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Abst rac t .  This work presents new algorithms for the "Do-All" prob- 
lem that consists of performing t tasks reliably in a message-passing syn- 
chronous system of p fault-prone processors. The algorithms are based 
on an aggressive coordination paradigm in which multiple coordinators 
may be active as the result of failures. The first algorithm is tolerant 
of f < p stop-failures and it does not allow restarts. It has the available 
processor steps complexity S = O((t  + p logp / log logp ) ,  log f) and the 
message complexity M = O(t + p logp / log logp  + f • p). Unlike prior 
solutions, our algorithm uses redundant broadcasts when encountering 
failures and, for large f,  it has better S complexity. This algorithm is 
used as the basis for another algorithm which tolerates any pattern of 
stop-failures and restarts. This new algorithm is the first solution for the 
Do-All problem that efficiently deals with processor restarts. Its available 
processor steps complexity is S = O((t  + p log p + f ) .  rain{log p, log f}), 
and its message complexity is M = O(t + p .  logp + f .p), where f is the 
number of failures. 

1 Introduction 

The problem of performing t tasks reliably and in parallel using p processors 
is one of the fundamental problems in distributed computation. This problem, 
which we call Do-All, was considered for the synchronous message-passing model 
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by Dwork, Halpern and Waarts in their pioneering work [2]. They developed 
several efficient algorithms for this problem in the setting where the processors 
are subject to fail-stop (or crash) failures and where the tasks can be performed 
using the at-least-once execution semantics (i.e., the tasks either are or can be 
made idempotent). In the setting of [2], the cost of local computation, whether 
performing low-level administrative tasks or idling, is considered to be negligible 
compared to the costs of performing each of the t tasks. 

In solving Do-All, Dwork, Halpern and Waarts define the effort of an algo- 
ri thm as the sum of the work complexity (i.e., the number of tasks executed, 
counting multiplicities) and message complexity (i.e., the number of messages 
used). This approach to efficiency does not account for any steps spent by pro- 
cessors waiting for messages or time-outs. This allows algorithm optimizations 
which keep the number of messages small, because processors can afford to wait 
to obtain sufficient information by not receiving messages in specific time inter- 
vals. 

De Prisco, Mayer and Yung also consider the Do-All problem without proces- 
sor restarts in their study [1]. Their goal is the development of fast and message- 
efficient algorithms. The work measure they consider is the available processor 
steps S (introduced by Kanellakis and Shvartsman [6]). This measure accounts 
for all steps taken by the processors, that is, the steps involved in performing 
the Do-All tasks and any other computation steps taken by the processors. Op- 
timization of S leads to fast algorithms whose performance degrades gracefully 
with failures. The communication efficiency is gauged using the standard mes- 
sage complexity measure. The authors successfully pursue algorithmic efficiency 
in terms of what they call the lexicographic optimization of complexity mea- 
sures. This means firstly achieving efficient work, then efficient communication 
complexity. 

A similar approach to efficiency is pursued by Galil, Mayer and Yung [3] who 
also derive a very efficient Do-All solution for stop-failures. 

O u r  e o n t r l b u t i o n s .  In this paper we solve the Do-All problem in the setting 
where the p processors are subject to dynamic stop-failures and restarts. The 
complexity concerns in this paper follow the criteria established in [1]. We seek 
algorithmic efficiency with respect to both the work, expressed as available pro- 
cessor steps S, and the communication, expressed as the message complexity M. 
We want to minimize S, having M as small as possible. 

We introduce an aggressive coordinator scheduling paradigm that  allows mul- 
tiple coordinators to be active concurrently. Because multiple coordinators are 
activated only in response to failures, our algorithms achieve efficiency in S 
and M. 

It is not difficult to formulate trivial solutions to Do-All in which each pro- 
cessor performs each of the t tasks. Such solutions have work f2(t-(p+ r)), where 
r is the number of restarts, and they do not require any communication. Thus 
work-efficient solutions need to trade messages for work. Our solution is the first 
non-trivial efficient algorithm tolerant of stop-failures and restarts determined 
by the the worst-case omniscient adversary. 
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En route to the solution for restartable processors we introduce a new al- 
gorithm for the Do-All problem without restarts. This algorithm, that  we call 
"algorithm AN" (Algorithm No-restart), is tolerant of f < p stop-failures. It has 
available processor steps complexity 4 S = O((t + p logp / log  log p ) .  log f)  and 
message complexity M = O(t + plogp/log logp + f -  p). 

Algorithm AN is the basis for our second algorithm, called "algorithm AR" 
(Algorithm with Restarts), which tolerates any number of stop-failures and 
restarts. Algorithm AR is the first such solution for the Do-All problem. Its 
available processor steps complexity is S = O((t + p l o g p +  f)-min{logp,  log f}),  
and its message complexity is M = O(t + p. logp + f - p ) ,  where f is the number 
of failures. 

Our algorithm AN is more efficient in terms of S than the algorithms of [1] 
and [3] when f ,  p and t are comparable; the algorithm also has efficient message 
complexity. Both algorithm AN and algorithm AR come within a log f (and 
logp) factor of the lower bounds [6] for any algorithms that balance loads of 
surviving processors in each constant-time step. We achieve this by deploying 
an aggressive processor coordination strategy, in which more than one processor 
may assume the role of the coordinator, the processor whose responsibility is to 
ensure the progress of the computation. This approach is suggested by the ob- 
servation that  algorithms with only one coordinator cannot efficiently cope with 
restarts. Indeed the real advantage of this approach is tha t  it can be naturally 
extended to deal with processor failures and restarts, with graceful deterioration 
of performance. 

The improvements in S, however, come at a cost. Both of our algorithms 
assume reliable multicast [4]. Prior solutions do not make this assumption, al- 
though they do not solve the problem of processor restarts. The availability of 
reliable broadcast simplifies solutions for non-restartable processors, but dealing 
with processor restarts remains a challenge even when such broadcast is available. 
There are several reasons for considering solutions with reliable multicasts. First 
of all, in a distributed setting where processors cooperate closely, it becomes 
increasingly important  to assume the ability to perform efficient and reliable 
broadcast or multicast. This assumption might not hold for extant WANs, but 
it is true for broadcast LANs (e.g., Ethernet and bypass rings). The availability 
of hardware-assisted broadcast makes the cost of using the broadcast communi- 
cation comparable to the cost of sending a single point-to-point message. Note 
however that  we are using a conservative cost measure which assumes that  the 
cost of a multicast is proportional to the number of recipients. Secondly, by 
separating the concerns between the reliability of processors and the underly- 
ing communication medium, we are able to formulate solutions at a higher level 
of modularity so that  one can take advantage of efficient reliable broadcast al- 
gorithms (cf. [4]) without altering the overall algorithmic approach. Lastly, our 
approach presents a new venue for optimizing Do-All solutions and for beating 
the I2(t + ( f  + 1) • p) lower bound of stage-checkpointing algorithms [1]. 

4 All logarithms are to the base 2; the expression "log f"  stands for 1 when f < 2 and 
log 2 f otherwise. 
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R e v i e w  o f  p r i o r  work .  Dwork, Halpern and Waarts [2] developed the first 
algorithms for the Do-All problem. One algorithm presented by the authors 
(protocol B) has effort O(t + Pv~), with work contributing the cost O(t + p) 
towards the effort, and message complexity contributing the cost O(pv~ ). The 
running time of the algorithm is O(t A-p). Another algorithm in [2] (protocol g) 
has effort O(t -4-plogp). This includes optimal work of O(t -t-p), message com- 
plexity of O(p logp), and time O(p2(t A-p)2t+P). Thus the reduction in message 
complexity is traded-off for a significant increase in time. The third algorithm 
(protocol :D) obtains work optimality and is designed for maximum speed-up, 
which is achieved with a more aggressive checkpointing strategy, thus trading-off 
time for messages. The message complexity is quadratic in p for the fault-free 
case, and in the presence of a failure pattern of f < p failures, the message 
complexity degrades to O(f .  p2). 

De Prisco, Mayer and Yung [1] present an algorithm which has the avail- 
able processor steps O(t + ( f  + l)p) and message complexity O((f + 1)p). The 
available processor steps and communication efficiency approach requires keep- 
ing all the processors busy doing tasks, simultaneously controlling the amount 
of communication. De Prisco, Mayer and Yung were the first to report results on 
Do-All algorithms in the fail-stop case using this efficiency approach. To avoid 
the quadratic upper bound for S substantial processing slackness (p KK t) is 
assumed. In [1] a lower bound of /2( t  + ( f  + i)p) for algorithms that use the 
stage-checkpointing strategy is proved. However there are algorithmic strate- 
gies that  have the potential of circumventing the quadratic bound. Consider the 
following scenarios. In tile first scenario we have t = o(p), f > p/2, and the algo- 
rithm assigns all tasks to every processor. Then S = O(p. t) = o(t + ( f  + 1). p), 
because f -p = O(p2). This naive algorithm has a quadratic work performance 
for p = O(t). In the second example assume that  the three quantities p, t and f 
are of comparable magnitude. Consider the algorithm in which all the processors 
are coordinators, work is interleaved with communication, and the outstanding 
work is evenly allocated among the live processors based on their identifiers. The 
work allocation is done after each round of exchanging messages about which 
processors are still available and which tasks have been successfully performed. 
One can show that S = O(p. log p/  log log p) . This bound is o(t + (f  + 1). p) for 
f > p/2 and t = p. Unfortunately the number of messages exchanged is more 
than quadratic, and can be ~2(p 2-log p~ log logp). These examples suggest a pos- 
sibility of improvement of the bound S = O(t + ( f  + l)p), however the simple 
algorithms discussed above have either the available processor steps quadratic in 
p, or the number of messages more than quadratic in p in the case when p, t and 
f are of the same order. One interesting result of our paper is showing that  an 
algorithm can be developed which has both the available processor steps which 
is always subquadratic, and the number of messages which is quadratic only for 
f comparable to p, even with restarts. 

The algorithm in [1] is designed so that  at each step there is at most one 
coordinator; if the current coordinator fails then the next available processor 
takes over, according to a time-out strategy. Having a single coordinator helps 
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to bound the number of messages, but a drawback of such approach is that any 
protocol with at most one active coordinator is bound to have S = f2(t + ( f  + 1). 
p). Namely, consider the following behavior of the adversary: each coordinator is 
stopped immediately after it becomes one and before it sends any messages. This 
creates pauses of at least O(1) steps, giving the I2((f + 1). p) part. Eventually 
there remains only one processor which has to perform all the tasks, because it 
has never received any messages, this gives the remaining/2(t) part. A related 
lower-bound argument for stage-checkpointing strategies is formally presented 
in [1]. Moreover, when processor restarts allowed, any algorithm that relies on a 
single coordinator for information gathering might not terminate (the adversary 
can always kill the current coordinator, keeping alive all the other processors so 
that no progress is made). 

Another important algorithm was developed by Galil, Mayer and Yung [3]. 
Working in the context of Byzantine agreement with stop-failures (for which they 
establish a message-optimal solution), they improved the message complexity 
of [1] to O(f -  p~ + min{f + 1, logp}p), for any positive e, while achieving the 
available processor steps complexity of O(t + (f  + 1) • p). 

The Do-All problem for the shared-memory model of computation, where 
it is called Write-All, was introduced and studied by Kanellakis and Shvarts- 
man [6, 7]. Parallel computation using the iterated Do-All paradigm is the sub- 
ject of several subsequent papers, most notably the work of Kedem, Palem and 
Spirakis [8], Martel, Park and Subramonian [11] and Kedem, Palem, Rabin and 
Raghunathan [9]. 

Kanellakis, Michailidis and Shvartsman [5] developed a technique for control- 
ling redundant concurrent access to shared memory in algorithms with processor 
stop-failures. This is done with the help of a structure they call processor pri- 
ority tree. In this work we use a similar structure in the qualitatively different 
message-passing setting. Furthermore, we are able to use our structure with 
restartable processors. 

The structure of the rest of the paper is as follows. Section 2 contains def- 
initions and gives a high-level view of the algorithms. Section 3 includes the 
presentation of algorithm AN with a proof of its correctness and analysis. Sec- 
tion 4 gives algorithm AR with correctness and analysis. The final Section 5 
concludes with remarks and future work. The optional appendix contains proof 
sketches. 

2 D e f i n i t i o n s  a n d  a l g o r i t h m i c  p r e l i m i n a r i e s  

In this section we describe the model of distributed computation, the failure 
models, and we introduce the main ideas underlying our algorithms. 

2.1 Model  
We consider a distributed system consisting of a set P ofp processors. Processors 
communicate only by message passing at the level of abstraction of the network 
layer, i.e., any processor can send messages to any other processor and the con- 
tents of messages are not corrupted. We assume that the set 7 9 is fixed and is 
known to all processors in 79. Processors have unique identifiers (PIDs) and the 
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set of PIDs is totally ordered. The distributed system is synchronous and we 
assume that  there is a global clock available to all the processors. Between each 
two consecutive clock ticks a processor takes a step during which the processor 
can receive messages, perform some local computa t ion  and send messages. For 
the sake of clarity of presentation we think of a step as further subdivided into 
three substeps: during the first one a processor receives messages sent to it dur- 
ing the previous step, during the second substep a processor performs some local 
computat ion,  and during the third substep a processor may  send some messages. 
We refer to these substeps as the receive substep, the compute substep and the 
send substep. 

We define a task to be a computat ion that  can be performed by any processor 
in unit time. Tasks are uniquely identified by their UIDs and the set of UIDs is 
totally ordered. Our distributed system has to perform t tasks with UIDs in the 
set T (t = lTI) .  The tasks are idempotent, i.e., each can be performed using the 
at-least-once execution semantics. Initially, the set T of tasks is known to all the 
processors. A task can be performed during the compute  substep together with 
some local computat ion.  

We consider two processor failure models: the fail-stop model in which pro- 
cessors do not restart after a failure, and the fail-stop/restart model in which 
restarts are allowed. In either model any processors may stop at any moment  
during the computat ion.  Such a processor does not receive any messages and 
does not perform any computat ion.  In the fai l -s top/restar t  model, a processor 
can restart at any point after a failure. Upon a restart  the state of the restarted 
processor is reset to an initial state, but the processor is aware of the restart .  Any 
messages sent to a processor prior to its restart  are lost. We assume that  during 
a single step a stopped processor can restart  at most  once (e.g., a processor can 
restart  in response to a clock tick). 

We define an execution to be a sequence of steps during which some number  
of processors, in parallel, perform their send, compute  and send substeps. Given a 
particular finite execution we denote by f the number  of actuM failures and by r 
the number of actual restarts. For the fail-stop model we assume tha t  at least one 
processor operational at any time, i.e., for any finite prefix of any execution we 
have r = 0 and that  f < p. In the fai l -s top/restar t  model it is possible to relax the 
assumption that  there exists an infallible processor. The natural  generalization 
of the condition f < p is: for any finite prefix of any execution we have f < r+p, 
i.e., during each step there is at least one operational processor. However this 
condition turns out to be too weak because it allows for all information about  
progress to be lost. For example,  consider the scenario in which half  of the 
processors are alive initially, they perform some tasks, and then they all crash 
while the other half restarts. This can be repeated forever without any globally 
known progress. Thus we require a stronger condition which assumes tha t  for 
any two consecutive "phases", where a phase is some small constant  number  
of consecutive steps specific to an algorithm, there is at least one processor 
that  is operational through the two phases. This condition rules out thrashing 
adversaries that  repeatedly stop and restart  processors in such a way tha t  any 
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progress made by the computation is lost (like in the above example). 
We assume that  reliable multicast [4] is available. With reliable multicast 

a processor q can send a message to any set P C_ P of processors in its send 
substep. All processors in P that  are operational during the entire following 
receive substep receive the message sent by q. 

Our goal is to execute the tasks in T efficiently, where the efficiency is mea- 
sured in terms of the available processor steps S and the communication com- 
plexity. The available processor steps S is defined by the stipulation that  any 
processor being operational during a t ime step contributes a unit to S. Formally, 
if pi is the number of processors operational during step i then S = ~'-]i=I pi, 
where ~ is the last step of the computation.  The communication complexity M 
is the number of point-to-point messages sent by processors. Each message sent 
from a processor ql to processor q2 (whether faulty or not) contributes a unit 
to M. During each step a processor can send at most one message to any of the 
other p -  1 processors. We are not concerned with the size of messages; however, 
using bit-string set encoding, each message sent contains O(max{t,  p}) bits. 

2.2 O v e r v i e w  o f  a l g o r i t h m i c  t e c h n i q u e s  

Computat ion proceeds in a loop, which is repeated until all the tasks are done. 
An iteration of the loop is referred to as a phase. A phase consists of some 
constant number of consecutive steps (we use three steps for each phase). Because 
any phase consists of a constant number of steps, the available processor steps 
is S = O ( ~  Pl), where pt is the number of processors taking at least one step 
in phase g and the sum is over all phases of the execution of the algorithm. 

Since we consider stop-failures, a processor can be in one of the following two 
states: live, when it is operational, or stopped, otherwise. For a given execution, 
the number f (resp. r) of failures (resp. restarts) is defined as the number of 
processor state changes from live to stopped (resp. from stopped to live). These 
state changes may occur at any point in the course of a phase. Throughout  the 
rest of the paper we use the following terminology. 

D e f i n i t i o n  1. A processor is said to be: 

- "available in phase g", if it is alive at the beginning of the phase; 
- "active in phase g", if it is available in phase g and sends all the messages it 

is supposed to send in phase £; 
- "restarted in phase / "  if it is not available in phase g - 1 but it is available 

in phase g; 
- "failed in phase g" if it is available in phase / but  it is not available in phase 

£ + 1 .  

This definition does not take into account the cases where a processor restarts 
and then fails shortly after the restart, without becoming available for the sub- 
sequent phase. We refer to such restarts as false restarts. 

A processor can be a coordinator of a given phase. All available processor 
(including coordinators) are also workers in a given phase. Coordinators are re- 
sponsible for recording progress, while workers respond to coordinators'  inquiries 
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and perform tasks in response to coordinators '  requests. There may be multiple 
coordinators in a given phase. 

C o o r d i n a t o r  a p p o i n t m e n t s .  The number  of  processors which assume the co- 
ordinator  role is determined by the martingale principle: if none of the expected 
coordinators survive through the entire phase, then the number  of coordinators 
for the next phase is doubled. This guarantees tha t  there can be O(logp)  con- 
secutive phases without active coordinators unless all processors stop. There are 
~9(logp) such phases only if the number  of failures is Y2(p). Whenever at least 
one coordinator is active in a phase, the number  of coordinators for the next 
phase is reduced to one. Allowing an exponential rate of growth in the number  
of coordinators seems to be an expensive s trategy but we show that  it is viable 
and efficient. 

L o c a l  v i ews .  Processors assume the coordinator role based on their local knowl- 
edge. During the computat ion each processor w maintains a sequence L~ ---- 
(ql, q2, ..., qk} of PIDs of potentially available processors. We call such list a local 
view, and we let P~ = {ql, q2, -.., qk} to be the set of PIDs in L~. The PIDs in L~ 
are part i t ioned into layers consisting of consecutive PIDs: Lw = (ql, q2, . . ,  qk} = 
(A °, A 1, A 2 .... , AJk) 5. When A ° = (ql} the layered structure can be visualized in 
terms of a complete binary tree rooted at processor ql, where nodes are placed 
from left to right with respect to the linear order given by Lw; thus, in a tree- 
like layered structure, layer A ° consists of processor ql, layer A i consists of 2 i 
consecutive processors start ing at processor q2 , and ending at processor q,,+l_ 1 
(see Figure 1). 

Layer A ° 
Layer A 1 
Layer A 2 
Layer A 3 
Layer A 4 

r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

J 5 i 

, 17 12 t 

, 14 1 16 7 , 

, 15 9 I0 11 3 13 4 8 , 

6 2 

Fig. 1. An example showing the layered structure with processors 
(5, 17, 12, 14, t, 16.7, 15, 9, 10, 11, 3, 13, 4, 8, 6, 2). 

The local view is used to implement  the mart ingale  principle of appointing 
coordinators as follows. Let Le,~o -- (A °, A 1, A 2, ..., A j~) be the local view of 
worker w at the beginning of phase t. Then processor w expects processors in 
layer A ° to act as coordinators in phase t; in the case layer A ° is not active in 
phase g, then processor w expects layer A 1 to be active in phase e + 1; in general 
processor w expects layer A i to be active in phase g + i if all previous layers A j ,  
t < j < t + i, were not active in phase £ + j .  The local view is updated at the 
end of each phase. 

s For sequences L = (e l , . . . ,en} and K = (d l , . . . , dm)  we define (L,K)  to be the 
sequence (ex . . . . .  en, dl . . . . .  din). 
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E x a m p l e .  Let the local view of a worker w for phase £ be the one in Figure 1. 
Then a possible view for processor w for phase g + 2 is the one in Figure 2. 
Processor w view may get to this view in phase ~ + 2, if processor 5 is not active 
in phase ~ and processors 17, 12 are not active in phase £ + 1. Subsequently, the 
local view of processor w can be the one in Figure 3. Processor w may get to 
this view in phase ~ + 4 if, for example, processors 14, 1, 16, 7 are not active in 
phase e + 2 and in phase e + 3 processors 15, 9, 11, 3, 13,4 are active, processors 
8 and 10 are failed and processors 1 and 16 are restarted. 

. . . . . .  ~ , ;  . . . .  £ . . . .  ] ~  . . . .  ~ . . . . .  ~ , 1 , 
, ~- . . . . . . . . . . . . . . . . . . . . . . . . . .  -4  

~- . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -* , 2 3 
, 1 5  9 10 11 3 13 4 8 , ~ . . . . . . . . . . . . . . . . . . . . . . . . . .  
t- . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ , 4 5 6 7 
' 6 2 512 ' ~ .......................... 

: 9__i_i_ I_2_ ~3__ ~_s _i_6 ....... : 

Fig. 2. The local view for phase ~ + 2. Fig. 3. The local view for phase g + 4. 

A l l o c a t i n g  tasks  a n d  t h e  l oad  b a l a n c i n g  ru le .  During the execution each 
processor w keeps its local information about the set Dw of units of tasks already 
performed, and the set P~ of live processors. Set D~ is always an underestimate 
of the set of tasks actually done and P~ is always an overestimate of the set of 
processors that  are available. We denote by U~ the set of unaccounted tasks, i.e., 
whose done status is unknown to w. Sets U~ and Dw are related by Dw = T\U, , ,  
where T is the set of all the tasks. Given a phase £ we use Pt,w, Ul,~ and D~,w to 
denote the values of the corresponding sets at the beginning of phase ~. Consider 
a phase ~ and let w be a worker active in phase £. Let i be the rank of processor 
w in the layered structure LL,w. The load balancing rule tells worker w to execute 
the (i rood IUl,~l) th unit of work. 

A l g o r i t h m  s t r u c t u r e .  At the beginning of phase £ processor w knows the local 
view Lt,w (and thus the set Pl,w) and the set Ul,w of unaccounted tasks (and thus 
the set Dl,w of accounted tasks). Each processor performs one task according to 
the load balancing rule and at tempts  to report the execution of the task to any 
coordinator of phase £. Any live coordinator c gathers reports from the workers, 
updates its information about  P~,c and Ul,c and broadcasts this new information 
causing local views to be reorganized. We will see that at the beginning of any 
phase g all live processors have the same local view Ll and the same set U~ of 
unaccounted tasks and that  accounted tasks have been actually executed. A new 
phase starts if Ul is not empty. 

3 N o  r e s t a r t s  - a l g o r i t h m  A N  

In this section we define algorithm AN for the fail-stop model. Although solving 
Do-All using the machinery we assume is relatively easy, we develop algorithm 
AN as the basis for algorithm AR which solves the Do-All problem in the more 
general fail-stop/restart  model. 
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S t r u c t u r e  o f  a phase .  A phase consists of 3 steps. 

S1. The receive substep is not used. In the compute substep, any worker w 
performs a specific task u according to the load balancing rule. In the send 
substep the worker w sends a r e p o r t ( u )  to any known coordinator. 

$2. In the receive substep the coordinators gather r e p o r t  messages. For any 
coordinator c, let ucl, ..., u~ ~ be the set of task UIDs received. In the compute 

substep c sets Dc <--- De U [J~__C1{u~}, and Pc to the set of worker PIDs 
from which c received r e p o r t  messages. In the send substep, coordinator c 
multicasts the message summary(De, Pc) to processors in Pc. 

$3. During the receive substep summary messages are received by live proces- 
sors. For any worker w, let (D~, P~), . . . ,  (D~ ~, p k ~ )  be the sets received in 
summary messages. In the compute step w sets Dw +- D~ and Pw ~ P /  for 
an arbitrary i C {1, ..., kw}. The worker w also updates its local view Lw as 
described below. The send substep is not used. 

U p d a t i n g  t h e  local  v iew.  Initially (phase 0) the local view L0,w of any pro- 
cessor w is defined as the set of processors 7 ) structured in layers as a tree-like 
layered structure given in Section 2. Let us consider a generic phase ~ and let the 
local view of processor w for phase ~ be Le,w : (ql, q2, .- ,  qk) -- (A °, A 1, ..., AJk). 
We distinguish two possible cases. 

CASE 1. No coordinators are active in phase L Then the local view of pro- 
cessor w for phase ~-{- 1 is Le+l,w -- (A~, ..., AJk). 

CASE 2. When at least one coordinator is active in phase 6, processor w 
receives messages from some coordinator in A °. Processor w computes its set 
Pw as described in step $3 (we will see that  all workers compute the same set 
P~). The local view L~+I,~ of w for phase ~ + 1 is the tree-like structure with 
processors in / ~  ordered by their PIDs. 

A generic phase is depicted in Figure 4 in Section 4 (for algorithm AN ignore 
the messages and steps of the restarted processors). 
C o r r e c t n e s s  a n d  eff ic iency.  We first prove that  algorithm AN correctly solves 
the Do-All problem. We start  by showing that  at the beginning of each phase 
every available processor has consistent knowledge of the ongoing computation.  
Then we prove safety (no live processor or undone task is forgotten) and progress 
properties (tasks execution) which imply the correctness of the algorithm. 

L e m m a  2 ( A N : C o n s i s t e n c y ) .  In any execution o f  algorithm AN, for  any two 
processors w , v  available in phase 6, we have that Li+l,w = L~+l,v and that 
U~+l,w = Ue+l,,.  

Because of the previous lemma, we can define L/ = Lt,w for any w as the 
view at the beginning of phase ~., Pt --- Pt,w as the set of available processors, 
D~ = D~,w as the set of done tasks and Ue = U~,~v as the set of unaccounted 
tasks at the beginning of phase e. 

L e m m a  3 ( A N : S a f e t y 1 ) .  In any execution of  algorithm AN, i f  a processor w 
is active in phase ~ - 1 then processor w belongs to Pt.  

L e m m a 4  ( A N : S a f e t y 2 ) .  In any execution of  algorithm AN, i f  a task u has 
not been executed in phases 1, 2, . . . , t -  1 then u belongs to Ut. 
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We say that a phase g is attended if at least one of the processor supposed 
to be coordinator according to the view Ll is active during phase £. Otherwise 
the phase is unattended. 

Let us denote the set of all the attended phases by A = {c~l,(~2,...,c~r}, 
for al  < a2 < .-- < aT and a given particular execution of algorithm AN. 
Let us denote by rri the unattended phases in between the attended phases cq 
and ai+l. We refer to rri as the i th (unattended) period; an unattended period 
can be empty. Hence the computation proceeds as follows: unattended period 
rr0, attended phase al ,  unattended period r l ,  attended phase c~2, and so on. 
After the last attended phase ~r, the algorithm terminates. Indeed since there 
are no other attended iterations it must be the case that there are no tasks 
left unaccounted after phase ~r. We denote by pi the eardinality of the set of 
available processors for phase i, i.e., pi = [Pi[, and by ui the cardinality of the 
set of unaccounted tasks for phase i, i.e., ui =[Ui[. We let ul = t and ur+l = O. 
L e m m a 5  (AN:Progress1) .  In any execution of algorithm AN, for any at- 
tended phase g we have that ut > ul+l. 
L e m m a  6 (AN:Progress2) .  In any execution of algorithm AN, any unattended 
period consists of at most log f phases. 

T h e o r e m 7  (AN:Correc tness) .  In any execution of algorithm AN such that 
f < p, i.e., at least one processor survives, the algorithm terminates and all the 
units of work are performed. 

To assess S we consider separately all the attended phases and all the unat- 
tended phases of the execution. Let Sa be the part of S spent during all the 
attended phases and Su be the part of S spent during all the unattended phases. 
Hence S is Sa + Su. 

The following lemma uses the construction by Martel [10, 6]. 
L e m m a 8 .  In any execution of algorithm AN, Sa = O(t + plogp/loglogp). 
L e m m a  9. In any execution of algorithm AN, Su = O(Sa • log f). 

T h e o r e m  10. In any execution of algorithm AN, the available processor steps 
is S = O(log f . (t + plogp/loglogp)). 

Thus the work of algorithm AN is within a log f (and hence also log p) factor 
of the lower bound of ~(t  + p log p~ log log p) [6] for any algorithm that performs 
tasks by balancing loads of surviving processors in each time step. 

For each attended phase ai E A, let di be some distinguished active co- 
ordinator, we refer to di as the designated coordinator of phase ai. Let Md~ 
be the number of messages sent or received in phase ai by di. We denote by 
Md ---- ~ir=l Mdi the number of messages sent and received by the designated 
coordinators during all the attended phases. Let M I be the number of all other 
messages, i.e., both the messages sent in unattended periods and the messages 
sent and received in attended phases by the non-designated coordinators. 
L e m m a  11. In any execution of algorithm AN, Md = O(Sa). 

L e m m a  12. In any execution of algorithm AN, M I = O( f  . p). 

T h e o r e m  13. In any execution of algorithm AN, the number of messages sent 
is M = O(t + plogp/ loglogp+ f .p). 
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4 S top- fa i lures  and restarts  - a l g o r i t h m  A R  

In this section we describe algorithm AR which solves Do-All in the model of 
stop failures with restarts. This algori thm is obtained by modifying algori thm 
AN. The  condition that  the number of failures is f < r + p  provides the condition 
analogous to f < p of the fail-stop model.  

Algori thm AR is similar to algori thm AN; the difference is that  there are 
added messages to handle the restart  of processors. A stopped processor q may  
become live at any moment .  At the momen t  of  the restart ,  processor q has the 
initial information about  the set ~o of processors and the set T of tasks but no 
information about  the ongoing computat ion.  

The  steps S1, $2 and $3 in the phase in algori thm AR are similar to those 
of algori thm AN. After the restart, processor q broadcasts r e s t a r t ( q )  messages 
in the send substep of each step until it receives a response. Processors receiving 
such messages, ignore them if these messages are not received by a certain point 
within a phase. Thus we can imagine tha t  a restarted processor q broadcasts a 
r e s t a r t ( q )  in step S1 of a phase f. This message is then received by all the live 
and restarted processors of that  phase, and, as we will see shortly, processor q is 
re-integrated in the view for the phase ~ + 1. Moreover processor q needs to be 
informed about  the status of the ongoing computat ion.  Hence all the processors 
who have been live since the start  of S1 send an info(U~, Lt) to such q with the 
set Ut of unaccounted tasks and the local view Z e- 

S t r u c t u r e  o f  a p h a s e  e. (See Figure 4.) 

S1. The receive substep is not used. In the compute  substep any worker w per- 
forms a specific task u according to the load balancing rule. In the send 
substep w sends a r e p o r t ( u )  to any known coordinator. Any restarted pro- 
cessor q broadcasts  the r e s t a r t ( q )  message informing all live processors of 
its restart .  

$2. In the receive step the coordinators gather r e p o r t  messages and all live 
processors gather r e s t a r t  messages. Let R be the set of processors tha t  

1 uc k be the set of sent a r e s t a r t  message. For any coordinator c, let uc, ..., 

task VIDs received. In the compute  substep c sets Dc +-- Dc U [-J~-z {u~} and 
Pc to be the set of workers from which c received r e p o r t  messages. In the 
send substep, coordinator c mult icasts  the message summary(Dc, Pc) to the 
available and restarted processors. Any available processor also sends the 
message ±nfo(U~, Ll) to processors in R. 

$3. Restarted processors in R receive ±nfo(U~, Ll) messages. A restarted pro- 
(D~,,P~.), cessor q sets Lq +-- Lt and Uq +--- U~. Let ~ 1 "-', ~--wi Dk~',*Pk~'tw 1 be the sets 

received in summary messages by processor w which received such messages. 
Processor w sets D,o +-- Diw and Pw +-- P~w for an arbi trary i E 1, ..., k and 
Uw +-- T \ Dw. Each processor w updates  its local view Lw as described 
below. The send substep is not used. 

Layered s t r u c t u r e  r e o r g a n i z a t i o n .  Initially (phase 0) the local view Lo,w of 
any processor w is defined as the set of  processors P structured in layers as a 
tree-like layered structure given in Section 2. Let us consider a generic phase 
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Fig. 4. A phase of algorithm AR (for algorithm AN ignore restarts). 

e and let the local view of processor w for phase t be Ll,w = (ql, q~, ...,qk) = 
(A °, A 1 , ..., AJk). We distinguish three possible cases. 

CASE 1. In phase £ no coordinator is active and no processor restarts. Then 
the algorithm proceeds exactly as in the no restart case: the local view of pro- 
cessor w for phase £ + 1 is L~+l,w = (A 1, ..., AJk). 

CASE 2. In phase £ no coordinator is active but some processors restart. 
Let R e be the set of restarted processors who succeed in sending the r e s t a r t  
messages. Let R I be the set of processors of R ~ .that are not already in the loca] 
view L~,w. Let (R I) be the processors in R ~ ordered according to their PIDs. The 
local view for the next phase is Ll+l,w = (A 1, ..., A jk) @ (R'}. The operator • 
places processors of R ~, in the order (R/}, into the last layer A jk till this layer 
contains exactly the double of the processors of layer A jk-1 and possibly adds 
a new layer A jk+l to accommodate  the remaining processors of (R~). That  is, 
newly restarted processors which are not yet in the view, are appended at the 
end of the old layered structure. Notice that restarted processors which receive 
±nfo messages know the old view L~. 

CASE 3. In phase ~ there are both active coordinators and restarted pro- 
cessors. Since there are active coordinators, summary messages are received by 
available, live and restarted processors. Processor w sets Pw as described in step 
3; moreover processor w knows the set Rq The new layered structure Ll+l,w for 
the next phase consists of all the processors in Pw U R ~, ordered according to 
their PIDs and the layered structure is the tree-like layered structure. 

C o r r e c t n e s s  a n d  eff ic iency.  The proof of correctness is similar to that  used 
for algorithm AN. The definitions of terms and of Sa, Su, Md and Mc carry over. 

L e m m a 1 4  ( A R : C o n s i s t e n c y ) .  In any execution of algorithm AR, for any 
two processors w, v available in phase ~, we have that Ll+l,w = Lt+l,v and that 
Ut+l,w = Ul+l,v. 

L e m m a 1 5  ( A R : S a f e t y l ) .  In any execution of algorithm AR, i f  a processor 
w is active or restarted in phase ~ - 1, then processor w belongs to Pb 

L e m m a  16 ( A R : S a f e t y 2 ) .  In any execution of algorithm AR, if  a task u has 
not been executed in phases 1,2, . . . , ~ -  1 then u belongs to Ut. 
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L e m m a  17 ( A R : P r o g r e s s l ) .  In any execution of algorithm AR, for any at- 
tended phase g we have that u~ > ue+l. 

L e m m a  18 ( A R : P r o g r e s s 2 ) .  In any execution of algorithm AR, any unat- 
tended period consists of at most min{logp, log f}  phases. 

T h e o r e m  19 ( A R : C o r r e c t n e s s ) .  In any execution of algorithm AR such that 
f < r + p with at least one processor active in any two consecutive phases the 
algorithm terminates and all the units of work are performed. 

We next analyze the performance of algorithm AR in terms of the available 
processor steps S used and the number M of messages sent. 

L e m m a  20. In any execution of algorithm AR, Sa = O(t + p logp  + f ) .  

L e m m a  21. In any execution of algorithm AR, S~ = O(Sa+f).min{logp, log f})  

T h e o r e m 2 2 .  For any execution of algorithm. AR, S = O((t + p logp  + f )  - 
rain{log p, log f}) .  

For each attended phase ai E ,4, let di (designated coordinator) be some 
specific active coordinator, and Md, denote the number of messages sent or 
received in phase c~i by di, with the exception of the r e s t a r t  messages. Md = 

T ~ = I  Md~ is the total number of such messages. 

L e m m a 2 3 .  In any execution of algorithm AR, Md----O(Sa). 

The remaining messages are categorized into three groups. Mc is the number 
of messages sent by non designated coordinators during the attended phases 
plus the number of messages sent in response to such coordinators. M~, is the 
the number of messages sent by all workers to the expected coordinators during 
the unattended phases. Mr is the number of messages sent and received by 
processors that  restart during the computation.  

L e m m a  24. In any execution of algorithm AR, M~ + Mw + Mr = O ( f .  p). 

T h e o r e m  25. In any execution of algorithm AN, M = O(t + p.  logp + p .  f ) .  

5 D i s c u s s i o n  

We have considered the Do-All problem of performing t tasks on a distributed 
system of p fault-prone synchronous processors. We presented the first algorithm 
for the model with processor failures and restarts. Previous algorithms accom- 
modated only stop-failures. Prior algorithmic approaches relied on the single 
coordinator paradigm in which the coordinator is elected for the time during 
which the progress of the computat ion depends on it. However this approach 
is not effective in the general model with processor restarts: an omniscient ad- 
versary can always stop the single coordinator while keeping alive all other pro- 
cessors thus preventing any global progress, In this paper we have used a novel 
multi-coordinator paradigm in which the number of simultaneous coordinators 
increases exponentially in response to coordinator failures. This approach en- 
ables effective Do-All solutions that  accommodate processor restarts. Moreover, 
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when there are no restarts, the performance of the algori thm is comparable to 
that  of any known algorithm. 

The fault-prone processors in our algorithms use reliable communication.  It  
can be shown, for example,  tha t  with minor  modifications, our algorithms remain 
correct and efficient even if worker-to-coordinator mult icasts  are not reliable. 
However coordinators still need to use reliable broadcast.  A worthwhile research 
direction is to design algori thms which use our aggressive coordinator paradigm 
and unreliable communication.  

A c k n o w l e d g m e n t s :  We thank Moti Yung for several discussions of processor 
restart  issues and for encouraging this direction of research. 
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