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Abstra
t

This work 
onsiders the problem of performing a set of N tasks on a set of P 
ooperating

message-passing pro
essors (P � N). The pro
essors use a group 
ommuni
ation servi
e (GCS)

to 
oordinate their a
tivity in the setting where dynami
 
hanges in the underlying network

topology 
ause the pro
essor groups to 
hange over time. GCSs have been re
ognized as e�e
tive

building blo
ks for fault-tolerant appli
ations in su
h settings. Our results explore the eÆ
ien
y

of fault-tolerant 
ooperative 
omputation using GCSs. Prior investigation of this area by Dolev

et al. [8℄ fo
used on 
ompetitive lower bounds, non-redundant task allo
ation s
hemes and work-

eÆ
ient algorithms in the presen
e of fragmentation regroupings. In this work we investigate

work-eÆ
ient and message-eÆ
ient algorithms for fragmentation and merge regroupings. We

present an algorithm that uses GCSs and implements a 
oordinator-based strategy. This algo-

rithm is motivated by the results in [8℄. It a
hieves similar work 
omplexity of O(N � f + N)

for fragmentations, where f is the number of new groups 
reated by dynami
 fragmentations.

Additionally, our algorithm a
hieves substantially better message 
omplexity of O(N �f+N), and

it is able to deal with more general types of group 
hanges. For the analysis of our algorithm we

introdu
e the notion of view-graphs that represent the partially-ordered view evolution history

witnessed by the pro
essors. For fragmentations and merges, the work W of the algorithm (de-

�ned as the worst 
ase total number of task exe
utions 
ounting multipli
ities) is not more than

minfN �f+N; N �Pg, and the message 
omplexityM is no worse than 4(N �f+N+P �m), where

f and m denote the number of new groups 
reated by fragmentations and merges respe
tively.

Note that the 
onstants are very small and that, interestingly, while the work eÆ
ien
y depends

on the number of groups f 
reated as the result of fragmentations, work does not depend on the

number of groups m 
reated as the result of merges.

Keywords: Groups, distributed algorithms, work, 
ommuni
ation, 
omplexity.
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1 Introdu
tion

The problem of 
ooperatively performing a set of tasks in a de
entralized setting where the 
om-

puting medium is subje
t to failures is one of the fundamental problems in distributed 
omputing.

Variations on this problem have been studied in a variety of settings, e.g., in message-passing models

[9, 6℄ and in shared-memory models [14℄. This problem was also studied in the setting of pro
essor

groups in partitionable networks [8℄. In this setting, the 
omputation 
an take advantage of group


ommuni
ation servi
es [4℄, and the pro
essors must perform the tasks and must learn the results

of the tasks eÆ
iently, despite the dynami
ally 
hanging group memberships.

Group 
ommuni
ation servi
es (GCS) 
an be used as e�e
tive building blo
ks for 
onstru
ting

fault-tolerant distributed appli
ations. These servi
es enable the appli
ation 
omponents at di�erent

pro
essors to operate 
olle
tively as a group, using the servi
e to multi
ast messages. The basis of

a group 
ommuni
ation servi
e is a group membership servi
e. Ea
h pro
essor, at ea
h time, has

a unique view of the membership of the group. The view in
ludes a list of the pro
essors that are

members of the group. Views 
an 
hange and may be
ome di�erent at di�erent pro
essors. There is

a substantial amount of resear
h dealing with spe
i�
ation and implementation of GCSs and group-

oriented appli
ations, e.g., [1, 2, 13, 7, 10, 16, 19, 21℄, and veri�
ation of GCSs and group-oriented

systems, e.g., [5, 15, 11℄.

When developing group-oriented, and espe
ially partition-aware appli
ations, it is also important

to understand the e�e
tiveness of group 
ommuni
ation servi
es [23℄ and the eÆ
ien
y bene�ts

that 
an be expe
ted when using group 
ommuni
ation servi
es [8℄. One of the features of GCSs

is their group management fa
ilities that map a variety of failures in the underlying 
omputing

medium to 
hanges in group memberships. Faulty 
ommuni
ation links 
an partition the system

into several 
onne
ted 
omponents. Failures and re
overies trigger group membership a
tivity that

aims to establish a group for every 
onne
ted 
omponent. An adversary that 
auses frequent and

arbitrary failures may prevent appli
ations from making steady 
omputational progress. Thus,

it is interesting to study restri
ted, yet realisti
, models of adversaries for whi
h eÆ
ient spe
i�


algorithms 
an be developed with the help of 
ommon group 
ommuni
ation servi
es. Studying the

problem of performing a set of tasks on a set of pro
essors in the group-oriented setting provides

a 
onvenient and powerful abstra
tion for understanding the eÆ
ien
y of 
ooperative 
omputation.

A work-eÆ
ient algorithm is presented for this problem by Dolev et al. in [8℄, along with a lower
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bound and a s
heduling strategy that minimizes redundant work. That algorithm is tolerant of

arbitrary sequen
es of group fragmentations. In this work we 
ontinue the study of algorithms that

are work-eÆ
ient and message-eÆ
ient, and that are able to deal with more general 
hanges in group

memberships.

Following [8℄, we investigate an approa
h whose goal is to utilize the resour
es of every 
omponent

of the system during the entire 
omputation. Thus the problem [8℄ has the following setting: a

set of N independent and idempotent tasks must be performed by P pro
essors in a distributed

system, where ea
h pro
essor must learn all results. Group 
ommuni
ation is used to 
oordinate the

exe
ution of the tasks. Our distributed system model, in addition to the pro
essors and the network,

in
ludes a set of input/output ports a

essible to the pro
essors. In this model we enable any 
lient

of the required 
omputation to query any pro
essor for the results. This makes it mandatory, even

for isolated pro
essors, to be able to provide the results of the 
omputation regardless of whether

any other pro
essors may already have the results. Thus, it is not suÆ
ient to know that ea
h of the

tasks have been performed somewhere. It is also ne
essary for ea
h pro
essor to learn the results.

We refer to this problem as the omni-do problem.

Note that any algorithm that solves the problem in a way where in any group the pro
essors

perform no more than �(N) tasks (
ounting multipli
ities), will have work 
omplexity of O(r �N),

where r is the total number of new views installed. This makes it not very interesting to study

the problem for adversaries that impose arbitrary view 
hanges. Our major goal is develop pre
ise

upper bounds that des
ribe the eÆ
ien
y, work and messaging of solving omni-do as fun
tions of

the number of tasks N , the number of pro
essors P , and the numbers of distin
t group views of

spe
i�
 types (fragmentations and merges in this work) installed by the group membership servi
es.

We present an algorithm for the omni-do problem for N tasks and P message-passing pro
essors

(P � N) that are inter
onne
ted by a network, whi
h is subje
t to dynami
 group fragmentations

and merges. We assume a group 
ommuni
ation servi
e that provides group management and view-

oriented messaging servi
e (Se
tion 2.1). The main 
omplexity result is for the adversary that is

restri
ted to 
ausing fragmentations of groups and merges of groups. This extends the results in [8℄,

whi
h 
onsider only the fragmentation adversary. Our analysis for the fragmentation-and-merge

adversary yields analysis for the fragmentations-only adversary as a 
orollary.

For the fragmentation-and-merge adversary, we distinguish between the views that are installed

as the result of fragmentations and the views installed as the result of merges. If r is the total

number of views installed, then for the fragmentation-and-merge adversary we have that r = f +m,
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where f is the number of views due to fragmentations and m is the number of views due to merges.

It is also not diÆ
ult to see that m < f when all pro
essors initially start in a single group.

We now summarize our results.

� We present a new algorithm, 
alled algorithm AX, that solves the omni-do problem and we

analyze it for the fragmentation-and-merge adversary. The algorithm employs a 
oordinator-

based approa
h and relies on the underlying group 
ommuni
ation servi
e. The algorithm is

spe
i�ed in Se
tion 4 and it extends the approa
hes in [8℄ and [3℄.

� We introdu
e the notion of view-graphs that represent the partially-ordered view evolution

history 
olle
tively witnessed by the pro
essors (Se
tion 3). We show that these digraphs

are a
y
li
 for the fragmentation-and-merge adversary and we use these view-graphs in the


omplexity analysis of the algorithm. We believe that view-graphs have the potential of serving

as a general tool for studying 
ooperative 
omputing with group 
ommuni
ation servi
es.

� For any pattern of fragmentations and merges, the work W of the algorithm is no more than

minfN � f +N; N �Pg, and the message 
omplexity M is no worse than 4(N � f +N +P �m).

Note that f � r and here it is signi�
ant that we are expressing the upper bounds using

expli
it 
onstants instead of the big-oh notation. Both 
omplexity results depend on f , but

only the message 
omplexity depends on m. The fa
t that the work 
omplexity does not

depend on m, substantiates the intuition that merges lead to a more eÆ
ient 
omputation.

The upper bounds are tight for a broad range of view 
hanges. This analysis is presented in

Se
tions 5.1 and 5.2.

� For any pattern of fragmentations (i.e., when m = 0) our algorithm a
hieves work 
omplexity

of O(minfN � f +N;N �Pg). This result is essentially the same as the result in [8℄. However,

our algorithm a
hieves substantially better message 
omplexity O(N � f +N) as 
ompared to

the at least quadrati
 message 
omplexity of the algorithm in [8℄. Message optimization was

outside of the s
ope of [8℄, yet this improvement was one of our goals. The improvement is

largely due to our use of the 
oordinator-based strategy. These results are in Se
tion 5.3.

Note that it is not diÆ
ult to show that when f � N , W = 
(N � P ) and when f < N ,

W = 
(N � f). Thus, W = 
(minfN � f; N � Pg) is a lower bound for omni-do. So our algorithm

is optimal with respe
t to work for the adversaries we 
onsider. Considering optimality for the

message 
omplexity is less interesting, sin
e the problem 
an be solved without any 
ommuni
ation.

Related work. The problem of eÆ
iently performing a set of tasks using a network of pro
essors

in the setting where the network is subje
t to dynami
 
hanges was 
onsidered by Dolev, Segala
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and Shvartsman [8℄. For the N -pro
essor, N -task problem de�ned in that work, it was shown that

for dynami
 
hanges the termination time of any on-line task algorithm 
an be greater than the

termination time of an o�-line algorithm by a fa
tor linear in N . An algorithm was also presented

in [8℄ that for arbitrary fragmentations has work O(N � f

0

+ N), where f

0

is the in
rease in the

number of groups due to fragmentations. In 
omparing our result with the result in [8℄, we note

that our de�nition of f is slightly di�erent from the de�nition of fragmentation failures f

0

in [8℄. In

order to 
ompare our 
omplexity results with those in [8℄, we show in this paper that for any pattern

of fragmentations allowed by [8℄ we have f

0

< f < 2f

0

. In [8℄ the work is 
ounted in terms of the

rounds exe
uted by the pro
essors. In our analysis we 
ount only the number of task exe
utions

(in
luding redundan
ies). However in our algorithm, for as long as any tasks remain undone in a

given group, the pro
essors perform the tasks in rounds, ex
ept for the last round. Therefore the

di�eren
e in work 
omplexity for these two algorithms is at most f �N . Thus the di�erent de�nitions

of f and f

0

and of work 
an be subsumed in the big-oh analysis without substantial variation in the


onstants.

Group 
ommuni
ation servi
es (GCS) have be
ome important as building blo
ks for fault-

tolerant distributed systems. Su
h servi
es enable pro
essors lo
ated in a fault-prone network to

operate 
olle
tively as a group, using the servi
es to multi
ast messages to group members. Ex-

amples of GCS in
lude Isis [2℄, Transis [7℄, Totem [19℄, Newtop [10℄, Rela
s [1℄, Horus [21℄ and

Ensemble [13℄. Examples of re
ent work dealing with primary groups are [5, 16℄. An example of

an appli
ation using a GCS for load balan
ing is by Fekete, Khazan and Lyn
h [15℄. To evaluate

the e�e
tiveness of partitionable GCSs, Sussman and Marzulo [23℄ proposed the measure (
ushion)

pre
ipitated by a simple partition-aware appli
ation.

Our de�nition of work follows that of Dwork, Halpern and Waarts [9℄. Our fragmentation model


reates a setting, within ea
h fragment, that is similar to the setting in whi
h the network does not

fragment but the pro
essors are subje
t to 
rash failures. Performing a set of tasks in su
h settings

is the subje
t of several works [3, 6, 9, 12℄, however the analysis is quite di�erent when work in all

fragments has to be 
onsidered.

Our distributed problem has an analogous 
ounterpart in the shared-memory model of 
ompu-

tation, 
alled the 
olle
t problem. The 
olle
t problem was originally abstra
ted by Saks, Shavit

and Woll [22℄ (it also appears in Shavit's Ph.D. thesis). Although the algorithmi
 te
hniques are

di�erent, the goal of having all pro
essors to learn a set of values is similar.

4



2 De�nition and Models

A distributed system 
onsists of P pro
essors 
onne
ted by 
ommuni
ation links. Ea
h pro
essor

has a unique identi�er from the set P = f1; 2; : : : ; Pg.

We de�ne a task to be any 
omputation that 
an be performed by a single pro
essor in 
onstant

time. We assume that the tasks are independent and idempotent. Our distributed system is 
harged

with the responsibility of performing a set of N tasks that are initially known to all pro
essors. Ea
h

task has a unique identi�er from the set T .

To require that all pro
essors a
quire the results of all tasks, our system also in
ludes a set

of input/output ports. These ports are only used by the 
lients of the system to query individual

pro
essors for 
omputation results. We do not make any failure assumptions about the input/output

ports, in parti
ular, our algorithm does not depend on the failure status of these ports, or the requests

from them.

De�nition 2.1 The problem of performing a set of N independent tasks on a set of P message

passing pro
essors, where ea
h pro
essor must learn the results of all N tasks, is 
alled the omni-do

problem.

The algorithm spe
i�
ation in this paper is done in terms of I/O automata of Lyn
h and Tut-

tle [17, 18℄. Ea
h automaton models a state ma
hine with states and transitions between states,

where a
tions are asso
iated with sets of state transitions. There are input, output and inter-

nal a
tions. A parti
ular a
tion is enabled if the pre
onditions of that a
tion are satis�ed. The

statements given as e�e
ts are exe
uted as a program started in the existing state and atomi
ally

produ
ing the next state as the result of the transition.

An exe
ution � of an I/O automaton Aut is a �nite or in�nite sequen
e of alternating states

and a
tions (events) of Aut starting with the initial state, i.e., � = s

0

; e

1

; s

1

; e

2

; : : :, where s

i

's are

states (s

0

is the initial state) and e

i

's are a
tions (events). We denote by exe
s(Aut) the set of all

exe
utions in Aut.

We next state our assumptions about the group 
ommuni
ation servi
es and de�ne the work

and message 
omplexity measures.

2.1 Group Communi
ation Servi
e

We assume a group 
ommuni
ation servi
e (GCS) with 
ertain properties. The assumptions are

basi
, and they are provided by several group 
ommuni
ation systems and spe
i�
ations [24℄. The
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servi
e maintains group membership information and it is used to 
ommuni
ate information 
on-


erning the exe
uted tasks within ea
h group. The GCS provides the following primitives:

newview(v)

p

informs pro
essor p of a new view v = hid; seti, where id is the identi�er of the view

and set is the set of pro
essor identi�ers in the group. When a newview(v)

p

primitive is

invoked, we say that pro
essor p installs view v.

gpmsnd(message)

p

allows pro
essor p to multi
ast a message to the 
urrent group members.

gpmr
v(message)

p

enables pro
essor p to re
eive multi
asts from other pro
essors.

gp1snd(message; destination)

p

allows pro
essor p to uni
ast a message to another member of the


urrent group.

gp1r
v(message)

p

enables pro
essor p to re
eive uni
asts from another pro
essor.

To distinguish between the messages sent in di�erent send events, we assume that ea
h message

sent by the appli
ation is tagged with a unique message identi�er.

We assume the following safety properties on any exe
ution � of an algorithm that uses GCSs:

1. A pro
essor is always a member of its view ([24℄ Prop. 3.1). If newview(v)

p

o

urs in � then

p 2 v:set.

2. The view identi�ers of the views that ea
h pro
essor installs are monotoni
ally in
reas-

ing ([24℄ Prop. 3.2). If event newview(v

1

)

p

o

urs in � before event newview(v

2

)

p

, then

v

1

:id < v

2

:id. This property implies that:

(a) A pro
essor does not install the same view twi
e.

(b) If two pro
essors install the same two views, they install these views in the same order.

3. For every re
eive event, there exists a pre
eding send event of the same message ([24℄ Prop.

4.1). If gpmr
v(m)

p

(gp1r
v(m)

p

) o

urs in �, then there exists gpmsnd(m)

q

(gp1snd(m; p)

q

) earlier in exe
ution �.

4. Messages are not dupli
ated ([24℄ Prop. 4.2). If gpmr
v(m

1

)

p

(gp1r
v(m

1

)

p

) and

gpmr
v(m

2

)

p

(gp1r
v(m

2

)

p

) o

ur in �, then m

1

6= m

2

.

5. A message is delivered in the same view it was sent in ([24℄ Prop. 4.3). If pro
essor p re
eives

message m in view v

1

and pro
essor q (it is possible that p = q) sends m in view v

2

, then

v

1

= v

2

.

6. In the initial state s

0

, all pro
essors are in the initial view v

0

, su
h that v

0

:set = P ([24℄ Prop.

3.3 with [11, 20℄).
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We assume the following additional liveness properties on any exe
ution � of an algorithm that uses

GCSs (
f. [24℄ Se
tion 10):

7. If a pro
essor p sends a message m in a view v

1

, then for ea
h pro
essor q in v

1

:set, either q

delivers m in v

1

, or p installs a next view v

2

.

8. If a new view event o

urs at any pro
essor p in view v, then a view 
hange will eventually

o

ur at all pro
essors in v:set� fpg.

2.2 Regrouping-Numbers and Measures of EÆ
ien
y

In this se
tion we de�ne regrouping-numbers and 
omplexity measures. We de�ne the regrouping-

number r of an exe
ution to be the number of newview events with distin
t view identi�ers. (Note

that if the same view is installed at multiple pro
essors, this 
ounts for a single regrouping.)

De�nition 2.2 Given an exe
ution �, we de�ne the regrouping-number r

�

as:

r

�

= jfv : newview(v)

p

o

urs in �gj.

When it is 
lear from the 
ontext, we use r instead of r

�

to denote the regrouping-number of

exe
ution �.

We de�ne adversary models, in the 
ontext of a spe
i�
 algorithm, in terms of the 
olle
tions

of exe
utions in the presen
e of an adversary. In the following de�nitions we assume that the

algorithms use a group 
ommuni
ation servi
e as presented in Se
tion 2.1.

De�nition 2.3 For an algorithm A, let F

R

(A) be the adversary model that in
ludes all the possible

exe
utions of A, i.e., F

R

(A) = exe
s(A).

De�nition 2.4 For an algorithm A, let F

;

(A) be the adversary model that does not 
ause any

newview events, i.e., F

;

(A) = f� : � 2 exe
s(A) ^ r

�

= 0g.

When it is 
lear from the 
ontext, we use F

;

instead of F

;

(A) and F

R

instead of F

R

(A).

It is easy to see that F

;

� F

R

. Let F be some adversary model su
h that F

;

� F � F

R

. In the

following de�nitions we formalize the measures of work and message 
omplexity for the spe
i�
 F .

Our de�nition of work follows that of Dwork, Halpern and Waarts [9℄.

De�nition 2.5 The work W

�

(N;P ) of an exe
ution � of algorithm A in the adversary model F ,

is de�ned to be

X

i2P

W

i

�

, where W

i

�

is the number of tasks performed by pro
essor i.
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De�nition 2.6 For algorithm A in the adversary model F , the work 
omplexity W

F

(N;P; r) is

de�ned as: W

F

(N;P; r) = max

�2F ;r

�

�r

fW

�

(N;P )g:

De�nition 2.7 The message 
ost M

�

(N;P ) of an exe
ution � of algorithm A in the adversary

model F , is de�ned to be

X

i2P

M

i

�

, where M

i

�

is the number of messages sent by pro
essor i.

De�nition 2.8 For algorithm A in the adversary model F , the message 
omplexity M

F

(N;P; r) is

de�ned as: M

F

(N;P; r) = max

�2F ;r

�

�r

fM

�

(N;P )g:

3 View-Graphs and Spe
i�
 Adversary Models

This se
tion introdu
es view-graphs that are used to represent and analyze 
hanges of pro
essors'

views in exe
utions. View-graphs are dire
ted graphs (digraphs) that are de�ned by the states and

the newview events of exe
utions of algorithms that use group 
ommuni
ation servi
es. Repre-

senting view 
hanges as digraphs enables us to use 
ommon graph analysis te
hniques to formally

reason about the properties of exe
utions. In this paper we deal with adversary models that 
ause

group fragmentations and merges. Our view-graph approa
h to the analysis of exe
utions is general,

and we believe it 
an be used to study the 
omplexity of 
omputation and other properties of group


ommuni
ation servi
es and algorithms for di�erent adversary models.

3.1 Exe
utions and View-Graphs

Consider an algorithm A that uses a group 
ommuni
ation servi
e (GCS). We modify algorithm A by

introdu
ing, for ea
h pro
essor i, the history variable 
v

i

that keeps tra
k of the 
urrent view at i as

follows: In the initial state, we set 
v

i

to be v

0

, the distinguished initial view for all pro
essors i 2 P.

In the e�e
ts of the newview(v)

i

a
tion for pro
essor i, we in
lude the assignment 
v

i

:= v. In

the rest of the paper, we assume that algorithms are modi�ed to in
lude su
h history variables. We

now de�ne view-graphs by spe
ifying how a view-graph is indu
ed by an exe
ution of an algorithm.

De�nition 3.1 Given an exe
ution � of algorithm A, the view-graph �

�

= hV;E;Li is de�ned to

be the labeled dire
ted graph as follows:

1. Let V

�

be the set of all views v that o

ur in newview(v)

i

events in �. The set V of nodes of

�

�

is the set V

�

[ fv

0

g. We 
all v

0

the initial node of �

�

.

2. The set of edges E of �

�

is a subset of V � V determined as follows. For ea
h newview(v)

i

event in � that o

urs in state s, the edge (s:
v

i

; v) is in E.

8



3. The edges in E are labeled by L : E ! 2

P

, su
h that L(u; v) = fi : newview(v)

i

o

urs in

state s in � su
h that s:
v

i

= ug.

Observe that the de�nition ensures that all edges in E of �

�

are labeled.

Example 1: Consider the following exe
ution � (we omit all events other than newview and any

states that do not pre
ede newview events):

� = s

0

;newview(v

1

)

p

1

; : : : ; s

1

;newview(v

2

)

p

2

; : : : ; s

2

;newview(v

3

)

p

4

; : : : ; s

3

;newview(v

4

)

p

1

;

: : : ; s

4

;newview(v

1

)

p

3

; : : : ; s

5

;newview(v

4

)

p

2

; : : : ; s

6

;newview(v

4

)

p

3

; : : :, where v

1

:set = fp

1

; p

3

g,

v

2

:set = fp

2

g, v

3

:set = fp

4

g and v

4

:set = fp

1

; p

2

; p

3

g. Additionally, v

0

:set = P = fp

1

; p

2

; p

3

; p

4

g.

The view-graph �

�

= hV;E;Li is given in Figure 1. The initial node of �

�

is v

0

. The set

of nodes of V of �

�

is V = V

�

[ fv

0

g = fv

0

; v

1

; v

2

; v

3

; v

4

g. The set of edges E of �

�

is E =

f(v

0

; v

1

); (v

0

; v

2

); (v

0

; v

3

); (v

1

; v

4

); (v

2

; v

4

)g, sin
e for ea
h of these (v

j

; v

k

) the event newview(v

k

)

p

o

urs in state s

`

where s

`

:
v

p

= v

j

for some 
ertain p (by the de�nition of the history variable). The

labels of the edges are L(v

0

; v

1

) = fp

1

; p

3

g, L(v

0

; v

2

) = fp

2

g, L(v

0

; v

3

) = fp

4

g; L(v

1

; v

4

) = fp

1

; p

3

g

and L(v

2

; v

4

) = fp

2

g, sin
e for ea
h p

i

2 L(v

j

; v

k

) the event newview(v

k

)

i

o

urs in state s

`

where

s

`

:
v

p

i

= v

j

. 2

vv
00

vv
00
.set ==   {{pp

11
, p

22
, p

33
, p

44
}}

vv
11

vv
11
.set ==   {{pp

11
, p

33
}}

vv
22

vv
22
.set ==   {{pp

22
}}

vv
33

vv
33
.set ==   {{pp

44
}}

vv
44

vv
44
.set = {pp

11
, p

22
, p

33
}}

LL((vv
00
,v

11
))  ==   {{pp

11
, p

33
}} LL((vv

00
,v

33
))  ==   {{pp

44
}}

LL((vv
11
,v

44
))  ==   {{pp

11
, p

33
}} LL((vv

22
,v

44
))  ==   {{pp

22
}}

LL((vv
00
,v

22
))  ==   {{pp

22
}}

BB

AA

Figure 1: Example of a view-graph

Given a graph S and a node v of S, we de�ne indegree(v; S) (outdegree(v; S)) to be the indegree

(outdegree) of v in S.

Lemma 3.2 For any exe
ution �, indegree(v

0

;�

�

) = 0.

Proof: In the initial state s

0

, s

0

:
v is de�ned to be v

0

for all pro
essors in P and v

0

:set = P.

Assume that indegree(v

0

;�

�

) > 0. By the 
onstru
tion of view-graphs, this implies that some

pro
essor i 2 P installs v

0

a se
ond time. But this 
ontradi
ts property 2(a) of GCS. 2
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Lemma 3.3 Let � be an exe
ution and �

�

j

i

be the proje
tion of �

�

on the edges whose label in
ludes

i, for some i 2 P. �

�

j

i

is an elementary path and v

0

is the path's sour
e node.

Proof: Let exe
ution � be s

0

; e

1

; s

1

; e

2

; : : : . Let �

(k)

be the pre�x of � up to the k

th

state. i.e.,

�

(k)

= s

0

; e

1

; s

1

; e

2

; : : : ; s

k

. Let �

k

�

be the view-graph that is indu
ed by �

(k)

. Then de�ne �

k

�

j

i

to

be the proje
tion of �

k

�

on the edges whose label in
ludes i, for some i 2 P.

For an elementary path �, we de�ne �:sink to be its sink node.

We prove by indu
tion on k that �

k

�

j

i

is an elementary path, that �

k

�

j

i

:sink = s

k

:
v

i

and that v

0

is

the path's sour
e node.

Basis: k = 0. �

0

�

j

i

has only one vertex, v

0

, and no edges (�

(0)

= s

0

). Thus, �

0

�

j

i

:sink = s

0

:
v

i

= v

0

and v

0

is the sour
e node of this path.

Indu
tive Hypothesis: Assume that 8n � k, �

n

�

j

i

is an elementary path, that �

n

�

j

i

:sink = s

n

:
v

i

and

that v

0

is the path's sour
e node.

Indu
tive Step: n = k + 1. For state s

k+1

we 
onsider two 
ases:

Case 1: If event e

k+1

is not a newview event involving pro
essor i, then �

k+1

�

j

i

= �

k

�

j

i

. Thus,

by indu
tive hypothesis, �

k+1

�

j

i

is an elementary path and v

0

is its sour
e node. From state s

k

to

state s

k+1

, pro
essor i did not witness any new view. By the de�nition of the history variable,

s

k+1

:
v

i

= s

k

:
v

i

. Thus, �

k+1

�

j

i

:sink = s

k

:
v

i

= s

k+1

:
v

i

.

Case 2: If event e

k+1

is a newview(v)

i

event that involves pro
essor i, then by the 
onstru
tion

of the view-graph, (s

k

:
v

i

; v) is a new edge from node s

k

:
v

i

to node v. By indu
tive hypothesis,

�

k

�

j

i

:sink = s

k

:
v

i

. Sin
e our GCS does not allow the same view to be installed twi
e (property

2(a)), v 6= u for all u 2 �

k

�

j

i

. Thus, �

k+1

�

j

i

is also an elementary path, with v

0

its sour
e node and

�

k+1

�

j

i

:sink = v. From state s

k

to state s

k+1

, pro
essor i installs the new view v. By the de�nition

of the history variable, s

k+1

:
v

i

= v. Thus, �

k+1

�

j

i

:sink = s

k+1

:
v

i

. This 
ompletes the proof. 2

Corollary 3.4 Any view-graph �

�

, indu
ed by any exe
ution � of algorithm A is a 
onne
ted graph.

Proof: The result follows from De�nition 3.1(2), from the observation that all edges of the view-

graph are labeled and from Lemma 3.3 2

De�nition 3.5 For a view-graph �

�

= hV;E;Li, a fragmentation subgraph is a 
onne
ted labeled

subgraph S = hV

S

; E

S

; L

S

i of �

�

su
h that:

1. S 
ontains a unique node v su
h that indegree(v; S) = 0; v is 
alled the fragmentation node

of S.

10



2. V

S

= fvg [ V

0

S

, where V

0

S

is de�ned to be fw : (v; w) 2 Eg

3. E

S

= f(v; w) : w 2 V

0

S

g

4. L

S

is the restri
tion of L on E

S

.

5.

S

w2V

0

S

(w:set) = v:set

6. 8u;w 2 V

0

S

su
h that u 6= w; u:set \w:set = ;

7. 8w 2 V

0

S

, L

S

(v; w) = w:set

In the analysis of algorithms, we are going to be referring to all newview events that 
olle
tively

indu
e a fragmentation subgraph for a fragmentation node v as a fragmentation.

Example 2: The shaded area A in Figure 1 shows the fragmentation subgraph S = hV

S

; E

S

; L

S

i of

�

�

from Example 1. Here V

S

= fv

0

; v

1

; v

2

; v

3

g; E

S

= f(v

0

; v

1

); (v

0

; v

2

); (v

0

; v

3

)g and the labels are

the labels of �

�

restri
ted on E

S

. We 
an 
on�rm that S is a fragmentation subgraph by examining

the individual items of De�nition 3.5. 2

De�nition 3.6 For a view-graph �

�

= hV;E;Li, a merge subgraph is a 
onne
ted labeled subgraph

S = hV

S

; E

S

; L

S

i of �

�

su
h that:

1. S 
ontains a unique node v su
h that outdegree(v; S) = 0 and indegree(v; S) > 1; v is


alled the merge node of S.

2. V

S

= fvg [ V

0

S

, where V

0

S

is de�ned to be fw : (w; v) 2 Eg

3. E

S

= f(w; v) : w 2 V

0

S

g

4. L

S

is the restri
tion of L on E

S

.

5.

S

w2V

0

S

(w:set) = v:set

6. 8u;w 2 V

0

S

su
h that u 6= w; u:set \w:set = ;

7.

S

w2V

0

S

L

S

(w; v) = v:set

A regrouping of a group g

1

to a group g

2

su
h that g

1

:set = g

2

:set 
an be represented either as

a fragmentation subgraph or as a merge subgraph. In this paper we 
hoose to represent it as a

fragmentation subgraph by requiring that indegree(v; S) > 1 for any merge node v.

In the analysis of algorithms, we are going to be referring to all newview events that 
olle
tively

indu
e a merge subgraph for a merge node v as a merge.

Example 3: The area B in Figure 1 of Example 1 shows the merge subgraph S = hV

S

; E

S

; L

S

i of

�

�

, where V

S

= fv

1

; v

2

; v

3

; v

4

g, E

S

= f(v

1

; v

4

); (v

2

; v

4

)g and the labels are the labels of �

�

restri
ted

on E

S

. We 
an verify this by examining all 
onditions of De�nition 3.6. 2.
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De�nition 3.7 Given an exe
ution � of algorithm A, let frag(�

�

) be the set of all the distin
t

fragmentation nodes in the indu
ed view-graph �

�

.

De�nition 3.8 Given an exe
ution � of algorithm A, let merg(�

�

) be the set of all the distin
t

merge nodes in the indu
ed view-graph �

�

.

De�nition 3.9 A view-graph �

�

su
h that all of its non-terminal nodes are in frag(�

�

), is 
alled a

fragmentation view-graph.

De�nition 3.10 A view-graph �

�

su
h that ea
h of its non-terminal nodes is either in frag(�

�

) or

it is an immediate an
estor of a node that is in merg(�

�

) is 
alled an fm view-graph.

For �

�

in the example in Figure 1 we have v

0

2 frag(�

�

) by De�nition 3.7. Also, v

4

2 merg(�

�

)

by De�nition 3.8; additionally, the nodes v

1

and v

2

are immediate an
estors of v

4

2 merg(�

�

).

By De�nition 3.10, �

�

is an fm view-graph. Observe that �

�

is a dag. This is true for all fm

view-graphs:

Theorem 3.11 Any fm view-graph �

�

= hV;E;Li is a Dire
ted A
y
li
 Graph (dag).

Proof: Assume that �

�

is not a dag. Thus, it 
ontains at least one 
y
le. Let

((v

1

; v

2

)(v

2

; v

3

) : : : (v

k

; v

1

)) be an elementary 
y
le of �

�

. By the 
onstru
tion of view-graphs (De�-

nition 3.1(3)) and by the monotoni
ity property (property 2) of GCS, v

i

:id < v

i+1

:id for 1 � i � k

and v

k

:id < v

1

:id. But, by the transitivity of \<", v

1

:id < v

k

:id, a 
ontradi
tion. 2

However, not all view-graphs are dags. It is also not diÆ
ult to see that any fragmentation

view-graph is a rooted tree.

In the 
omplexity analysis we use the following fa
t.

Fa
t 3.12 In any (non-empty) dag, there is at least one vertex, su
h that all of its des
endants

have outdegree 0.

3.2 Adversary Models

Let A be an algorithm that uses GCS, as presented in Se
tion 2.1. We now de�ne two adversary

models that are more restri
tive than F

R

(A), but less restri
tive than F

;

(A).

12



De�nition 3.13 For any algorithm A the fragmentation adversary F

F

(A) is the set of all exe
utions

of A, su
h that ea
h exe
ution indu
es a fragmentation view-graph.

De�nition 3.14 For any algorithm A the fragmentation-and-merge adversary F

FM

(A) is the set of

all exe
utions of A, su
h that ea
h exe
ution indu
es an fm view-graph.

It is easy to see that F

;

(A) � F

F

(A) � F

FM

(A) � F

R

(A).

De�nition 3.15 Given an exe
ution � of algorithm A, and �

�

= hV;E;Li, we de�ne:

1. the fragmentation-number f

�

= jfw : newview(w)

p

o

urs in � ^ (v; w) 2 E ^ v 2 frag(�

�

)gj

2. the merge-number m

�

= jfv : newview(v)

p

o

urs in � ^ v 2 merg(�

�

)gj

Note that for an algorithm A and for an exe
ution � 2 F

FM

(A), by De�nitions 2.2 and 3.15,

r

�

= f

�

+m

�

. Also, by De�nitions 3.7, 3.8 and 3.15, f

�

> m

�

. Observe that in the adversary model

F

F

; r

�

= f

�

and m

�

= 0.

4 Algorithm AX

We now present the algorithm, 
alled algorithm AX, that deals with regroupings and that relies on

a GCS as spe
i�ed in Se
tion 2.1. The analysis of the algorithm is in Se
tion 5.

Algorithm AX uses a 
oordinator approa
h within ea
h group view. The high level idea of the

algorithm is that ea
h pro
essor performs (remaining) tasks a

ording to a load balan
ing rule, and

a pro
essor 
ompletes its 
omputation when it learns the results of all the tasks.

Task allo
ation. The set T of the initial tasks is known to all pro
essors. During the exe
ution

ea
h pro
essor i maintains a lo
al set D of tasks already done, a lo
al set R of the 
orresponding

results, and the set G of pro
essors in the 
urrent group. (The set D may be an underestimate of

the set of tasks done globally.) The pro
essors allo
ate tasks based on the shared knowledge of the

pro
essors in G about the tasks done. For a pro
essor i, let rank(i;G) be the rank of i in G when

pro
essor identi�ers are sorted in as
ending order. Let U be the tasks in T �D. For a task u in U ,

let rank(u;U) be the rank of u in U when task identi�ers are sorted in as
ending order. Our load

balan
ing rule for ea
h pro
essor i in G is that:

� if rank(i;G) � jU j, then pro
essor i performs task u su
h that rank(u;U) = rank(i;G);

� if rank(i;G) > jU j, then pro
essor i does nothing.
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Algorithm stru
ture. The algorithm 
ode is given in Figure 2 using I/O automata notation [18℄.

The algorithm uses the group 
ommuni
ation servi
e to stru
ture its 
omputation in terms of rounds

numbered sequentially within ea
h group view.

Initially all pro
essors are members of the distinguished initial view v

0

, su
h that v

0

:set = P.

Rounds numbered 1 
orrespond to the initial round either in the original group or in a new group

upon a regrouping as noti�ed via the newview event. If a regrouping o

urs, the pro
essor re
eives

the new set of members from the group membership servi
e and starts the �rst round of this view

(newview a
tion). At the beginning of ea
h round, denoted by a round number Rnd, pro
essor i

knows G, the lo
al set D of tasks already done, and the set R of the results. Sin
e all pro
essors

know G, they \ele
t" the group 
oordinator to be the pro
essor whi
h has the highest pro
essor

id (no 
ommuni
ation is required sin
e the 
oordinator is uniquely identi�ed). In ea
h round ea
h

pro
essor reports D and R to the 
oordinator of G (gp1snd a
tion). The 
oordinator re
eives

and 
ollates these reports (gp1r
v a
tion) and sends the result to the group members (gpmsnd

a
tion). Upon the re
eipt of the message from the 
oordinator, pro
essors update their D and R,

and perform work a

ording to the load balan
ing rule (gpmr
v a
tion).

For generality, we assume that the messages may be delivered by the GCS out of order. The set

of messages within the 
urrent view is saved in the lo
al variable A. The saved messages are also

used to determine when all messages for a given round have been re
eived. Pro
essing 
ontinues

until ea
h member of G knows all results (the pro
essors enter the sleep stage). When requests for


omputation results arrive from a port q (request a
tion), ea
h pro
essor keeps tra
k of this in

a lo
al variable requests, and, when all results are known, sends the results to the port (report

a
tion).

Corre
tness: We now show the safety of algorithm AX.

We �rst show that no pro
essor stops working as long as it knows of any undone tasks.

Theorem 4.1 (Safety 1) For all states of any exe
ution of Algorithm AX it holds that

8i 2 P : D

i

6= T ) Phase 6= sleep

Proof: The proof follows by examination of the 
ode of the algorithm, and more spe
i�
ally from

the 
ode of the input a
tion gpmr
v(hj;H;Q; roundi)

i

. 2

Note that the impli
ation in Theorem 4.1 
annot be repla
ed by i� (,). This is be
ause if

D

i

= T , we may still have Phase 6= sleep. This is the 
ase where pro
essor i be
omes a member of

a group in whi
h the pro
essors do not know all the results of all the tasks.
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Data types:

T : tasks

R : results

Result : T ! R

Mes: messages

P : pro
essor ids

G : group ids

views = G � 2

P

: views, sele
tors id and set

IO : input/output ports

m 2Mes

i; j 2 P

v 2 views

H 2 2

T

Q 2 2

R

round 2 N

results 2 2

R

q 2 IO

States:

T 2 2

T

, the set of N = jT j tasks

D 2 2

T

, the set of done tasks, initially ;

R 2 2

R

, the set of known results, initially ;

G 2 2

P

, 
urrent members, init. v

0

:set = P

A 2 2

Mes

, messages sin
e last newview, init. ;

Rnd 2 N, round number, initially 1

requests 2 2

IO

, set of output ports, initially ;

Phase 2 fsend ; re
eive; sleep;m
ast ;mre
vg,

initially send

Derived variables:

U : T �D, the set of remaining tasks

Coordinator(i) : Boolean; if i = max(j : j 2 G),

then True else False

History variable 
v

i

2 views (i 2 P),

initially 8i; 
v

i

:= v

0

.

History variable msg

i

2 2

Mes

(i 2 P),

initially 8i; msg

i

:= ;.

Transitions at i:

input request

q;i

E�e
t:

requests  requests [ fqg

input newview(v)

i

E�e
t:

G v:set

A ;

Rnd 1

Phase  send


v := v

output gp1snd(m; j)

i

Pre
ondition:

Coordinator(j)

Phase = send

m = hi; D; R;Rndi

E�e
t:

msg := msg [ fmg

Phase  re
eive

input gp1r
v(hj;H;Q; roundi)

i

E�e
t:

A A [ fhj; H;Q; roundig

R R [Q

D  D [H

if G = fj : 9

H

0

;Q

0

hj; H

0

; Q

0

; Rndi 2 Ag

then Phase  m
ast

output gpmsnd(m)

i

Pre
ondition:

Coordinator(i)

m = hi; D; R;Rndi

Phase = m
ast

E�e
t:

msg := msg [ fmg

Phase  mre
v

input gpmr
v(hj;H;Q; roundi)

i

E�e
t:

D  D [H

R R [Q

if D = T then

Phase  sleep

else

if rank(i; G) < jU j then

let u be su
h that

rank(u; U) = rank(i; G)

R R [ fResult(u)g

D  D [ fug

�

Rnd Rnd+ 1

Phase  send

�

output report(results)

q;i

Pre
ondition:

T = D

q 2 requests

results = R

E�e
t:

requests  requests � fqg

Figure 2: Algorithm AX.
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Next we show that if some pro
essor does not know the result of some task, this is be
ause it

does not know that this task has been performed (Theorem 4.5 below). We show this using the

history variables msg

i

(i 2 P), whi
h we de�ne now.

De�nition 4.2 We de�ne msg

i

to be a history variable that keeps on tra
k all the messages sent by

some pro
essor i 2 P in all gp1snd(message; destination)

i

and gpmsnd(message)

i

events of an

exe
ution of algorithm AX. Formally: In the e�e
ts of the gp1snd(m; j)

i

and gpmsnd(m)

i

a
tions

we in
lude the assignment msg

i

:= msg

i

[ fmg. Initially, in state s

0

, 8i, msg

i

= ;.

De�nition 4.3 De�ne MSG =

[

i2P

msg

i

.

Lemma 4.4 If m is a message re
eived by pro
essor i 2 P in a gp1r
v(m)

i

or gpmr
v(m)

i

event

of an exe
ution of algorithm AX, then m 2MSG.

Proof: Property 3 of the g
s (Se
tion 2.1) requires that for every re
eive event there exists a

pre
eding send event of the same message (the g
s does not generate messages). Hen
e, m must

have been sent by some pro
essor q 2 P (possible q = i) in some earlier event of the exe
ution.

Messages 
an be sent only in gp1snd(m; i)

q

or gpmsnd(m)

q

events. By de�nition, m 2 msg

q

.

Hen
e, m 2MSG. 2

Theorem 4.5 (Safety 2) For all states of any exe
ution of Algorithm AX:

(a) 8t 2 T; 8i 2 P : result(t) 62 R

i

) t 62 D

i

, and

(b) 8t 2 T;8hi;D

0

; R

0

; Rndi 2 MSG : result(t) 62 R

0

) t 62 D

0

.

Proof: Let � be an exe
ution of AX and �

k

be the pre�x of � up to the k

th

state, i.e., �

k

=

s

0

; e

1

; s

1

; e

2

; : : : ; s

k

. The proof is done by indu
tion on k.

Basis: k = 0. In s

0

; 8i 2 P;D

i

= ;; R

i

= ; and MSG = ;. Thus, the basis 
ase holds.

Indu
tive hypothesis: For a state s

n

su
h that n � k; 8t 2 T; 8i 2 P : result(t) 62 R

i

) t 62 D

i

,

and 8t 2 T;8hi;D

0

; R

0

; Rndi 2 MSG : result(t) 62 R

0

) t 62 D

0

.

Indu
tive step: n = k + 1. Consider the following seven types of a
tions leading to the state s

k+1

:

1. e

k+1

= newview(v

0

)

i

: The e�e
t of this a
tion does not a�e
t the invariant. By the indu
tive

hypothesis, in state s

k+1

, the invariant holds.

2. e

k+1

= gp1snd(m; j)

i

: Clearly, the e�e
t of this a
tion does not a�e
t part (a) of the invariant

but it a�e
ts part (b). Sin
e m = hi;D

i

; R

i

; Rndi, by the indu
tive hypothesis part (a), the

assignmentm 2MSG reestablishes part (b) of the invariant. Thus, in state s

k+1

, the invariant

is reestablished.
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3. e

k+1

= gp1r
v(hj;H;Q; roundi)

i

: Pro
essor i updates R

i

and D

i

a

ording to Q and H

respe
tively. The a
tion is atomi
, i.e., if R

i

is updated, then D

i

must be also updated.

By Lemma 4.4, hj;H;Q; roundi 2 MSG: Thus, by the indu
tive hypothesis part (b), 8t 2

T : result(t) 62 H ) t 62 Q. From the fa
t that D

i

and R

i

are updated a

ording to H

and Q respe
tively and by the indu
tive hypothesis part (a), in state s

k+1

, the invariant is

reestablished.

4. e

k+1

= gpmsnd(m)

i

: Clearly, the e�e
t of this a
tion does not a�e
t part (a) of the invariant

but it a�e
ts part (b). Sin
e m = hi;D

i

; R

i

; Rndi, by the indu
tive hypothesis part (a), the

assignmentm 2MSG reestablishes part (b) of the invariant. Thus, in state s

k+1

, the invariant

is reestablished.

5. e

k+1

= gpmr
v(hj;H;Q; roundi)

i

: By Lemma 4.4, hj;H;Q; roundi 2 MSG. By the indu
tive

hypothesis part (b), 8t 2 T : result(t) 62 H ) t 62 Q. Pro
essor i updates R

i

and D

i

a

ording to Q andH respe
tively. Sin
eH and Q have the required property, by the indu
tive

hypothesis part (a), the assignments to D

i

and R

i

reestablish the invariant.

In the 
ase where D

i

6= T , pro
essor i performs a task a

ording to the load balan
ing rule.

Let u 2 T be this task. Be
ause of the a
tion atomi
ity, when pro
essor i updates R

i

with

result(u), it must also update D

i

with u. Hen
e, in state s

k+1

, the invariant is reestablished.

6. e

k+1

= request

q;i

: The e�e
t of this a
tion does not a�e
t the invariant.

7. e

k+1

= report(results)

q;i

: The e�e
t of this a
tion does not a�e
t the invariant.

This 
ompletes the proof 2

5 Analysis of Algorithm AX

We express the work 
omplexity of algorithm AX in the model F

FM

as W

F

FM

(N;P; r) =

W

F

FM

(N;P; f +m). The message 
omplexity is expressed as M

F

FM

(N;P; r) =M

F

FM

(N;P; f +m).

Our analysis fo
uses on assessing the impa
t of the fragmentation number f and the merge number

m on the work and message 
omplexity, and in the rest of this se
tion for 
larity we let W

f;m

stand

for W

F

FM

(N;P; f +m), and M

f;m

stand for M

F

FM

(N;P; f +m).

5.1 Work Complexity

In this se
tion we show the following result:

Theorem 5.1 W

f;m

� minf N � f +N; N � P g

17



Observe that W

f;m

does not depend on m (this of 
ourse does not imply that for any given

exe
ution, the work does not depend on merges). This observation substantiates the intuition that

merges lead to a more eÆ
ient 
omputation. We begin by providing de�nitions and proving several

lemmas that lead to the above result.

De�nition 5.2 Let �

�

be any exe
ution of algorithm AX in whi
h all the pro
essors learn the results

of all tasks and that in
ludes a merge of groups g

1

; : : : ; g

k

into the group �, where the pro
essors in

� undergo no further view 
hanges.

We de�ne ��

�

to be the exe
ution we derive by removing the merge from �

�

as follows:

(1) We remove all states and events that 
orrespond to the merge of groups g

1

; : : : ; g

k

into the group

� and all states and events for pro
essors within �.

(2) We add the appropriate states and events su
h that the pro
essors in groups g

1

; : : : ; g

k

undergo

no further view 
hanges and perform any remaining tasks.

De�nition 5.3 Let �

'

be any exe
ution of algorithm AX in whi
h all the pro
essors learn the

results of all tasks and that in
ludes a fragmentation of the group ' to the groups g

1

; : : : ; g

k

where

the pro
essors in these groups undergo no further view 
hanges.

We de�ne ��

'

to be the exe
ution we derive by removing the fragmentation from �

'

as follows:

(1) We remove all states and events that 
orrespond to the fragmentation of the group ' to the

groups g

1

; : : : ; g

k

and all states and events of the pro
essors within the groups g

1

; : : : ; g

k

.

(2) We add the appropriate states and events su
h that the pro
essors in the group ' undergo no

further view 
hanges and perform any remaining tasks.

Note: In De�nitions 5.2 and 5.3, we 
laim that we 
an remove states and events from an exe
ution

and add some other states and events to it. This is possible be
ause if the pro
essors in a single view

installed that view and there are no further view 
hanges, then the algorithm will 
ontinue making


omputation progress. So, if we remove all states and events 
orresponding to a view 
hange, then

the algorithm 
an always pro
eed as if this view 
hange never o

urred.

Lemma 5.4 In algorithm AX, for any view v, in
luding the initial view, if the group is not subje
t

to any regroupings, then the work required to 
omplete all tasks in the view is no more than N �

max

i2v:set

fjD

i

jg, where D

i

is the value of the state variable D of pro
essor i at the start of its lo
al

round 1 in view v.
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Proof: In the �rst round, all the pro
essors send messages to the 
oordinator 
ontaining D

i

. The


oordinator 
omputes [

i2v:set

fD

i

g and broad
asts this result to the group members. Sin
e the

group is not subje
t to any regroupings, the number of tasks, t, that the pro
essors need to perform

is: t = N � j [

i2v:set

fD

i

gj. In ea
h round of the 
omputation, by the load balan
ing rule, the

members of the group perform distin
t tasks and no task is performed more than on
e. Therefore,

t is the work performed in this group. On the other hand, max

i2v:set

fjD

i

jg � j [

i2v:set

fD

i

gj, thus,

t � N �max

i2v:set

fjD

i

jg. 2

In the following lemma, groups �; g

1

; : : : ; g

k

are de�ned as in De�nition 5.2.

Lemma 5.5 Let �

�

be an exe
ution of Algorithm AX as in De�nition 5.2. Let W

1

be the work

performed by the algorithm in the exe
ution �

�

. Let W

2

be the worked performed by Algorithm AX

in the exe
ution ��

�

. Then W

1

�W

2

.

Proof: Let W

0

be the work performed by all pro
essors in P �

S

1�i�k

(g

i

:set)� �:set in the exe
u-

tion �

�

. Observe that the work performed by all pro
essors in P �

S

1�i�k

(g

i

:set) in the exe
ution

��

�

is equal to W

0

.

The work that is performed by pro
essor j in g

i

:set prior to the newview(�)

j

event in �

�

, is the

same in both exe
utions. Call this work W

i;j

. De�ne W

00

=

P

k

i=1

P

j2g

i

:set

W

i;j

.

De�ne W =W

0

+W

00

. Thus, W is the same in both exe
utions, �

�

and ��

�

.

De�ne W

�

to be the work performed by all pro
essors in �:set in exe
ution �

�

.

For ea
h pro
essor j in g

i

:set, let D

j

be the value of the state variable D just prior to the

newview(�)

j

event in �

�

. For ea
h g

i

, de�ne: d

i

= j

S

j2g

i

:set

D

j

j. Thus there are at least N � d

i

tasks that remain to be done in ea
h g

i

.

In exe
ution ��

�

, the pro
essors in ea
h group g

i

pro
eed and 
omplete these remaining tasks. This

requires work at least N � d

i

. De�ne this work as W

g

i

. Thus, W

g

i

� (N � d

i

).

In exe
ution �

�

, groups g

1

; : : : ; g

k

merge into group �. The number of tasks that need to be per-

formed by the members of � is at most N � d

j

, where d

j

= max

i

fd

i

g for some j. By Lemma 5.4,

W

�

� N � d

j

. Observe that:

W

1

=W +W

�

�W +N � d

j

�W +

k

X

i=1

(N � d

i

) �W +

k

X

i=1

W

g

i

=W

2

: 2

In the following lemma, groups '; g

1

; : : : ; g

k

are de�ned as in De�nition 5.3.

Lemma 5.6 Let �

'

be an exe
ution of Algorithm AX as in De�nition 5.3. Let W

1

be the work

performed by the algorithm in the exe
ution �

'

. Let W

2

be the worked performed by Algorithm AX
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in the exe
ution ��

'

. Then W

1

� W

2

+W

3

, where W

3

is the work performed by all pro
essors in

S

1�i�k

(g

i

:set) in the exe
ution �

'

.

Proof: LetW

0

be the work performed by all pro
essors in P�

S

1�i�k

(g

i

:set)�':set in the exe
ution

�

'

. Observe that the work performed by all pro
essors in P �':set in the exe
ution ��

'

is equal to

W

0

.

The work that is performed by pro
essor j in ':set prior to the newview(g

i

)

j

event in �

'

, is the

same in both exe
utions. Call this work W

';j

. De�ne W

00

=

P

j2':set

W

';j

.

De�ne W =W

0

+W

00

. Thus, W is the same in both exe
utions, �

'

and ��

'

.

De�neW

'

to be the work performed by all pro
essors in ':set in exe
ution ��

'

. LetW

000

=W

'

�W

00

.

Observe that: W

1

=W +W

3

�W +W

3

+W

000

=W

2

+W

3

2

Lemma 5.7 W

f;m

� N � P

Proof: By the 
onstru
tion of algorithm AX, when pro
essors are not able to ex
hange information

about task exe
ution due to regroupings, in the worst 
ase, ea
h pro
essor has to perform all N

tasks by itself. Sin
e P � N , the work is: W

f;m

� N � P . 2

Lemma 5.8 W

f;m

� N � f +N .

Proof: By indu
tion on the number of views, denoted by r, o

urring in an exe
ution. For a spe
i�


exe
ution �

r

with r views, let f

r

be the fragmentation-number and m

r

the merge-number.

Basis: r = 0. Sin
e f

r

and m

r

must also be 0, the basis follows from Lemma 5.4.

Indu
tive hypothesis: Assume that for all r � k, W

f

r

;m

r

� N � f

r

+N .

Indu
tive step: Need to show that for r = k + 1, W

f

k+1

;m

k+1

� N � f

k+1

+N .

Consider a spe
i�
 exe
ution �

k+1

with r = k + 1. Let �

�

k+1

be the view-graph indu
ed by

this exe
ution. The view-graph has at least one vertex su
h that all of its des
endants are sinks

(Fa
t 3.12). Let � be su
h a vertex. We 
onsider two 
ases.

(1) � has a des
endant � that 
orresponds to a merge in the exe
ution. Therefore all an
estors of

� in �

�

k+1

have outdegree 1. Sin
e � is a sink vertex, the group that 
orresponds to � performs all

the remaining (if any) tasks and does not perform any additional work.

Let �

k

= ��

�

k+1

(per De�nition 5.2) be an exe
ution in whi
h this merge does not o

ur. In

exe
ution �

k

, the number of views is k. Also, f

k+1

= f

k

and m

k+1

= m

k

+ 1. By indu
tive

hypothesis,W

f

k

;m

k

� N �f

k

+N . By Lemma 5.5, the work performed in exe
ution �

k+1

, is no worse

than the work performed in exe
ution �

k

. The total work 
omplexity is:

W

f

k+1

;m

k+1

� W

f

k

;m

k

� N � f

k

+N = N � f

k+1

+N:
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(2) � has no des
endants that 
orrespond to a merge in the exe
ution. Therefore, the group that


orresponds to � must fragment, say into q groups. These groups 
orrespond to sink verti
es in

�

�

k+1

, thus they perform all the remaining (if any) tasks and do not perform any additional work.

Let �

k+1�q

= ��

�

k+1

(per De�nition 5.3) be an exe
ution in whi
h the fragmentation does not

o

ur. In exe
ution �

k+1�q

, the number of views is k + 1 � q � k. Also, f

k+1�q

= f

k+1

� q and

m

k+1�q

= m

k+1

. By indu
tive hypothesis, W

f

k+1�q

;m

k+1�q

� N � f

k+1�q

+ N . From Lemma 5.4,

the work performed in ea
h new group 
aused by the fragmentation is no more than N . Let W

�

be

the total work performed in all q groups. Thus, W

�

� qN . By Lemma 5.6, the work performed in

exe
ution �

k+1

, is no worse than the work performed in exe
ution �

k+1�q

and the work performed

in all q groups. The total work 
omplexity is:

W

f

k+1

;m

k+1

� W

f

k+1�q

;m

k+1�q

+W

�

� N � f

k+1�q

+N +W

�

= N � (f

k+1

� q) +N +W

�

� N � (f

k+1

� q) +N + qN = Nf

k+1

� qN +N + qN = N � f

k+1

+N: 2

The main result in Theorem 5.1 follows dire
tly from Lemma 5.7 and Lemma 5.8.

The work 
omplexity result is tight for a broad range of regroupings.

Theorem 5.9 Given any exe
ution � in the F

FM

model, there is a pattern of fragmentations that


auses algorithm AX to perform 
(N � f

�

) work.

Proof: Consider the following pattern. At the beginning of the exe
ution, all P pro
essors belong

in one group. Before the pro
essors 
ommuni
ate, a fragmentation o

urs that splits the group into

some number of distin
t groups (more than one). Before the pro
essors 
ommuni
ate or perform

any tasks, arbitrary numbers of fragmentations o

urs. This 
ontinues until we rea
h a point in

the exe
ution, where no more failures o

ur. De�ne the number of the existing groups after this

point to be g. The pro
essors in these g groups must perform all N tasks. Let W be the total

work of the exe
ution. Thus, W � N � g. From Lemma A.1 (page 28) we know that g >

f

�

2

. Thus,

W > N �

f

�

2

= 
(N � f

�

): 2

5.2 Message Complexity

In this se
tion we show the following result:

Theorem 5.10 M

f;m

< 4(N � f +N + P �m)

We start by showing several lemmas that lead to the message 
omplexity result.

Lemma 5.11 For algorithm AX, in any view v, in
luding the initial view, if the group is not subje
t

to any regroupings, and for ea
h pro
essor i 2 v:set, D

i

is the value of the state variable D at the
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start of its lo
al round 1 in view v, then the number of messages M that are sent until all tasks are


ompleted is 2(N � d) � M < 2(p+N � d) where p = jv:setj, and d = j

S

i2v:set

D

i

j.

Proof: By the load balan
ing rule, the algorithm needs d

N�d

p

e rounds to 
omplete all tasks. In

ea
h round ea
h pro
essor sends one message to the 
oordinator and the 
oordinator responds with

a single message to ea
h pro
essor. Thus M = 2p � (d

N�d

p

e). Using the properties of the 
eiling, we

get: 2(N � d) � M < 2(p+N � d). 2

In the following lemma, groups �; g

1

; : : : ; g

k

are de�ned as in De�nition 5.2.

Lemma 5.12 Let �

�

be an exe
ution of Algorithm AX as in De�nition 5.2. Let M

1

be the message


ost of the algorithm in the exe
ution �

�

. Let M

2

be the message 
ost of Algorithm AX in the

exe
ution ��

�

. Then M

1

< M

2

+ 2P .

Proof: Let M

0

be the number of messages sent by all pro
essors in P �

S

1�i�k

(g

i

:set) � �:set in

the exe
ution �

�

. Observe that the number of messages sent by all pro
essors in P �

S

1�i�k

(g

i

:set)

in the exe
ution ��

�

is equal to M

0

.

The number of messages sent by any pro
essor j in g

i

:set prior to the newview(�)

j

event in �

�

, is

the same in both exe
utions. Call this message 
ost M

i;j

. De�ne M

00

=

P

k

i=1

P

j2g

i

:set

M

i;j

.

De�ne M =M

0

+M

00

. Thus, M is the same in both exe
utions, �

�

and ��

�

.

De�ne M

�

to be the number of messages sent by all pro
essors in �:set in exe
ution �

�

.

For ea
h pro
essor j in g

i

:set, let D

j

be the value of the state variable D just prior to the

newview(�)

j

event in �

�

. For ea
h g

i

, de�ne: d

i

= j

S

j2g

i

:set

D

j

j. Thus there are at least N � d

i

tasks that remain to be done in ea
h g

i

.

In exe
ution ��

�

, the pro
essors in ea
h group g

i

pro
eed and 
omplete these remaining tasks. Let

M

g

i

be the number of messages sent by all pro
essors in g

i

:set in order to 
omplete the remaining

tasks. By Lemma 5.11, M

g

i

� 2(N � d

i

).

In exe
ution �

�

, groups g

1

; : : : ; g

k

merge into group �. The number of tasks that need to be per-

formed by the members of � is at most N � d

j

, where d

j

= max

i

fd

i

g for some j. By Lemma 5.11,

M

�

< 2(p+N � d

j

), where p = j�:setj. Observe that:

M

1

=M +M

�

< M + 2(p+N � d

j

) �M + 2p+ 2

k

X

i=1

(N � d

i

) �M + 2p+

k

X

i=1

M

g

i

=M

2

+ 2p �M

2

+ 2P 2

In the following lemma, groups '; g

1

; : : : ; g

k

are de�ned as in De�nition 5.3.

Lemma 5.13 Let �

'

be an exe
ution of Algorithm AX as in De�nition 5.3. Let M

1

be the message


ost of the algorithm in the exe
ution �

'

. Let M

2

be the message 
ost of Algorithm AX in the
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exe
ution ��

'

. Then M

1

�M

2

+M

3

, where M

3

is the number of messages sent by all pro
essors in

S

1�i�k

(g

i

:set) in the exe
ution �

'

.

Proof: Let M

0

be the number of messages sent by all pro
essors in P �

S

1�i�k

(g

i

:set) � ':set in

the exe
ution �

'

. Observe that the number of messages sent by all pro
essors in P � ':set in the

exe
ution ��

'

is equal to M

0

.

The number of messages sent by pro
essor j in ':set prior to the newview(g

i

)

j

event in �

'

, is the

same in both exe
utions. Call this message 
ost M

';j

. De�ne M

00

=

P

j2':set

M

';j

.

De�ne M =M

0

+M

00

. Thus, M is the same in both exe
utions, �

'

and ��

'

.

De�ne M

'

to be the number of messages sent by all pro
essors in ':set in exe
ution ��

'

. Let

M

000

=M

'

�M

00

. Observe that: M

1

=M +M

3

�M +M

3

+M

000

=M

2

+M

3

2

The proof of Theorem 5.10 is done by indu
tion similarilly to the proof of Lemma 5.8:

Proof: By indu
tion on the number of views, denoted by r, o

urring in any exe
ution. For a spe
i�


exe
ution �

r

with r views, let f

r

be the fragmentation number and m

r

be the merge-number.

Basis: r = 0. Sin
e f

r

and m

r

must also be 0, the basis follows from Lemma 5.11.

Indu
tive hypothesis: Assume that for all r � k, M

f

r

;m

r

< 4(N � f

r

+N + P �m

r

).

Indu
tive step: Need to show that for r = k + 1, M

f

k+1

;m

k+1

< 4(N � f

k+1

+N + P �m

k+1

).

Consider a spe
i�
 exe
ution �

k+1

with r = k + 1. Let �

�

k+1

be the view-graph indu
ed by

this exe
ution. The view-graph has at least one vertex su
h that all of its des
endants are sinks

(Fa
t 3.12). Let � be su
h a vertex. We 
onsider two 
ases.

(1) � has a des
endant � that 
orresponds to a merge in the exe
ution. Therefore all an
estors of

� in �

�

k+1

have outdegree 1. Sin
e � is a sink vertex, the group that 
orresponds to � performs all

the remaining (if any) tasks and no further messages are sent.

Let �

k

= ��

�

k+1

(per De�nition 5.2) be an exe
ution in whi
h this merge does not o

ur. In

exe
ution �

k

, the number of new views is k. Also, f

k+1

= f

k

and m

k+1

= m

k

+ 1. By indu
tive

hypothesis, M

f

k

;m

k

< 4(N � f

k

+N + P �m

k

). The total message 
omplexity, using Lemma 5.12 is:

M

f

k+1

;m

k+1

<M

f

k

;m

k

+2P < 4(N � f

k

+N +P �m

k

) + 2P = 4(N � f

k+1

+N +P �m

k+1

�P ) + 2P

= 4Nf

k+1

+ 4N + 4Pm

k+1

� 4P + 2P � 4(N � f

k+1

+N + P �m

k+1

).

(2) � has no des
endants that 
orrespond to a merge in the exe
ution. Therefore, the group that


orresponds to � must fragment, say into q groups. These groups 
orrespond to sink verti
es

in ��

k+1

, thus they perform all of the remaining (if any) tasks and do not send any additional

messages.

Let �

k+1�q

= ��

�

k+1

(per De�nition 5.3) be an exe
ution in whi
h the fragmentation does not
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o

ur. In the exe
ution �

k+1�q

, the number of new views is k+1� q � k. Also, f

k+1�q

= f

k+1

� q

and m

k+1�q

= m

k+1

. By indu
tive hypothesis, M

f

k+1�q

;m

k+1�q

< 4(N � f

k+1�q

+N + P �m

k+1�q

).

From Lemma 5.11, the message 
ost in ea
h new group 
aused by a fragmentation is no more than

4N . LetM

�

be the total number of messages sent in all q groups. Thus,M

�

� 4qN . By Lemma 5.13,

the number of messages sent in exe
ution �

k+1

, is less than the number of messages sent in exe
ution

�

k+1�q

and the number of messages sent in all q groups. The total message 
omplexity is:

M

f

k+1

;m

k+1

�M

f

k+1�q

;m

k+1�q

+M

�

< 4(N � f

k+1�q

+N + P �m

k+1�q

) +M

�

= 4(N � f

k+1

� qN +N + P �m

k+1

) +M

�

� 4Nf

k+1

� 4qN + 4N + 4Pm

k+1

+ 4qN

= 4(N � f

k+1

+N + P �m

k+1

). 2

The message 
omplexity result is tight for a broad range of regroupings.

Theorem 5.14 Given any exe
ution � in the F

FM

model, there is a pattern of fragmentations that


auses algorithm AX to send 
(N � f

�

) messages.

Proof: Consider the following pattern. At the beginning of the exe
ution, all P pro
essors belong

in one group. Before the pro
essors 
ommuni
ate, a fragmentation o

urs that splits the group into

some number of distin
t groups (more than one). Before the pro
essors 
ommuni
ate or perform

any tasks, arbitrary numbers of fragmentations o

urs. This 
ontinues until we rea
h a point in the

exe
ution, where no more failures o

ur. De�ne the number of the existing groups after this point to

be g. The pro
essors in these g groups must perform all N tasks. By Lemma 5.11, the message 
ost

of ea
h of the g groups is at least 2N . Let M be the total work of the exe
ution. Thus, M � 2N � g.

From Lemma A.1 (page 28) we know that g >

f

�

2

. Thus, M > 2N �

f

�

2

= 
(N � f

�

): 2

Observe that the same s
enario provides a lower bound both for work and message 
ost.

5.3 Analysis for the Fragmentation Adversary

We express the work 
omplexity of algorithm AX in the model F

F

as W

F

F

(N;P; r) = W

f

and the

message 
omplexity as M

F

F

(N;P; r) = M

f

(note that r = f for F

F

). The following 
orollary is

derived from Theorems 5.1 and 5.10.

Corollary 5.15 W

f

� minfN � f +N;N � Pg and M

f

< 4(N � f +N)

With Theorems 5.9 and 5.14 the results of Corollary 5.15 are tight.

In the failure model of [8℄ a group is not allowed to \fragment" into a single group with the same

membership. Su
h fragmentation is allowed by our de�nition of F

F

. In order to 
ompare our results
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with the results of [8℄, we de�ne a more restri
ted adversary F

0

F

that requires that any group may

only fragment into 2 or more other groups. Clearly F

0

F

� F

F

, and from Corollary 5.15 we have the

following.

Corollary 5.16 W

F

0

F

(N;P; f)=O(N � f +N) and M

F

0

F

(N;P; f)=O(N � f +N)

In the rest of this se
tion we deal with the model F

0

F

. Our de�nition of the fragmentation-number f

is slightly di�erent from the de�nition of fragmentation failures f

0

in [8℄. When a group fragments

into k groups, f is de�ned to be equal to k, but f

0

is de�ned to be equal to k� 1. The next Lemma

relates f and f

0

.

Lemma 5.17 If f is the fragmentation-number and f

0

the number of fragmentation failures as

de�ned in [8℄, then f

0

< f < 2f

0

.

Proof: Assume that k fragmentations o

ur. Let the number of the newviews in the i

th

fragmenta-

tion be f

i

. By the de�nition of f

0

i

, f

0

i

= f

i

�1. Thus, f

0

i

+1 = f

i

whi
h implies that f

i

< f

0

i

+f

0

i

= 2f

0

i

.

But f

0

=

P

k

i=1

f

0

i

and f =

P

k

i=1

f

i

. Thus, f < 2f

0

.

Now observe that, f

0

=

P

k

i=1

f

0

i

=

P

k

i=1

(f

i

� 1) =

P

k

i=1

f

i

� k = f � k. Thus f > f

0

2

In [8℄ the work is 
ounted in terms of the rounds exe
uted by the pro
essors. In our analysis we


ount only the number of task exe
utions (in
luding redundan
ies). However in our algorithm, for

as long as any tasks remain undone in a given group, the pro
essors perform the tasks in rounds,

ex
ept for the last round. Therefore the di�eren
e in work 
omplexity for these two algorithms is at

most f �N . Thus the di�erent de�nitions of f , f

0

and work are subsumed in the big-oh analysis, and

without substantial variation in the 
onstants. On the other hand, the message 
omplexity of our

algorithm, as shown in Corollary 5.16, is substantially better than the at least quadrati
 message


omplexity of the algorithm from [8℄.

6 Dis
ussion

We have 
onsidered the problem of performing a set of N tasks on a set of P 
ooperating message-

passing pro
essors, where the pro
essors must perform and learn the results of the tasks eÆ
iently,

subje
t to dynami
ally 
hanging group memberships. To analyze our algorithm we introdu
e view-

graphs { digraphs that we use to represent and analyze 
hanges of pro
essors' views in exe
utions.

Our 
omplexity analysis shows that group 
ommuni
ation servi
es 
an be used eÆ
iently to solve

distributed problems that are similar to our omni-do problem. We believe that our view-graph ap-
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proa
h 
an be generalized and used to study other dynami
 group re
on�guration patterns. Ongoing

work is pursuing this resear
h dire
tion.
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A Appendix

We prove a Lemma that we use in the proofs of Theorems 5.9 and 5.14.

Lemma A.1 In an exe
ution � of algorithm AX in the fragmentation adversary model where groups

fragment to two or more groups, for N tasks and P pro
essors it holds that f

�

< 2g, where g is the

number of groups at a point in the exe
ution where no more regroupings o

ur.

Proof: By indu
tion on the number of new views, denoted r, o

urring in any exe
ution. For a

spe
i�
 exe
ution �

r

with r views, let f

r

be the fragmentation-number.

Basis: For r = 0, f

0

= 0 < 2.

Indu
tive hypothesis: Assume that for all r � k, f

r

< 2g.

Indu
tive step: Need to show that for r = k + 1, f

k+1

< 2g.

Consider a spe
i�
 exe
ution �

k+1

with r = k + 1. Let �

�

k+1

be the view-graph indu
ed by

this exe
ution. The view-graph has at least one vertex su
h that all of its des
endants are sinks

(Fa
t 3.12). Let � be su
h vertex. Sin
e there are no merges, the group that 
orresponds to �,

fragments into q groups. These groups 
orrespond to sink verti
es in �

�

k+1

, thus they perform all

of the remaining (if any) tasks.

Let �

k+1�q

= ��

�

k+1

(per De�nition 5.3) be an exe
ution in whi
h the fragmentation does not

o

ur. In the exe
ution �

k+1�q

, the number of new views is k+ 1� q � k and f

k+1�q

= f

k+1

� q.

By indu
tive hypothesis, f

k+1�q

< 2(g � q).

Thus, f

k+1

= f

k+1�q

+ q < 2(g � q) + q = 2g � q < 2g. 2
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