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Abstract. This paper presents a study of a distributed cooperation

problem under the assumption that processors may not be able to com-

municate for a prolonged time. The problem for n processors is de�ned

in terms of t tasks that need to be performed e�ciently and that are

known to all processors. The results of this study characterize the ability

of the processors to schedule their work so that when some processors

establish communication, the wasted (redundant) work these processors

have collectively performed prior to that time is controlled. The lower

bound for wasted work presented here shows that for any set of schedules

there are two processors such that when they complete t

1

and t

2

tasks re-

spectively the number of redundant tasks is 
(t

1

t

2

=t). For n = t and for

schedules longer than

p

n, the number of redundant tasks for two or more

processors must be at least 2. The upper bound on pairwise waste for

schedules of length

p

n is shown to be 1. Our e�cient deterministic sched-

ule construction is motivated by design theory. To obtain linear length

schedules, a novel deterministic and e�cient construction is given. This

construction has the property that pairwise wasted work increases grace-

fully as processors progress through their schedules. Finally our analysis

of a random scheduling solution shows that with high probability pair-

wise waste is well behaved at all times: speci�cally, two processors having

completed t

1

and t

2

tasks, respectively, are guaranteed to have no more

than t

1

t

2

=t+� redundant tasks, where � = O(log n+

p

t

1

t

2

=t

p

log n).

1 Introduction

The problem of cooperatively performing a set of tasks in a decentralized set-

ting where the computing medium is subject to failures is a fundamental prob-

lem in distributed computing. Variations on this problem have been studied in

in message-passing models [3, 5, 7], using group communications [6, 9], and in

shared-memory computing using deterministic [12] and randomized [2, 13, 16]

models.
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We consider the abstract problem of performing t tasks in a distributed en-

vironment consisting of n processors. We refer to this as the do-all problem.

The problem has simple and e�cient solutions in synchronous fault-free sys-

tems; however, when failures and delays are introduced the problem becomes

very challenging. Dwork, Halpern and Waarts [7] consider the do-all problem

in message-passing systems and use a work measureW de�ned as the number of

tasks executed, counting multiplicities, to assess the computational e�ciency. A

more conservative measure [5] includes any additional steps taken by the proces-

sors, for example steps taken for coordination and waiting for messages. Commu-

nication e�ciency M is gauged using the message complexity, accounting for all

messages sent during the computation. It is not di�cult to formulate solutions

for do-all in which each processor performs each of the t tasks. Such solutions

have W = 
(t � n), and they do not require any communication, i.e., M = 0.

Another extreme is the synchronous model with fail-stop processors, where each

processor can send 0-delay messages to inform their peers of the computation

progress. In this case one can show that W = O(t+n logn= log logn). This work

is e�cient (there is a matching lower bound, cf. [12]), and the upper bound does

not depend on the number of failures. However the number of messages is more

than quadratic, and can be 
(n

2

logn= log logn) [3]. Thus satisfactory solutions

for do-allmust incorporate trade-o� between communication and computation.

In failure- and delay-prone settings it is di�cult to precisely control the trade-

o� between communication and computation. In some cases [7] it is meaningful

to attempt to optimize the overall e�ort de�ned as the sum of work and mes-

sage complexities, in other cases [5] an attempt is made to optimize e�ciency

in a lexicographic fashion by �rst optimizing work, and then communication.

For problems where the quality of distributed decision-making depends on com-

munication and can be traded o� for communication, the solution space needs

to consider the possibility of no communication. Notably, this is the case in

the load-balancing setting introduced by Papadimitriou and Yanakakis [18] and

studied by Georgiades, Mavronicolas and Spirakis [8]. In this work we study the

ability of n processors to perform e�cient scheduling of t tasks (initially known

to all processors) during prolonged periods of absence of communication.

This setting is interesting for several reasons. If the communication links are

subject to failures, then each processor must be ready to execute all of the t tasks,

whether or not it is able to communicate. In realistic settings the processors

may not initially be aware of the network con�guration, which would require

expenditure of computation resources to establish communication, for example

in radio networks. In distributed environments involving autonomous agents,

processors may choose not to communicate either because they need to conserve

power or because they must maintain radio silence. Regardless of the reasons,

it is important to direct any available computation resources to performing the

required tasks as soon as possible. In all such scenarios, the t tasks have to be

scheduled for execution by all processors. The goal of such scheduling must be to

control redundant task executions in the absence of communication and during

the period of time when the communication channels are being (re)established.
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For a variation of do-all Dolev et al. [6] showed that for the case of dynamic

changes in connectivity, the termination time of any on-line task assignment

algorithm can be greater than the termination time of an o�-line task assignment

algorithm by a factor linear in n. This means that an on-line algorithm may not

be able to do better than the trivial solution that incurs linear overhead by

having each processor perform all the tasks. With this observation [6] develops

an e�ective strategy for managing the task execution redundancy and prove that

the strategy provides each of the n processors with a schedule of �(n

1=3

) tasks

such that at most one task is performed redundantly by any two processors.

In this work we advance the state-of-the-art with the ultimate goal of devel-

oping a general scheduling theory that helps eliminate redundant task executions

in scenarios where there are long periods of time during which processors work

in isolation. We require that all tasks are performed even in the absence of com-

munication. A processor may learn about task executions either by executing a

task itself of by learning that the task was executed by some other processor.

Since we assume initial lack of communication and the possibility that a pro-

cessor may never be able to communicate, each processor must know the set of

tasks to perform. We seek solutions where the isolated processors can execute

tasks independently such that when any two processors are able to communicate,

the number of tasks they have both executed is as small as possible. We model

solutions to the problem as sets of n lists of distinct tasks from f1; : : : ; tg. We

call such lists schedules.

Consider an example with two processors (n = 2). Let the schedule of the

�rst processor be h1; 2; 3; : : : ; ti, and the schedule of the second processor be

ht; t � 1; t � 2; : : : ; 1i. In the absence of communication each processor works

without the knowledge of what the other is doing. If the processors are able

to communicate after they have completed t

1

and t

2

tasks respectively and if

t

1

+ t

2

� t then no work is wasted (no task is executed twice). If t

1

+ t

2

> t,

then the redundant work is t

1

+ t

2

� t. In fact this is a lower bound on waste

for any set of schedules. If some two processors have individually performed all

tasks, then the wasted work is t.

Contributions.This paper presents new results that identify limits on bounded-

redundancy scheduling of t tasks on n processors during the absence of commu-

nication, and gives e�cient and e�ective constructions of bounded-redundancy

schedules using deterministic and randomized techniques.

Lower Bounds. In Section 3 we show that for any n schedules for t tasks

the worst case pairwise redundancy when one processor performs t

1

and another

t

2

tasks is 
(t

1

t

2

=t), e.g., the pairwise wasted work grows quadratically with the

schedule length, see Figure 1.(a). We also show that for n = t and for schedules

with length exceeding

p

n, the number of redundant tasks for two (or more)

processors must be at least two.

When t � n scheduling is relatively easy initially by assigning chunks of

t=n tasks to each processor. Our deterministic construction focuses on the most

challenging case when t = n.
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Fig. 1. Pairwise waste (redundancy) as a function of advancement through schedules

for n = t: (a) lower bound, (b) deterministic construction (c) randomized construction,

(d) diagonal vertical cut.

Deterministic Construction of Short Schedules. We show in Section 4

that it is in fact possible to construct schedules of length �(

p

n) such that

exactly one redundant task is performed for any pair of processors. This result

exhibits a connection between design theory [10, 4] and the distributed problem

we consider. Our design-theoretic construction is e�cient and practical. The

schedules are constructed by each processor independently in O(

p

n) time.

Deterministic Construction of Long Schedules. Design theory o�ers

little insight on how to extend a set of schedules into longer schedules in which

waste is increased in a controlled fashion. We show in Section 5 that longer sched-

ules with controlled waste can be constructed in time linear in the length of the

schedule. This deterministic construction yields schedules of length

4

9

n such that

pairwise wasted work increases gradually as processors progress through their

schedules. For each pair of processors p

1

and p

2

, the overlap of the �rst t

1

tasks of

processor p

1

and the �rst t

2

tasks of processor p

2

is bounded by O

�

t

1

t

2

n

+

p

n

�

.

The upper bound on pairwise overlaps is illustrated in Figure 1(b). The quadratic

growth in overlap is anticipated by our lower bound. The overall construction

takes linear time and, except for the �rst

p

n tasks, the cost of constructing the

schedule is completely amortized.

Randomized Constructions. Finally, in Section 6, we explore the behav-

ior of schedules selected at random. Speci�cally, we explore the waste incurred

when each processor's schedule is selected uniformly among all permutations on

f1; : : : ; tg. For the case of pairwise waste, we show that with high probability

these random schedules enjoy two satisfying properties: (i) for each pair of pro-

cessors p

1

; p

2

, the overlap of the �rst t

1

tasks of processor p

1

and the �rst t

2

tasks of processor p

2

is no more than

t

1

t

2

t

+O

�

logn+

q

t

1

t

2

t

logn

�

, (ii) all but

a vanishing fraction of the pairs of processors experience no more than a single

redundant task in the �rst

p

t tasks of their schedules. This is illustrated in Fig-

ure 1(c). As previously mentioned, the quadratic growth observed in property

(i) above is unavoidable.

The results represented by the surfaces in Figures 1(a), (b) and (c) are com-

pared along the vertical diagonal cut in Figure 1(d).
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2 De�nition and Models

We consider the abstract setting where n processors need to perform t in-

dependent tasks, where n � t. The processors have unique identi�ers from

the set [n] = f1; : : : ; ng, and the tasks have unique identi�ers from the set

[t] = f1; : : : ; tg. Initially each processor knows the tasks that need to be per-

formed and their identi�ers, which is necessary for solving the problem in absence

of communication.

A schedule L is a list L = h�

1

; : : : ; �

b

i of distinct tasks from [t], where b is the

length of the schedule (b � 0). A system of schedules L is a list of schedules for n

processors L = hL

1

; : : : ; L

n

i. When each schedule in the system of schedules L

has the same length b, we say that L has length b. Given a schedule L of length

b, and c � 0, we de�ne the pre�x schedule L

c

to be: L

c

= h�

1

; : : : ; �

c

i, if c � b,

and L

c

= L, if c > b. For a system of schedules L and a vector a = ha

1

; : : : ; a

n

i

(a

i

� 0) a system of schedules L

a

= hL

a

1

1

; : : : ; L

a

n

n

i is called a pre�x system of

schedules.

Sometimes we the order of tasks in a schedule is irrelevant, and we introduce

the notion of plan as an unordered set of tasks. Given a schedule L = h�

1

; : : : ; �

a

i

we de�ne the plan P = P (L) to be the set P = f�

1

; : : : ; �

a

g. Given a schedule

L and c � 0, we write P

c

to denote the plan corresponding to the schedule

L

c

(the set of the �rst c tasks from schedule L). For a system of schedules

L = hL

1

; : : : ; L

n

i, a system of plans is the list of plans P = hP

1

; : : : ; P

n

i, where

P

i

is the plan for schedule L

i

.

We can represent a system of plans as a matrix called a scheme. Speci�cally,

given a system of plans P we de�ne the scheme S to be the n� t matrix (s

i;j

)

such that s

i;j

= 1 if j 2 P

i

, and s

i;j

= 0 otherwise. Conversely, a scheme S yields

a system of plans P = hP

1

; : : : ; P

n

i, where P

i

= fm : s

i;m

= 1g; we say that

P

1

; : : : ; P

n

are the plans of scheme S. A scheme is called r-regular if each row

has r ones, and k-uniform if each column has k ones. Since scheme and system

of plans representations are equivalent, we choose the most convenient notation

depending on the context. When the ordering of tasks is important, we use the

schedule representation.

To assess the quality of scheme S, we are interested in quantifying the

\wasted" (redundant) work performed by a collection I of processors when each

processor i (i 2 I) performs all tasks assigned to it by the corresponding plan

P

i

of S. We formalize the notion of waste as follows.

De�nition 1. For a collection I � [n] of processors and a scheme S the I-

waste of S, denoted w

I

(S), is de�ned as w

I

(S) =

P

i2I

jP

i

j �

�

�

S

i2I

P

i

�

�

, where

P

1

; : : : ; P

n

are the plans of S.

In general, we are interested in bounding the worst case redundant work of

any set of k processors that may (re)establish communication after they perform

all tasks assigned to them. Hence we introduce k-waste by ranging I-waste over

all subsets I of size k:

De�nition 2. For a scheme S the k-waste of S is the quantity w

k

(S) =

max

I�[n];jIj=k

w

I

(S).
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For a system of schedules L we write w

k

(L) to stand for w

k

(S), where S

is the scheme induced by L. In our work we are mostly interested in bounding

k-waste for the case when k = 2. Observe that w

fi;jg

(S) is exactly jP

i

\ P

j

j, so

that in this case we are interested in controlling overlaps :

De�nition 3. We say that a scheme S is �-bounded if jP

i

\ P

j

j � � for all

i 6= j. More generally, S is [�; u]-bounded if for all sets U � [n] of cardinality

u we have

�

�

�

T

j2U

P

j

�

�

�

� �. We say that S has �-overlap (or is �-overlapping) if

there exists i 6= j so that jP

i

\ P

j

j � �. More generally, S has [�; u]-overlap if

there is a set U � [n] of cardinality u such that

�

�

�

T

j2U

P

j

�

�

�

� �.

In this work we assume that it takes unit time to add, multiply or divide two

log (maxfn; tg)-bit numbers.

3 Lower Bounds on Processor-Pairs Overlaps

In this section we show lower bounds for 2-waste. We prove that 2-waste has

to grow quadratically with the length of system of schedules, and is inversely

proportional to t. This is intuitive; if t � n then it is easy to construct n

schedules of at least bt=nc tasks such that the resulting scheme is 0-bounded,

i.e., the 2-waste of the scheme is 0. On the other hand if n = t then any system

of schedules of length at least 2 must be 1-overlapping. A system of 1-bounded

schedules of length �(

3

p

n) for t = n tasks was designed by Dolev et al. [6]. We

show that for n = t no schedules can have the length greater than

p

n and still

be 1-bounded.

We �rst show a key lemma that uses a probabilistic argument (see [1] for

other proofs with this 
avor). Recall that given a schedule L

i

, the plan P

a

i

is the

set of the �rst a tasks in L

i

.

Lemma 1. Let L = hL

1

; : : : ; L

n

i be a system of schedules of length t, let 0�a�t,

0�b�t, and � = max

i 6=j

jP

a

i

\ P

b

j

j. Then (n� 1)� �

n

t

ab�minfa; bg.

Proof. We select i and j independently at random among [n] and bound the

expected value of jP

a

i

\ P

b

j

j in two ways. First observe that we have the total of

n

2

pairs for i and j. If i 6= j then the cardinality of the intersection is bounded

by �. If i = j then the cardinality is obviously minfa; bg. Hence

E[jP

a

i

\ P

b

j

j] �

n(n�1)�+n�minfa;bg

n

2

For the second bound we consider t random variables X

�

, indexed by � 2 [t],

de�ned as follows: X

�

= 1 if � 2 P

a

i

\ P

b

j

, 0 otherwise. Observe that E[jP

a

i

\

P

b

j

j] = E[

P

�2[t]

X

�

]. By linearity of expectation, and the fact that the events

are independent, we may recompute this expectation

E[jP

a

i

\ P

b

j

j] =

P

�2[t]

E[X

�

] =

P

�2[t]

Pr [� 2 P

a

i

] � Pr

�

� 2 P

b

j

�

Now we introduce the function x

m

(�), equal to the number of the pre�xes

of schedules of length m to which � belongs, i.e., x

m

(�) = jfi : � 2 P

m

i

gj. Using

the fact that Pr [� 2 P

m

i

] =

x

m

(�)

n

, and twice the Cauchy-Schwartz inequality,

we can rewrite the expectation as follows.
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E[jP

a

i

\ P

b

j

j] =

1

n

2

P

�2[t]

x

a

(�)x

b

(�) �

1

n

2

q

P

�2[t]

x

a

(�)

2

q

P

�2[t]

x

b

(�)

2

�

1

tn

2

r

�

P

�2[t]

x

a

(�)

�

2

r

�

P

�2[t]

x

b

(�)

�

2

Finally, since jP

m

i

j = m, we have that

P

�2[t]

x

m

(�) = m � n. Hence E[jP

a

i

\

P

b

j

j] �

ab

t

, and the result follows.

For any given system of schedules L, Lemma 1 leads to a lower bound on

the pairwise overlap for any two processors i and j when i performs the tasks in

P

a

i

and j performs the tasks in P

b

j

. The lower bound in the next theorem states

that the pairwise overlap must be proportional to a � b (see Figure 1(a) for the

case when n = t).

Theorem 1. Let L = hL

1

; : : : ; L

n

i be a system of schedules of length t, and let

0�a�t, 0�b�t. Then max

i 6=j

jP

a

i

\ P

b

j

j � d

n

t(n�1)

ab�

minfa;bg

n�1

e = 
(

ab

t

).

Immediate consequence of Theorem 1 is that 2-waste must grow quadratically

with the length of the schedule. Observe that k-waste, for k � 2, must be at least

as big as 2-waste, because additional processors can only increase the number

of tasks executed redundantly. Hence our next result is that k-waste must grow

quadratically with the length of the schedule.

Corollary 1. If L is a n-processor system of schedules of length r for t = n

tasks, where t � r, then w

k

(L) � d

r�(r�1)

n�1

e.

Finally we show that no 1-bounded schedules exist of length greater than

p

n� 3=4 +

1

2

>

p

n.

Corollary 2. If r >

p

n� 3=4 +

1

2

then any n-processor schedule of length r

for n tasks is 2-overlapping.

This result is tight: in Section 4 we construct an in�nite family of 1-bounded

schedules of length

p

n� 3=4 +

1

2

.

4 Construction of Deterministic \Square-root" Plans

We now present an e�cient construction of deterministic 1-bounded schedules

with maximal �(

p

n) length, for n = t. In the rest of this section we assume

that n = t.

We brie
y introduce the concept of design, the major object of interest in

design theory. A reader interested in this subject is referred to, e.g., [10]. A

design is a set of n points and t blocks (subsets of points) with the following

properties. Each block contains exactly k points, each point is contained in (is

on) exactly r blocks, number of blocks any subset of � points intersects (is on)

is exactly �. An object with such properties is called �-(n; k; �) design. A design

can be represented by an incidence matrix (a

i;j

) of zeros and ones. Numbering

points and blocks, an element a

i;j

of the matrix is 1 if point i is on block j

and otherwise 0. Designs have many interesting properties. One fact is that a
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�-(n; k; �) design is also a u-(n; k; �) design for 0 � u � �. Not surprisingly for

smaller u the number of blocks a subset of u points is on increases. This number

is given by

1

: � �

(n�u)

��u

(k�u)

��u

, (see [10] Theorem 1.2).

We now give the result linking design theory to our setting.

Theorem 2. The incidence matrix of any �-(n; k; �) design with t blocks yields

a [�; u]-bounded scheme (0 � u � �) for n processors and t tasks, where each

processor executes r =

t

n

k tasks, each task is executed k times, and � = � �

(n�u)

��u

(k�u)

��u

.

Proof. Take any � distinct points of the design. By the de�nition of �-(n; k; �)

design the number of blocks on these � points is equal to �. Hence the number

of tasks executed in common by any � processors is exactly �. The formula for

� results from Theorem 1.2 [10]. This is because the design is a (� � (� � u))-

(n; k; �) design, i.e., u-(n; k; �) design, for � as in that theorem. Moreover, since

t � k = n � r (see Corollary 1.4 [10]), each processor executes r =

t

n

k tasks.

Theorem 2 makes it clear that we need to look for designs with large k and

small � because such designs yield long plans (large r) with small overlap (small

�). We will consider a special case of this theorem for � = 2. In this case we

want to guarantee that 2-waste is exactly � (note that when u = � = 2, we have

� = �).

We use a well-known construction of a 2�(q

2

+q+1; q+1; 1) design, for a prime

q. The algorithm is presented in Figure 2. It has the following properties: (1) For

a given number i 2 f0; : : : ; q

2

+ qg, the value of a function blocksOnPoint(i) is a

set of q + 1 distinct integers from f0; : : : ; q

2

+ qg. (2) For i 6= j the intersection

of the set blocksOnPoint(i) with the set blocksOnPoint(j) is a singleton from

f0; : : : ; q

2

+ qg. For a proof these two standard facts from design theory see

e.g. [10, 15]. Invoking the function blocksOnPoint(i) for any i requires �nding at

most two multiplicative inverses b

�1

and c

�1

in Z

q

. We can do this in O(log q)

by using the Extended Euclid's Algorithm (see [14], page 325). The worst case

time of �nding inverses is bounded, by the Lam�e theorem, by O(log q), see [14],

page 343. This cost is subsumed by q iterations of the loop. Hence the total time

cost of the function is O(q).

Theorem 3. If r � (r � 1) = n� 1 and r � 1 = q is prime then it is possible to

construct a r-regular r-uniform 1-bounded scheme for n processors and n tasks.

Each plan is constructed independently in O(

p

n) time.

Using our construction we can quickly compute schedules of size approxi-

mately

p

n for n processors and t = n tasks, provided we have a prime q such

that q(q+1) = n�1. Of course in general, for a given n there may not be a prime

q that satis�es q(q + 1) = n � 1. This however does not limit our construction.

We discuss this in more detail in Section 5

1

The expression y

x

is the \falling power" de�ned as y(y � 1)(y � 2) : : : (y � x + 1),

with y

0

= y

0

= 1.
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vectorToIndex( a; b; c )

if a = 1 then return b � q + c

else if b = 1 then return q � q + c

else return q � q + q

indexToVector( i )

if i = q � q + q then return (0; 0; 1)

else if i � q � q then return (0; 1; i� q � q)

else return (1; i div q; i mod q)

blocksOnPoint( i )

(a; b; c) = indexToVector( i )

block = �

if a = 1 ^ b 6= 0 ^ c 6= 0 then block [= fvectorToIndex( 0; 1; � b � c

�1

)g

for d = 0 to q � 1 do block [= fvectorToIndex( 1; (�1� c � d) � b

�1

; d )g

if a = 1 ^ b = 0 ^ c 6= 0 then block [= fvectorToIndex( 0; 1; 0 )g

for d = 0 to q � 1 do block [= fvectorToIndex( 1; d;�c

�1

; d )g

if a = 1 ^ b 6= 0 ^ c = 0 then block [= fvectorToIndex( 0; 0; 1 )g

for d = 0 to q � 1 do block [= fvectorToIndex( 1;�b

�1

; d )g

if a = 1 ^ b = 0 ^ c = 0 then block [= fvectorToIndex( (0; 0; 1) )g

for d = 0 to q � 1 do block [= fvectorToIndex( 0; 1; d )g

if a = 0 ^ b = 1 ^ c 6= 0 then block [= fvectorToIndex( 0; 1;�c

�1

)g

for d = 0 to q � 1 do block [= fvectorToIndex( 1; d;�d � c

�1

)g

if a = 0 ^ b = 1 ^ c = 0 then block [= fvectorToIndex( (0; 0; 1) )g

for d = 0 to q � 1 do block [= fvectorToIndex( 1; 0; d )g

if a = 0 ^ b = 0 ^ c = 1 then block [= fvectorToIndex( (0; 1; 0) )g

for d = 0 to q � 1 do block [= fvectorToIndex( 1; d; 0 )g

return block

Fig. 2. Algorithm for �nding q+1 blocks on a point of a 2-(q

2

+ q+1; q+1; 1) design.

The notation x [= y stands for x = x [ y. Boldface font denotes arithmetic in Z

q

.

5 Constructing Long Deterministic Schedules

Applying design theory principles to constructing longer schedules is not neces-

sarily a good idea. If we took a design with blocks of size k >

p

n we could build

a corresponding system of schedules using Theorem 2. Observe that Theorem 1

guarantees that such system would have overlap 
(

k

2

n

). Unfortunately there

would be no guarantee that the overlap would increase gradually as processors

progress through their schedules. In particular, 
(

k

2

n

) overlap may be incurred

even if two processors \meet" only after executing O(

k

2

n

) tasks.

In this section we present a construction for longer schedules with the goal of

maintaining a graceful degradation of overlap. Our novel construction extends

the

p

n-length system of plans obtained in Theorem 3 so that the increase of

overlap is controlled as the number of tasks executed by each processor grows.

In the following sections we construct raw schedules, and then show how to use

them to produce schedules with graceful degradation of overlap for arbitrary

value of n.

Raw Schedules. In this section we build long raw schedules that have repeated

tasks. We assume that n = r

2

� r + 1 and r = q + 1 for a prime q and use the

construction from Theorem 3. Let P = hP

1

; : : : ; P

n

i be the resulting 1-bounded

system of n plans of length r, where P

u

is the plan for each u 2 f1; : : : ; ng. For
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a processor u (1 � u � n) let L

u

= ht

1

u

; : : : ; t

r

u

i be the sequence of tasks, in some

order, from the plan P

u

constructed as in Theorem 3. We introduce the term

raw schedule to denote a sequence of task identi�ers where some tasks may be

repeated.

We now present and analyze a system R(P) of raw schedules. For each pro-

cessor u, we construct the raw schedule R

u

of length r

2

� n by concatenating

(�) distinct L

i

, where i 2 P

u

. Speci�cally, we let R

u

= L

t

1

u

�L

t

2

u

� : : : �L

t

r

u

. Thus

the raw schedule for processor u is ht

1

t

1

u

; ::; t

r

t

1

u

, t

1

t

2

u

; ::; t

r

t

2

u

; :::::; t

1

t

r

u

; ::; t

r

t

r

u

i. Given

R

u

= h�

1

u

; : : : ; �

r

2

u

i we de�ne R

a

u

= h�

1

u

; : : : ; �

a

u

i to be the the pre�x of R

u

of

length a, and T

a

u

= f�

1

u

; : : : ; �

a

u

g for 0 � a � r

2

.

A direct consequence of Theorem 3 is that raw schedules can be constructed

e�ciently.

Theorem 4. Each raw schedule in R(P) can be constructed in O(n) time.

Note that it is not necessary to precompute the entire raw schedule, instead

it can be computed in r-size segments as needed. Some of the tasks in a raw

schedule may be repeated and consequently the number of distinct tasks in a

raw schedule of length r

2

may be smaller than r

2

{ naturally processors do not

execute repeated instances of tasks. For the proof of graceful increase of pairwise

redundancy it is important to show that the number of distinct tasks in our raw

schedules increases gracefully.

Theorem 5. For any R

u

= L

t

1

u

� L

t

2

u

� : : : � L

t

r

u

= h�

1

; : : : ; �

r

2

i and 1�a�r

2

:

jT

a

u

j = jf�

1

; : : : ; �

a

gj � (d

a

r

e�1)(r�

1

2

(d

a

r

e�2))+maxf0; a� (d

a

r

e�1)(r+1)g.

Proof. Consider the task �

a

. It appears in L

t

i

u

, where i = d

a

r

e. For tasks that

appear in plans P

t

1

u

; : : : ; P

t

i�1

u

the number of repeated tasks is at most 1+ : : :+

(i� 2) = (i� 1)(i� 2)=2 because P is a 1-bounded system of plans (any two of

these plans intersect by exactly one, see Theorems 3). Hence there are at least

(i� 1)r � (i� 1)(i� 2)=2 distinct tasks in the raw schedule L

t

1

u

� : : : � L

t

i�1

u

.

We now assess any additional distinct tasks appearing in P

t

i

u

. Task �

a

is the

task number a� (i� 1)r in L

t

i

u

. Since P is 1-bounded, up to i� 1 tasks in P

t

i

u

may already be contained P

t

1

u

; : : : ; P

t

i�1

u

. Of course in no case may the number

of redundant tasks exceed a� (i� 1)r. Hence the number of additional distinct

tasks from P

t

i

u

is at least maxf0; a�(i�1)r�(i�1)g = maxf0; a�(i�1)(r+1)g.

Corollary 3. Any R

u

contains at least

1

2

(r

2

+ r) =

1

2

n+ r �

1

2

distinct tasks.

Together with Theorem 4, this result also shows that the schedule compu-

tation is fully amortized, since it takes O(n) time to compute a schedule that

includes more than n=2 distinct tasks.

For any processors u and w we wish to determine fu;wg-waste as u and w

progress through the raw schedules R

u

and R

w

. We now show that for 1 � a; b �

r

2

the size of T

a

u

\ T

b

w

grows gracefully as a and b increase.

Theorem 6. For any R

u

, R

w

and 0 � a; b � r

2

: jT

a

u

\ T

b

w

j � minf a; b; r �

1 + d

a

r

e � d

b

r

e g.
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Proof. By the de�nition of P and the raw schedules R

u

and R

w

, �

a

u

2 P

t

i

u

,

where i = d

a

r

e, and �

b

w

2 P

t

j

w

, where j = d

b

r

e. Therefore, T

a

u

� P

t

1

u

[ : : : [ P

t

i

u

and T

b

w

� P

t

1

w

[ : : : [ P

t

j

w

. Consequently,

T

a

u

\ T

b

w

� (P

t

1

u

[ : : : [ P

t

i

u

) \ (P

t

1

w

[ : : : [ P

t

j

w

) =

S

1�x�i; 1�y�j

(P

t

x

u

\ P

t

y

w

).

Since the system of plans P is 1-bounded, R

u

and R

w

contain at most one

common P

z

for some 1 � z � r. In the worst case, for the corresponding P

z

, this

contributes jP

z

\ P

z

j = jP

z

j = r tasks to the intersection of T

a

u

and T

b

w

. On the

other hand, jP

t

x

u

\ P

t

y

w

j � 1 when both t

x

u

and t

y

w

are not z, again because P is

1-bounded. Thus, jT

a

u

\T

b

w

j � r+j

S

1�x�i; 1�y�j; x 6=y 6=z

(P

t

x

u

\P

t

y

w

)j � r+i�j�1.

Finally, the overlap cannot be greater than minfa; bg.

In the following theorem we show how the useful work (not redundant) grows

as processors progress through their schedules.

Theorem 7. For any processors u and w:

(a) If i+ j � r then jT

(i�r)

u

[ T

(j�r)

w

j � r(i+ j)� r + 1�

1

2

((i+ j)

2

+ i+ j),

(b) If i+ j > r then jT

(i�r)

u

[ T

(j�r)

w

j �

r

2

2

�

r

2

+

9

8

.

Proof. By Theorem 5 jT

(i�r)

u

j � i � r� i(i� 1)=2 and jT

(j�r)

w

j � j � r� j(j � 1)=2,

and by Theorem 6 jT

(i�r)

u

\ T

(j�r)

w

j � r � 1 + i � j. Thus:

jT

(i�r)

u

[ T

(j�r)

w

j = jT

(i�r)

u

j+ jT

(j�r)

w

j � (i+ j)(r �

i+j�1

2

)� r + 1

Consider the function f(i + j) = f(x) = x � (r �

x�1

2

) � r + 1 = �

1

2

x

2

+ (r +

1

2

)x+ (1� r). It is nonnegative for 2 � x � 2r. Additionally f(x) grows from r,

for x = 2, to a global maximum of

r

2

2

�

r

2

+

9

8

, for x = r+

1

2

, and then decreases

to 1, for x = 2r. Because jT

(i�r)

u

j and jT

(j�r)

w

j are monotone nondecreasing in i

and j respectively (the number of tasks already performed by processors cannot

decrease), we have that jT

(i�r)

u

[ T

(j�r)

w

j �

r

2

2

�

r

2

+

9

8

for i+ j > r.

Deterministic Construction for Arbitrary n. We now discuss practical

aspects of using the system of raw schedulesR(P). Recall that a raw schedule for

a processor contains repeated tasks. When a schedule is compacted by removing

all repeated tasks, the result may contain about half of all tasks (Corollary 3).

To construct a full schedule that has all t = n distinct tasks, we append the

remaining tasks at the end of a compacted schedule (in arbitrary order). For

the system R(P) we call such a system of schedules F(P) = hF

1

; : : : ; F

n

i. For a

schedule F

i

we write N

i

to denote the corresponding plan. In this section we use

our results obtained for raw schedules to establish a bound on pairwise overlap

for F(P). Recall that by construction, the length of F(P) is q

2

+1+1, where q

is a prime. We show that common padding techniques can be used to construct

schedules for arbitrary n = t such that the pairwise overlap is similarly bounded.

First we analyze overlaps for a system of schedules F(P). Assume that a

processor u advanced to task number i�r in its raw scheduleR

u

(1 � i � r). Then,

by Theorem 5, it has executed at least i(r�

i�1

2

) distinct tasks. Conversely, for a

given x we can de�ne g(x; r) to be the number of segments of the raw schedules

R

u

that are su�cient to include x distinct tasks, i.e., jT

r�g(x;r)

u

j � x. Solving the



12 Grzegorz Greg Malewicz, Alexander Russell, and Alex A. Shvartsman

quadratic equation g(x; r)(r�

g(x;r)�1

2

) = x yields g(x; r) = d

1+2r�

p

(1+2r)

2

�8x

2

e

, for x = 0; : : : ;

1

2

(r

2

+ r) (observe that g(0; r) = 0; g(1; r) = 1; g(r; r) = 1; g(r +

1; r) = 2; g(

1

2

(r

2

+ r); r) = r). In the next theorem we use the de�nition of g

and the result from Theorem 6 to construct a system of schedules with bounded

overlaps (see Figure 1.b for the plot of the upper bound).

Theorem 8. For n = q

2

+ q + 1, q = r � 1 prime, the system of schedules

F(P) can be constructed deterministically in time O(n) independently for each

processor. Pairwise overlaps are bounded by:

jN

a

u

\N

b

w

j �

�

minfa; b; r � 1 + g(a; r) � g(b; r)g ; a; b �

1

2

(r

2

+ r);

minfa; bg, otherwise.

We next show that for long lengths pairwise overlap is strictly less than

minfa; bg (the trivial part of the upper bound shown in Theorem 8). Assume

that processors u and w have advanced to task number i � r in R

u

and R

w

respectively (1 � i � r). By Theorem 5 the number of distinct tasks executed by

each processor is at least i(r�

i�1

2

). By Theorem 6 the overlap is at most r�1+i

2

.

Equating the two expressions yields an equation, solutions to which tell us for

which i the overlap does not exceed the number of distinct tasks in the schedule.

The �rst (trivial) solution i = 1 simply describes the possibility of two processors

executing the same r tasks when the �rst task identi�er in P

u

is the same as

that of P

w

. The second solution i =

2

3

(r� 1), with Theorem 5, gives the number

of distinct tasks in each schedule, which is no less than

4

9

r

2

+

1

9

(r�5). This gives

guarantees that, using R(P), there are no two processors that execute the same

subsets of tasks when each executes up to

4

9

r

2

+

1

9

(r� 5) tasks. Hence as long as

processors have not executed more that

4

9

n� �(

p

n) tasks, the nontrivial part

of the upper bound in Theorem 8 applies. The remaining tasks (approximately

5

9

of the tasks) can be chosen by the processors arbitrarily (for example using a

permutation) since our approach does not provide non-trivial overlap guarantees

in that region. Note however, that for schedules longer than

4

9

n the lower bound

on 2-waste, by Theorem 1, is approximately

16

81

n, which is already linear in n.

We now discuss the case when the number of processors n is not of the form

q

2

+ q + 1, for some prime q. Since primes are dense, for any �xed � > 0 and

su�ciently large n, we can choose

2

a prime p in O(n) time such that n � 1 �

p(p+ 1) � (1 + �)n� 1. Using standard padding techniques we can construct a

system of schedules of length n with overlap bounded similarly to Theorem 8.

An easy analysis yields that the upper bound is strictly lower than the trivial

bound as long as processors advance at most

4

9

n � �(

p

n) � �(n

p

�) through

their schedules.

In our presentation we assume that a suitable prime is available. The prime

can be computed as follows: Find an integer p 2 [

p

n;

p

n(1 + �)] that satis-

�es: 1) n � 1 � p(p + 1) � (1 + �)n � 1, and 2) p is not divisible by any of

2; 3; 4; 5; : : : ; dn

1=4

(1 + �)e. This gives O(�n

3=4

) time algorithm. Alternatively, if

2

This results from the Prime Number Theorem. Due to lack of space we show this in

the technical report [15].
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we assume the Extended Riemann Hypothesis, we can use an algorithm from

[17] to �nd the prime in O(�

p

n log

4

n log log logn). In any case the cost is ex-

pended once at the beginning of the construction, and this prime can be used

multiple times so that this cost can be amortized over long-lived computations.

Moreover, this cost does not distort the linear complexity of schedule construc-

tion. Finally observe that the schedules are produced in segments of size �(

p

n).

Thus if processors become able to communicate prior to the completion of all

tasks then at most

p

n tasks would have been scheduled unnecessarily.

6 Randomized Schedules

In this section we examine randomized schedules that, with high probability,

allow us to control waste for the complete range of schedule lengths.

When the processors are endowed with a reasonable source of randomness,

a natural candidate scheduling algorithm is Random, where processors select

tasks by choosing them uniformly among all tasks they have not yet completed.

This amounts to the selection, by each processor i, of a random permutation

�

i

2 S

[t]

after which the processor proceeds with the tasks in the order given by

�

i

: �

i

(1); �

i

(2); : : : . (S

[t]

denotes the collection of all permutations of the set [t].)

These permutations f�

i

i 2 [n]g induce a system of schemes: speci�cally,

coupled with a length `

i

� t for each processor i, such a family of permutations

induces the plans S

i

n;t

= �

i

([`

i

]) which together comprise the scheme S[`]. Our

goal is to show that these schemes are well behaved for each `, guaranteeing that

waste will be controlled. For 2-waste this amounts to bounding, for each pair i; j

and each pair of lengths `

i

; `

j

, the overlap j�

i

([`

i

]) \ �

j

([`

j

])j : Observe that when

these �

i

are selected at random, the expected size of this intersection is `

i

`

j

=t,

and our goal will be to show that with high probability, each such intersection

size is near this expected value. This is the subject of Theorem 9 below:

Theorem 9. Let �

i

be a family of n permutations of [t], chosen independently

and uniformly at random. Then there is a constant c so that with probability at

least 1� 1=n, the following is satis�ed:

1. 8i; j � n and 8`

i

; `

j

� t, j�

i

([`

i

]) \ �

j

([`

j

])j �

`

i

`

j

t

+�; for � = �(`

i

; `

j

) =

cmax

�

logn;

q

`

i

`

j

t

logn

�

2. 8z � c logn, the number of pairs i; j for which

�

�

�

i

([

p

t]) \ �

j

([

p

t])

�

�

> z is

at most

n

3=2

z�1

.

In particular, for each `, w

2

(S[`]) � max

i;j

`

i

`

j

t

+�(`

i

; `

j

).

Observe that Theorem 1 shows that schemes with plans of size ` must have

`

2

=t overlap; hence these randomized schemes, for long regular schedules (i.e.,

where the plans considered have the same size), o�er nearly optimal waste.
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The following part of the section is devoted to proving Theorem 9. The

analysis is divided into two sections, the �rst focusing on arbitrary pairs of

lengths `

i

; `

j

, and the second focusing on speci�cally on \small" lengths ` <

p

t.

Behavior for arbitrary lengths.

Consider two sets A � [t] and B � [t], A being selected at random among

all sets of size d

A

p

t and B at random among all sets of size d

B

p

t. Then

Exp [jA \ Bj] = d

A

d

B

. Judicious application of standard Cherno� bounds cou-

pled with an approximation argument yields the following theorem:

Theorem 10. Let A and B be chosen randomly as above. Then there exists a

constant c > 0 so that for all n and t � n, Pr [jA \ Bj � d

A

d

B

+�(d

A

; d

B

)] �

1

2n

5

where �(d

A

; d

B

) = c

p

logn

�

p

d

A

d

B

+

p

logn

�

. (The constant c is indepen-

dent of t and n.)

A proof of this fact can be found in a technical report [15]. Let c be the

constant guaranteed by the above corollary and let B

`

i

;`

j

i;j

be the (bad) event that

j�

i

([`

i

]) \ �

j

([`

j

])j � d

i

d

j

+ �(d

i

; d

j

), where `

i

= d

i

p

t and `

j

= d

j

p

t. Let an

event B

1

be de�ned as disjunction

W

i;j;`

i

;`

j

B

`

i

;`

j

i;j

. Considering that Pr

h

B

`

i

;`

j

i;j

i

�

1

2n

5

, we have Pr [B

1

] � n

4

�max

i;j;`

i

;`

j

Pr

h

B

`

i

;`

j

i;j

i

�

1

2n

. Hence

Pr [8i; j; `

i

; `

j

; j�

i

([`

i

]) \ �

j

([`

j

])j � d

i

d

j

+�(d

i

; d

j

)] � 1�

1

2n

We now concentrate on the behavior of these schedules for lengths ` <

p

t.

Behavior for short lengths.

Observe that for any pair (i; j) of schedules, Exp

�

�

�

�

i

([

p

t]) \ �

j

([

p

t])

�

�

�

= 1: We

would like to see such behavior for each pair (i; j). Let an event B

2

be de�ned

as 9i; j

�

�

�

i

([

p

t]) \ �

j

([

p

t])

�

�

� c

0

logn. From the previous argument, there is a

constant c

0

so that Pr [B

2

] �

1

2n

. Considering that the expected value of this

intersection is 1, we would like to insure some degree of palatable collective

behavior: speci�cally, we would like to see that few of these overlaps are actually

larger than a constant, say. To this end, let I

i;j

=

�

�

�

i

([

p

t]) \ �

j

([

p

t])

�

�

, and

observe that Exp

h

P

i<j

I

i;j

i

=

�

n

2

�

: We may write I

i;j

=

P

`

m=1

X

m

where X

m

is the indicator variable for the event �

i

(m) 2 �

j

([

p

t]). Observe that these

variables are negatively correlated (i.e., Cov [X

m

; X

m

0

] < 0 for each pair) so

that Var [I

i;j

] �

P

`

m=1

Var [X

m

] �

P

`

m=1

Exp [X

m

] � Exp [I

i;j

] : (Recall that for

any indicator variable X , Var [X ] � Exp [X ].) Observe now that the variables

I

i;j

are pairwise independent so that Var

h

P

i<j

I

i;j

i

=

P

i<j

Var [I

i;j

] �

�

n

2

�

,

and an application of Chebyshev's inequality to the quantity

P

i<j

I

i;j

, yields

Pr

�

P

i<j

I

i;j

�

�

n

2

�

> �

r

Var

h

P

i<j

I

i;j

i

�

<

1

�

2

, so that

Pr

h

P

i<j

I

i;j

�

�

n

2

�

>

p

2n

1:5

i

<

1

2n

.

Collecting the pieces yields Theorem 9 above, since Pr [B

1

] �

1

2n

and Pr [B

2

] �

1

2n

, Pr [B

1

_ B

2

] �

1

n

, as desired.
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