
Cooperative Computing with

Fragmentable and Mergeable Groups

�

Chryssis Georgiou

y

Alex Shvartsman

z

September 6, 2000

Abstrat

This work onsiders the problem of performing a set of N tasks on a set of P ooperating

message-passing proessors (P � N). The proessors use a group ommuniation servie (GCS)

to oordinate their ativity in the setting where dynami hanges in the underlying network

topology ause the proessor groups to hange over time. GCSs have been reognized as e�etive

building bloks for fault-tolerant appliations in suh settings. Our results explore the eÆieny

of fault-tolerant ooperative omputation using GCSs. Prior investigation of this area by Dolev

et al. [8℄ foused on ompetitive lower bounds, non-redundant task alloation shemes and work-

eÆient algorithms in the presene of fragmentation regroupings. In this work we investigate

work-eÆient and message-eÆient algorithms for fragmentation and merge regroupings. We

present an algorithm that uses GCSs and implements a oordinator-based strategy. This algo-

rithm is motivated by the results in [8℄. It ahieves similar work omplexity of O(N � f + N)

for fragmentations, where f is the number of new groups reated by dynami fragmentations.

Additionally, our algorithm ahieves substantially better message omplexity of O(N �f+N), and

it is able to deal with more general types of group hanges. For the analysis of our algorithm we

introdue the notion of view-graphs that represent the partially-ordered view evolution history

witnessed by the proessors. For fragmentations and merges, the work W of the algorithm (de-

�ned as the worst ase total number of task exeutions ounting multipliities) is not more than

minfN �f+N; N �Pg, and the message omplexityM is no worse than 4(N �f+N+P �m), where

f and m denote the number of new groups reated by fragmentations and merges respetively.

Note that the onstants are very small and that, interestingly, while the work eÆieny depends

on the number of groups f reated as the result of fragmentations, work does not depend on the

number of groups m reated as the result of merges.

Keywords: Groups, distributed algorithms, work, ommuniation, omplexity.

�

An extended abstrat of this paper appears in the proeedings of the 7

th

International Colloquium on Strutural

Information and Communiation Complexity (SIROCCO 2000). This work was supported in part by the NFS grant

9988304 and a grant from AFOSR.

y

Dept. of Computer Siene and Engineering, 191 Auditorium Rd., U-155, University of Connetiut, Storrs, CT

06269, USA. Email: g2�se.uonn.edu.

z

Dept. of Computer Siene and Engineering, 191 Auditorium Rd., U-155, University of Connetiut, Storrs, CT

06269, USA and Laboratory for Computer Siene, Massahusetts Institute of Tehnology, Cambridge, MA 02139,

USA. Email: alex�theory.ls.mit.edu. Part of this work was supported by the NSF CAREER Award 9984778.

1 Introdution

The problem of ooperatively performing a set of tasks in a deentralized setting where the om-

puting medium is subjet to failures is one of the fundamental problems in distributed omputing.

Variations on this problem have been studied in a variety of settings, e.g., in message-passing models

[9, 6℄ and in shared-memory models [14℄. This problem was also studied in the setting of proessor

groups in partitionable networks [8℄. In this setting, the omputation an take advantage of group

ommuniation servies [4℄, and the proessors must perform the tasks and must learn the results

of the tasks eÆiently, despite the dynamially hanging group memberships.

Group ommuniation servies (GCS) an be used as e�etive building bloks for onstruting

fault-tolerant distributed appliations. These servies enable the appliation omponents at di�erent

proessors to operate olletively as a group, using the servie to multiast messages. The basis of

a group ommuniation servie is a group membership servie. Eah proessor, at eah time, has

a unique view of the membership of the group. The view inludes a list of the proessors that are

members of the group. Views an hange and may beome di�erent at di�erent proessors. There is

a substantial amount of researh dealing with spei�ation and implementation of GCSs and group-

oriented appliations, e.g., [1, 2, 13, 7, 10, 16, 19, 21℄, and veri�ation of GCSs and group-oriented

systems, e.g., [5, 15, 11℄.

When developing group-oriented, and espeially partition-aware appliations, it is also important

to understand the e�etiveness of group ommuniation servies [23℄ and the eÆieny bene�ts

that an be expeted when using group ommuniation servies [8℄. One of the features of GCSs

is their group management failities that map a variety of failures in the underlying omputing

medium to hanges in group memberships. Faulty ommuniation links an partition the system

into several onneted omponents. Failures and reoveries trigger group membership ativity that

aims to establish a group for every onneted omponent. An adversary that auses frequent and

arbitrary failures may prevent appliations from making steady omputational progress. Thus,

it is interesting to study restrited, yet realisti, models of adversaries for whih eÆient spei�

algorithms an be developed with the help of ommon group ommuniation servies. Studying the

problem of performing a set of tasks on a set of proessors in the group-oriented setting provides

a onvenient and powerful abstration for understanding the eÆieny of ooperative omputation.

A work-eÆient algorithm is presented for this problem by Dolev et al. in [8℄, along with a lower

1

bound and a sheduling strategy that minimizes redundant work. That algorithm is tolerant of

arbitrary sequenes of group fragmentations. In this work we ontinue the study of algorithms that

are work-eÆient and message-eÆient, and that are able to deal with more general hanges in group

memberships.

Following [8℄, we investigate an approah whose goal is to utilize the resoures of every omponent

of the system during the entire omputation. Thus the problem [8℄ has the following setting: a

set of N independent and idempotent tasks must be performed by P proessors in a distributed

system, where eah proessor must learn all results. Group ommuniation is used to oordinate the

exeution of the tasks. Our distributed system model, in addition to the proessors and the network,

inludes a set of input/output ports aessible to the proessors. In this model we enable any lient

of the required omputation to query any proessor for the results. This makes it mandatory, even

for isolated proessors, to be able to provide the results of the omputation regardless of whether

any other proessors may already have the results. Thus, it is not suÆient to know that eah of the

tasks have been performed somewhere. It is also neessary for eah proessor to learn the results.

We refer to this problem as the omni-do problem.

Note that any algorithm that solves the problem in a way where in any group the proessors

perform no more than �(N) tasks (ounting multipliities), will have work omplexity of O(r �N),

where r is the total number of new views installed. This makes it not very interesting to study

the problem for adversaries that impose arbitrary view hanges. Our major goal is develop preise

upper bounds that desribe the eÆieny, work and messaging of solving omni-do as funtions of

the number of tasks N , the number of proessors P , and the numbers of distint group views of

spei� types (fragmentations and merges in this work) installed by the group membership servies.

We present an algorithm for the omni-do problem for N tasks and P message-passing proessors

(P � N) that are interonneted by a network, whih is subjet to dynami group fragmentations

and merges. We assume a group ommuniation servie that provides group management and view-

oriented messaging servie (Setion 2.1). The main omplexity result is for the adversary that is

restrited to ausing fragmentations of groups and merges of groups. This extends the results in [8℄,

whih onsider only the fragmentation adversary. Our analysis for the fragmentation-and-merge

adversary yields analysis for the fragmentations-only adversary as a orollary.

For the fragmentation-and-merge adversary, we distinguish between the views that are installed

as the result of fragmentations and the views installed as the result of merges. If r is the total

number of views installed, then for the fragmentation-and-merge adversary we have that r = f +m,

2

where f is the number of views due to fragmentations and m is the number of views due to merges.

It is also not diÆult to see that m < f when all proessors initially start in a single group.

We now summarize our results.

� We present a new algorithm, alled algorithm AX, that solves the omni-do problem and we

analyze it for the fragmentation-and-merge adversary. The algorithm employs a oordinator-

based approah and relies on the underlying group ommuniation servie. The algorithm is

spei�ed in Setion 4 and it extends the approahes in [8℄ and [3℄.

� We introdue the notion of view-graphs that represent the partially-ordered view evolution

history olletively witnessed by the proessors (Setion 3). We show that these digraphs

are ayli for the fragmentation-and-merge adversary and we use these view-graphs in the

omplexity analysis of the algorithm. We believe that view-graphs have the potential of serving

as a general tool for studying ooperative omputing with group ommuniation servies.

� For any pattern of fragmentations and merges, the work W of the algorithm is no more than

minfN � f +N; N �Pg, and the message omplexity M is no worse than 4(N � f +N +P �m).

Note that f � r and here it is signi�ant that we are expressing the upper bounds using

expliit onstants instead of the big-oh notation. Both omplexity results depend on f , but

only the message omplexity depends on m. The fat that the work omplexity does not

depend on m, substantiates the intuition that merges lead to a more eÆient omputation.

The upper bounds are tight for a broad range of view hanges. This analysis is presented in

Setions 5.1 and 5.2.

� For any pattern of fragmentations (i.e., when m = 0) our algorithm ahieves work omplexity

of O(minfN � f +N;N �Pg). This result is essentially the same as the result in [8℄. However,

our algorithm ahieves substantially better message omplexity O(N � f +N) as ompared to

the at least quadrati message omplexity of the algorithm in [8℄. Message optimization was

outside of the sope of [8℄, yet this improvement was one of our goals. The improvement is

largely due to our use of the oordinator-based strategy. These results are in Setion 5.3.

Note that it is not diÆult to show that when f � N , W =
(N � P) and when f < N ,

W =
(N � f). Thus, W =
(minfN � f; N � Pg) is a lower bound for omni-do. So our algorithm

is optimal with respet to work for the adversaries we onsider. Considering optimality for the

message omplexity is less interesting, sine the problem an be solved without any ommuniation.

Related work. The problem of eÆiently performing a set of tasks using a network of proessors

in the setting where the network is subjet to dynami hanges was onsidered by Dolev, Segala

3

and Shvartsman [8℄. For the N -proessor, N -task problem de�ned in that work, it was shown that

for dynami hanges the termination time of any on-line task algorithm an be greater than the

termination time of an o�-line algorithm by a fator linear in N . An algorithm was also presented

in [8℄ that for arbitrary fragmentations has work O(N � f

0

+ N), where f

0

is the inrease in the

number of groups due to fragmentations. In omparing our result with the result in [8℄, we note

that our de�nition of f is slightly di�erent from the de�nition of fragmentation failures f

0

in [8℄. In

order to ompare our omplexity results with those in [8℄, we show in this paper that for any pattern

of fragmentations allowed by [8℄ we have f

0

< f < 2f

0

. In [8℄ the work is ounted in terms of the

rounds exeuted by the proessors. In our analysis we ount only the number of task exeutions

(inluding redundanies). However in our algorithm, for as long as any tasks remain undone in a

given group, the proessors perform the tasks in rounds, exept for the last round. Therefore the

di�erene in work omplexity for these two algorithms is at most f �N . Thus the di�erent de�nitions

of f and f

0

and of work an be subsumed in the big-oh analysis without substantial variation in the

onstants.

Group ommuniation servies (GCS) have beome important as building bloks for fault-

tolerant distributed systems. Suh servies enable proessors loated in a fault-prone network to

operate olletively as a group, using the servies to multiast messages to group members. Ex-

amples of GCS inlude Isis [2℄, Transis [7℄, Totem [19℄, Newtop [10℄, Relas [1℄, Horus [21℄ and

Ensemble [13℄. Examples of reent work dealing with primary groups are [5, 16℄. An example of

an appliation using a GCS for load balaning is by Fekete, Khazan and Lynh [15℄. To evaluate

the e�etiveness of partitionable GCSs, Sussman and Marzulo [23℄ proposed the measure (ushion)

preipitated by a simple partition-aware appliation.

Our de�nition of work follows that of Dwork, Halpern and Waarts [9℄. Our fragmentation model

reates a setting, within eah fragment, that is similar to the setting in whih the network does not

fragment but the proessors are subjet to rash failures. Performing a set of tasks in suh settings

is the subjet of several works [3, 6, 9, 12℄, however the analysis is quite di�erent when work in all

fragments has to be onsidered.

Our distributed problem has an analogous ounterpart in the shared-memory model of ompu-

tation, alled the ollet problem. The ollet problem was originally abstrated by Saks, Shavit

and Woll [22℄ (it also appears in Shavit's Ph.D. thesis). Although the algorithmi tehniques are

di�erent, the goal of having all proessors to learn a set of values is similar.

4

2 De�nition and Models

A distributed system onsists of P proessors onneted by ommuniation links. Eah proessor

has a unique identi�er from the set P = f1; 2; : : : ; Pg.

We de�ne a task to be any omputation that an be performed by a single proessor in onstant

time. We assume that the tasks are independent and idempotent. Our distributed system is harged

with the responsibility of performing a set of N tasks that are initially known to all proessors. Eah

task has a unique identi�er from the set T .

To require that all proessors aquire the results of all tasks, our system also inludes a set

of input/output ports. These ports are only used by the lients of the system to query individual

proessors for omputation results. We do not make any failure assumptions about the input/output

ports, in partiular, our algorithm does not depend on the failure status of these ports, or the requests

from them.

De�nition 2.1 The problem of performing a set of N independent tasks on a set of P message

passing proessors, where eah proessor must learn the results of all N tasks, is alled the omni-do

problem.

The algorithm spei�ation in this paper is done in terms of I/O automata of Lynh and Tut-

tle [17, 18℄. Eah automaton models a state mahine with states and transitions between states,

where ations are assoiated with sets of state transitions. There are input, output and inter-

nal ations. A partiular ation is enabled if the preonditions of that ation are satis�ed. The

statements given as e�ets are exeuted as a program started in the existing state and atomially

produing the next state as the result of the transition.

An exeution � of an I/O automaton Aut is a �nite or in�nite sequene of alternating states

and ations (events) of Aut starting with the initial state, i.e., � = s

0

; e

1

; s

1

; e

2

; : : :, where s

i

's are

states (s

0

is the initial state) and e

i

's are ations (events). We denote by exes(Aut) the set of all

exeutions in Aut.

We next state our assumptions about the group ommuniation servies and de�ne the work

and message omplexity measures.

2.1 Group Communiation Servie

We assume a group ommuniation servie (GCS) with ertain properties. The assumptions are

basi, and they are provided by several group ommuniation systems and spei�ations [24℄. The

5

servie maintains group membership information and it is used to ommuniate information on-

erning the exeuted tasks within eah group. The GCS provides the following primitives:

newview(v)

p

informs proessor p of a new view v = hid; seti, where id is the identi�er of the view

and set is the set of proessor identi�ers in the group. When a newview(v)

p

primitive is

invoked, we say that proessor p installs view v.

gpmsnd(message)

p

allows proessor p to multiast a message to the urrent group members.

gpmrv(message)

p

enables proessor p to reeive multiasts from other proessors.

gp1snd(message; destination)

p

allows proessor p to uniast a message to another member of the

urrent group.

gp1rv(message)

p

enables proessor p to reeive uniasts from another proessor.

To distinguish between the messages sent in di�erent send events, we assume that eah message

sent by the appliation is tagged with a unique message identi�er.

We assume the following safety properties on any exeution � of an algorithm that uses GCSs:

1. A proessor is always a member of its view ([24℄ Prop. 3.1). If newview(v)

p

ours in � then

p 2 v:set.

2. The view identi�ers of the views that eah proessor installs are monotonially inreas-

ing ([24℄ Prop. 3.2). If event newview(v

1

)

p

ours in � before event newview(v

2

)

p

, then

v

1

:id < v

2

:id. This property implies that:

(a) A proessor does not install the same view twie.

(b) If two proessors install the same two views, they install these views in the same order.

3. For every reeive event, there exists a preeding send event of the same message ([24℄ Prop.

4.1). If gpmrv(m)

p

(gp1rv(m)

p

) ours in �, then there exists gpmsnd(m)

q

(gp1snd(m; p)

q

) earlier in exeution �.

4. Messages are not dupliated ([24℄ Prop. 4.2). If gpmrv(m

1

)

p

(gp1rv(m

1

)

p

) and

gpmrv(m

2

)

p

(gp1rv(m

2

)

p

) our in �, then m

1

6= m

2

.

5. A message is delivered in the same view it was sent in ([24℄ Prop. 4.3). If proessor p reeives

message m in view v

1

and proessor q (it is possible that p = q) sends m in view v

2

, then

v

1

= v

2

.

6. In the initial state s

0

, all proessors are in the initial view v

0

, suh that v

0

:set = P ([24℄ Prop.

3.3 with [11, 20℄).

6

We assume the following additional liveness properties on any exeution � of an algorithm that uses

GCSs (f. [24℄ Setion 10):

7. If a proessor p sends a message m in a view v

1

, then for eah proessor q in v

1

:set, either q

delivers m in v

1

, or p installs a next view v

2

.

8. If a new view event ours at any proessor p in view v, then a view hange will eventually

our at all proessors in v:set� fpg.

2.2 Regrouping-Numbers and Measures of EÆieny

In this setion we de�ne regrouping-numbers and omplexity measures. We de�ne the regrouping-

number r of an exeution to be the number of newview events with distint view identi�ers. (Note

that if the same view is installed at multiple proessors, this ounts for a single regrouping.)

De�nition 2.2 Given an exeution �, we de�ne the regrouping-number r

�

as:

r

�

= jfv : newview(v)

p

ours in �gj.

When it is lear from the ontext, we use r instead of r

�

to denote the regrouping-number of

exeution �.

We de�ne adversary models, in the ontext of a spei� algorithm, in terms of the olletions

of exeutions in the presene of an adversary. In the following de�nitions we assume that the

algorithms use a group ommuniation servie as presented in Setion 2.1.

De�nition 2.3 For an algorithm A, let F

R

(A) be the adversary model that inludes all the possible

exeutions of A, i.e., F

R

(A) = exes(A).

De�nition 2.4 For an algorithm A, let F

;

(A) be the adversary model that does not ause any

newview events, i.e., F

;

(A) = f� : � 2 exes(A) ^ r

�

= 0g.

When it is lear from the ontext, we use F

;

instead of F

;

(A) and F

R

instead of F

R

(A).

It is easy to see that F

;

� F

R

. Let F be some adversary model suh that F

;

� F � F

R

. In the

following de�nitions we formalize the measures of work and message omplexity for the spei� F .

Our de�nition of work follows that of Dwork, Halpern and Waarts [9℄.

De�nition 2.5 The work W

�

(N;P) of an exeution � of algorithm A in the adversary model F ,

is de�ned to be

X

i2P

W

i

�

, where W

i

�

is the number of tasks performed by proessor i.

7

De�nition 2.6 For algorithm A in the adversary model F , the work omplexity W

F

(N;P; r) is

de�ned as: W

F

(N;P; r) = max

�2F ;r

�

�r

fW

�

(N;P)g:

De�nition 2.7 The message ost M

�

(N;P) of an exeution � of algorithm A in the adversary

model F , is de�ned to be

X

i2P

M

i

�

, where M

i

�

is the number of messages sent by proessor i.

De�nition 2.8 For algorithm A in the adversary model F , the message omplexity M

F

(N;P; r) is

de�ned as: M

F

(N;P; r) = max

�2F ;r

�

�r

fM

�

(N;P)g:

3 View-Graphs and Spei� Adversary Models

This setion introdues view-graphs that are used to represent and analyze hanges of proessors'

views in exeutions. View-graphs are direted graphs (digraphs) that are de�ned by the states and

the newview events of exeutions of algorithms that use group ommuniation servies. Repre-

senting view hanges as digraphs enables us to use ommon graph analysis tehniques to formally

reason about the properties of exeutions. In this paper we deal with adversary models that ause

group fragmentations and merges. Our view-graph approah to the analysis of exeutions is general,

and we believe it an be used to study the omplexity of omputation and other properties of group

ommuniation servies and algorithms for di�erent adversary models.

3.1 Exeutions and View-Graphs

Consider an algorithm A that uses a group ommuniation servie (GCS). We modify algorithm A by

introduing, for eah proessor i, the history variable v

i

that keeps trak of the urrent view at i as

follows: In the initial state, we set v

i

to be v

0

, the distinguished initial view for all proessors i 2 P.

In the e�ets of the newview(v)

i

ation for proessor i, we inlude the assignment v

i

:= v. In

the rest of the paper, we assume that algorithms are modi�ed to inlude suh history variables. We

now de�ne view-graphs by speifying how a view-graph is indued by an exeution of an algorithm.

De�nition 3.1 Given an exeution � of algorithm A, the view-graph �

�

= hV;E;Li is de�ned to

be the labeled direted graph as follows:

1. Let V

�

be the set of all views v that our in newview(v)

i

events in �. The set V of nodes of

�

�

is the set V

�

[fv

0

g. We all v

0

the initial node of �

�

.

2. The set of edges E of �

�

is a subset of V � V determined as follows. For eah newview(v)

i

event in � that ours in state s, the edge (s:v

i

; v) is in E.

8

3. The edges in E are labeled by L : E ! 2

P

, suh that L(u; v) = fi : newview(v)

i

ours in

state s in � suh that s:v

i

= ug.

Observe that the de�nition ensures that all edges in E of �

�

are labeled.

Example 1: Consider the following exeution � (we omit all events other than newview and any

states that do not preede newview events):

� = s

0

;newview(v

1

)

p

1

; : : : ; s

1

;newview(v

2

)

p

2

; : : : ; s

2

;newview(v

3

)

p

4

; : : : ; s

3

;newview(v

4

)

p

1

;

: : : ; s

4

;newview(v

1

)

p

3

; : : : ; s

5

;newview(v

4

)

p

2

; : : : ; s

6

;newview(v

4

)

p

3

; : : :, where v

1

:set = fp

1

; p

3

g,

v

2

:set = fp

2

g, v

3

:set = fp

4

g and v

4

:set = fp

1

; p

2

; p

3

g. Additionally, v

0

:set = P = fp

1

; p

2

; p

3

; p

4

g.

The view-graph �

�

= hV;E;Li is given in Figure 1. The initial node of �

�

is v

0

. The set

of nodes of V of �

�

is V = V

�

[fv

0

g = fv

0

; v

1

; v

2

; v

3

; v

4

g. The set of edges E of �

�

is E =

f(v

0

; v

1

); (v

0

; v

2

); (v

0

; v

3

); (v

1

; v

4

); (v

2

; v

4

)g, sine for eah of these (v

j

; v

k

) the event newview(v

k

)

p

ours in state s

`

where s

`

:v

p

= v

j

for some ertain p (by the de�nition of the history variable). The

labels of the edges are L(v

0

; v

1

) = fp

1

; p

3

g, L(v

0

; v

2

) = fp

2

g, L(v

0

; v

3

) = fp

4

g; L(v

1

; v

4

) = fp

1

; p

3

g

and L(v

2

; v

4

) = fp

2

g, sine for eah p

i

2 L(v

j

; v

k

) the event newview(v

k

)

i

ours in state s

`

where

s

`

:v

p

i

= v

j

. 2

vv
00

vv
00
.set == {{pp

11
, p

22
, p

33
, p

44
}}

vv
11

vv
11
.set == {{pp

11
, p

33
}}

vv
22

vv
22
.set == {{pp

22
}}

vv
33

vv
33
.set == {{pp

44
}}

vv
44

vv
44
.set = {pp

11
, p

22
, p

33
}}

LL((vv
00
,v

11
)) == {{pp

11
, p

33
}} LL((vv

00
,v

33
)) == {{pp

44
}}

LL((vv
11
,v

44
)) == {{pp

11
, p

33
}} LL((vv

22
,v

44
)) == {{pp

22
}}

LL((vv
00
,v

22
)) == {{pp

22
}}

BB

AA

Figure 1: Example of a view-graph

Given a graph S and a node v of S, we de�ne indegree(v; S) (outdegree(v; S)) to be the indegree

(outdegree) of v in S.

Lemma 3.2 For any exeution �, indegree(v

0

;�

�

) = 0.

Proof: In the initial state s

0

, s

0

:v is de�ned to be v

0

for all proessors in P and v

0

:set = P.

Assume that indegree(v

0

;�

�

) > 0. By the onstrution of view-graphs, this implies that some

proessor i 2 P installs v

0

a seond time. But this ontradits property 2(a) of GCS. 2

9

Lemma 3.3 Let � be an exeution and �

�

j

i

be the projetion of �

�

on the edges whose label inludes

i, for some i 2 P. �

�

j

i

is an elementary path and v

0

is the path's soure node.

Proof: Let exeution � be s

0

; e

1

; s

1

; e

2

; : : : . Let �

(k)

be the pre�x of � up to the k

th

state. i.e.,

�

(k)

= s

0

; e

1

; s

1

; e

2

; : : : ; s

k

. Let �

k

�

be the view-graph that is indued by �

(k)

. Then de�ne �

k

�

j

i

to

be the projetion of �

k

�

on the edges whose label inludes i, for some i 2 P.

For an elementary path �, we de�ne �:sink to be its sink node.

We prove by indution on k that �

k

�

j

i

is an elementary path, that �

k

�

j

i

:sink = s

k

:v

i

and that v

0

is

the path's soure node.

Basis: k = 0. �

0

�

j

i

has only one vertex, v

0

, and no edges (�

(0)

= s

0

). Thus, �

0

�

j

i

:sink = s

0

:v

i

= v

0

and v

0

is the soure node of this path.

Indutive Hypothesis: Assume that 8n � k, �

n

�

j

i

is an elementary path, that �

n

�

j

i

:sink = s

n

:v

i

and

that v

0

is the path's soure node.

Indutive Step: n = k + 1. For state s

k+1

we onsider two ases:

Case 1: If event e

k+1

is not a newview event involving proessor i, then �

k+1

�

j

i

= �

k

�

j

i

. Thus,

by indutive hypothesis, �

k+1

�

j

i

is an elementary path and v

0

is its soure node. From state s

k

to

state s

k+1

, proessor i did not witness any new view. By the de�nition of the history variable,

s

k+1

:v

i

= s

k

:v

i

. Thus, �

k+1

�

j

i

:sink = s

k

:v

i

= s

k+1

:v

i

.

Case 2: If event e

k+1

is a newview(v)

i

event that involves proessor i, then by the onstrution

of the view-graph, (s

k

:v

i

; v) is a new edge from node s

k

:v

i

to node v. By indutive hypothesis,

�

k

�

j

i

:sink = s

k

:v

i

. Sine our GCS does not allow the same view to be installed twie (property

2(a)), v 6= u for all u 2 �

k

�

j

i

. Thus, �

k+1

�

j

i

is also an elementary path, with v

0

its soure node and

�

k+1

�

j

i

:sink = v. From state s

k

to state s

k+1

, proessor i installs the new view v. By the de�nition

of the history variable, s

k+1

:v

i

= v. Thus, �

k+1

�

j

i

:sink = s

k+1

:v

i

. This ompletes the proof. 2

Corollary 3.4 Any view-graph �

�

, indued by any exeution � of algorithm A is a onneted graph.

Proof: The result follows from De�nition 3.1(2), from the observation that all edges of the view-

graph are labeled and from Lemma 3.3 2

De�nition 3.5 For a view-graph �

�

= hV;E;Li, a fragmentation subgraph is a onneted labeled

subgraph S = hV

S

; E

S

; L

S

i of �

�

suh that:

1. S ontains a unique node v suh that indegree(v; S) = 0; v is alled the fragmentation node

of S.

10

2. V

S

= fvg [V

0

S

, where V

0

S

is de�ned to be fw : (v; w) 2 Eg

3. E

S

= f(v; w) : w 2 V

0

S

g

4. L

S

is the restrition of L on E

S

.

5.

S

w2V

0

S

(w:set) = v:set

6. 8u;w 2 V

0

S

suh that u 6= w; u:set \w:set = ;

7. 8w 2 V

0

S

, L

S

(v; w) = w:set

In the analysis of algorithms, we are going to be referring to all newview events that olletively

indue a fragmentation subgraph for a fragmentation node v as a fragmentation.

Example 2: The shaded area A in Figure 1 shows the fragmentation subgraph S = hV

S

; E

S

; L

S

i of

�

�

from Example 1. Here V

S

= fv

0

; v

1

; v

2

; v

3

g; E

S

= f(v

0

; v

1

); (v

0

; v

2

); (v

0

; v

3

)g and the labels are

the labels of �

�

restrited on E

S

. We an on�rm that S is a fragmentation subgraph by examining

the individual items of De�nition 3.5. 2

De�nition 3.6 For a view-graph �

�

= hV;E;Li, a merge subgraph is a onneted labeled subgraph

S = hV

S

; E

S

; L

S

i of �

�

suh that:

1. S ontains a unique node v suh that outdegree(v; S) = 0 and indegree(v; S) > 1; v is

alled the merge node of S.

2. V

S

= fvg [V

0

S

, where V

0

S

is de�ned to be fw : (w; v) 2 Eg

3. E

S

= f(w; v) : w 2 V

0

S

g

4. L

S

is the restrition of L on E

S

.

5.

S

w2V

0

S

(w:set) = v:set

6. 8u;w 2 V

0

S

suh that u 6= w; u:set \w:set = ;

7.

S

w2V

0

S

L

S

(w; v) = v:set

A regrouping of a group g

1

to a group g

2

suh that g

1

:set = g

2

:set an be represented either as

a fragmentation subgraph or as a merge subgraph. In this paper we hoose to represent it as a

fragmentation subgraph by requiring that indegree(v; S) > 1 for any merge node v.

In the analysis of algorithms, we are going to be referring to all newview events that olletively

indue a merge subgraph for a merge node v as a merge.

Example 3: The area B in Figure 1 of Example 1 shows the merge subgraph S = hV

S

; E

S

; L

S

i of

�

�

, where V

S

= fv

1

; v

2

; v

3

; v

4

g, E

S

= f(v

1

; v

4

); (v

2

; v

4

)g and the labels are the labels of �

�

restrited

on E

S

. We an verify this by examining all onditions of De�nition 3.6. 2.

11

De�nition 3.7 Given an exeution � of algorithm A, let frag(�

�

) be the set of all the distint

fragmentation nodes in the indued view-graph �

�

.

De�nition 3.8 Given an exeution � of algorithm A, let merg(�

�

) be the set of all the distint

merge nodes in the indued view-graph �

�

.

De�nition 3.9 A view-graph �

�

suh that all of its non-terminal nodes are in frag(�

�

), is alled a

fragmentation view-graph.

De�nition 3.10 A view-graph �

�

suh that eah of its non-terminal nodes is either in frag(�

�

) or

it is an immediate anestor of a node that is in merg(�

�

) is alled an fm view-graph.

For �

�

in the example in Figure 1 we have v

0

2 frag(�

�

) by De�nition 3.7. Also, v

4

2 merg(�

�

)

by De�nition 3.8; additionally, the nodes v

1

and v

2

are immediate anestors of v

4

2 merg(�

�

).

By De�nition 3.10, �

�

is an fm view-graph. Observe that �

�

is a dag. This is true for all fm

view-graphs:

Theorem 3.11 Any fm view-graph �

�

= hV;E;Li is a Direted Ayli Graph (dag).

Proof: Assume that �

�

is not a dag. Thus, it ontains at least one yle. Let

((v

1

; v

2

)(v

2

; v

3

) : : : (v

k

; v

1

)) be an elementary yle of �

�

. By the onstrution of view-graphs (De�-

nition 3.1(3)) and by the monotoniity property (property 2) of GCS, v

i

:id < v

i+1

:id for 1 � i � k

and v

k

:id < v

1

:id. But, by the transitivity of \<", v

1

:id < v

k

:id, a ontradition. 2

However, not all view-graphs are dags. It is also not diÆult to see that any fragmentation

view-graph is a rooted tree.

In the omplexity analysis we use the following fat.

Fat 3.12 In any (non-empty) dag, there is at least one vertex, suh that all of its desendants

have outdegree 0.

3.2 Adversary Models

Let A be an algorithm that uses GCS, as presented in Setion 2.1. We now de�ne two adversary

models that are more restritive than F

R

(A), but less restritive than F

;

(A).

12

De�nition 3.13 For any algorithm A the fragmentation adversary F

F

(A) is the set of all exeutions

of A, suh that eah exeution indues a fragmentation view-graph.

De�nition 3.14 For any algorithm A the fragmentation-and-merge adversary F

FM

(A) is the set of

all exeutions of A, suh that eah exeution indues an fm view-graph.

It is easy to see that F

;

(A) � F

F

(A) � F

FM

(A) � F

R

(A).

De�nition 3.15 Given an exeution � of algorithm A, and �

�

= hV;E;Li, we de�ne:

1. the fragmentation-number f

�

= jfw : newview(w)

p

ours in � ^ (v; w) 2 E ^ v 2 frag(�

�

)gj

2. the merge-number m

�

= jfv : newview(v)

p

ours in � ^ v 2 merg(�

�

)gj

Note that for an algorithm A and for an exeution � 2 F

FM

(A), by De�nitions 2.2 and 3.15,

r

�

= f

�

+m

�

. Also, by De�nitions 3.7, 3.8 and 3.15, f

�

> m

�

. Observe that in the adversary model

F

F

; r

�

= f

�

and m

�

= 0.

4 Algorithm AX

We now present the algorithm, alled algorithm AX, that deals with regroupings and that relies on

a GCS as spei�ed in Setion 2.1. The analysis of the algorithm is in Setion 5.

Algorithm AX uses a oordinator approah within eah group view. The high level idea of the

algorithm is that eah proessor performs (remaining) tasks aording to a load balaning rule, and

a proessor ompletes its omputation when it learns the results of all the tasks.

Task alloation. The set T of the initial tasks is known to all proessors. During the exeution

eah proessor i maintains a loal set D of tasks already done, a loal set R of the orresponding

results, and the set G of proessors in the urrent group. (The set D may be an underestimate of

the set of tasks done globally.) The proessors alloate tasks based on the shared knowledge of the

proessors in G about the tasks done. For a proessor i, let rank(i;G) be the rank of i in G when

proessor identi�ers are sorted in asending order. Let U be the tasks in T �D. For a task u in U ,

let rank(u;U) be the rank of u in U when task identi�ers are sorted in asending order. Our load

balaning rule for eah proessor i in G is that:

� if rank(i;G) � jU j, then proessor i performs task u suh that rank(u;U) = rank(i;G);

� if rank(i;G) > jU j, then proessor i does nothing.

13

Algorithm struture. The algorithm ode is given in Figure 2 using I/O automata notation [18℄.

The algorithm uses the group ommuniation servie to struture its omputation in terms of rounds

numbered sequentially within eah group view.

Initially all proessors are members of the distinguished initial view v

0

, suh that v

0

:set = P.

Rounds numbered 1 orrespond to the initial round either in the original group or in a new group

upon a regrouping as noti�ed via the newview event. If a regrouping ours, the proessor reeives

the new set of members from the group membership servie and starts the �rst round of this view

(newview ation). At the beginning of eah round, denoted by a round number Rnd, proessor i

knows G, the loal set D of tasks already done, and the set R of the results. Sine all proessors

know G, they \elet" the group oordinator to be the proessor whih has the highest proessor

id (no ommuniation is required sine the oordinator is uniquely identi�ed). In eah round eah

proessor reports D and R to the oordinator of G (gp1snd ation). The oordinator reeives

and ollates these reports (gp1rv ation) and sends the result to the group members (gpmsnd

ation). Upon the reeipt of the message from the oordinator, proessors update their D and R,

and perform work aording to the load balaning rule (gpmrv ation).

For generality, we assume that the messages may be delivered by the GCS out of order. The set

of messages within the urrent view is saved in the loal variable A. The saved messages are also

used to determine when all messages for a given round have been reeived. Proessing ontinues

until eah member of G knows all results (the proessors enter the sleep stage). When requests for

omputation results arrive from a port q (request ation), eah proessor keeps trak of this in

a loal variable requests, and, when all results are known, sends the results to the port (report

ation).

Corretness: We now show the safety of algorithm AX.

We �rst show that no proessor stops working as long as it knows of any undone tasks.

Theorem 4.1 (Safety 1) For all states of any exeution of Algorithm AX it holds that

8i 2 P : D

i

6= T) Phase 6= sleep

Proof: The proof follows by examination of the ode of the algorithm, and more spei�ally from

the ode of the input ation gpmrv(hj;H;Q; roundi)

i

. 2

Note that the impliation in Theorem 4.1 annot be replaed by i� (,). This is beause if

D

i

= T , we may still have Phase 6= sleep. This is the ase where proessor i beomes a member of

a group in whih the proessors do not know all the results of all the tasks.

14

Data types:

T : tasks

R : results

Result : T ! R

Mes: messages

P : proessor ids

G : group ids

views = G � 2

P

: views, seletors id and set

IO : input/output ports

m 2Mes

i; j 2 P

v 2 views

H 2 2

T

Q 2 2

R

round 2 N

results 2 2

R

q 2 IO

States:

T 2 2

T

, the set of N = jT j tasks

D 2 2

T

, the set of done tasks, initially ;

R 2 2

R

, the set of known results, initially ;

G 2 2

P

, urrent members, init. v

0

:set = P

A 2 2

Mes

, messages sine last newview, init. ;

Rnd 2 N, round number, initially 1

requests 2 2

IO

, set of output ports, initially ;

Phase 2 fsend ; reeive; sleep;mast ;mrevg,

initially send

Derived variables:

U : T �D, the set of remaining tasks

Coordinator(i) : Boolean; if i = max(j : j 2 G),

then True else False

History variable v

i

2 views (i 2 P),

initially 8i; v

i

:= v

0

.

History variable msg

i

2 2

Mes

(i 2 P),

initially 8i; msg

i

:= ;.

Transitions at i:

input request

q;i

E�et:

requests requests [fqg

input newview(v)

i

E�et:

G v:set

A ;

Rnd 1

Phase send

v := v

output gp1snd(m; j)

i

Preondition:

Coordinator(j)

Phase = send

m = hi; D; R;Rndi

E�et:

msg := msg [fmg

Phase reeive

input gp1rv(hj;H;Q; roundi)

i

E�et:

A A [fhj; H;Q; roundig

R R [Q

D D [H

if G = fj : 9

H

0

;Q

0

hj; H

0

; Q

0

; Rndi 2 Ag

then Phase mast

output gpmsnd(m)

i

Preondition:

Coordinator(i)

m = hi; D; R;Rndi

Phase = mast

E�et:

msg := msg [fmg

Phase mrev

input gpmrv(hj;H;Q; roundi)

i

E�et:

D D [H

R R [Q

if D = T then

Phase sleep

else

if rank(i; G) < jU j then

let u be suh that

rank(u; U) = rank(i; G)

R R [fResult(u)g

D D [fug

�

Rnd Rnd+ 1

Phase send

�

output report(results)

q;i

Preondition:

T = D

q 2 requests

results = R

E�et:

requests requests � fqg

Figure 2: Algorithm AX.

15

Next we show that if some proessor does not know the result of some task, this is beause it

does not know that this task has been performed (Theorem 4.5 below). We show this using the

history variables msg

i

(i 2 P), whih we de�ne now.

De�nition 4.2 We de�ne msg

i

to be a history variable that keeps on trak all the messages sent by

some proessor i 2 P in all gp1snd(message; destination)

i

and gpmsnd(message)

i

events of an

exeution of algorithm AX. Formally: In the e�ets of the gp1snd(m; j)

i

and gpmsnd(m)

i

ations

we inlude the assignment msg

i

:= msg

i

[fmg. Initially, in state s

0

, 8i, msg

i

= ;.

De�nition 4.3 De�ne MSG =

[

i2P

msg

i

.

Lemma 4.4 If m is a message reeived by proessor i 2 P in a gp1rv(m)

i

or gpmrv(m)

i

event

of an exeution of algorithm AX, then m 2MSG.

Proof: Property 3 of the gs (Setion 2.1) requires that for every reeive event there exists a

preeding send event of the same message (the gs does not generate messages). Hene, m must

have been sent by some proessor q 2 P (possible q = i) in some earlier event of the exeution.

Messages an be sent only in gp1snd(m; i)

q

or gpmsnd(m)

q

events. By de�nition, m 2 msg

q

.

Hene, m 2MSG. 2

Theorem 4.5 (Safety 2) For all states of any exeution of Algorithm AX:

(a) 8t 2 T; 8i 2 P : result(t) 62 R

i

) t 62 D

i

, and

(b) 8t 2 T;8hi;D

0

; R

0

; Rndi 2 MSG : result(t) 62 R

0

) t 62 D

0

.

Proof: Let � be an exeution of AX and �

k

be the pre�x of � up to the k

th

state, i.e., �

k

=

s

0

; e

1

; s

1

; e

2

; : : : ; s

k

. The proof is done by indution on k.

Basis: k = 0. In s

0

; 8i 2 P;D

i

= ;; R

i

= ; and MSG = ;. Thus, the basis ase holds.

Indutive hypothesis: For a state s

n

suh that n � k; 8t 2 T; 8i 2 P : result(t) 62 R

i

) t 62 D

i

,

and 8t 2 T;8hi;D

0

; R

0

; Rndi 2 MSG : result(t) 62 R

0

) t 62 D

0

.

Indutive step: n = k + 1. Consider the following seven types of ations leading to the state s

k+1

:

1. e

k+1

= newview(v

0

)

i

: The e�et of this ation does not a�et the invariant. By the indutive

hypothesis, in state s

k+1

, the invariant holds.

2. e

k+1

= gp1snd(m; j)

i

: Clearly, the e�et of this ation does not a�et part (a) of the invariant

but it a�ets part (b). Sine m = hi;D

i

; R

i

; Rndi, by the indutive hypothesis part (a), the

assignmentm 2MSG reestablishes part (b) of the invariant. Thus, in state s

k+1

, the invariant

is reestablished.

16

3. e

k+1

= gp1rv(hj;H;Q; roundi)

i

: Proessor i updates R

i

and D

i

aording to Q and H

respetively. The ation is atomi, i.e., if R

i

is updated, then D

i

must be also updated.

By Lemma 4.4, hj;H;Q; roundi 2 MSG: Thus, by the indutive hypothesis part (b), 8t 2

T : result(t) 62 H) t 62 Q. From the fat that D

i

and R

i

are updated aording to H

and Q respetively and by the indutive hypothesis part (a), in state s

k+1

, the invariant is

reestablished.

4. e

k+1

= gpmsnd(m)

i

: Clearly, the e�et of this ation does not a�et part (a) of the invariant

but it a�ets part (b). Sine m = hi;D

i

; R

i

; Rndi, by the indutive hypothesis part (a), the

assignmentm 2MSG reestablishes part (b) of the invariant. Thus, in state s

k+1

, the invariant

is reestablished.

5. e

k+1

= gpmrv(hj;H;Q; roundi)

i

: By Lemma 4.4, hj;H;Q; roundi 2 MSG. By the indutive

hypothesis part (b), 8t 2 T : result(t) 62 H) t 62 Q. Proessor i updates R

i

and D

i

aording to Q andH respetively. SineH and Q have the required property, by the indutive

hypothesis part (a), the assignments to D

i

and R

i

reestablish the invariant.

In the ase where D

i

6= T , proessor i performs a task aording to the load balaning rule.

Let u 2 T be this task. Beause of the ation atomiity, when proessor i updates R

i

with

result(u), it must also update D

i

with u. Hene, in state s

k+1

, the invariant is reestablished.

6. e

k+1

= request

q;i

: The e�et of this ation does not a�et the invariant.

7. e

k+1

= report(results)

q;i

: The e�et of this ation does not a�et the invariant.

This ompletes the proof 2

5 Analysis of Algorithm AX

We express the work omplexity of algorithm AX in the model F

FM

as W

F

FM

(N;P; r) =

W

F

FM

(N;P; f +m). The message omplexity is expressed as M

F

FM

(N;P; r) =M

F

FM

(N;P; f +m).

Our analysis fouses on assessing the impat of the fragmentation number f and the merge number

m on the work and message omplexity, and in the rest of this setion for larity we let W

f;m

stand

for W

F

FM

(N;P; f +m), and M

f;m

stand for M

F

FM

(N;P; f +m).

5.1 Work Complexity

In this setion we show the following result:

Theorem 5.1 W

f;m

� minf N � f +N; N � P g

17

Observe that W

f;m

does not depend on m (this of ourse does not imply that for any given

exeution, the work does not depend on merges). This observation substantiates the intuition that

merges lead to a more eÆient omputation. We begin by providing de�nitions and proving several

lemmas that lead to the above result.

De�nition 5.2 Let �

�

be any exeution of algorithm AX in whih all the proessors learn the results

of all tasks and that inludes a merge of groups g

1

; : : : ; g

k

into the group �, where the proessors in

� undergo no further view hanges.

We de�ne ��

�

to be the exeution we derive by removing the merge from �

�

as follows:

(1) We remove all states and events that orrespond to the merge of groups g

1

; : : : ; g

k

into the group

� and all states and events for proessors within �.

(2) We add the appropriate states and events suh that the proessors in groups g

1

; : : : ; g

k

undergo

no further view hanges and perform any remaining tasks.

De�nition 5.3 Let �

'

be any exeution of algorithm AX in whih all the proessors learn the

results of all tasks and that inludes a fragmentation of the group ' to the groups g

1

; : : : ; g

k

where

the proessors in these groups undergo no further view hanges.

We de�ne ��

'

to be the exeution we derive by removing the fragmentation from �

'

as follows:

(1) We remove all states and events that orrespond to the fragmentation of the group ' to the

groups g

1

; : : : ; g

k

and all states and events of the proessors within the groups g

1

; : : : ; g

k

.

(2) We add the appropriate states and events suh that the proessors in the group ' undergo no

further view hanges and perform any remaining tasks.

Note: In De�nitions 5.2 and 5.3, we laim that we an remove states and events from an exeution

and add some other states and events to it. This is possible beause if the proessors in a single view

installed that view and there are no further view hanges, then the algorithm will ontinue making

omputation progress. So, if we remove all states and events orresponding to a view hange, then

the algorithm an always proeed as if this view hange never ourred.

Lemma 5.4 In algorithm AX, for any view v, inluding the initial view, if the group is not subjet

to any regroupings, then the work required to omplete all tasks in the view is no more than N �

max

i2v:set

fjD

i

jg, where D

i

is the value of the state variable D of proessor i at the start of its loal

round 1 in view v.

18

Proof: In the �rst round, all the proessors send messages to the oordinator ontaining D

i

. The

oordinator omputes [

i2v:set

fD

i

g and broadasts this result to the group members. Sine the

group is not subjet to any regroupings, the number of tasks, t, that the proessors need to perform

is: t = N � j [

i2v:set

fD

i

gj. In eah round of the omputation, by the load balaning rule, the

members of the group perform distint tasks and no task is performed more than one. Therefore,

t is the work performed in this group. On the other hand, max

i2v:set

fjD

i

jg � j [

i2v:set

fD

i

gj, thus,

t � N �max

i2v:set

fjD

i

jg. 2

In the following lemma, groups �; g

1

; : : : ; g

k

are de�ned as in De�nition 5.2.

Lemma 5.5 Let �

�

be an exeution of Algorithm AX as in De�nition 5.2. Let W

1

be the work

performed by the algorithm in the exeution �

�

. Let W

2

be the worked performed by Algorithm AX

in the exeution ��

�

. Then W

1

�W

2

.

Proof: Let W

0

be the work performed by all proessors in P �

S

1�i�k

(g

i

:set)� �:set in the exeu-

tion �

�

. Observe that the work performed by all proessors in P �

S

1�i�k

(g

i

:set) in the exeution

��

�

is equal to W

0

.

The work that is performed by proessor j in g

i

:set prior to the newview(�)

j

event in �

�

, is the

same in both exeutions. Call this work W

i;j

. De�ne W

00

=

P

k

i=1

P

j2g

i

:set

W

i;j

.

De�ne W =W

0

+W

00

. Thus, W is the same in both exeutions, �

�

and ��

�

.

De�ne W

�

to be the work performed by all proessors in �:set in exeution �

�

.

For eah proessor j in g

i

:set, let D

j

be the value of the state variable D just prior to the

newview(�)

j

event in �

�

. For eah g

i

, de�ne: d

i

= j

S

j2g

i

:set

D

j

j. Thus there are at least N � d

i

tasks that remain to be done in eah g

i

.

In exeution ��

�

, the proessors in eah group g

i

proeed and omplete these remaining tasks. This

requires work at least N � d

i

. De�ne this work as W

g

i

. Thus, W

g

i

� (N � d

i

).

In exeution �

�

, groups g

1

; : : : ; g

k

merge into group �. The number of tasks that need to be per-

formed by the members of � is at most N � d

j

, where d

j

= max

i

fd

i

g for some j. By Lemma 5.4,

W

�

� N � d

j

. Observe that:

W

1

=W +W

�

�W +N � d

j

�W +

k

X

i=1

(N � d

i

) �W +

k

X

i=1

W

g

i

=W

2

: 2

In the following lemma, groups '; g

1

; : : : ; g

k

are de�ned as in De�nition 5.3.

Lemma 5.6 Let �

'

be an exeution of Algorithm AX as in De�nition 5.3. Let W

1

be the work

performed by the algorithm in the exeution �

'

. Let W

2

be the worked performed by Algorithm AX

19

in the exeution ��

'

. Then W

1

� W

2

+W

3

, where W

3

is the work performed by all proessors in

S

1�i�k

(g

i

:set) in the exeution �

'

.

Proof: LetW

0

be the work performed by all proessors in P�

S

1�i�k

(g

i

:set)�':set in the exeution

�

'

. Observe that the work performed by all proessors in P �':set in the exeution ��

'

is equal to

W

0

.

The work that is performed by proessor j in ':set prior to the newview(g

i

)

j

event in �

'

, is the

same in both exeutions. Call this work W

';j

. De�ne W

00

=

P

j2':set

W

';j

.

De�ne W =W

0

+W

00

. Thus, W is the same in both exeutions, �

'

and ��

'

.

De�neW

'

to be the work performed by all proessors in ':set in exeution ��

'

. LetW

000

=W

'

�W

00

.

Observe that: W

1

=W +W

3

�W +W

3

+W

000

=W

2

+W

3

2

Lemma 5.7 W

f;m

� N � P

Proof: By the onstrution of algorithm AX, when proessors are not able to exhange information

about task exeution due to regroupings, in the worst ase, eah proessor has to perform all N

tasks by itself. Sine P � N , the work is: W

f;m

� N � P . 2

Lemma 5.8 W

f;m

� N � f +N .

Proof: By indution on the number of views, denoted by r, ourring in an exeution. For a spei�

exeution �

r

with r views, let f

r

be the fragmentation-number and m

r

the merge-number.

Basis: r = 0. Sine f

r

and m

r

must also be 0, the basis follows from Lemma 5.4.

Indutive hypothesis: Assume that for all r � k, W

f

r

;m

r

� N � f

r

+N .

Indutive step: Need to show that for r = k + 1, W

f

k+1

;m

k+1

� N � f

k+1

+N .

Consider a spei� exeution �

k+1

with r = k + 1. Let �

�

k+1

be the view-graph indued by

this exeution. The view-graph has at least one vertex suh that all of its desendants are sinks

(Fat 3.12). Let � be suh a vertex. We onsider two ases.

(1) � has a desendant � that orresponds to a merge in the exeution. Therefore all anestors of

� in �

�

k+1

have outdegree 1. Sine � is a sink vertex, the group that orresponds to � performs all

the remaining (if any) tasks and does not perform any additional work.

Let �

k

= ��

�

k+1

(per De�nition 5.2) be an exeution in whih this merge does not our. In

exeution �

k

, the number of views is k. Also, f

k+1

= f

k

and m

k+1

= m

k

+ 1. By indutive

hypothesis,W

f

k

;m

k

� N �f

k

+N . By Lemma 5.5, the work performed in exeution �

k+1

, is no worse

than the work performed in exeution �

k

. The total work omplexity is:

W

f

k+1

;m

k+1

� W

f

k

;m

k

� N � f

k

+N = N � f

k+1

+N:

20

(2) � has no desendants that orrespond to a merge in the exeution. Therefore, the group that

orresponds to � must fragment, say into q groups. These groups orrespond to sink verties in

�

�

k+1

, thus they perform all the remaining (if any) tasks and do not perform any additional work.

Let �

k+1�q

= ��

�

k+1

(per De�nition 5.3) be an exeution in whih the fragmentation does not

our. In exeution �

k+1�q

, the number of views is k + 1 � q � k. Also, f

k+1�q

= f

k+1

� q and

m

k+1�q

= m

k+1

. By indutive hypothesis, W

f

k+1�q

;m

k+1�q

� N � f

k+1�q

+ N . From Lemma 5.4,

the work performed in eah new group aused by the fragmentation is no more than N . Let W

�

be

the total work performed in all q groups. Thus, W

�

� qN . By Lemma 5.6, the work performed in

exeution �

k+1

, is no worse than the work performed in exeution �

k+1�q

and the work performed

in all q groups. The total work omplexity is:

W

f

k+1

;m

k+1

� W

f

k+1�q

;m

k+1�q

+W

�

� N � f

k+1�q

+N +W

�

= N � (f

k+1

� q) +N +W

�

� N � (f

k+1

� q) +N + qN = Nf

k+1

� qN +N + qN = N � f

k+1

+N: 2

The main result in Theorem 5.1 follows diretly from Lemma 5.7 and Lemma 5.8.

The work omplexity result is tight for a broad range of regroupings.

Theorem 5.9 Given any exeution � in the F

FM

model, there is a pattern of fragmentations that

auses algorithm AX to perform
(N � f

�

) work.

Proof: Consider the following pattern. At the beginning of the exeution, all P proessors belong

in one group. Before the proessors ommuniate, a fragmentation ours that splits the group into

some number of distint groups (more than one). Before the proessors ommuniate or perform

any tasks, arbitrary numbers of fragmentations ours. This ontinues until we reah a point in

the exeution, where no more failures our. De�ne the number of the existing groups after this

point to be g. The proessors in these g groups must perform all N tasks. Let W be the total

work of the exeution. Thus, W � N � g. From Lemma A.1 (page 28) we know that g >

f

�

2

. Thus,

W > N �

f

�

2

=
(N � f

�

): 2

5.2 Message Complexity

In this setion we show the following result:

Theorem 5.10 M

f;m

< 4(N � f +N + P �m)

We start by showing several lemmas that lead to the message omplexity result.

Lemma 5.11 For algorithm AX, in any view v, inluding the initial view, if the group is not subjet

to any regroupings, and for eah proessor i 2 v:set, D

i

is the value of the state variable D at the

21

start of its loal round 1 in view v, then the number of messages M that are sent until all tasks are

ompleted is 2(N � d) � M < 2(p+N � d) where p = jv:setj, and d = j

S

i2v:set

D

i

j.

Proof: By the load balaning rule, the algorithm needs d

N�d

p

e rounds to omplete all tasks. In

eah round eah proessor sends one message to the oordinator and the oordinator responds with

a single message to eah proessor. Thus M = 2p � (d

N�d

p

e). Using the properties of the eiling, we

get: 2(N � d) � M < 2(p+N � d). 2

In the following lemma, groups �; g

1

; : : : ; g

k

are de�ned as in De�nition 5.2.

Lemma 5.12 Let �

�

be an exeution of Algorithm AX as in De�nition 5.2. Let M

1

be the message

ost of the algorithm in the exeution �

�

. Let M

2

be the message ost of Algorithm AX in the

exeution ��

�

. Then M

1

< M

2

+ 2P .

Proof: Let M

0

be the number of messages sent by all proessors in P �

S

1�i�k

(g

i

:set) � �:set in

the exeution �

�

. Observe that the number of messages sent by all proessors in P �

S

1�i�k

(g

i

:set)

in the exeution ��

�

is equal to M

0

.

The number of messages sent by any proessor j in g

i

:set prior to the newview(�)

j

event in �

�

, is

the same in both exeutions. Call this message ost M

i;j

. De�ne M

00

=

P

k

i=1

P

j2g

i

:set

M

i;j

.

De�ne M =M

0

+M

00

. Thus, M is the same in both exeutions, �

�

and ��

�

.

De�ne M

�

to be the number of messages sent by all proessors in �:set in exeution �

�

.

For eah proessor j in g

i

:set, let D

j

be the value of the state variable D just prior to the

newview(�)

j

event in �

�

. For eah g

i

, de�ne: d

i

= j

S

j2g

i

:set

D

j

j. Thus there are at least N � d

i

tasks that remain to be done in eah g

i

.

In exeution ��

�

, the proessors in eah group g

i

proeed and omplete these remaining tasks. Let

M

g

i

be the number of messages sent by all proessors in g

i

:set in order to omplete the remaining

tasks. By Lemma 5.11, M

g

i

� 2(N � d

i

).

In exeution �

�

, groups g

1

; : : : ; g

k

merge into group �. The number of tasks that need to be per-

formed by the members of � is at most N � d

j

, where d

j

= max

i

fd

i

g for some j. By Lemma 5.11,

M

�

< 2(p+N � d

j

), where p = j�:setj. Observe that:

M

1

=M +M

�

< M + 2(p+N � d

j

) �M + 2p+ 2

k

X

i=1

(N � d

i

) �M + 2p+

k

X

i=1

M

g

i

=M

2

+ 2p �M

2

+ 2P 2

In the following lemma, groups '; g

1

; : : : ; g

k

are de�ned as in De�nition 5.3.

Lemma 5.13 Let �

'

be an exeution of Algorithm AX as in De�nition 5.3. Let M

1

be the message

ost of the algorithm in the exeution �

'

. Let M

2

be the message ost of Algorithm AX in the

22

exeution ��

'

. Then M

1

�M

2

+M

3

, where M

3

is the number of messages sent by all proessors in

S

1�i�k

(g

i

:set) in the exeution �

'

.

Proof: Let M

0

be the number of messages sent by all proessors in P �

S

1�i�k

(g

i

:set) � ':set in

the exeution �

'

. Observe that the number of messages sent by all proessors in P � ':set in the

exeution ��

'

is equal to M

0

.

The number of messages sent by proessor j in ':set prior to the newview(g

i

)

j

event in �

'

, is the

same in both exeutions. Call this message ost M

';j

. De�ne M

00

=

P

j2':set

M

';j

.

De�ne M =M

0

+M

00

. Thus, M is the same in both exeutions, �

'

and ��

'

.

De�ne M

'

to be the number of messages sent by all proessors in ':set in exeution ��

'

. Let

M

000

=M

'

�M

00

. Observe that: M

1

=M +M

3

�M +M

3

+M

000

=M

2

+M

3

2

The proof of Theorem 5.10 is done by indution similarilly to the proof of Lemma 5.8:

Proof: By indution on the number of views, denoted by r, ourring in any exeution. For a spei�

exeution �

r

with r views, let f

r

be the fragmentation number and m

r

be the merge-number.

Basis: r = 0. Sine f

r

and m

r

must also be 0, the basis follows from Lemma 5.11.

Indutive hypothesis: Assume that for all r � k, M

f

r

;m

r

< 4(N � f

r

+N + P �m

r

).

Indutive step: Need to show that for r = k + 1, M

f

k+1

;m

k+1

< 4(N � f

k+1

+N + P �m

k+1

).

Consider a spei� exeution �

k+1

with r = k + 1. Let �

�

k+1

be the view-graph indued by

this exeution. The view-graph has at least one vertex suh that all of its desendants are sinks

(Fat 3.12). Let � be suh a vertex. We onsider two ases.

(1) � has a desendant � that orresponds to a merge in the exeution. Therefore all anestors of

� in �

�

k+1

have outdegree 1. Sine � is a sink vertex, the group that orresponds to � performs all

the remaining (if any) tasks and no further messages are sent.

Let �

k

= ��

�

k+1

(per De�nition 5.2) be an exeution in whih this merge does not our. In

exeution �

k

, the number of new views is k. Also, f

k+1

= f

k

and m

k+1

= m

k

+ 1. By indutive

hypothesis, M

f

k

;m

k

< 4(N � f

k

+N + P �m

k

). The total message omplexity, using Lemma 5.12 is:

M

f

k+1

;m

k+1

<M

f

k

;m

k

+2P < 4(N � f

k

+N +P �m

k

) + 2P = 4(N � f

k+1

+N +P �m

k+1

�P) + 2P

= 4Nf

k+1

+ 4N + 4Pm

k+1

� 4P + 2P � 4(N � f

k+1

+N + P �m

k+1

).

(2) � has no desendants that orrespond to a merge in the exeution. Therefore, the group that

orresponds to � must fragment, say into q groups. These groups orrespond to sink verties

in ��

k+1

, thus they perform all of the remaining (if any) tasks and do not send any additional

messages.

Let �

k+1�q

= ��

�

k+1

(per De�nition 5.3) be an exeution in whih the fragmentation does not

23

our. In the exeution �

k+1�q

, the number of new views is k+1� q � k. Also, f

k+1�q

= f

k+1

� q

and m

k+1�q

= m

k+1

. By indutive hypothesis, M

f

k+1�q

;m

k+1�q

< 4(N � f

k+1�q

+N + P �m

k+1�q

).

From Lemma 5.11, the message ost in eah new group aused by a fragmentation is no more than

4N . LetM

�

be the total number of messages sent in all q groups. Thus,M

�

� 4qN . By Lemma 5.13,

the number of messages sent in exeution �

k+1

, is less than the number of messages sent in exeution

�

k+1�q

and the number of messages sent in all q groups. The total message omplexity is:

M

f

k+1

;m

k+1

�M

f

k+1�q

;m

k+1�q

+M

�

< 4(N � f

k+1�q

+N + P �m

k+1�q

) +M

�

= 4(N � f

k+1

� qN +N + P �m

k+1

) +M

�

� 4Nf

k+1

� 4qN + 4N + 4Pm

k+1

+ 4qN

= 4(N � f

k+1

+N + P �m

k+1

). 2

The message omplexity result is tight for a broad range of regroupings.

Theorem 5.14 Given any exeution � in the F

FM

model, there is a pattern of fragmentations that

auses algorithm AX to send
(N � f

�

) messages.

Proof: Consider the following pattern. At the beginning of the exeution, all P proessors belong

in one group. Before the proessors ommuniate, a fragmentation ours that splits the group into

some number of distint groups (more than one). Before the proessors ommuniate or perform

any tasks, arbitrary numbers of fragmentations ours. This ontinues until we reah a point in the

exeution, where no more failures our. De�ne the number of the existing groups after this point to

be g. The proessors in these g groups must perform all N tasks. By Lemma 5.11, the message ost

of eah of the g groups is at least 2N . Let M be the total work of the exeution. Thus, M � 2N � g.

From Lemma A.1 (page 28) we know that g >

f

�

2

. Thus, M > 2N �

f

�

2

=
(N � f

�

): 2

Observe that the same senario provides a lower bound both for work and message ost.

5.3 Analysis for the Fragmentation Adversary

We express the work omplexity of algorithm AX in the model F

F

as W

F

F

(N;P; r) = W

f

and the

message omplexity as M

F

F

(N;P; r) = M

f

(note that r = f for F

F

). The following orollary is

derived from Theorems 5.1 and 5.10.

Corollary 5.15 W

f

� minfN � f +N;N � Pg and M

f

< 4(N � f +N)

With Theorems 5.9 and 5.14 the results of Corollary 5.15 are tight.

In the failure model of [8℄ a group is not allowed to \fragment" into a single group with the same

membership. Suh fragmentation is allowed by our de�nition of F

F

. In order to ompare our results

24

with the results of [8℄, we de�ne a more restrited adversary F

0

F

that requires that any group may

only fragment into 2 or more other groups. Clearly F

0

F

� F

F

, and from Corollary 5.15 we have the

following.

Corollary 5.16 W

F

0

F

(N;P; f)=O(N � f +N) and M

F

0

F

(N;P; f)=O(N � f +N)

In the rest of this setion we deal with the model F

0

F

. Our de�nition of the fragmentation-number f

is slightly di�erent from the de�nition of fragmentation failures f

0

in [8℄. When a group fragments

into k groups, f is de�ned to be equal to k, but f

0

is de�ned to be equal to k� 1. The next Lemma

relates f and f

0

.

Lemma 5.17 If f is the fragmentation-number and f

0

the number of fragmentation failures as

de�ned in [8℄, then f

0

< f < 2f

0

.

Proof: Assume that k fragmentations our. Let the number of the newviews in the i

th

fragmenta-

tion be f

i

. By the de�nition of f

0

i

, f

0

i

= f

i

�1. Thus, f

0

i

+1 = f

i

whih implies that f

i

< f

0

i

+f

0

i

= 2f

0

i

.

But f

0

=

P

k

i=1

f

0

i

and f =

P

k

i=1

f

i

. Thus, f < 2f

0

.

Now observe that, f

0

=

P

k

i=1

f

0

i

=

P

k

i=1

(f

i

� 1) =

P

k

i=1

f

i

� k = f � k. Thus f > f

0

2

In [8℄ the work is ounted in terms of the rounds exeuted by the proessors. In our analysis we

ount only the number of task exeutions (inluding redundanies). However in our algorithm, for

as long as any tasks remain undone in a given group, the proessors perform the tasks in rounds,

exept for the last round. Therefore the di�erene in work omplexity for these two algorithms is at

most f �N . Thus the di�erent de�nitions of f , f

0

and work are subsumed in the big-oh analysis, and

without substantial variation in the onstants. On the other hand, the message omplexity of our

algorithm, as shown in Corollary 5.16, is substantially better than the at least quadrati message

omplexity of the algorithm from [8℄.

6 Disussion

We have onsidered the problem of performing a set of N tasks on a set of P ooperating message-

passing proessors, where the proessors must perform and learn the results of the tasks eÆiently,

subjet to dynamially hanging group memberships. To analyze our algorithm we introdue view-

graphs { digraphs that we use to represent and analyze hanges of proessors' views in exeutions.

Our omplexity analysis shows that group ommuniation servies an be used eÆiently to solve

distributed problems that are similar to our omni-do problem. We believe that our view-graph ap-

25

proah an be generalized and used to study other dynami group reon�guration patterns. Ongoing

work is pursuing this researh diretion.

Aknowledgements: We thank Idit Keidar for several helpful disussions.

Referenes

[1℄ O. Babaoglu, R. Davoli, L. Giahini and M. Baker, \Relas: A Communiation Infrastruture for Con-

struting Reliable Appliations in Large-Sale Distributed Systems", in Pro. of Hawaii International

Conferene on Computer and System Siene, 1995, volume II, pp 612{621.

[2℄ K.P. Birman and R. van Renesse, Reliable Distributed Computing with the Isis Toolkit, IEEE Computer

Soiety Press, Los Alamitos, CA, 1994.

[3℄ B. Chlebus, R. De Priso and A. Shvartsman, \Performing tasks on restartable message-passing proes-

sors", in Pro. of the 11th Int-l Workshop on Distr. Alg. (WDAG'97), pp. 99{114, 1997.

[4℄ Comm. of the ACM, Speial Issue on Group Communiation Servies, vol. 39, no. 4, 1996.

[5℄ R. De Priso, A. Fekete, N. Lynh and A. Shvartsman, \A Dynami View-Oriented Group Communia-

tion Servie", in Pro. of 16th ACM Symp. on Priniples of Distributed Computing, 1998.

[6℄ R. De Priso, A. Mayer, and M. Yung, \Time-Optimal Message-EÆient Work Performane in the

Presene of Faults," in Pro. 13th ACM Symp. on Priniples of Distributed Comp., pp. 161-172, 1994.

[7℄ D. Dolev and D. Malki, \The Transis Approah to High Availability Cluster Communiations", Comm.

of the ACM, vol. 39, no. 4, pp. 64{70, 1996.

[8℄ S. Dolev, R. Segala and A. Shvartsman, \Dynami Load Balaning with Group Communiation," in

Pro. of the 6th International Colloquium on Strutural Information and Communiation Complexity,

1999 (also see MIT Lab for Computer Siene Teh. Report, MIT-LCS-TM-588, 1998).

[9℄ C. Dwork, J. Halpern, O. Waarts, \Performing Work EÆiently in the Presene of Faults", SIAM J.

on Computing, 1994; prelim. vers. appeared as Aomplishing Work in the Presene of Failures in Pro.

11th ACM Symposium on Priniples of Distributed Computing, pp. 91-102, 1992.

[10℄ P. Ezhilhelvan, R. Maedo and S. Shrivastava \Newtop: A Fault-Tolerant Group Communiation Pro-

tool" in Pro. of IEEE Int-l Conferene on Distributed Computing Systems, 1995, pp 296{306.

[11℄ A. Fekete, N. Lynh, and A. Shvartsman, \Speifying and Using a Partitionable Group Communiation

Servie," Pro. of the 16th Annual ACM Symp. on Priniples of Distributed Computing, pp. 53-62, 1997.

[12℄ Z. Galil, A. Mayer, and M. Yung, \Resolving Message Complexity of Byzantine Agreement and Beyond,"

in Pro. 36th IEEE Symposium on Foundations of Computer Siene, 1995, pp. 724{733.

[13℄ M. Hayden, Dotoral Thesis, The Ensemble System, TR98-1662, Cornell University, 1998.

[14℄ P. Kanellakis and A. Shvartsman, Fault-Tolerant Parallel Computation, Kluwer Aademi Publishers,

1997.

26

[15℄ R. Khazan, A. Fekete and N. Lynh, \Group Communiation as a base for a Load-Balaning, Repliated

Data Servie", in Pro. of the 12th International Symposium on Distributed Computing, 1998.

[16℄ E. Y. Lotem, I. Keidar, and Danny Dolev, \Dynami Voting for Consistent Primary Components," Pro.

of the 16th Annual ACM Symp. on Priniples of Distributed Computing, pp. 63-71, 1997.

[17℄ N.A. Lynh, Distributed Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1996.

[18℄ N.A. Lynh and M.R. Tuttle, \An Introdution to Input/Output Automata", CWI Quarterly, vol.2, no.

3, pp. 219-246, 1989.

[19℄ L.E. Moser, P.M. Melliar-Smith, D.A. Agarawal, R.K. Budhia and C.A. Lingley-Papadopolous, \Totem:

A Fault-Tolerant Multiast Group Communiation System", Comm. of the ACM, vol. 39, no. 4, pp.

54-63, 1996.

[20℄ S. Mishra, L.L. Peterson and R.D. Shlihting, \Consul: A Communiation Substrate for Fault-Tolerant

Distributed Programs", TR 91-32, dept. of Computer Siene, University of Arizona, 1991.

[21℄ R. van Renesse, K.P. Birman and S. Ma�eis, \Horus: A Flexible Group Communiation System", Comm.

of the ACM, vol. 39, no. 4, pp. 76-83, 1996.

[22℄ M. Saks, N. Shavit and H. Woll, \Optimal time randomized onsensus { making resilient algorithms fast

in pratie", in Pro. of the 2nd ACM-SIAM Symp. on Disrete Algorithms, pp. 351-362, 1991.

[23℄ J. Sussman and K. Marzullo, "The Banomat Problem: An Example of Resoure Alloation in a Parti-

tionable Asynhronous System", in Pro of 12th Int-l Symp. on Distributed Computing, 1998.

[24℄ R. Vitenberg, I. Keidar, G. V. Chokler and D. Dolev, "Group Communiation Spei�ations: A Com-

prehensive Study" Tehnial Report CS99-31, Institute of Computer Siene, The Hebrew University of

Jerusalem, September 1999.(Also tehnial Report MIT-LCS-TR-790, Massahusetts Institute of Teh-

nology, Laboratory for Computer Siene and Tehnial Report CS0964, Computer Siene Department,

the Tehnion, Haifa, Israel).

27

A Appendix

We prove a Lemma that we use in the proofs of Theorems 5.9 and 5.14.

Lemma A.1 In an exeution � of algorithm AX in the fragmentation adversary model where groups

fragment to two or more groups, for N tasks and P proessors it holds that f

�

< 2g, where g is the

number of groups at a point in the exeution where no more regroupings our.

Proof: By indution on the number of new views, denoted r, ourring in any exeution. For a

spei� exeution �

r

with r views, let f

r

be the fragmentation-number.

Basis: For r = 0, f

0

= 0 < 2.

Indutive hypothesis: Assume that for all r � k, f

r

< 2g.

Indutive step: Need to show that for r = k + 1, f

k+1

< 2g.

Consider a spei� exeution �

k+1

with r = k + 1. Let �

�

k+1

be the view-graph indued by

this exeution. The view-graph has at least one vertex suh that all of its desendants are sinks

(Fat 3.12). Let � be suh vertex. Sine there are no merges, the group that orresponds to �,

fragments into q groups. These groups orrespond to sink verties in �

�

k+1

, thus they perform all

of the remaining (if any) tasks.

Let �

k+1�q

= ��

�

k+1

(per De�nition 5.3) be an exeution in whih the fragmentation does not

our. In the exeution �

k+1�q

, the number of new views is k+ 1� q � k and f

k+1�q

= f

k+1

� q.

By indutive hypothesis, f

k+1�q

< 2(g � q).

Thus, f

k+1

= f

k+1�q

+ q < 2(g � q) + q = 2g � q < 2g. 2

28

