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Abstract

This work considers the problem of performing a set of N tasks on a set of P cooperating
message-passing processors (P < N). The processors use a group communication service (GCS)
to coordinate their activity in the setting where dynamic changes in the underlying network
topology cause the processor groups to change over time. GCSs have been recognized as effective
building blocks for fault-tolerant applications in such settings. Our results explore the efficiency
of fault-tolerant cooperative computation using GCSs. Prior investigation of this area by Dolev
et al. [8] focused on competitive lower bounds, non-redundant task allocation schemes and work-
efficient algorithms in the presence of fragmentation regroupings. In this work we investigate
work-efficient and message-efficient algorithms for fragmentation and merge regroupings. We
present an algorithm that uses GCSs and implements a coordinator-based strategy. This algo-
rithm is motivated by the results in [8]. It achieves similar work complexity of O(N - f + N)
for fragmentations, where f is the number of new groups created by dynamic fragmentations.
Additionally, our algorithm achieves substantially better message complezity of O(N-f+ N), and
it is able to deal with more general types of group changes. For the analysis of our algorithm we
introduce the notion of wview-graphs that represent the partially-ordered view evolution history
witnessed by the processors. For fragmentations and merges, the work W of the algorithm (de-
fined as the worst case total number of task executions counting multiplicities) is not more than
min{N-f+ N, N-P}, and the message complexity M is no worse than 4(N- f+ N+ P-m), where
f and m denote the number of new groups created by fragmentations and merges respectively.
Note that the constants are very small and that, interestingly, while the work efficiency depends
on the number of groups f created as the result of fragmentations, work does not depend on the
number of groups m created as the result of merges.
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1 Introduction

The problem of cooperatively performing a set of tasks in a decentralized setting where the com-
puting medium is subject to failures is one of the fundamental problems in distributed computing.
Variations on this problem have been studied in a variety of settings, e.g., in message-passing models
[9, 6] and in shared-memory models [14]. This problem was also studied in the setting of processor
groups in partitionable networks [8]. In this setting, the computation can take advantage of group
communication services [4], and the processors must perform the tasks and must learn the results

of the tasks efficiently, despite the dynamically changing group memberships.

Group communication services (GCS) can be used as effective building blocks for constructing
fault-tolerant distributed applications. These services enable the application components at different
processors to operate collectively as a group, using the service to multicast messages. The basis of
a group communication service is a group membership service. Each processor, at each time, has
a unique view of the membership of the group. The view includes a list of the processors that are
members of the group. Views can change and may become different at different processors. There is
a substantial amount of research dealing with specification and implementation of GCSs and group-
oriented applications, e.g., [1, 2, 13, 7, 10, 16, 19, 21], and verification of GCSs and group-oriented
systems, e.g., [5, 15, 11].

When developing group-oriented, and especially partition-aware applications, it is also important
to understand the effectiveness of group communication services [23] and the efficiency benefits
that can be expected when using group communication services [8]. One of the features of GCSs
is their group management facilities that map a variety of failures in the underlying computing
medium to changes in group memberships. Faulty communication links can partition the system
into several connected components. Failures and recoveries trigger group membership activity that
aims to establish a group for every connected component. An adversary that causes frequent and
arbitrary failures may prevent applications from making steady computational progress. Thus,
it is interesting to study restricted, yet realistic, models of adversaries for which efficient specific
algorithms can be developed with the help of common group communication services. Studying the
problem of performing a set of tasks on a set of processors in the group-oriented setting provides
a convenient and powerful abstraction for understanding the efficiency of cooperative computation.

A work-efficient algorithm is presented for this problem by Dolev et al. in [8], along with a lower



bound and a scheduling strategy that minimizes redundant work. That algorithm is tolerant of
arbitrary sequences of group fragmentations. In this work we continue the study of algorithms that
are work-efficient and message-efficient, and that are able to deal with more general changes in group

memberships.

Following [8], we investigate an approach whose goal is to utilize the resources of every component
of the system during the entire computation. Thus the problem [8] has the following setting: a
set of N independent and idempotent tasks must be performed by P processors in a distributed
system, where each processor must learn all results. Group communication is used to coordinate the
execution of the tasks. Our distributed system model, in addition to the processors and the network,
includes a set of input/output ports accessible to the processors. In this model we enable any client
of the required computation to query any processor for the results. This makes it mandatory, even
for isolated processors, to be able to provide the results of the computation regardless of whether
any other processors may already have the results. Thus, it is not sufficient to know that each of the
tasks have been performed somewhere. It is also necessary for each processor to learn the results.

We refer to this problem as the OMNI-DO problem.

Note that any algorithm that solves the problem in a way where in any group the processors
perform no more than O(N) tasks (counting multiplicities), will have work complexity of O(r - N),
where r is the total number of new views installed. This makes it not very interesting to study
the problem for adversaries that impose arbitrary view changes. Our major goal is develop precise
upper bounds that describe the efficiency, work and messaging of solving OMNI-DO as functions of
the number of tasks N, the number of processors P, and the numbers of distinct group views of

specific types (fragmentations and merges in this work) installed by the group membership services.

We present an algorithm for the OMNI-DO problem for N tasks and P message-passing processors
(P < N) that are interconnected by a network, which is subject to dynamic group fragmentations
and merges. We assume a group communication service that provides group management and view-
oriented messaging service (Section 2.1). The main complexity result is for the adversary that is
restricted to causing fragmentations of groups and merges of groups. This extends the results in [8],
which consider only the fragmentation adversary. Our analysis for the fragmentation-and-merge

adversary yields analysis for the fragmentations-only adversary as a corollary.

For the fragmentation-and-merge adversary, we distinguish between the views that are installed
as the result of fragmentations and the views installed as the result of merges. If r is the total

number of views installed, then for the fragmentation-and-merge adversary we have that r = f +m,



where f is the number of views due to fragmentations and m is the number of views due to merges.

It is also not difficult to see that m < f when all processors initially start in a single group.

We now summarize our results.

e We present a new algorithm, called algorithm A X, that solves the OMNI-DO problem and we
analyze it for the fragmentation-and-merge adversary. The algorithm employs a coordinator-
based approach and relies on the underlying group communication service. The algorithm is

specified in Section 4 and it extends the approaches in [8] and [3].

e We introduce the notion of view-graphs that represent the partially-ordered view evolution
history collectively witnessed by the processors (Section 3). We show that these digraphs
are acyclic for the fragmentation-and-merge adversary and we use these view-graphs in the
complexity analysis of the algorithm. We believe that view-graphs have the potential of serving

as a general tool for studying cooperative computing with group communication services.

e For any pattern of fragmentations and merges, the work W of the algorithm is no more than
min{N - f + N, NP}, and the message complexity M is no worse than 4(N - f + N + P-m).
Note that f < r and here it is significant that we are expressing the upper bounds using
explicit constants instead of the big-oh notation. Both complexity results depend on f, but
only the message complexity depends on m. The fact that the work complexity does not
depend on m, substantiates the intuition that merges lead to a more efficient computation.
The upper bounds are tight for a broad range of view changes. This analysis is presented in

Sections 5.1 and 5.2.

e For any pattern of fragmentations (i.e., when m = 0) our algorithm achieves work complexity
of O(min{N - f + N, N - P}). This result is essentially the same as the result in [8]. However,
our algorithm achieves substantially better message complexity O(N - f + N) as compared to
the at least quadratic message complexity of the algorithm in [8]. Message optimization was
outside of the scope of [8], yet this improvement was one of our goals. The improvement is

largely due to our use of the coordinator-based strategy. These results are in Section 5.3.

Note that it is not difficult to show that when f > N, W = Q(N - P) and when f < N,
W =Q(N - f). Thus, W = Q(min{N - f, N - P}) is a lower bound for OMNI-DO. So our algorithm
is optimal with respect to work for the adversaries we consider. Considering optimality for the

message complexity is less interesting, since the problem can be solved without any communication.

Related work. The problem of efficiently performing a set of tasks using a network of processors

in the setting where the network is subject to dynamic changes was considered by Dolev, Segala



and Shvartsman [8]. For the N-processor, N-task problem defined in that work, it was shown that
for dynamic changes the termination time of any on-line task algorithm can be greater than the
termination time of an off-line algorithm by a factor linear in N. An algorithm was also presented
in [8] that for arbitrary fragmentations has work O(N - f' + N), where f’ is the increase in the
number of groups due to fragmentations. In comparing our result with the result in [8], we note
that our definition of f is slightly different from the definition of fragmentation failures f’ in [8]. In
order to compare our complexity results with those in [8], we show in this paper that for any pattern
of fragmentations allowed by [8] we have f’ < f < 2f’. In [8] the work is counted in terms of the
rounds executed by the processors. In our analysis we count only the number of task executions
(including redundancies). However in our algorithm, for as long as any tasks remain undone in a
given group, the processors perform the tasks in rounds, except for the last round. Therefore the
difference in work complexity for these two algorithms is at most f-N. Thus the different definitions
of f and f’ and of work can be subsumed in the big-oh analysis without substantial variation in the

constants.

Group communication services (GCS) have become important as building blocks for fault-
tolerant distributed systems. Such services enable processors located in a fault-prone network to
operate collectively as a group, using the services to multicast messages to group members. Ex-
amples of GCS include Isis [2], Transis [7], Totem [19], Newtop [10], Relacs [1], Horus [21] and
Ensemble [13]. Examples of recent work dealing with primary groups are [5, 16]. An example of
an application using a GCS for load balancing is by Fekete, Khazan and Lynch [15]. To evaluate
the effectiveness of partitionable GCSs, Sussman and Marzulo [23] proposed the measure (cushion)

precipitated by a simple partition-aware application.

Our definition of work follows that of Dwork, Halpern and Waarts [9]. Our fragmentation model
creates a setting, within each fragment, that is similar to the setting in which the network does not
fragment but the processors are subject to crash failures. Performing a set of tasks in such settings
is the subject of several works [3, 6, 9, 12], however the analysis is quite different when work in all

fragments has to be considered.

Our distributed problem has an analogous counterpart in the shared-memory model of compu-
tation, called the collect problem. The collect problem was originally abstracted by Saks, Shavit
and Woll [22] (it also appears in Shavit’s Ph.D. thesis). Although the algorithmic techniques are

different, the goal of having all processors to learn a set of values is similar.



2 Definition and Models

A distributed system consists of P processors connected by communication links. Each processor

has a unique identifier from the set P = {1,2,..., P}.

We define a task to be any computation that can be performed by a single processor in constant
time. We assume that the tasks are independent and idempotent. Our distributed system is charged
with the responsibility of performing a set of N tasks that are initially known to all processors. Fach

task has a unique identifier from the set 7T .

To require that all processors acquire the results of all tasks, our system also includes a set
of input/output ports. These ports are only used by the clients of the system to query individual
processors for computation results. We do not make any failure assumptions about the input/output
ports, in particular, our algorithm does not depend on the failure status of these ports, or the requests

from them.

Definition 2.1 The problem of performing a set of N independent tasks on a set of P message
passing processors, where each processor must learn the results of all N tasks, is called the OMNI-DO

problem.

The algorithm specification in this paper is done in terms of I/O automata of Lynch and Tut-
tle [17, 18]. Each automaton models a state machine with states and transitions between states,
where actions are associated with sets of state transitions. There are input, output and inter-
nal actions. A particular action is enabled if the preconditions of that action are satisfied. The
statements given as effects are executed as a program started in the existing state and atomically

producing the next state as the result of the transition.

An ezecution o of an I/O automaton Aut is a finite or infinite sequence of alternating states
and actions (events) of Aut starting with the initial state, i.e., & = sg, €1, 51, €2,..., where s;’s are
states (so is the initial state) and e;’s are actions (events). We denote by ezecs(Aut) the set of all

executions in Aut.

We next state our assumptions about the group communication services and define the work

and message complexity measures.

2.1 Group Communication Service

We assume a group communication service (GCS) with certain properties. The assumptions are

basic, and they are provided by several group communication systems and specifications [24]. The



service maintains group membership information and it is used to communicate information con-

cerning the executed tasks within each group. The GCS provides the following primitives:

NEWVIEW (v),, informs processor p of a new view v = (id, set), where id is the identifier of the view
and set is the set of processor identifiers in the group. When a NEWVIEW(v), primitive is

invoked, we say that processor p installs view v.
GPMSND(message), allows processor p to multicast a message to the current group members.
GPMRCV(message), enables processor p to receive multicasts from other processors.

GP1SND(message, destination), allows processor p to unicast a message to another member of the

current group.

GP1RCV(message), enables processor p to receive unicasts from another processor.

To distinguish between the messages sent in different send events, we assume that each message
sent by the application is tagged with a unique message identifier.

We assume the following safety properties on any execution « of an algorithm that uses GCSs:

1. A processor is always a member of its view ([24] Prop. 3.1). If NEWVIEW(v), occurs in a then

p € v.set.

2. The view identifiers of the views that each processor installs are monotonically increas-
ing ([24] Prop. 3.2). If event NEWVIEW(v;), occurs in « before event NEWVIEW (v2),, then
v1.1d < vo.id. This property implies that:

(a) A processor does not install the same view twice.

(b) If two processors install the same two views, they install these views in the same order.

3. For every receive event, there exists a preceding send event of the same message ([24] Prop.
4.1).  If epmMRrcv(m), (GPIRCV(m),) occurs in «, then there exists GPMSND(m),

(GP1SND(m, p),) earlier in execution a.

4. Messages are not duplicated ([24] Prop. 4.2). If GPMRcV(m;), (GP1RCV(m;),) and
GPMRCV(m2), (GPIRCV(m2),) occur in ¢, then m; # ma.

5. A message is delivered in the same view it was sent in ([24] Prop. 4.3). If processor p receives
message m in view v; and processor ¢ (it is possible that p = ¢) sends m in view vy, then
V] = vy,

6. In the initial state s, all processors are in the initial view vy, such that vy.set = P ([24] Prop.

3.3 with [11, 20]).



We assume the following additional liveness properties on any execution « of an algorithm that uses

GCSs (cf. [24] Section 10):

7. If a processor p sends a message m in a view vy, then for each processor ¢ in v;.set, either ¢
delivers m in vq, or p installs a next view vs.

8. If a new view event occurs at any processor p in view v, then a view change will eventually

occur at all processors in v.set — {p}.

2.2 Regrouping-Numbers and Measures of Efficiency

In this section we define regrouping-numbers and complexity measures. We define the regrouping-
number 7 of an execution to be the number of NEWVIEW events with distinct view identifiers. (Note

that if the same view is installed at multiple processors, this counts for a single regrouping.)

Definition 2.2 Given an execution a, we define the regrouping-number r, as:

ro = |{v : NEWVIEW(v), occurs in a}|.

When it is clear from the context, we use r instead of r, to denote the regrouping-number of

execution .

We define adversary models, in the context of a specific algorithm, in terms of the collections
of executions in the presence of an adversary. In the following definitions we assume that the

algorithms use a group communication service as presented in Section 2.1.

Definition 2.3 For an algorithm A, let Fr(A) be the adversary model that includes all the possible
executions of A, i.e., Fr(A) = erecs(A).

Definition 2.4 For an algorithm A, let Fy(A) be the adversary model that does not cause any

NEWVIEW events, i.e., F3(A) = {a: a € execs(A) Arq = 0}.

When it is clear from the context, we use F instead of Fy(A) and Fg instead of Fr(A).

It is easy to see that Fy C Fr. Let F be some adversary model such that 7y C F C Fpg. In the
following definitions we formalize the measures of work and message complexity for the specific F.

Our definition of work follows that of Dwork, Halpern and Waarts [9].

Definition 2.5 The work W, (N, P) of an execution « of algorithm A in the adversary model F,

s defined to be Z Wé, where Wi is the number of tasks performed by processor i.
1€P



Definition 2.6 For algorithm A in the adversary model F, the work complexity Wx(N, P,r) is
defined as: Wx(N,P,r) = max {W,(N,P)}.
aEF,ra<r

Definition 2.7 The message cost M, (N, P) of an execution « of algorithm A in the adversary
model F, is defined to be Z Mé, where MY is the number of messages sent by processor i.

1EP
Definition 2.8 For algorithm A in the adversary model F, the message complexity Mz(N, P,r) is

defined as: Mz(N, P,r) = max_ {My(N, P)}.
acSf ,rq<r

3 View-Graphs and Specific Adversary Models

This section introduces view-graphs that are used to represent and analyze changes of processors’
views in executions. View-graphs are directed graphs (digraphs) that are defined by the states and
the NEWVIEW events of executions of algorithms that use group communication services. Repre-
senting view changes as digraphs enables us to use common graph analysis techniques to formally
reason about the properties of executions. In this paper we deal with adversary models that cause
group fragmentations and merges. Our view-graph approach to the analysis of executions is general,
and we believe it can be used to study the complexity of computation and other properties of group

communication services and algorithms for different adversary models.

3.1 Executions and View-Graphs

Consider an algorithm A that uses a group communication service (GCS). We modify algorithm A by
introducing, for each processor 7, the history variable cv; that keeps track of the current view at ¢ as
follows: In the initial state, we set cv; to be vy, the distinguished initial view for all processors i € P.
In the effects of the NEWVIEW(v); action for processor i, we include the assignment cv; := v. In
the rest of the paper, we assume that algorithms are modified to include such history variables. We

now define view-graphs by specifying how a view-graph is induced by an execution of an algorithm.

Definition 3.1 Given an execution « of algorithm A, the view-graph T, = (V| E, L) is defined to
be the labeled directed graph as follows:

1. Let Vy, be the set of all views v that occur in NEWVIEW (v); events in a. The set V' of nodes of
Ty is the set Vo U {vg}. We call vy the initial node of Ty.
2. The set of edges E of Ty, is a subset of V. x V determined as follows. For each NEWVIEW (v);

event in « that occurs in state s, the edge (s.cvi,v) is in E.

8



3. The edges in E are labeled by L : E — 27, such that L(u,v) = {i : NEWVIEW (v); occurs in

state s in « such that s.cv; = u}.

Observe that the definition ensures that all edges in E of I, are labeled.

Example 1: Consider the following execution « (we omit all events other than NEwviEw and any
states that do not precede NEWVIEW events):

Q= 80, NEWVIEW (V1) p;, ..., 81, NEWVIEW(V2)ps, - - . , §2, NEWVIEW (VU3) s, - - - , §3, NEWVIEW (04)

ey 84, NEWVIEW (VU1 ) g,y - -+ , S5, NEWVIEW (U4)pys - - -  S6, NEWVIEW (V4 )ps, . .., Where vi.set = {p1,p3},

vy.set = {pa}, vs.set = {ps} and vy.set = {p1,p2,ps}. Additionally, vy.set = P = {p1, p2,p3, 04}

The view-graph T, = (V, E, L) is given in Figure 1. The initial node of 'y is vy. The set
of nodes of V of 'y, is V. = V, U {vg} = {vg,v1,v2,v3,v4}. The set of edges E of 'y is E =
{(vo,v1), (vo,v2), (vo,v3), (v1,v4), (v2,v4)}, since for each of these (vj,v) the event NEWVIEW(vy),
occurs in state s, where sy.cv, = v; for some certain p (by the definition of the history variable). The
labels of the edges are L(vg,v1) = {p1,p3}, L(vo,v2) = {p2}, L(vo,v3) = {pa}, L(v1,vs) = {p1,p3}
and L(vg,vs4) = {p2}, since for each p; € L(vj,vy) the event NEWVIEW(v;); occurs in state s, where

S¢-CUp; = Vj. O

4 .

0
vpset = {p, Py Py P,

L(vo,vl) = {pl’ y \L(v()’VZ) = {pz}

( £ X ™\
61 v,
v.set = {p, p,} v,.set = {p,}

L(vyv) = {p, p;} L(v,v) = {p,}

P

Yy

v4.set = {pp Dy 173}

,

Figure 1: Example of a view-graph

Given a graph S and a node v of S, we define indegree(v, S) (outdegree(v, S)) to be the indegree

(outdegree) of v in S.

Lemma 3.2 For any execution «, indegree(vy,'y) = 0.

Proof: In the initial state sg, sg.cv is defined to be vy for all processors in P and vg.set = P.
Assume that indegree(vy,I'y) > 0. By the construction of view-graphs, this implies that some

processor i € P installs vy a second time. But this contradicts property 2(a) of GCS. O



Lemma 3.3 Let « be an execution and T'y|; be the projection of Ty on the edges whose label includes

i, for some i € P. T'y|; is an elementary path and vy is the path’s source node.

Proof: Let execution a be sg,e1,s1,€e2,... . Let a®) be the prefix of & up to the k' state. i.e.,
a®) = sq.e1,51,€9,...,55 Let I'® be the view-graph that is induced by a®). Then define Tk to
be the projection of ' on the edges whose label includes i, for some i € P.

For an elementary path m, we define 7.sink to be its sink node.

We prove by induction on k that I'%|; is an elementary path, that I'%|;.sink = sj.cv; and that v is
the path’s source node.

Basis: k = 0. T?|; has only one vertex, vy, and no edges (9 = s5). Thus, [%);.sink = sg.cv; = vg
and vg is the source node of this path.

Inductive Hypothesis: Assume that Yn < k, I'?|; is an elementary path, that I'?|;.sink = s,.cv; and
that vy is the path’s source node.

Inductive Step: n =k + 1. For state s;41 we consider two cases:

Case 1: If event e, is not a NEWVIEW event involving processor 4, then T5+1|; = TX|;. Thus,
by inductive hypothesis, T¥*1|; is an elementary path and v is its source node. From state sj to
state Sk41, processor ¢ did not witness any new view. By the definition of the history variable,

Sk+1-CV; = Sk.cv;. Thus, F’§+1|i.sink = $}.CV; = Spy1.CV;.

Case 2: If event e, is a NEWVIEW(v); event that involves processor 7, then by the construction
of the view-graph, (sg.cv;,v) is a new edge from node si.cv; to node v. By inductive hypothesis,
T'%|;.sink = sp.cv;. Since our GCS does not allow the same view to be installed twice (property
2(a)), v # u for all u € TX|;. Thus, TE*1|; is also an elementary path, with vg its source node and
Ik+1);.sink = v. From state s;, to state si,;, processor i installs the new view v. By the definition

of the history variable, siy1.cv; = v. Thus, F’§+1|Z~.sink = $g11.cv;. This completes the proof. O

Corollary 3.4 Any view-graph Ty, induced by any execution « of algorithm A is a connected graph.

Proof: The result follows from Definition 3.1(2), from the observation that all edges of the view-

graph are labeled and from Lemma 3.3 O

Definition 3.5 For a view-graph Ty = (V, E, L), a fragmentation subgraph is a connected labeled
subgraph S = (Vg, Eg, Lg) of Ty such that:
1. S contains a unique node v such that indegree(v, S) = 0; v is called the fragmentation node

of S.

10



Vg = {v} UV{, where V§ is defined to be {w : (v,w) € E}
Es = {(v,w) 1w € Vi)

Lg is the restriction of L on Eg.

Uwevg (w.set) = v.set

Yu,w € V§ such that u # w, u.set Nw.set = ()

X S &t o

Yw € V¢, Lg(v,w) = w.set

In the analysis of algorithms, we are going to be referring to all NEWVIEW events that collectively

induce a fragmentation subgraph for a fragmentation node v as a fragmentation.

Example 2: The shaded area A in Figure 1 shows the fragmentation subgraph S = (Vs, Eg, Lg) of
I', from Example 1. Here Vg = {vg,v1,v2,v3}, Eg = {(vo,v1), (vo,v2), (vo,v3)} and the labels are
the labels of Iy, restricted on Eg. We can confirm that S is a fragmentation subgraph by examining

the individual items of Definition 3.5. d

Definition 3.6 For a view-graph Ty, = (V, E, L), a merge subgraph is a connected labeled subgraph
S =(Vs,Eg,Ls) of Ty such that:

1. S contains a unique node v such that outdegree(v,S) = 0 and indegree(v, S) > 1; v is

called the merge node of S.

2. Vs = {v} U VY, where V§ is defined to be {w : (w,v) € E}

3. Es ={(w,v) :w eV}

4. Lg is the restriction of L on Eg.

5. Uwevsf(w.set) = v.set

6. Yu,w € V{ such that u # w, u.set Nw.set =

7. Uwev, Lg(w,v) = v.set

A regrouping of a group g; to a group gs such that gi.set = go.set can be represented either as
a fragmentation subgraph or as a merge subgraph. In this paper we choose to represent it as a

fragmentation subgraph by requiring that indegree(v, S) > 1 for any merge node v.

In the analysis of algorithms, we are going to be referring to all NEWVIEW events that collectively

induce a merge subgraph for a merge node v as a merge.

Example 3: The area B in Figure 1 of Example 1 shows the merge subgraph S = (Vg, Eg, Lg) of
'y, where Vg = {v1,v9,v3,v4}, Eg = {(v1,v4), (v2,v4)} and the labels are the labels of Ty, restricted

on Es. We can verify this by examining all conditions of Definition 3.6. a.

11



Definition 3.7 Given an execution a of algorithm A, let frag(T'y) be the set of all the distinct

fragmentation nodes in the induced view-graph Ty.

Definition 3.8 Given an execution o of algorithm A, let merg(T'y) be the set of all the distinct

merge nodes in the induced view-graph T',.

Definition 3.9 A view-graph Ty, such that all of its non-terminal nodes are in frag(Ty), is called a

fragmentation view-graph.

Definition 3.10 A view-graph T, such that each of its non-terminal nodes is either in frag(Ty) or

it is an immediate ancestor of a node that is in merg(Ty) is called an fm view-graph.

For T, in the example in Figure 1 we have vy € frag(T'y) by Definition 3.7. Also, v4s € merg(Ty)
by Definition 3.8; additionally, the nodes v; and ve are immediate ancestors of vy € merg(Ty).
By Definition 3.10, T’y is an fm view-graph. Observe that 'y, is a DAG. This is true for all fm

view-graphs:
Theorem 3.11 Any fm view-graph Ty, = (V, E, L) is a Directed Acyclic Graph (DAG).

Proof: Assume that I', is not a DAG. Thus, it contains at least one cycle. Let
((v1,v2)(v2,v3) ... (vk,v1)) be an elementary cycle of I'y,. By the construction of view-graphs (Defi-
nition 3.1(3)) and by the monotonicity property (property 2) of GCS, v;.id < v;yq1.id for 1 <1 <k

and vg.1d < v1.9d. But, by the transitivity of “<”, vy.id < vg.id, a contradiction. O

However, not all view-graphs are DAGs. It is also not difficult to see that any fragmentation

view-graph is a rooted tree.

In the complexity analysis we use the following fact.

Fact 3.12 In any (non-empty) DAG, there is at least one vertex, such that all of its descendants

have outdegree 0.

3.2 Adversary Models

Let A be an algorithm that uses GCS, as presented in Section 2.1. We now define two adversary

models that are more restrictive than Fr(A), but less restrictive than Fy(A).
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Definition 3.13 For any algorithm A the fragmentation adversary Fr(A) is the set of all executions

of A, such that each execution induces a fragmentation view-graph.

Definition 3.14 For any algorithm A the fragmentation-and-merge adversary Fpar(A) is the set of

all executions of A, such that each execution induces an fm view-graph.

It is easy to see that Fy(A) C Fr(A) C Frm(A) C Fr(A).

Definition 3.15 Given an execution o of algorithm A, and T, = (V, E, L), we define:
1. the fragmentation-number f, = [{w : NEWVIEW(w),, occurs ina« A (v,w) € E A v € frag(T's)}|

2. the merge-number my = |[{v : NEWVIEW(v), occurs in o A v € merg(Ty)}|

Note that for an algorithm A and for an execution a € Fpp(A), by Definitions 2.2 and 3.15,
To = fa+mgq. Also, by Definitions 3.7, 3.8 and 3.15, f, > m,. Observe that in the adversary model

Fr, ra = fo and m, = 0.

4  Algorithm AX

We now present the algorithm, called algorithm A X, that deals with regroupings and that relies on

a GCS as specified in Section 2.1. The analysis of the algorithm is in Section 5.

Algorithm A X uses a coordinator approach within each group view. The high level idea of the
algorithm is that each processor performs (remaining) tasks according to a load balancing rule, and

a processor completes its computation when it learns the results of all the tasks.

Task allocation. The set T of the initial tasks is known to all processors. During the execution
each processor ¢ maintains a local set D of tasks already done, a local set R of the corresponding
results, and the set G of processors in the current group. (The set D may be an underestimate of
the set of tasks done globally.) The processors allocate tasks based on the shared knowledge of the
processors in G about the tasks done. For a processor i, let rank(i, G) be the rank of i in G when
processor identifiers are sorted in ascending order. Let U be the tasks in T'— D. For a task w in U,
let rank(u,U) be the rank of u in U when task identifiers are sorted in ascending order. Our load
balancing rule for each processor ¢ in G is that:
e if rank(i, G) < |U|, then processor ¢ performs task u such that rank(u,U) = rank(i, G);

e if rank(i, G) > |U|, then processor i does nothing.
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Algorithm structure. The algorithm code is given in Figure 2 using I/O automata notation [18].
The algorithm uses the group communication service to structure its computation in terms of rounds

numbered sequentially within each group view.

Initially all processors are members of the distinguished initial view vg, such that vg.set = P.
Rounds numbered 1 correspond to the initial round either in the original group or in a new group
upon a regrouping as notified via the NEWVIEW event. If a regrouping occurs, the processor receives
the new set of members from the group membership service and starts the first round of this view
(NEWVIEW action). At the beginning of each round, denoted by a round number Rnd, processor i
knows G, the local set D of tasks already done, and the set R of the results. Since all processors
know G, they “elect” the group coordinator to be the processor which has the highest processor
id (no communication is required since the coordinator is uniquely identified). In each round each
processor reports D and R to the coordinator of G (GP1SND action). The coordinator receives
and collates these reports (GP1IRCV action) and sends the result to the group members (GPMSND
action). Upon the receipt of the message from the coordinator, processors update their D and R,

and perform work according to the load balancing rule (GPMRCV action).

For generality, we assume that the messages may be delivered by the GCS out of order. The set
of messages within the current view is saved in the local variable A. The saved messages are also
used to determine when all messages for a given round have been received. Processing continues
until each member of G knows all results (the processors enter the sleep stage). When requests for
computation results arrive from a port ¢ (REQUEST action), each processor keeps track of this in
a local variable requests, and, when all results are known, sends the results to the port (REPORT

action).

Correctness: We now show the safety of algorithm AX.

We first show that no processor stops working as long as it knows of any undone tasks.

Theorem 4.1 (Safety 1) For all states of any execution of Algorithm AX it holds that
Vi € P: D; #T = Phase # sleep

Proof: The proof follows by examination of the code of the algorithm, and more specifically from

the code of the input action GPMRCV((j, H, @, round));. O

Note that the implication in Theorem 4.1 cannot be replaced by iff (). This is because if
D; =T, we may still have Phase # sleep. This is the case where processor ¢ becomes a member of

a group in which the processors do not know all the results of all the tasks.
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Data types:

T : tasks m € Mes
R : results 1,jEP
Result : T - R v € views
Mes: messages He2”
P : processor ids Qec2*®
G : group ids round € N
views = G x 2% : views, selectors id and set results € 27
ZO : input/output ports qeIO
States:
T € 27, the set of N = |T| tasks Derived variables:
D €27, the set of done tasks, initially 0 U : T — D, the set of remaining tasks
R € 2%, the set of known results, initially @ Coordinator(i) : Boolean; if i = max(j : j € G),
G € 2%, current members, init. vo.set = P then True else False
A € 2Me° messages since last NEWVIEW, init. History variable cv; € views (i € P),
Rnd € N, round number, initially 1 initially Vi, cv; := vo.
requests € 27° | set of output ports, initially @ History variable Msa; € 2 (i eP),
Phase € {send, receive, sleep, meast, mrecv}, initially Vi, MsG; := 0.

initially send

Transitions at i:

input REQUEST,,; input GPMRcV((j, H, Q, round));
Effect: Effect:
requests < requests U {q} D+~ DUH
R+ RUQ
input NEWVIEW(v); if D =T then
Effect: Phase < sleep
G ¢ v.set else
A« D if rank(i, G) < |U| then
Rnd <1 let u be such that
Phase < send rank(u,U) = rank(i, G)
cvi=v R + RU {Result(u)}
D+ DU {u}
output GP1SND(m,j); fi
Precondition: Rnd < Rnd +1
Coordinator(j) Phase <+ send
Phase = send fi
m = (i, D, R, Rnd)
Effect: output REPORT(results), ;
MSG := MSG U {m} Precondition:
Phase < receive T=D
q € requests
input Gplrev({j, H,Q,round)); results = R
Effect: Effect:
A+ AU{(j, H,Q,round)} requests < requests — {q}
R+ RUQ
D+~ DUH

if G ={j: 3o, H', Q' Rnd) € A}
then Phase < mcast

output GPMSND(m);
Precondition:
Coordinator(7)
m = (i, D, R, Rnd)
Phase = mcast
Effect:
Msa := MsG U {m}
Phase < mrecv

Figure 2: Algorithm AX.
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Next we show that if some processor does not know the result of some task, this is because it
does not know that this task has been performed (Theorem 4.5 below). We show this using the

history variables MSG; (i € P), which we define now.

Definition 4.2 We define MSG; to be a history variable that keeps on track all the messages sent by
some processor i € P in all GP1SND(message, destination); and GPMSND(message); events of an
execution of algorithm AX. Formally: In the effects of the GP1SND(m, j); and GPMSND(m); actions

we include the assignment MSG; := MSG; U {m}. Initially, in state s, Vi, MSG; = ().

Definition 4.3 Define MSG = U MSG;.
1€P
Lemma 4.4 If m is a message received by processor i € P in a GPIRCV(m); or GPMRCV(m); event

of an execution of algorithm AX, then m € MSG.

Proof: Property 3 of the acs (Section 2.1) requires that for every receive event there exists a
preceding send event of the same message (the GCS does not generate messages). Hence, m must
have been sent by some processor ¢ € P (possible ¢ = i) in some earlier event of the execution.
Messages can be sent only in GP1SND(m,i), or GPMSND(m), events. By definition, m € MSG,.

Hence, m € MSG. O

Theorem 4.5 (Safety 2) For all states of any execution of Algorithm AX:
(a) Vt e T, Vi€ P:result(t) € Ry =t & D;, and
(b) Vt € T,V(i, D', R', Rnd) € MSG : result(t) ¢ R' =t ¢ D'.

Proof: Let a be an execution of AX and o be the prefix of o up to the k' state, ie., af =

80,€1,81,€2,-..,8;. The proof is done by induction on k.

Basis: £ =0. In sg, Vi € P,D; =0, R; = 0 and MSG = (. Thus, the basis case holds.

Inductive hypothesis: For a state s,, such that n < k, Vi € T, Vi € P : result(t) & R; = t &€ D;,
and V¢ € T,V(i, D', R, Rnd) € MSG : result(t) ¢ R' =t ¢ D'.

Inductive step: n = k + 1. Consider the following seven types of actions leading to the state sgi1:

1. ery1 = NEWVIEW(v');: The effect of this action does not affect the invariant. By the inductive
hypothesis, in state s;41, the invariant holds.

2. exy1 = GP1SND(m, j);: Clearly, the effect of this action does not affect part (a) of the invariant
but it affects part (b). Since m = (i, D;, R;, Rnd), by the inductive hypothesis part (a), the
assignment m € MGSG reestablishes part (b) of the invariant. Thus, in state si 1, the invariant

is reestablished.
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3. exr1 = GP1ReV((j, H,Q,round));: Processor i updates R; and D; according to @) and H
respectively. The action is atomic, i.e., if R; is updated, then D; must be also updated.
By Lemma 4.4, (j, H,Q,round) € MSG. Thus, by the inductive hypothesis part (b), Vt €
T : result(t) € H = t ¢ . From the fact that D; and R; are updated according to H
and @ respectively and by the inductive hypothesis part (a), in state s;i1, the invariant is
reestablished.

4. ey = GPMSND(m);: Clearly, the effect of this action does not affect part (a) of the invariant
but it affects part (b). Since m = (i, D;, R;, Rnd), by the inductive hypothesis part (a), the
assignment m € MSG reestablishes part (b) of the invariant. Thus, in state s, the invariant
is reestablished.

5. exr1 = GPMRCV((j, H, Q,round));: By Lemma 4.4, (j, H, Q, round) € MSG. By the inductive
hypothesis part (b), Vi € T : result(t) ¢ H = t ¢ Q. Processor i updates R; and D;
according to Q and H respectively. Since H and Q have the required property, by the inductive
hypothesis part (a), the assignments to D; and R; reestablish the invariant.

In the case where D; # T, processor ¢ performs a task according to the load balancing rule.
Let u € T be this task. Because of the action atomicity, when processor i updates R; with

result(u), it must also update D; with u. Hence, in state s;11, the invariant is reestablished.
6. er+1 = REQUEST,;: The effect of this action does not affect the invariant.

7. er4+1 = REPORT(results),;: The effect of this action does not affect the invariant.

This completes the proof O

5 Analysis of Algorithm AX

We express the work complexity of algorithm AX in the model Fpy as Wg,, (N, Pr) =
Wra (N, P, f +m). The message complexity is expressed as Mz, (N, P,r) = Mz, (N, P, f +m).
Our analysis focuses on assessing the impact of the fragmentation number f and the merge number
m on the work and message complexity, and in the rest of this section for clarity we let Wy, stand

for Wr,,,(N, P, f +m), and My, stand for Mz, (N, P, f +m).

5.1 Work Complexity

In this section we show the following result:

Theorem 5.1 Wy,, < min{ N-f+N, N-P}
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Observe that Wy, does not depend on m (this of course does not imply that for any given
execution, the work does not depend on merges). This observation substantiates the intuition that
merges lead to a more efficient computation. We begin by providing definitions and proving several

lemmas that lead to the above result.

Definition 5.2 Let o be any execution of algorithm AX in which all the processors learn the results
of all tasks and that includes a merge of groups gi,...,qr into the group u, where the processors in
1 undergo no further view changes.

We define a* to be the execution we derive by removing the merge from o* as follows:

(1) We remove all states and events that correspond to the merge of groups g1, ..., gk into the group
1 and aoll states and events for processors within .

(2) We add the appropriate states and events such that the processors in groups gi,..., g undergo

no further view changes and perform any remaining tasks.

Definition 5.3 Let a® be any execution of algorithm AX in which all the processors learn the
results of all tasks and that includes a fragmentation of the group ¢ to the groups gi,...,gr where
the processors in these groups undergo no further view changes.

We define a¥ to be the execution we derive by removing the fragmentation from «¥ as follows:

(1) We remove all states and events that correspond to the fragmentation of the group ¢ to the
groups gi, ..., g and all states and events of the processors within the groups gi,...,gk.

(2) We add the appropriate states and events such that the processors in the group ¢ undergo no

further view changes and perform any remaining tasks.

Note: In Definitions 5.2 and 5.3, we claim that we can remove states and events from an execution
and add some other states and events to it. This is possible because if the processors in a single view
installed that view and there are no further view changes, then the algorithm will continue making
computation progress. So, if we remove all states and events corresponding to a view change, then

the algorithm can always proceed as if this view change never occurred.

Lemma 5.4 In algorithm AX, for any view v, including the initial view, if the group is not subject
to any regroupings, then the work required to complete all tasks in the view is no more than N —
maX;cqy set{|Di|}, where D; is the value of the state variable D of processor i at the start of its local

round 1 in view v.
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Proof: In the first round, all the processors send messages to the coordinator containing D;. The
coordinator computes Ujey ser{D;} and broadcasts this result to the group members. Since the
group is not subject to any regroupings, the number of tasks, ¢, that the processors need to perform
is: t = N — | Uicp.set {Di}|- In each round of the computation, by the load balancing rule, the
members of the group perform distinct tasks and no task is performed more than once. Therefore,
t is the work performed in this group. On the other hand, max;cy set{|Di|} < | Uicv.set {Di}l], thus,
£ < N = maxicy.oor{|Dil}- o

In the following lemma, groups u, g1, ..., gx are defined as in Definition 5.2.

Lemma 5.5 Let o* be an execution of Algorithm AX as in Definition 5.2. Let W1 be the work
performed by the algorithm in the execution ot. Let Wy be the worked performed by Algorithm AX

i the execution a*. Then Wi < Wh.

Proof: Let W’ be the work performed by all processors in P — Ui <i<k(gi-set) — p.set in the execu-
tion a#. Observe that the work performed by all processors in P — Uy <;<4(gi-set) in the execution
a* is equal to W'.

The work that is performed by processor j in g;.set prior to the NEWVIEW(u); event in o, is the
same in both executions. Call this work W; ;. Define W” = % | > jcgiset Wi

Define W = W' + W". Thus, W is the same in both executions, a# and a*.

Define W, to be the work performed by all processors in p.set in execution o*.

For each processor j in g;.set, let D; be the value of the state variable D just prior to the

NEWVIEW (1), event in o/, For each g;, define: d; = || Dj|. Thus there are at least N — d;

jegi.set
tasks that remain to be done in each g;.

In execution a#, the processors in each group g; proceed and complete these remaining tasks. This
requires work at least N — d;. Define this work as Wy,. Thus, W,, > (N — d;).

In execution o*, groups g¢i,..., g, merge into group . The number of tasks that need to be per-

formed by the members of p is at most N — d;, where d; = max;{d;} for some j. By Lemma 5.4,

W, < N —dj. Observe that:

k k
Wi=WH+W,<W+N-dj <W+Y (N—d;) <W+ > W, =W, O
i=1 i=1
In the following lemma, groups ¢, g1, ..., gx are defined as in Definition 5.3.

Lemma 5.6 Let o¥ be an execution of Algorithm AX as in Definition 5.3. Let Wy be the work

performed by the algorithm in the execution a¥. Let Wy be the worked performed by Algorithm AX
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in the execution a¥. Then Wi < Wo + W3, where W3 is the work performed by all processors in

Ui<i<k(gi-set) in the exzecution af.

Proof: Let W’ be the work performed by all processors in P—U1§i§k(9i-56t) —.set in the execution
a¥. Observe that the work performed by all processors in P — ¢.set in the execution a¥ is equal to
w'.

The work that is performed by processor j in ¢.set prior to the NEWVIEW(g;); event in o, is the
same in both executions. Call this work W, ;. Define W" =37, ., W, ;.

Define W = W' + W". Thus, W is the same in both executions, a¥ and a¥.

Define W, to be the work performed by all processors in ¢.set in execution &@¥. Let W' = W,—W".

Observe that: Wy =W + W3 < W + W3+ W" = Wy + W3 O

Lemma 5.7 Wy ,, < N-P

Proof: By the construction of algorithm A X, when processors are not able to exchange information
about task execution due to regroupings, in the worst case, each processor has to perform all N

tasks by itself. Since P < N, the work is: Wy, < N-P. O

Lemma 5.8 Wy, < N-f+N.

Proof: By induction on the number of views, denoted by r, occurring in an execution. For a specific
execution o, with r views, let f, be the fragmentation-number and m, the merge-number.

Basis: 7 = 0. Since f, and m, must also be 0, the basis follows from Lemma, 5.4.

Inductive hypothesis: Assume that for all » <k, Wy, ,,,, <N - f + N.

Inductive step: Need to show that for r =k + 1, Wy, . ., <N - frp1 + N.

Consider a specific execution gy with r = k+ 1. Let T be the view-graph induced by

Q1
this execution. The view-graph has at least one vertex such that all of its descendants are sinks

(Fact 3.12). Let v be such a vertex. We consider two cases.

(1) v has a descendant u that corresponds to a merge in the execution. Therefore all ancestors of

pin Ty, have outdegree 1. Since y is a sink vertex, the group that corresponds to y performs all
the remaining (if any) tasks and does not perform any additional work.

Let af = @Z-H (per Definition 5.2) be an execution in which this merge does not occur. In
execution «g, the number of views is k. Also, fri1 = fr and mgy; = mg + 1. By inductive
hypothesis, Wy, m, < N-fi+N. By Lemma 5.5, the work performed in execution aj.1, is no worse
than the work performed in execution . The total work complexity is:

Wfk+1,mk+1 < Whomy, < N-fg+N = N- fer1+ N.
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(2) v has no descendants that correspond to a merge in the execution. Therefore, the group that
corresponds to v must fragment, say into g groups. These groups correspond to sink vertices in

r thus they perform all the remaining (if any) tasks and do not perform any additional work.

Q419
Let ajy1-q = @y, (per Definition 5.3) be an execution in which the fragmentation does not
occur. In execution ajyq—4, the number of views is k +1—-¢q < k. Also, fry1—q = fr41 — ¢ and

Mk41—q = Me41. By inductive hypothesis, Wy, < N - fi41—q + N. From Lemma 5.4,

Mk4+1—q
the work performed in each new group caused by the fragmentation is no more than N. Let W, be
the total work performed in all ¢ groups. Thus, W, < ¢gN. By Lemma 5.6, the work performed in
execution a1, is no worse than the work performed in execution aj1—, and the work performed
in all ¢ groups. The total work complexity is:

Wfk+lamk+1 < Wflc+1—Qamk+1—q +Woe <N frp1-¢q+ N+ We=N- (for1—a@) + N+ W,
<N -(fi41 =)+ N+qN=Nfr1—qN+N+gN=N"- fr11+N. O

The main result in Theorem 5.1 follows directly from Lemma 5.7 and Lemma 5.8.
The work complexity result is tight for a broad range of regroupings.

Theorem 5.9 Given any execution « in the Frysr model, there is a pattern of fragmentations that

causes algorithm AX to perform Q(N - fo) work.

Proof: Consider the following pattern. At the beginning of the execution, all P processors belong
in one group. Before the processors communicate, a fragmentation occurs that splits the group into
some number of distinct groups (more than one). Before the processors communicate or perform
any tasks, arbitrary numbers of fragmentations occurs. This continues until we reach a point in
the execution, where no more failures occur. Define the number of the existing groups after this
point to be g. The processors in these g groups must perform all N tasks. Let W be the total
work of the execution. Thus, W > N - g. From Lemma A.1 (page 28) we know that g > %" Thus,
W >Nl =Q(N-f,). O

5.2 Message Complexity

In this section we show the following result:
Theorem 5.10 My, < 4(N-f+ N+ P-m)
We start by showing several lemmas that lead to the message complexity result.

Lemma 5.11 For algorithm AX, in any view v, including the initial view, if the group is not subject

to any regroupings, and for each processor i € v.set, D; is the value of the state variable D at the
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start of its local round 1 in view v, then the number of messages M that are sent until all tasks are

completed is 2(N —d) < M < 2(p+ N —d) where p = |v.set|, and d = |U;cy.ser Dil-

rounds to complete all tasks. In

Proof: By the load balancing rule, the algorithm needs f%]

each round each processor sends one message to the coordinator and the coordinator responds with

a single message to each processor. Thus M = 2p - (f%]) Using the properties of the ceiling, we
get: 2(N—-d) < M < 2(p+ N —d). O
In the following lemma, groups u, g1, ..., gi are defined as in Definition 5.2.

Lemma 5.12 Let o* be an execution of Algorithm AX as in Definition 5.2. Let My be the message
cost of the algorithm in the execution o*. Let My be the message cost of Algorithm AX in the
execution a*. Then My < My + 2P.

Proof: Let M’ be the number of messages sent by all processors in P — U1§i§k(9z’-8€t) — u.set in
the execution a*. Observe that the number of messages sent by all processors in P — U1§i§k(gi-56t)
in the execution &* is equal to M'.

The number of messages sent by any processor j in g;.set prior to the NEWVIEW(u); event in o, is
the same in both executions. Call this message cost M; ;. Define M" = Y8 , > icgiset Mij-

Define M = M' + M". Thus, M is the same in both executions, a* and a*.

Define M, to be the number of messages sent by all processors in y.set in execution o.

For each processor j in g;.set, let D; be the value of the state variable D just prior to the

NEWVIEW (1), event in o/, For each g;, define: d; = || Dj|. Thus there are at least N — d;

jeg;.set
tasks that remain to be done in each g;.

In execution a#, the processors in each group g; proceed and complete these remaining tasks. Let
M,, be the number of messages sent by all processors in g;.set in order to complete the remaining
tasks. By Lemma 5.11, My, > 2(N — d;).

In execution o#, groups g¢i,..., g, merge into group . The number of tasks that need to be per-

formed by the members of p is at most N — d;, where d; = max;{d;} for some j. By Lemma 5.11,

M, < 2(p+ N —dj), where p = |u.set|. Observe that:

k k
My=M+M, <M+2p+N-—dj) <M+2p+2> (N—d;j)<M+2p+> M,
=1 =1
:M2+2pSM2+2P O
In the following lemma, groups ¢, g1, ..., gx are defined as in Definition 5.3.

Lemma 5.13 Let o¥ be an execution of Algorithm AX as in Definition 5.5. Let My be the message

cost of the algorithm in the execution o¥. Let My be the message cost of Algorithm AX in the
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execution a®. Then My < Ms + Ms, where My is the number of messages sent by all processors in

Ui<i<k(gi-set) in the exzecution a?.

Proof: Let M’ be the number of messages sent by all processors in P — U1§¢§k(9z’-86t) — p.set in
the execution a¥. Observe that the number of messages sent by all processors in P — @.set in the
execution @ is equal to M’.

The number of messages sent by processor j in ¢.set prior to the NEWVIEW(g;); event in a?, is the
same in both executions. Call this message cost M, ;. Define M" =37, (., M, ;.

Define M = M' + M". Thus, M is the same in both executions, a¥ and a*.

Define M, to be the number of messages sent by all processors in ¢.set in execution &¥. Let

M'" = M(p — M". Observe that: My = M + M3 < M + M; +M" = My + Ms; O

The proof of Theorem 5.10 is done by induction similarilly to the proof of Lemma 5.8:

Proof: By induction on the number of views, denoted by r, occurring in any execution. For a specific
execution «, with r views, let f, be the fragmentation number and m, be the merge-number.
Basis: 7 = 0. Since f, and m, must also be 0, the basis follows from Lemma 5.11.

Inductive hypothesis: Assume that for all r <k, My, ,,, <4(N - f, + N+ P -m,).

Inductive step: Need to show that for r =k + 1, My, m, ., <4(N - fep1 + N+ P-myyq).

Consider a specific execution agy; with r = k+ 1. Let T be the view-graph induced by

Q41
this execution. The view-graph has at least one vertex such that all of its descendants are sinks

(Fact 3.12). Let v be such a vertex. We consider two cases.

(1) v has a descendant u that corresponds to a merge in the execution. Therefore all ancestors of

pin Ty, . have outdegree 1. Since y is a sink vertex, the group that corresponds to u performs all
the remaining (if any) tasks and no further messages are sent.

Let af = @Z-H (per Definition 5.2) be an execution in which this merge does not occur. In
execution g, the number of new views is k. Also, fry1 = fr and mg1 = my + 1. By inductive
hypothesis, My, ,,, <4(N - fr + N + P -my). The total message complexity, using Lemma 5.12 is:
Mg < Mpomp +2P <4A(N - fo + N+ P-my) +2P =4(N - fr41 + N+ P-mpy — P) +2P

= AN fr11 +4N +4Pmy 1 —4P +2P < 4(N - fra1+ N + P -myq).

(2) v has no descendants that correspond to a merge in the execution. Therefore, the group that
corresponds to v must fragment, say into ¢ groups. These groups correspond to sink vertices
in a1, thus they perform all of the remaining (if any) tasks and do not send any additional
messages.

Let a1 ¢ = @), (per Definition 5.3) be an execution in which the fragmentation does not
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occur. In the execution ay41_g4, the number of new viewsis k+1—¢q < k. Also, fr11—g = fot1—¢
and my41-¢g = myy1. By inductive hypothesis, My, .-, <A - feri—g+ N+ P mpp1—g).
From Lemma 5.11, the message cost in each new group caused by a fragmentation is no more than
4N. Let M, be the total number of messages sent in all g groups. Thus, M, < 4gN. By Lemma 5.13,
the number of messages sent in execution a1, is less than the number of messages sent in execution
aj+1—¢ and the number of messages sent in all ¢ groups. The total message complexity is:
Mippiimiy S Mg gmpgg + Mo <ANN - frr1q+ N+ P-mpp1—g) + M,

— 4N - fri1—qN+ N+ P-mpp1) + My < AN fyp1 —4gN + 4N + 4Pmy 1 + 4gN
= AN fry1+ N+ P-myq1). O

The message complexity result is tight for a broad range of regroupings.

Theorem 5.14 Given any execution a in the Fryr model, there is a pattern of fragmentations that

causes algorithm AX to send Q(N - fn) messages.

Proof: Consider the following pattern. At the beginning of the execution, all P processors belong
in one group. Before the processors communicate, a fragmentation occurs that splits the group into
some number of distinct groups (more than one). Before the processors communicate or perform
any tasks, arbitrary numbers of fragmentations occurs. This continues until we reach a point in the
execution, where no more failures occur. Define the number of the existing groups after this point to
be g. The processors in these g groups must perform all NV tasks. By Lemma 5.11, the message cost
of each of the g groups is at least 2N. Let M be the total work of the execution. Thus, M > 2N - g.
From Lemma A.1 (page 28) we know that g > fT‘* Thus, M > 2N - fT‘* = Q(N - fa). O

Observe that the same scenario provides a lower bound both for work and message cost.

5.3 Analysis for the Fragmentation Adversary

We express the work complexity of algorithm AX in the model Fr as W, (N, P,r) = Wy and the
message complexity as Mz, (N, P,r) = My (note that r = f for Fp). The following corollary is
derived from Theorems 5.1 and 5.10.

Corollary 5.15 Wy < min{N - f+ N,N-P} and My < 4N -f+ N)

With Theorems 5.9 and 5.14 the results of Corollary 5.15 are tight.

In the failure model of [8] a group is not allowed to “fragment” into a single group with the same

membership. Such fragmentation is allowed by our definition of Fr. In order to compare our results
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with the results of [8], we define a more restricted adversary FJ. that requires that any group may
only fragment into 2 or more other groups. Clearly Fj C Fp, and from Corollary 5.15 we have the

following.
Corollary 5.16 W}-;?(N, P, f)=O(N - f+ N) and M}-;?(N, P, f)=O(N - f+ N)

In the rest of this section we deal with the model FJ.. Our definition of the fragmentation-number f
is slightly different from the definition of fragmentation failures f’ in [8]. When a group fragments
into k groups, f is defined to be equal to k, but f’ is defined to be equal to k — 1. The next Lemma
relates f and f'.

Lemma 5.17 If f is the fragmentation-number and f' the number of fragmentation failures as

defined in [8], then [’ < f < 2f'.

Proof: Assume that k fragmentations occur. Let the number of the newviews in the i** fragmenta-
tion be f;. By the definition of f/, f/ = f;—1. Thus, f/4+1 = f; which implies that f; < f/+ f/ = 2f/.
But f'=Y% fland f =% | f;. Thus, f < 2f'.

Now observe that, f' =S¢ fI=SF (fi—1)=YF fi —k=f—Fk Thus f > f O

In [8] the work is counted in terms of the rounds executed by the processors. In our analysis we
count only the number of task executions (including redundancies). However in our algorithm, for
as long as any tasks remain undone in a given group, the processors perform the tasks in rounds,
except for the last round. Therefore the difference in work complexity for these two algorithms is at
most f-N. Thus the different definitions of f, f’ and work are subsumed in the big-oh analysis, and
without substantial variation in the constants. On the other hand, the message complexity of our
algorithm, as shown in Corollary 5.16, is substantially better than the at least quadratic message

complexity of the algorithm from [8].

6 Discussion

We have considered the problem of performing a set of N tasks on a set of P cooperating message-
passing processors, where the processors must perform and learn the results of the tasks efficiently,
subject to dynamically changing group memberships. To analyze our algorithm we introduce view-
graphs — digraphs that we use to represent and analyze changes of processors’ views in executions.
Our complexity analysis shows that group communication services can be used efficiently to solve

distributed problems that are similar to our OMNI-DO problem. We believe that our view-graph ap-
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proach can be generalized and used to study other dynamic group reconfiguration patterns. Ongoing

work is pursuing this research direction.
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A Appendix

We prove a Lemma that we use in the proofs of Theorems 5.9 and 5.14.

Lemma A.1 In an execution « of algorithm AX in the fragmentation adversary model where groups
fragment to two or more groups, for N tasks and P processors it holds that f, < 2g, where g is the

number of groups at a point in the execution where no more regroupings occur.

Proof: By induction on the number of new views, denoted r, occurring in any execution. For a
specific execution a, with r views, let f, be the fragmentation-number.

Basis: For r =0, fo =0 < 2.

Inductive hypothesis: Assume that for all r < k, f,. < 2g.

Inductive step: Need to show that for r =k + 1, fr11 < 2g.

Consider a specific execution gy with r = k£ + 1. Let T be the view-graph induced by

g1
this execution. The view-graph has at least one vertex such that all of its descendants are sinks
(Fact 3.12). Let v be such vertex. Since there are no merges, the group that corresponds to v,
fragments into g groups. These groups correspond to sink vertices in I'y,,, thus they perform all
of the remaining (if any) tasks.

Let agi1-q = @}, (per Definition 5.3) be an execution in which the fragmentation does not
occur. In the execution ay11_g4, the number of new views is k+1—¢q < kand frr1—g = fry1 —q

By inductive hypothesis, fy+1-4 < 2(9 — ¢).

Thus, frt1 = far1—q+a<2(9—q) +¢=29 —q < 2g. O
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