. IEEE Transactions on Information
Theory, Vol. 8 (1962) 203-207

[16] Kanellakis, P.C., Shvartsman, A.A.: Fault- Tolerant Parallel Computation. Kluwer Academic Publishers
(1997) ISBN 0-7923-9922-6.

[17] Malewicz, G.: Distributed Scheduling for Disconnected Cooperation Doctoral Dissertation, Computer
Science and Engineering, University of Connecticut (2003).

[18] Malewicz, G., Russell, A., Shvartsman, A.A.: Distributed Cooperation During the Absence of Commu-
nication. 14th International Conference on Distributed Computing, LNCS Vol. 1914 (2000) 119-133

[19] Malewicz, G., Russell, A., Shvartsman, A.A.: Optimal Scheduling for Disconnected Cooperation. 8th
International Colloquium on Structural Information and Communication Complexity (2001) 259-274
(Brief announcement. ACM Symposium on Principles of Distributed Computing. (2001))

[20] Malewicz, G., Russell, A., Shvartsman, A.: Local Scheduling for Distributed Cooperation. Invited paper,
IEEE International Symposium on Network Computing and Applications, NCA’01 (2001)

14

[21] Sleator, D. and Tarjan, R.: Amortized efficiency of list update and paging rules. Communications of
the ACM, 28(2):202-208, 1985.

[22] Papadimitriou, C.H., Yannakakis, M.: On the value of information in distributed decision-making. ACM
Symposium on Principles of Distributed Computing. (1991) 61-64

15

