
Performing Tasks on Restartable
Message-Passing Processors*

Bogdan S. Chlebus 1 and Roberto De Prisco 2 and Alex A. Shvartsman 3

1 Instytut Informatyki, Uniwersytet Warszawski,
Banacha 2, 02-097 Warszawa, Poland.

chlebus@mimu., edu.pl
2 Laboratory for Computer Science, Massachusetts Institute of Technology,

545 Technology Square NE43-368, Cambridge, MA 02139, USA.
robdep@theory. Ics. mit. edu

Department of Computer Science and Engineering, University of Connecticut,
191 Auditorium Road, U-155, Storrs, CT 06269, USA.

aas@eng2, uconn, edu

Abst rac t . This work presents new algorithms for the "Do-All" prob-
lem that consists of performing t tasks reliably in a message-passing syn-
chronous system of p fault-prone processors. The algorithms are based
on an aggressive coordination paradigm in which multiple coordinators
may be active as the result of failures. The first algorithm is tolerant
of f < p stop-failures and it does not allow restarts. It has the available
processor steps complexity S = O((t + p logp / log logp) , log f) and the
message complexity M = O(t + p logp / log logp + f • p). Unlike prior
solutions, our algorithm uses redundant broadcasts when encountering
failures and, for large f, it has better S complexity. This algorithm is
used as the basis for another algorithm which tolerates any pattern of
stop-failures and restarts. This new algorithm is the first solution for the
Do-All problem that efficiently deals with processor restarts. Its available
processor steps complexity is S = O((t + p log p + f) . rain{log p, log f}),
and its message complexity is M = O(t + p . logp + f .p), where f is the
number of failures.

1 Introduction

The problem of performing t tasks reliably and in parallel using p processors
is one of the fundamental problems in distributed computation. This problem,
which we call Do-All, was considered for the synchronous message-passing model

* This work was supported by the following contracts: ARPA N00014-92-J-4033
and F19628-95-C-0118, NSF 922124-CCR, ONR-AFOSR F49620-94-1-01997, and
DFG-Graduiertenkolleg "Parallele Rechnernetzwerke in der Produktionstechnik"
ME 872/4-1, DFG-SFB 376 "Massive Parallelit~it: Algorithmen, Entwurfsmethoden,
Anwendungen'. The research of the third author was substantially done at the Mas-
sachusetts Institute of Technology. The research of the first and the third authors
was partly done while visiting Heinz Nixdorf Institut, Universit~it-GH Paderborn.

97

by Dwork, Halpern and Waarts in their pioneering work [2]. They developed
several efficient algorithms for this problem in the setting where the processors
are subject to fail-stop (or crash) failures and where the tasks can be performed
using the at-least-once execution semantics (i.e., the tasks either are or can be
made idempotent). In the setting of [2], the cost of local computation, whether
performing low-level administrative tasks or idling, is considered to be negligible
compared to the costs of performing each of the t tasks.

In solving Do-All, Dwork, Halpern and Waarts define the effort of an algo-
ri thm as the sum of the work complexity (i.e., the number of tasks executed,
counting multiplicities) and message complexity (i.e., the number of messages
used). This approach to efficiency does not account for any steps spent by pro-
cessors waiting for messages or time-outs. This allows algorithm optimizations
which keep the number of messages small, because processors can afford to wait
to obtain sufficient information by not receiving messages in specific time inter-
vals.

De Prisco, Mayer and Yung also consider the Do-All problem without proces-
sor restarts in their study [1]. Their goal is the development of fast and message-
efficient algorithms. The work measure they consider is the available processor
steps S (introduced by Kanellakis and Shvartsman [6]). This measure accounts
for all steps taken by the processors, that is, the steps involved in performing
the Do-All tasks and any other computation steps taken by the processors. Op-
timization of S leads to fast algorithms whose performance degrades gracefully
with failures. The communication efficiency is gauged using the standard mes-
sage complexity measure. The authors successfully pursue algorithmic efficiency
in terms of what they call the lexicographic optimization of complexity mea-
sures. This means firstly achieving efficient work, then efficient communication
complexity.

A similar approach to efficiency is pursued by Galil, Mayer and Yung [3] who
also derive a very efficient Do-All solution for stop-failures.

O u r e o n t r l b u t i o n s . In this paper we solve the Do-All problem in the setting
where the p processors are subject to dynamic stop-failures and restarts. The
complexity concerns in this paper follow the criteria established in [1]. We seek
algorithmic efficiency with respect to both the work, expressed as available pro-
cessor steps S, and the communication, expressed as the message complexity M.
We want to minimize S, having M as small as possible.

We introduce an aggressive coordinator scheduling paradigm that allows mul-
tiple coordinators to be active concurrently. Because multiple coordinators are
activated only in response to failures, our algorithms achieve efficiency in S
and M.

It is not difficult to formulate trivial solutions to Do-All in which each pro-
cessor performs each of the t tasks. Such solutions have work f2(t-(p+ r)), where
r is the number of restarts, and they do not require any communication. Thus
work-efficient solutions need to trade messages for work. Our solution is the first
non-trivial efficient algorithm tolerant of stop-failures and restarts determined
by the the worst-case omniscient adversary.

98

En route to the solution for restartable processors we introduce a new al-
gorithm for the Do-All problem without restarts. This algorithm, that we call
"algorithm AN" (Algorithm No-restart), is tolerant of f < p stop-failures. It has
available processor steps complexity 4 S = O((t + p logp / log log p) . log f) and
message complexity M = O(t + plogp/log logp + f - p).

Algorithm AN is the basis for our second algorithm, called "algorithm AR"
(Algorithm with Restarts), which tolerates any number of stop-failures and
restarts. Algorithm AR is the first such solution for the Do-All problem. Its
available processor steps complexity is S = O((t + p l o g p + f)-min{logp, log f}),
and its message complexity is M = O(t + p. logp + f - p) , where f is the number
of failures.

Our algorithm AN is more efficient in terms of S than the algorithms of [1]
and [3] when f , p and t are comparable; the algorithm also has efficient message
complexity. Both algorithm AN and algorithm AR come within a log f (and
logp) factor of the lower bounds [6] for any algorithms that balance loads of
surviving processors in each constant-time step. We achieve this by deploying
an aggressive processor coordination strategy, in which more than one processor
may assume the role of the coordinator, the processor whose responsibility is to
ensure the progress of the computation. This approach is suggested by the ob-
servation that algorithms with only one coordinator cannot efficiently cope with
restarts. Indeed the real advantage of this approach is tha t it can be naturally
extended to deal with processor failures and restarts, with graceful deterioration
of performance.

The improvements in S, however, come at a cost. Both of our algorithms
assume reliable multicast [4]. Prior solutions do not make this assumption, al-
though they do not solve the problem of processor restarts. The availability of
reliable broadcast simplifies solutions for non-restartable processors, but dealing
with processor restarts remains a challenge even when such broadcast is available.
There are several reasons for considering solutions with reliable multicasts. First
of all, in a distributed setting where processors cooperate closely, it becomes
increasingly important to assume the ability to perform efficient and reliable
broadcast or multicast. This assumption might not hold for extant WANs, but
it is true for broadcast LANs (e.g., Ethernet and bypass rings). The availability
of hardware-assisted broadcast makes the cost of using the broadcast communi-
cation comparable to the cost of sending a single point-to-point message. Note
however that we are using a conservative cost measure which assumes that the
cost of a multicast is proportional to the number of recipients. Secondly, by
separating the concerns between the reliability of processors and the underly-
ing communication medium, we are able to formulate solutions at a higher level
of modularity so that one can take advantage of efficient reliable broadcast al-
gorithms (cf. [4]) without altering the overall algorithmic approach. Lastly, our
approach presents a new venue for optimizing Do-All solutions and for beating
the I2(t + (f + 1) • p) lower bound of stage-checkpointing algorithms [1].

4 All logarithms are to the base 2; the expression "log f" stands for 1 when f < 2 and
log 2 f otherwise.

99

R e v i e w o f p r i o r work . Dwork, Halpern and Waarts [2] developed the first
algorithms for the Do-All problem. One algorithm presented by the authors
(protocol B) has effort O(t + Pv~), with work contributing the cost O(t + p)
towards the effort, and message complexity contributing the cost O(pv~). The
running time of the algorithm is O(t A-p). Another algorithm in [2] (protocol g)
has effort O(t -4-plogp). This includes optimal work of O(t -t-p), message com-
plexity of O(p logp), and time O(p2(t A-p)2t+P). Thus the reduction in message
complexity is traded-off for a significant increase in time. The third algorithm
(protocol :D) obtains work optimality and is designed for maximum speed-up,
which is achieved with a more aggressive checkpointing strategy, thus trading-off
time for messages. The message complexity is quadratic in p for the fault-free
case, and in the presence of a failure pattern of f < p failures, the message
complexity degrades to O(f . p2).

De Prisco, Mayer and Yung [1] present an algorithm which has the avail-
able processor steps O(t + (f + l)p) and message complexity O((f + 1)p). The
available processor steps and communication efficiency approach requires keep-
ing all the processors busy doing tasks, simultaneously controlling the amount
of communication. De Prisco, Mayer and Yung were the first to report results on
Do-All algorithms in the fail-stop case using this efficiency approach. To avoid
the quadratic upper bound for S substantial processing slackness (p KK t) is
assumed. In [1] a lower bound of /2(t + (f + i)p) for algorithms that use the
stage-checkpointing strategy is proved. However there are algorithmic strate-
gies that have the potential of circumventing the quadratic bound. Consider the
following scenarios. In tile first scenario we have t = o(p), f > p/2, and the algo-
rithm assigns all tasks to every processor. Then S = O(p. t) = o(t + (f + 1). p),
because f -p = O(p2). This naive algorithm has a quadratic work performance
for p = O(t). In the second example assume that the three quantities p, t and f
are of comparable magnitude. Consider the algorithm in which all the processors
are coordinators, work is interleaved with communication, and the outstanding
work is evenly allocated among the live processors based on their identifiers. The
work allocation is done after each round of exchanging messages about which
processors are still available and which tasks have been successfully performed.
One can show that S = O(p. log p/ log log p) . This bound is o(t + (f + 1). p) for
f > p/2 and t = p. Unfortunately the number of messages exchanged is more
than quadratic, and can be ~2(p 2-log p~ log logp). These examples suggest a pos-
sibility of improvement of the bound S = O(t + (f + l)p), however the simple
algorithms discussed above have either the available processor steps quadratic in
p, or the number of messages more than quadratic in p in the case when p, t and
f are of the same order. One interesting result of our paper is showing that an
algorithm can be developed which has both the available processor steps which
is always subquadratic, and the number of messages which is quadratic only for
f comparable to p, even with restarts.

The algorithm in [1] is designed so that at each step there is at most one
coordinator; if the current coordinator fails then the next available processor
takes over, according to a time-out strategy. Having a single coordinator helps

100

to bound the number of messages, but a drawback of such approach is that any
protocol with at most one active coordinator is bound to have S = f2(t + (f + 1).
p). Namely, consider the following behavior of the adversary: each coordinator is
stopped immediately after it becomes one and before it sends any messages. This
creates pauses of at least O(1) steps, giving the I2((f + 1). p) part. Eventually
there remains only one processor which has to perform all the tasks, because it
has never received any messages, this gives the remaining/2(t) part. A related
lower-bound argument for stage-checkpointing strategies is formally presented
in [1]. Moreover, when processor restarts allowed, any algorithm that relies on a
single coordinator for information gathering might not terminate (the adversary
can always kill the current coordinator, keeping alive all the other processors so
that no progress is made).

Another important algorithm was developed by Galil, Mayer and Yung [3].
Working in the context of Byzantine agreement with stop-failures (for which they
establish a message-optimal solution), they improved the message complexity
of [1] to O(f - p~ + min{f + 1, logp}p), for any positive e, while achieving the
available processor steps complexity of O(t + (f + 1) • p).

The Do-All problem for the shared-memory model of computation, where
it is called Write-All, was introduced and studied by Kanellakis and Shvarts-
man [6, 7]. Parallel computation using the iterated Do-All paradigm is the sub-
ject of several subsequent papers, most notably the work of Kedem, Palem and
Spirakis [8], Martel, Park and Subramonian [11] and Kedem, Palem, Rabin and
Raghunathan [9].

Kanellakis, Michailidis and Shvartsman [5] developed a technique for control-
ling redundant concurrent access to shared memory in algorithms with processor
stop-failures. This is done with the help of a structure they call processor pri-
ority tree. In this work we use a similar structure in the qualitatively different
message-passing setting. Furthermore, we are able to use our structure with
restartable processors.

The structure of the rest of the paper is as follows. Section 2 contains def-
initions and gives a high-level view of the algorithms. Section 3 includes the
presentation of algorithm AN with a proof of its correctness and analysis. Sec-
tion 4 gives algorithm AR with correctness and analysis. The final Section 5
concludes with remarks and future work. The optional appendix contains proof
sketches.

2 D e f i n i t i o n s a n d a l g o r i t h m i c p r e l i m i n a r i e s

In this section we describe the model of distributed computation, the failure
models, and we introduce the main ideas underlying our algorithms.

2.1 Model
We consider a distributed system consisting of a set P ofp processors. Processors
communicate only by message passing at the level of abstraction of the network
layer, i.e., any processor can send messages to any other processor and the con-
tents of messages are not corrupted. We assume that the set 7 9 is fixed and is
known to all processors in 79. Processors have unique identifiers (PIDs) and the

101

set of PIDs is totally ordered. The distributed system is synchronous and we
assume that there is a global clock available to all the processors. Between each
two consecutive clock ticks a processor takes a step during which the processor
can receive messages, perform some local computa t ion and send messages. For
the sake of clarity of presentation we think of a step as further subdivided into
three substeps: during the first one a processor receives messages sent to it dur-
ing the previous step, during the second substep a processor performs some local
computat ion, and during the third substep a processor may send some messages.
We refer to these substeps as the receive substep, the compute substep and the
send substep.

We define a task to be a computat ion that can be performed by any processor
in unit time. Tasks are uniquely identified by their UIDs and the set of UIDs is
totally ordered. Our distributed system has to perform t tasks with UIDs in the
set T (t = lTI) . The tasks are idempotent, i.e., each can be performed using the
at-least-once execution semantics. Initially, the set T of tasks is known to all the
processors. A task can be performed during the compute substep together with
some local computat ion.

We consider two processor failure models: the fail-stop model in which pro-
cessors do not restart after a failure, and the fail-stop/restart model in which
restarts are allowed. In either model any processors may stop at any moment
during the computat ion. Such a processor does not receive any messages and
does not perform any computat ion. In the fai l -s top/restar t model, a processor
can restart at any point after a failure. Upon a restart the state of the restarted
processor is reset to an initial state, but the processor is aware of the restart . Any
messages sent to a processor prior to its restart are lost. We assume that during
a single step a stopped processor can restart at most once (e.g., a processor can
restart in response to a clock tick).

We define an execution to be a sequence of steps during which some number
of processors, in parallel, perform their send, compute and send substeps. Given a
particular finite execution we denote by f the number of actuM failures and by r
the number of actual restarts. For the fail-stop model we assume tha t at least one
processor operational at any time, i.e., for any finite prefix of any execution we
have r = 0 and that f < p. In the fai l -s top/restar t model it is possible to relax the
assumption that there exists an infallible processor. The natural generalization
of the condition f < p is: for any finite prefix of any execution we have f < r+p,
i.e., during each step there is at least one operational processor. However this
condition turns out to be too weak because it allows for all information about
progress to be lost. For example, consider the scenario in which half of the
processors are alive initially, they perform some tasks, and then they all crash
while the other half restarts. This can be repeated forever without any globally
known progress. Thus we require a stronger condition which assumes tha t for
any two consecutive "phases", where a phase is some small constant number
of consecutive steps specific to an algorithm, there is at least one processor
that is operational through the two phases. This condition rules out thrashing
adversaries that repeatedly stop and restart processors in such a way tha t any

102

progress made by the computation is lost (like in the above example).
We assume that reliable multicast [4] is available. With reliable multicast

a processor q can send a message to any set P C_ P of processors in its send
substep. All processors in P that are operational during the entire following
receive substep receive the message sent by q.

Our goal is to execute the tasks in T efficiently, where the efficiency is mea-
sured in terms of the available processor steps S and the communication com-
plexity. The available processor steps S is defined by the stipulation that any
processor being operational during a t ime step contributes a unit to S. Formally,
if pi is the number of processors operational during step i then S = ~'-]i=I pi,
where ~ is the last step of the computation. The communication complexity M
is the number of point-to-point messages sent by processors. Each message sent
from a processor ql to processor q2 (whether faulty or not) contributes a unit
to M. During each step a processor can send at most one message to any of the
other p - 1 processors. We are not concerned with the size of messages; however,
using bit-string set encoding, each message sent contains O(max{t, p}) bits.

2.2 O v e r v i e w o f a l g o r i t h m i c t e c h n i q u e s

Computat ion proceeds in a loop, which is repeated until all the tasks are done.
An iteration of the loop is referred to as a phase. A phase consists of some
constant number of consecutive steps (we use three steps for each phase). Because
any phase consists of a constant number of steps, the available processor steps
is S = O (~ Pl), where pt is the number of processors taking at least one step
in phase g and the sum is over all phases of the execution of the algorithm.

Since we consider stop-failures, a processor can be in one of the following two
states: live, when it is operational, or stopped, otherwise. For a given execution,
the number f (resp. r) of failures (resp. restarts) is defined as the number of
processor state changes from live to stopped (resp. from stopped to live). These
state changes may occur at any point in the course of a phase. Throughout the
rest of the paper we use the following terminology.

D e f i n i t i o n 1. A processor is said to be:

- "available in phase g", if it is alive at the beginning of the phase;
- "active in phase g", if it is available in phase g and sends all the messages it

is supposed to send in phase £;
- "restarted in phase / " if it is not available in phase g - 1 but it is available

in phase g;
- "failed in phase g" if it is available in phase / but it is not available in phase

£ + 1 .

This definition does not take into account the cases where a processor restarts
and then fails shortly after the restart, without becoming available for the sub-
sequent phase. We refer to such restarts as false restarts.

A processor can be a coordinator of a given phase. All available processor
(including coordinators) are also workers in a given phase. Coordinators are re-
sponsible for recording progress, while workers respond to coordinators' inquiries

103

and perform tasks in response to coordinators ' requests. There may be multiple
coordinators in a given phase.

C o o r d i n a t o r a p p o i n t m e n t s . The number of processors which assume the co-
ordinator role is determined by the martingale principle: if none of the expected
coordinators survive through the entire phase, then the number of coordinators
for the next phase is doubled. This guarantees tha t there can be O(logp) con-
secutive phases without active coordinators unless all processors stop. There are
~9(logp) such phases only if the number of failures is Y2(p). Whenever at least
one coordinator is active in a phase, the number of coordinators for the next
phase is reduced to one. Allowing an exponential rate of growth in the number
of coordinators seems to be an expensive s trategy but we show that it is viable
and efficient.

L o c a l v i ews . Processors assume the coordinator role based on their local knowl-
edge. During the computat ion each processor w maintains a sequence L~ ----
(ql, q2, ..., qk} of PIDs of potentially available processors. We call such list a local
view, and we let P~ = {ql, q2, -.., qk} to be the set of PIDs in L~. The PIDs in L~
are part i t ioned into layers consisting of consecutive PIDs: Lw = (ql, q2, . . , qk} =
(A °, A 1, A 2 , AJk) 5. When A ° = (ql} the layered structure can be visualized in
terms of a complete binary tree rooted at processor ql, where nodes are placed
from left to right with respect to the linear order given by Lw; thus, in a tree-
like layered structure, layer A ° consists of processor ql, layer A i consists of 2 i
consecutive processors start ing at processor q2 , and ending at processor q,,+l_ 1
(see Figure 1).

Layer A °
Layer A 1
Layer A 2
Layer A 3
Layer A 4

r .

J 5 i

, 17 12 t

, 14 1 16 7 ,

, 15 9 I0 11 3 13 4 8 ,

6 2

Fig. 1. An example showing the layered structure with processors
(5, 17, 12, 14, t, 16.7, 15, 9, 10, 11, 3, 13, 4, 8, 6, 2).

The local view is used to implement the mart ingale principle of appointing
coordinators as follows. Let Le,~o -- (A °, A 1, A 2, ..., A j~) be the local view of
worker w at the beginning of phase t. Then processor w expects processors in
layer A ° to act as coordinators in phase t; in the case layer A ° is not active in
phase g, then processor w expects layer A 1 to be active in phase e + 1; in general
processor w expects layer A i to be active in phase g + i if all previous layers A j ,
t < j < t + i, were not active in phase £ + j . The local view is updated at the
end of each phase.

s For sequences L = (e l , . . . ,en} and K = (d l , . . . , dm) we define (L,K) to be the
sequence (ex en, dl din).

1 0 4

E x a m p l e . Let the local view of a worker w for phase £ be the one in Figure 1.
Then a possible view for processor w for phase g + 2 is the one in Figure 2.
Processor w view may get to this view in phase ~ + 2, if processor 5 is not active
in phase ~ and processors 17, 12 are not active in phase £ + 1. Subsequently, the
local view of processor w can be the one in Figure 3. Processor w may get to
this view in phase ~ + 4 if, for example, processors 14, 1, 16, 7 are not active in
phase e + 2 and in phase e + 3 processors 15, 9, 11, 3, 13,4 are active, processors
8 and 10 are failed and processors 1 and 16 are restarted.

. ~ , ; £] ~ ~ ~ , 1 ,
, ~- . -4

~- . -* , 2 3
, 1 5 9 10 11 3 13 4 8 , ~ .
t- . ~ , 4 5 6 7
' 6 2 512 ' ~

: 9__i_i_ I_2_ ~3__ ~_s _i_6 :

Fig. 2. The local view for phase ~ + 2. Fig. 3. The local view for phase g + 4.

A l l o c a t i n g tasks a n d t h e l oad b a l a n c i n g ru le . During the execution each
processor w keeps its local information about the set Dw of units of tasks already
performed, and the set P~ of live processors. Set D~ is always an underestimate
of the set of tasks actually done and P~ is always an overestimate of the set of
processors that are available. We denote by U~ the set of unaccounted tasks, i.e.,
whose done status is unknown to w. Sets U~ and Dw are related by Dw = T\U, , ,
where T is the set of all the tasks. Given a phase £ we use Pt,w, Ul,~ and D~,w to
denote the values of the corresponding sets at the beginning of phase ~. Consider
a phase ~ and let w be a worker active in phase £. Let i be the rank of processor
w in the layered structure LL,w. The load balancing rule tells worker w to execute
the (i rood IUl,~l) th unit of work.

A l g o r i t h m s t r u c t u r e . At the beginning of phase £ processor w knows the local
view Lt,w (and thus the set Pl,w) and the set Ul,w of unaccounted tasks (and thus
the set Dl,w of accounted tasks). Each processor performs one task according to
the load balancing rule and at tempts to report the execution of the task to any
coordinator of phase £. Any live coordinator c gathers reports from the workers,
updates its information about P~,c and Ul,c and broadcasts this new information
causing local views to be reorganized. We will see that at the beginning of any
phase g all live processors have the same local view Ll and the same set U~ of
unaccounted tasks and that accounted tasks have been actually executed. A new
phase starts if Ul is not empty.

3 N o r e s t a r t s - a l g o r i t h m A N

In this section we define algorithm AN for the fail-stop model. Although solving
Do-All using the machinery we assume is relatively easy, we develop algorithm
AN as the basis for algorithm AR which solves the Do-All problem in the more
general fail-stop/restart model.

105

S t r u c t u r e o f a phase . A phase consists of 3 steps.

S1. The receive substep is not used. In the compute substep, any worker w
performs a specific task u according to the load balancing rule. In the send
substep the worker w sends a r e p o r t (u) to any known coordinator.

$2. In the receive substep the coordinators gather r e p o r t messages. For any
coordinator c, let ucl, ..., u~ ~ be the set of task UIDs received. In the compute

substep c sets Dc <--- De U [J~__C1{u~}, and Pc to the set of worker PIDs
from which c received r e p o r t messages. In the send substep, coordinator c
multicasts the message summary(De, Pc) to processors in Pc.

$3. During the receive substep summary messages are received by live proces-
sors. For any worker w, let (D~, P~), . . . , (D~ ~, p k ~) be the sets received in
summary messages. In the compute step w sets Dw +- D~ and Pw ~ P / for
an arbitrary i C {1, ..., kw}. The worker w also updates its local view Lw as
described below. The send substep is not used.

U p d a t i n g t h e local v iew. Initially (phase 0) the local view L0,w of any pro-
cessor w is defined as the set of processors 7) structured in layers as a tree-like
layered structure given in Section 2. Let us consider a generic phase ~ and let the
local view of processor w for phase ~ be Le,w : (ql, q2, .- , qk) -- (A °, A 1, ..., AJk).
We distinguish two possible cases.

CASE 1. No coordinators are active in phase L Then the local view of pro-
cessor w for phase ~-{- 1 is Le+l,w -- (A~, ..., AJk).

CASE 2. When at least one coordinator is active in phase 6, processor w
receives messages from some coordinator in A °. Processor w computes its set
Pw as described in step $3 (we will see that all workers compute the same set
P~). The local view L~+I,~ of w for phase ~ + 1 is the tree-like structure with
processors in / ~ ordered by their PIDs.

A generic phase is depicted in Figure 4 in Section 4 (for algorithm AN ignore
the messages and steps of the restarted processors).
C o r r e c t n e s s a n d eff ic iency. We first prove that algorithm AN correctly solves
the Do-All problem. We start by showing that at the beginning of each phase
every available processor has consistent knowledge of the ongoing computation.
Then we prove safety (no live processor or undone task is forgotten) and progress
properties (tasks execution) which imply the correctness of the algorithm.

L e m m a 2 (A N : C o n s i s t e n c y) . In any execution o f algorithm AN, for any two
processors w , v available in phase 6, we have that Li+l,w = L~+l,v and that
U~+l,w = Ue+l,,.

Because of the previous lemma, we can define L/ = Lt,w for any w as the
view at the beginning of phase ~., Pt --- Pt,w as the set of available processors,
D~ = D~,w as the set of done tasks and Ue = U~,~v as the set of unaccounted
tasks at the beginning of phase e.

L e m m a 3 (A N : S a f e t y 1) . In any execution of algorithm AN, i f a processor w
is active in phase ~ - 1 then processor w belongs to Pt.

L e m m a 4 (A N : S a f e t y 2) . In any execution of algorithm AN, i f a task u has
not been executed in phases 1, 2, . . . , t - 1 then u belongs to Ut.

106

We say that a phase g is attended if at least one of the processor supposed
to be coordinator according to the view Ll is active during phase £. Otherwise
the phase is unattended.

Let us denote the set of all the attended phases by A = {c~l,(~2,...,c~r},
for al < a2 < .-- < aT and a given particular execution of algorithm AN.
Let us denote by rri the unattended phases in between the attended phases cq
and ai+l. We refer to rri as the i th (unattended) period; an unattended period
can be empty. Hence the computation proceeds as follows: unattended period
rr0, attended phase al , unattended period r l , attended phase c~2, and so on.
After the last attended phase ~r, the algorithm terminates. Indeed since there
are no other attended iterations it must be the case that there are no tasks
left unaccounted after phase ~r. We denote by pi the eardinality of the set of
available processors for phase i, i.e., pi = [Pi[, and by ui the cardinality of the
set of unaccounted tasks for phase i, i.e., ui =[Ui[. We let ul = t and ur+l = O.
L e m m a 5 (AN:Progress1) . In any execution of algorithm AN, for any at-
tended phase g we have that ut > ul+l.
L e m m a 6 (AN:Progress2) . In any execution of algorithm AN, any unattended
period consists of at most log f phases.

T h e o r e m 7 (AN:Correc tness) . In any execution of algorithm AN such that
f < p, i.e., at least one processor survives, the algorithm terminates and all the
units of work are performed.

To assess S we consider separately all the attended phases and all the unat-
tended phases of the execution. Let Sa be the part of S spent during all the
attended phases and Su be the part of S spent during all the unattended phases.
Hence S is Sa + Su.

The following lemma uses the construction by Martel [10, 6].
L e m m a 8 . In any execution of algorithm AN, Sa = O(t + plogp/loglogp).
L e m m a 9. In any execution of algorithm AN, Su = O(Sa • log f).

T h e o r e m 10. In any execution of algorithm AN, the available processor steps
is S = O(log f . (t + plogp/loglogp)).

Thus the work of algorithm AN is within a log f (and hence also log p) factor
of the lower bound of ~(t + p log p~ log log p) [6] for any algorithm that performs
tasks by balancing loads of surviving processors in each time step.

For each attended phase ai E A, let di be some distinguished active co-
ordinator, we refer to di as the designated coordinator of phase ai. Let Md~
be the number of messages sent or received in phase ai by di. We denote by
Md ---- ~ir=l Mdi the number of messages sent and received by the designated
coordinators during all the attended phases. Let M I be the number of all other
messages, i.e., both the messages sent in unattended periods and the messages
sent and received in attended phases by the non-designated coordinators.
L e m m a 11. In any execution of algorithm AN, Md = O(Sa).

L e m m a 12. In any execution of algorithm AN, M I = O(f . p).

T h e o r e m 13. In any execution of algorithm AN, the number of messages sent
is M = O(t + plogp/ loglogp+ f .p).

107

4 S top- fa i lures and restarts - a l g o r i t h m A R

In this section we describe algorithm AR which solves Do-All in the model of
stop failures with restarts. This algori thm is obtained by modifying algori thm
AN. The condition that the number of failures is f < r + p provides the condition
analogous to f < p of the fail-stop model.

Algori thm AR is similar to algori thm AN; the difference is that there are
added messages to handle the restart of processors. A stopped processor q may
become live at any moment . At the momen t of the restart , processor q has the
initial information about the set ~o of processors and the set T of tasks but no
information about the ongoing computat ion.

The steps S1, $2 and $3 in the phase in algori thm AR are similar to those
of algori thm AN. After the restart, processor q broadcasts r e s t a r t (q) messages
in the send substep of each step until it receives a response. Processors receiving
such messages, ignore them if these messages are not received by a certain point
within a phase. Thus we can imagine tha t a restarted processor q broadcasts a
r e s t a r t (q) in step S1 of a phase f. This message is then received by all the live
and restarted processors of that phase, and, as we will see shortly, processor q is
re-integrated in the view for the phase ~ + 1. Moreover processor q needs to be
informed about the status of the ongoing computat ion. Hence all the processors
who have been live since the start of S1 send an info(U~, Lt) to such q with the
set Ut of unaccounted tasks and the local view Z e-

S t r u c t u r e o f a p h a s e e. (See Figure 4.)

S1. The receive substep is not used. In the compute substep any worker w per-
forms a specific task u according to the load balancing rule. In the send
substep w sends a r e p o r t (u) to any known coordinator. Any restarted pro-
cessor q broadcasts the r e s t a r t (q) message informing all live processors of
its restart .

$2. In the receive step the coordinators gather r e p o r t messages and all live
processors gather r e s t a r t messages. Let R be the set of processors tha t

1 uc k be the set of sent a r e s t a r t message. For any coordinator c, let uc, ...,

task VIDs received. In the compute substep c sets Dc +-- Dc U [-J~-z {u~} and
Pc to be the set of workers from which c received r e p o r t messages. In the
send substep, coordinator c mult icasts the message summary(Dc, Pc) to the
available and restarted processors. Any available processor also sends the
message ±nfo(U~, Ll) to processors in R.

$3. Restarted processors in R receive ±nfo(U~, Ll) messages. A restarted pro-
(D~,,P~.), cessor q sets Lq +-- Lt and Uq +--- U~. Let ~ 1 "-', ~--wi Dk~',*Pk~'tw 1 be the sets

received in summary messages by processor w which received such messages.
Processor w sets D,o +-- Diw and Pw +-- P~w for an arbi trary i E 1, ..., k and
Uw +-- T \ Dw. Each processor w updates its local view Lw as described
below. The send substep is not used.

Layered s t r u c t u r e r e o r g a n i z a t i o n . Initially (phase 0) the local view Lo,w of
any processor w is defined as the set of processors P structured in layers as a
tree-like layered structure given in Section 2. Let us consider a generic phase

108

Coordinator,

Worker
knows
L,P,U,D

Restarted

Step 1

i

i

Perform
one task

Step 2

receive update
repor t , D,P

/ / / / ~ ' update
R

repor t receive
/~//~ restart :

receive update
r e s t a r t R

restart

Step 3
8 u l n l a a r y i

i

' ~ '
receive update
semaary D,P,L

,,
i

: "i
" receive ' update

info D,P,L
stlnlm~ry

Fig. 4. A phase of algorithm AR (for algorithm AN ignore restarts).

e and let the local view of processor w for phase t be Ll,w = (ql, q~, ...,qk) =
(A °, A 1 , ..., AJk). We distinguish three possible cases.

CASE 1. In phase £ no coordinator is active and no processor restarts. Then
the algorithm proceeds exactly as in the no restart case: the local view of pro-
cessor w for phase £ + 1 is L~+l,w = (A 1, ..., AJk).

CASE 2. In phase £ no coordinator is active but some processors restart.
Let R e be the set of restarted processors who succeed in sending the r e s t a r t
messages. Let R I be the set of processors of R ~ .that are not already in the loca]
view L~,w. Let (R I) be the processors in R ~ ordered according to their PIDs. The
local view for the next phase is Ll+l,w = (A 1, ..., A jk) @ (R'}. The operator •
places processors of R ~, in the order (R/}, into the last layer A jk till this layer
contains exactly the double of the processors of layer A jk-1 and possibly adds
a new layer A jk+l to accommodate the remaining processors of (R~). That is,
newly restarted processors which are not yet in the view, are appended at the
end of the old layered structure. Notice that restarted processors which receive
±nfo messages know the old view L~.

CASE 3. In phase ~ there are both active coordinators and restarted pro-
cessors. Since there are active coordinators, summary messages are received by
available, live and restarted processors. Processor w sets Pw as described in step
3; moreover processor w knows the set Rq The new layered structure Ll+l,w for
the next phase consists of all the processors in Pw U R ~, ordered according to
their PIDs and the layered structure is the tree-like layered structure.

C o r r e c t n e s s a n d eff ic iency. The proof of correctness is similar to that used
for algorithm AN. The definitions of terms and of Sa, Su, Md and Mc carry over.

L e m m a 1 4 (A R : C o n s i s t e n c y) . In any execution of algorithm AR, for any
two processors w, v available in phase ~, we have that Ll+l,w = Lt+l,v and that
Ut+l,w = Ul+l,v.

L e m m a 1 5 (A R : S a f e t y l) . In any execution of algorithm AR, i f a processor
w is active or restarted in phase ~ - 1, then processor w belongs to Pb

L e m m a 16 (A R : S a f e t y 2) . In any execution of algorithm AR, if a task u has
not been executed in phases 1,2, . . . , ~ - 1 then u belongs to Ut.

109

L e m m a 17 (A R : P r o g r e s s l) . In any execution of algorithm AR, for any at-
tended phase g we have that u~ > ue+l.

L e m m a 18 (A R : P r o g r e s s 2) . In any execution of algorithm AR, any unat-
tended period consists of at most min{logp, log f} phases.

T h e o r e m 19 (A R : C o r r e c t n e s s) . In any execution of algorithm AR such that
f < r + p with at least one processor active in any two consecutive phases the
algorithm terminates and all the units of work are performed.

We next analyze the performance of algorithm AR in terms of the available
processor steps S used and the number M of messages sent.

L e m m a 20. In any execution of algorithm AR, Sa = O(t + p logp + f) .

L e m m a 21. In any execution of algorithm AR, S~ = O(Sa+f).min{logp, log f})

T h e o r e m 2 2 . For any execution of algorithm. AR, S = O((t + p logp + f) -
rain{log p, log f}) .

For each attended phase ai E ,4, let di (designated coordinator) be some
specific active coordinator, and Md, denote the number of messages sent or
received in phase c~i by di, with the exception of the r e s t a r t messages. Md =

T ~ = I Md~ is the total number of such messages.

L e m m a 2 3 . In any execution of algorithm AR, Md----O(Sa).

The remaining messages are categorized into three groups. Mc is the number
of messages sent by non designated coordinators during the attended phases
plus the number of messages sent in response to such coordinators. M~, is the
the number of messages sent by all workers to the expected coordinators during
the unattended phases. Mr is the number of messages sent and received by
processors that restart during the computation.

L e m m a 24. In any execution of algorithm AR, M~ + Mw + Mr = O (f . p).

T h e o r e m 25. In any execution of algorithm AN, M = O(t + p. logp + p . f) .

5 D i s c u s s i o n

We have considered the Do-All problem of performing t tasks on a distributed
system of p fault-prone synchronous processors. We presented the first algorithm
for the model with processor failures and restarts. Previous algorithms accom-
modated only stop-failures. Prior algorithmic approaches relied on the single
coordinator paradigm in which the coordinator is elected for the time during
which the progress of the computat ion depends on it. However this approach
is not effective in the general model with processor restarts: an omniscient ad-
versary can always stop the single coordinator while keeping alive all other pro-
cessors thus preventing any global progress, In this paper we have used a novel
multi-coordinator paradigm in which the number of simultaneous coordinators
increases exponentially in response to coordinator failures. This approach en-
ables effective Do-All solutions that accommodate processor restarts. Moreover,

110

when there are no restarts, the performance of the algori thm is comparable to
that of any known algorithm.

The fault-prone processors in our algorithms use reliable communication. It
can be shown, for example, tha t with minor modifications, our algorithms remain
correct and efficient even if worker-to-coordinator mult icasts are not reliable.
However coordinators still need to use reliable broadcast. A worthwhile research
direction is to design algori thms which use our aggressive coordinator paradigm
and unreliable communication.

A c k n o w l e d g m e n t s : We thank Moti Yung for several discussions of processor
restart issues and for encouraging this direction of research.

References

1. R. De Prisco, A. Mayer, and M. Yung, "Time-Optimal Message-Efficient Work Per-
formance in the Presence of Faults," in Proc. 13th ACM Symposium on Principles
of Distributed Computing, 1994, pp. 161-172.

2. C. Dwork, J. Halpern, O. Waarts, "Performing Work Efficiently in the Presence
of Faults", to appear in SIAM J. on Computing, prelim, vers. appeared as Ac-
complishing Work in the Presence of Failures in Proc. 11th ACM Symposium on
Principles of Distributed Computing, pp. 91-102, 1992.

3. Z. Galil, A. Mayer, and M. Yung, "Resolving Message Complexity of Byzantine
Agreement and Beyond," in Proc. 36th IEEE Symposium on Foundations of Com-
puter Science, 1995, pp. 724-733.

4. V. Hadzilacos and S. ~Ibueg, "Fault-Tolerant Broadcasts and Related Problems," in
Distributed Systems, 2nd Ed., S. MuUender, Ed., Addison-Wesley and ACM Press,
1993.

5. P.C. Kanellakis, D. Michailidis, A.A. Shvartsman, "Controlling Memory Access
Concurrency in Efficient Fault-Tolerant Parallel Algorithms", Nordic J. of Com-
puting, vol. 2, pp. 146-180, 1995 (prel. vers. in WDAG-7, pp. 99-114, 1993).

6. P.C. Kanellakis and A.A. Shvartsman, "Efficient Parallel Algorithms Can Be Made
Robust," Distributed Computing, vol. 5, pp. 201-217, 1992; prel. version in Proc.
of the 8th ACM Syrup. on Principles o] Distributed Computing, 1989, pp. 211-222.

7. P.C. Kanellakis and A.A. Shvartsman, Fault-Tolerant Parallel Computation, ISBN
0-7923-9922-6, Ktuwer Academic Publishers, 1997.

8. Z.M. Kedem, K.V. Palem, and P. Spirakis, "Efficient Robust Parallel Computa-
tions," Proc. 22nd ACM Syrup. on Theory of Computing, pp. 138-148, 1990.

9. Z.M. Kedem, K.V. Palem, M.O. Rabin, A. Raghunathan, "Efficient Program
Transformations for Resilient Parallel Computation via Randomization," in Proc.
2~th ACM Syrup. on Theory of Comp., pp. 306-318, 1992.

10. C. Martel, personal communication, March, 1991.
11. C. Martel, R. Subramonian, and A. Park, "Asynchronous PRAMs are (Almost) as

Good as Synchronous PRAMs," in Proc. 32d IEEE Symposium on Foundations o]
Computer Science, pp. 590-599, 1990.

