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Abstract. A fundamental problem in distributed computing is performing a set
of tasks despite failures and delays. Stated abstractly, the problem is to perform
N tasks using P failure-prone processors. This paper studies the efficiency
of emulating shared-memory task-performing algorithms on asynchronous
message-passing processors with quantifiable message latency. Efficiency is
measured in terms of work and communication, and the challenge is to obtain
subquadratic work and message complexity. While prior solutions assumed
synchrony and constant delays, the solutions given here yields subquadratic
efficiency with asynchronous processors when the delays and failures is suitably
constrained. The solutions replicate shared objects using a quorum system,
provided it is not disabled. One algorithm has subquadratic work and communi-
cation when the delays and the number of processors, K, owning object replicas,
are O(P 0.41). It tolerates �K−1

2 � crashes. It is also shown that there exists an
algorithm that has subquadratic work and communication and that tolerates o(P )
failures, provided message delays are sublinear.

Keywords: Distributed algorithm, fault-tolerance, work, communication, quo-
rums.

1 Introduction

A fundamental problem in distributed computing is performing N tasks in a distributed
system consisting of P processors, and despite the presence of failures. The abstract
problem is called Do-All when processors communicate by exchanging messages and
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the tasks are similar in size and independent. Examples of such tasks include searching a
collection of data, applying a function to the elements of a matrix, copying a large array,
or solving a partial differential equation by applying shifting method. This problem has
been studied in different settings, such as the message-passing model [5,6,8], and in the
shared-memory model [1,11,12], where the problem is called Write-All. Depending on
the model of computation, algorithmic efficiency is evaluated in terms of time, work,
and message complexity. Work is defined as either the total number of steps taken by the
available processors [11], or the total number of tasks performed [6]. Message complexity
is expressed as the total number of point-to-point messages.

It has been observed that maintaining synchrony in real systems is expensive and
models incorporating some form of asynchrony are considered to be more realistic. The
Do-All problem has been substantially studied for synchronous failure-prone proces-
sors [4,6,5,8], however there is a dearth of asynchronous algorithms. This is not that
surprising as it was shown by Kowalski and Shvartsman [13]. With the standard as-
sumption that initially all tasks are known to all processors, the problem can be solved
by a communication-oblivious algorithm where each processor performs all tasks. Such
a solution has work S = Θ(N · P ), and requires no communication. For an algorithm
to be interesting, it must be better than the oblivious algorithm, in particular, it must
have subquadratic work complexity. However, if messages can be delayed for a “long
time” (e.g., Θ(N) time), then the processors cannot coordinate their activities, leading
to an immediate lower bound on work of Ω(P · N). With this in mind, a delay-sensitive
study of Do-All in [13] yields asynchronous algorithms achieving subquadratic1 work
as long as the message delay d is o(N). The message complexity is somewhat higher
than quadratic in some executions. The question was posed whether it is possible to
construct asynchronous algorithms that simultaneously achieve subquadratic work and
communication. It appears that in order to do so, one must strengthen the model assump-
tions, e.g., impose upper bounds on delays and constrain the failure patterns that may
occur during the execution.

Contributions. We study emulation of shared-memory task-performing algorithms in
asynchronous message-passing systems. Our goal is to obtain subquadratic bounds on
work and communication for the Do-All problem:

Given N similar tasks, perform the tasks using P message-passing processors.

We consider an adversary that interferes with the progress of the computation by intro-
ducing delays and causing processors to crash. In order to obtain subquadratic work and
message complexity, we restrict the power of the adversary. The best previous algorithm
that achieves subquadratic work and message complexity [4,9] assumed synchronous
processors and constant message latency. In this paper we present the first algorithms for
Do-All that meet our efficiency criteria while allowing non-trivial processor asynchrony
and message latency.

Let d be the worst case message latency, and e be the worst case time required for a
processor to respond to a message (d and e are unknown to the processors). The summary
of our results, for P ≤ N and a parameter K, is as follows.

1 That is, the work complexity is o(P 2 + PN), with the usual assumption that P ≤ N .
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1. We show that Do-All can be solved with work S = O(max{K, d, e}NP log 3
2 ) and

message complexity M = O(KNP log 3
2 ). The algorithm can be parameterized to

have subquadratic work and message complexity of O(NP δ) with log 3
2 < δ < 1,

when the parameter K is O(P δ−log 3
2 ) (this is about O(P 0.41)) and when d, e =

O(K). The algorithm tolerates �K−1
2 � crashes.

2. We show the existence of an algorithm that solves the Do-All problem with work
S = O(max{K, d, e}NP ε), and with message complexity S = O(KNP ε), for
any ε > 0. The algorithm can be parameterized to have subquadratic work and
message complexity of O(NP δ) with 0 < ε < δ < 1, when the parameter K is
O(P δ−ε), and when d, e = O(K). The algorithm tolerates �K−1

2 � crashes.
3. We show a lower bound on work of S = N + Ω(P log P ) for the asynchronous

Do-All problem that involves delays, but no processor crashes. (This matches the
lower bound [12] for synchronous crash-prone processors, and the lower bound [11]
for fail-stop/restartable processors.)

The results (1) and (2) are obtained by analyzing the emulations of shared-memory
algorithms X [3] and AWT [1], respectively, in message-passing systems. We use the
atomic memory service based on [14]. We replicate certain memory locations needed
by the algorithms at K processors for fault-tolerance, with the atomic memory service
maintaining replica consistency. The analysis of the algorithms is parameterized in terms
of d, e, and K. The adversary is constrained not to disable the quorum configurations
used by the atomic memory service, and to respect the bounds d and e.

Related work. The Do-All problem for the message-passing systems was introduced
by Dwork, Halpern and Waarts [6]. There is a number of algorithms for the problem in
the synchronous message-passing settings [6,5,8,9]. The algorithmic techniques in these
papers rely on processor synchrony. Anderson and Woll gave an asynchronous shared-
memory algorithm [1] that generalizes the algorithm of Buss et al. [3]. We convert these
algorithms to run in message-passing systems with the help of atomic memory emulation.
Attiya, Bar-Noy, and Dolev [2] showed how to emulate atomic shared-memory robustly
in message-passing systems using processor majorities. Recently Lynch and Shvarts-
man [14] developed atomic multi-reader/multi-writer memory service for dynamic net-
works, allowing arbitrary new quorum configuration installations. We use a simplified
version of the algorithm [14]. A quorum system is a collection of sets (quorums), where
every pair of sets intersect. Quorums can be seen as generalized majorities [10,16],
whose intersection property can be used to provide data consistency.

Structure of the document. Section 2 presents the model of computation and a lower
bound. In Section 3 we review the shared-memory Write-All algorithms and a shared-
memory emulation algorithm. In Sections 4 and 5 we present our message-passing
algorithm and its analysis. Conclusions are in Section 6.

2 Model, Definitions, and a Lower Bound

We now define the model of computation, formalize the Do-All problem, define the
complexity measures, and present a Do-All lower bound.
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Processors. Our distributed system consists ofP (asynchronous) processors with unique
processor identifiers (pid) from the set P = {0, . . . , P − 1}. P is fixed and is known
to all processors. Processors communicate by passing messages (discussed later in this
section) and have no access to shared memory.

Quorums. We are going to provide a shared-memory abstraction in message-passing
systems using quorum configurations.

Definition 1 Let R = {Ri} and W = {Wi} be collections of subsets of processor
identifiers, such that for all Ri ∈ R and for all Wi, Wj ∈ W , we have Ri ∩ Wj �=
∅, and Wj ∩ Wi �= ∅. Then C = 〈R, W〉 is a quorum configuration, where R is read
quorums and W is write quorums. We use mem(C) to denote the set of processors
identifiers appearing in read and write quorums, and size(C) to denote the total number
of identifiers, that is, size(C) = |mem(C)|.

Tasks. We consider N tasks, known to all processors. The tasks are similar, i.e., we
assume that any task can be performed in one local time step. Task executions do not
depend on each other and the tasks are idempotent, i.e., executing a task many times or
concurrently has the same effect as executing the task once.

Communication. We assume a message-passing system. The network is fully connected
and the processors communicate via point-to-point (asynchronous) channels. The de-
livery is unreliable and unordered, but messages are not corrupted. If a system delivers
multiple messages to a processor, it can process these messages in one local time step.
Similarly if a processor has several messages to send, the messages can be sent during
a single local time step.

Given the motivation in [13] as discussed in the introduction, we are interested in
settings where processors are asynchronous, but where there is an upper bound d on
message delay (cf. [7]). We also assume that when a processor receives a message
requiring a reply, it can send the reply in at most e time units. The bounds d and e need
not be constant, and are unknown to the processors — the algorithms must be correct
for any d and e.

Adversary Model. A processor’s activity is governed by its local clock. We model asyn-
chrony as an adversary that introduces delays between local time steps. The adversary
may also cause message loss or delay, and processor crash failures. We use the term
adversary pattern F to denote the set of events caused by the adversary in a specific
execution and the term adversary model F to indicate the set of all adversary patterns
for a given adversary.

The adversary is constrained in two ways: (1) the adversary must respect the bounds
d and e (defined above), we call it (d, e)-adversary, and (2) when an algorithm uses a
quorum configuration C = 〈R, W〉, the adversary can cause any processor crashes as
long as the processors of at least one read quorum and at least one write quorum remain
operational and are able to communicate.

Let Q = {Ci} be the set of all quorum configurations Ci used by an algorithm. We
denote by FQ the adversary that respects the above constraints with respect to each Ci.
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Remark. Our definition of the adversary is somewhat involved for several reasons. If the
adversary is allowed to cause arbitrary message delays, then communication is impossi-
ble and work complexity of any algorithm becomes quadratic. Hence we posit an upper
bound on message delays. If the adversary is allowed to prevent processors from sending
replies expediently, then a similar situation results. Hence we posit an upper bound on
the time it takes a processor to send a reply. Lastly, our approach relies on the use of
quorum systems. If the adversary is allowed to cause failures that disable the quorum
systems used by the algorithms, then shared memory cannot be emulated, again leading
to processors acting in isolation and performing quadratic work. Hence we assume that
quorum systems are not disabled. Kramer.

The Problem. Now we define the Do-All problem.

Definition 2 Do-All: Given P processors and N tasks, perform all tasks for any adver-
sary pattern F in a specific adversary model.

While processors have no access to a global clock, we assume that the time of the
local events can be measured on a discrete global clock.

Definition 3 Given a Do-All algorithm for P processors and N tasks, and an adversary
model FQ, the algorithm solves the problem at step τ when all tasks are complete and
at least one non-faulty processor has this completion knowledge.

Note that for correctness we do not require that every processor is aware of comple-
tion, since the bounds on delays are unknown to the processors.

Complexity Measures. In order to characterize the efficiency of our algorithms, we
define two complexity measurements: work and message complexity. We assume that it
takes a unit of time for a processor to perform a unit of work according to its local clock,
and that a single task corresponds to a unit of work. By this definition the processors are
charged for idling or waiting for messages.

Definition 4 Given a problem of size N and a P -processor algorithm that solves the
problem at step τ(F ) in the presence of the adversary pattern F in the model FQ, let
Pt(F ) denote the number of processors completing a unit of work at global time t, then
the work complexity S of the algorithm is: SN,P = maxF∈FQ{∑

t≤τ(F ) Pt(F )}.

For message-passing settings, message complexity is defined as follows.

Definition 5 Given a problem of size N and a P -processor algorithm that solves the
problem at step τ(F ) in the presence of the adversary pattern F in the model FQ, let
Mt(F ) be the number of messages sent at global time t, then the message complexity
M of the algorithm is: MN,P = maxF∈FQ{∑

t≤τ(F ) Mt(F )}.

A Lower Bound. A lower bound Ω(N + P log P ) on work for pram Write-All algo-
rithms with crashes was shown by Kedem, Palem, Ragunathan, and Spirakis [12]. The
same lower bound was later shown to apply to algorithms in the presence of processor
crashes and restarts [3]. These results require the possibility of crashes. Here we show
that the same bound holds for the asynchronous setting where no processor fails.
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Theorem 1 Any asynchronous P -processor Do-All algorithm on input of size N has
SN,P = N + Ω(P log P ).

Proof: We present a strategy for the adversary that results in the worst case behavior. Let
A be the best possible algorithm that solves the Do-All problem. The adversary imposes
delays as described bellow:
Stage 1: Let U > 1 be the number of remaining tasks. Initially U = N . The adversary
induces no delays as long as the number of remaining tasks, U , is more than P . The
work needed to perform N − P tasks when there are no delays is at least N − P .
Stage 2: As soon as a processor is about to perform some task N − P + 1 making
U ≤ P , the adversary uses the following strategy. For the upcoming iteration, the
adversary examines the algorithm to determine how the processors are assigned to the
remaining tasks. The adversary then lists the remaining tasks with respect to the number
of processors assigned to them. The adversary delays the processors assigned to the first
half remaining tasks (
U

2 �) with the least number of processors assigned to them. By
an averaging argument, there are no more than �P

2 � processors assigned to these 
U
2 �

tasks. Hence at least 
P
2 � processors will complete this iteration having performed no

more than half of the remaining tasks.
The adversary continues this strategy which results in performing at most half of the

remaining tasks at each iteration. Since initially U = P in this stage, the adversary can
continue this strategy for at least log P iterations. Considering these two stages the work
performed by the algorithm is: SN,P ≥ N − P

︸ ︷︷ ︸
Stage 1

+ 
P/2� log P
︸ ︷︷ ︸

Stage 2

= N + Ω(P log P ). �

In the above strategy the adversary causes at most �P
2 � log P delays, where the

processor assigned to the last remaining task is delayed for log P iterations.

3 Algorithms X, AWT, and Shared Memory Emulation

We now overview two shared-memory algorithms for Write-All, called algorithm X [3]
and algorithmAWT [1], and conclude with the shared memory emulation algorithm [14].

Algorithm X. This algorithm has subquadratic work of S = O(NP log 3
2 ) using P ≤ N

processors. It uses a full binary “progress" tree with P leaves. We assume that the N
fixed-size tasks are associated with the leaves, where a “chunk" of �N/P � tasks is
positioned at each leaf. The boolean values at the vertices of the progress tree indicate
whether or not all work below the current note is complete.

The algorithms proceeds as follows. Acting independently, each processor searches
for work in the smallest immediate subtree that has work that needs to be done. The
processor performs the work and when all work within the subtree is completed, it
marks the root of the subtree as done and moves out of the subtree. The algorithm is
presented in detail in [3,11]; its work for any pattern of asynchrony is as follows.

Theorem 2 [3] Algorithm X solves Write-All of size N with P processors with work
SN,P = O(NP log 3

2 ), for P ≤ N .
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Algorithm AWT. In the algorithm [3], each processor traverses the unvisited subtrees
of a vertex within the progress tree according to the permutation (1, 2), i.e., first left,
then right, if the bit of its pid at that tree level is 0, and according to the permutation
(2, 1), i.e., first right, then left, if the bit of its pid at that tree level is 1. This approach can
be generalized to q-ary progress tree algorithms. Here the processors are equipped with
q permutations of {1, . . . , q}, and each processor traverses the q subtrees at a vertex
according to the permutation that corresponds to the q-ary digit of its pid. It is possible
to construct a set of q permutations so that the following result holds.

Theorem 3 [1] Algorithm AWT solves Write-All of size N with P processors with work
SN,P = O(NP ε), for any ε > 0 when P ≤ N .

Algorithm AWT requires the set of q permutations of {1, . . . , q}. The algorithm
is correct for any q permutations, however the complexity result holds for a set of q
permutations with certain combinatorial properties. These permutations can be found
by searching the space of all sets of q permutations, and this space is very large even for
moderately small ε. Since we do not show how to construct such permutations, in the
rest of the paper we state results depending on algorithm AWT as existential results.

Shared Memory Emulation. We now present the algorithm implementing an atomic
memory service based on [14] (the simplified version described here uses a single quorum
configuration to access a data object and does not use reconfiguration). We call this
atomic memory service AM. The algorithm implements read/write shared memory in
asynchronous message-passing systems that are prone to message loss and processor
crashes. In order to achieve fault-tolerance and availability, AM replicates objects at
several network locations. In order to maintain memory consistency in the presence
of failures, the algorithm uses a quorum configuration, consisting of a set of members
(i.e., the set of processors “owning" a replica) plus sets of read quorums and write
quorums. The quorum intersection property requires that every read-quorum intersect
every write-quorum.

Every active node in the system maintains a tag and a value for each data object.
Each new write assigns a unique tag, with ties broken by processor ids. These tags are
used to determine an ordering of the write operations, and therefore determine the values
that subsequent read operations return.

Read and write operations require two phases, a query phase and a propagation
phase, each of which accesses certain quorums of replicas. Assume the operation is
initiated at node i. First, in the query phase, node i contacts read quorums to determine
the most recent available tag and its associated value. Then, in the propagation phase,
node i contacts write quorums. The second phase of a read operation propagates the
latest tag discovered in the query phase and its associated value. If the operation is a
write operation, node i chooses a new tag, strictly larger than every tag discovered in the
query phase. Node i then propagates the new tag, along with the new value, to the write
quorums. Note that every operation accesses both read and write quorums. The protocol
of each phase is formulated in terms of point-to-point messages. First the messages are
sent to the members of the quorum configuration, then the replies are collected until a
complete quorum responds.
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Each of the two phases of the read or write operations, accesses quorums of proces-
sors, incurring a round-trip message delay. Assuming that there is an upper bound d on
message delays and that local processing is negligible, this means that each phase can
take at most 2d time. Given that all operations consist of two phases, each operation
takes at most 4d time. (The full algorithm that includes a reconfiguration service, and
its analysis, is given in [14].)

4 The Message-Passing Algorithm

We now present the emulation of the shared-memory algorithm X in the message-passing
model. We call this algorithm Xmp. The shared data used in the algorithm is replicated
among the processors. Each processor has a local progress tree containing the replicas
of the vertices used by the shared-memory algorithm. Specific vertices are owned by
certain designated processors as described below (each processor has a replica of each
vertex, but not all processors are owners).

Memory Management. The progress tree is stored in the array d[1, . . . , 2P − 1]. This
array is replicated at each processor. We use the index x to denote the vertex d[x] of the
progress tree. For each x, let µ(x) be some non-empty subset of processor identifiers.
We call the processors in each µ(x) the owners of the vertex d[x]. These processors are
responsible for maintaining consistent (atomic) replicas of the vertex. We assume that
all owner sets in the system have the same size (this is done for simplicity only—both
the algorithms and the analysis readily extend to quorum configurations with owner
sets of different sizes). For a set Y containing some indices of the progress tree, we let
µ(Y ) = ∪x∈Y µ(x).

When a processor needs to read or write a vertex x in its local progress tree, it uses the
atomic memory service AM, which accesses the owners of the vertex, i.e, processors in
µ(x), until it obtains responses from the necessary quorums (as described in the previous
section).

Algorithm Description. Algorithm Xmp for each processor has the structure identical
to algorithm X, except that each processor has a local copy of the progress tree and may
use AM to access the vertices of the tree. The processors access the progress tree vertices
as follows:

– If a processor needs to read vertex x, and its local value is 0, it uses AM to obtain a
fresh copy of x.

– If a processor needs to read vertex x, and its local value is 1, the processor uses this
value — this is safe because once a progress tree vertex is marked done, it is never
unmarked.

– If a processor needs to write (always value 1 according to the algorithm) to vertex
x, and its local value is 0, it uses AM to write to x and it updates the local value
accordingly.

– If a processor needs to write vertex x, and its local value is already 1, the processor
does not need to write — once a progress tree vertex is marked done, it is never
unmarked.
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The tasks are known to all processors and are associated with the leaves of the tree
(as in algorithm X). Initially the values stored in each local tree are all zeros. Each
processor starts at the leaf of its local tree according to its pid and it continues executing
the algorithm until the root of its local tree is set to 1.

Algorithm AWT [1] can also be emulated in the message-passing system considered
here using the memory service AM. Recall that the main distinction is that algorithm X
uses a binary tree, while algorithm AWT uses a q-ary tree.

Correctness. We claim that algorithm Xmp (as well as the q-ary tree algorithm based on
algorithm AWT) correctly solves the Do-All problem. This follows from the following
observations: (1) The correctness of the memory service AM (shown in [14]) implies
that if a vertex of the progress tree is ever read to be 1, it must be previously set to 1. (2) A
processor sets a vertex of the progress tree to 1 if and if only it verifies that its children
(if any) are set to 1, or the processor performed the task(s) associated with the vertex
when it is a leaf. (3) A processor leaves a subtree if and only if the subtree contains no
unfinished work and its root is marked accordingly.

Quorum Configuration Parameterization. We use the size of the owner sets, |µ(·)|, to
parameterize algorithm Xmp. This will allow us later to study the trade-off of algorithm
efficiency and fault-tolerance.

Definition 6 For each data object x we define a quorum configuration Cx = 〈Rx, Wx〉,
where mem(Cx) = µ(x), and Rx, Wx ⊆ 2µ(x). We define K to be the size of the
largest quorum configuration, that is, K = maxx{|µ(x)|}. We define Q to be the set of
all quorum configurations, that is Q = {Cx}.

We now discuss the assignment of vertices to owners. Each vertex of the progress tree
is owned by K processors. This results in (P

K)2N−1 combinations of “owned" replica
placements. Examples 1 and 2 illustrate two possible placements, when N = P .

Example 1 Let N and K be powers of 2. The processors are divided into N/K segments
with contiguous pids. Each segment owns the leaves of the progress tree corresponding to
its processors’pids along with the vertices in the subtree of the owned leaves. Moreover,
each vertex at the height greater than log K is owned by the owner of its left child. It is
not hard to show that the processors with pid = 0, . . . , K − 1 (the first segment) own
2K − 1 + log(N/K) vertices but processors with pid = N − K, . . . , N − 1 (the last
segment) own 2K −1 vertices. Therefore the first segment processors are more likely to
be busier than other processors responding to messages as owners. Figure 4 illustrates this
example where N=16 and K=4: Here, µ({1,2,4,8,9,16,17,18,19})= {P0, P1, P2, P3},
µ({5, 10, 11, 20, 21, 22, 23}) = {P4, P5, P6, P7}, etc. (to avoid confusion between tree
indices and pids we use Pi to denote the processor with pid i).

Example 2 The processors are divided into N/K segments and each segment has K
processors with contiguous pids. Vertex i of the progress tree is owned by the j + 1th

segment, where i
K≡ j. Since there are 2N−1 vertices in the progress tree, each processor

owns either 
K(2N − 1)/N� or �K(2N − 1)/N� vertices. Hence there is an almost
uniform distribution of vertices among the owners.
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First Segment
�� �� �� ��P0 . . . P15. . .

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 31

�

�
�

�

log N − log K = log(N/K)

log K

Fig. 1. Owners for N = 16 and K = 4 (Example 1).

5 Algorithm Analysis

We assess the efficiency of our algorithm against the (d, e)-adversary FQ (that respects
the delays d and e, and that does not disable the quorum system Q). We start with the
following lemma about the cost of reads and writes.

Lemma 4 Using the atomic memory service AM, each read or write operation con-
tributes at most 4(K + d) + 2e to the work complexity and at most 4K to the total
number of messages.

Proof: The processor performing a read or a write operation uses the service AM with
quorum configurations of size at most K. Thus each quorum consists of no more than
K processors. In a single phase (see the overview of the service AM in Section 3), it
takes no more than K units of work to send messages to K processors. After sending the
last message, the processor may have to wait additional 2d + e time steps to receive the
responses. If some K ′ responses are received, then it it takes at most K units of work
to process them (since K ′ ≤ K). Thus it takes time 2K + 2d + e to process a single
phase. The second phase similarly takes time 2K + 2d + e. Thus the two phases of an
operation take time 4(K + d) + 2e.

Each stage involves sending K messages and receiving no more than K responses.
The total number of messages is no more than 4K. �

Now we present the work and communication analysis.

Theorem 5 Algorithm Xmp solves Do-All of size N with P ≤ N processors, for (d, e)-
adversary FQ, with work SN,P = O(max{K, d, e}NP log 3

2 ) and message complexity
MN,P = O(KNP log 3

2 ).

Proof: Using Theorem 2, the work of algorithm X is Sx = O(NP log 3
2 ), counting

local operations, and shared-memory read/write operations. In algorithm Xmp, each
local operation takes one local time step, and each read or write operation takes time
4(K + d) + 2e by Lemma 4. Thus the total work is SN,P = (4(K + d) + 2e) · Sx =
(4(K + d) + 2e) · O(NP log 3

2 ) = O(max{K, d, e}PN log 3
2 ).
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Using Theorem 2 again, we note that the vertices of the progress tree will be updated
by the processors a total of O(NP log 3

2 ) times. In algorithm Xmp, by Lemma 4, each
update contributes 4K messages to the message complexity. Thus the total number of
messages is MN,P = 4K · Sx = O(KNP log 3

2 ). �

By using algorithm AWT [1] as the basis, and following the identical emulation
approach, we obtain the following result with the help of Theorem 3.

Theorem 6 There exists an algorithm that solves Do-All of size N with P ≤ N pro-
cessors, for (d, e)-adversary FQ, with work SN,P = O(max{K, d, e} ·NP ε), and with
message complexity MN,P = O(KNP ε), for any ε > 0.

Given K, we use quorum systems with all majorities of size �(K + 1)/2�, so that
we can tolerate the crash of any minority of processors in a configuration.

Theorem 7 Algorithm Xmp tolerates any pattern of f failures, for f ≤ 
(K − 1)/2�.

The algorithm is most efficient when K = 1, that is when the shared memory has a
single owner; unfortunately this is not fault-tolerant at all. Thus we are interested in pa-
rameterizations that achieve subquadratic work and communication, while maximizing
the fault-tolerance of the algorithm.

Theorem 8 Algorithm Xmp solves Do-All of size N , with P ≤ N processors, and
for any adversary pattern in FQ, with (subquadratic in N and P ) work and message
complexity of O(NP δ) with log 3

2 < δ < 1, when the parameter K is O(P δ−log 3
2 ) and

when d, e = O(K).

Note that if δ is chosen to be close to log 3/2 (≈ 0.59), the algorithm tolerates only a
constant number of failures, but it is as work-efficient as its shared-memory counterpart.
As δ approaches 1, the complexity remains subquadratic, while the fault-tolerance of the
algorithm improves. In particular, when δ is close to 1, the algorithm is able to tolerate
about O(P 0.41) crashes.

Theorem 9 There exists an algorithm that solves Do-All of size N , with P ≤ N pro-
cessors, and for any adversary pattern in FQ, with (subquadratic in N and P ) work
and message complexity of O(NP δ) with 0 < ε < δ < 1, when the parameter K is
O(P δ−ε), and when d, e = O(K).

Remark. One may be interested in measuring the impact of using our emulation on the
performance (work) of the original shared-memory algorithms. It is difficult to do this
directly, given that in message-passing systems there exists a natural interdependence
between the efficiency and fault-tolerance in the emulation. In order to lower the cost
of the emulation one needs to assume fewer failures. On the other hand, tolerating a
linear number of processor failures causes the emulation to impose a linear overhead,
resulting in worse-than-quadratic work. This is in contrast with the shared-memory
solutions where a large number of failures may not necessarily degrade performance:
consider a situation where after the initial failures only a constant number of processors
remains—in this case work can be optimally linear in the size of the input. Kramer.
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6 Conclusion and Future Work

We presented and analyzed emulation of asynchronous shared-memory Do-All algo-
rithms in the message-passing model. We focused on the trade-offs between efficiency
and fault-tolerance in our algorithms as we examined how the replication of resources
affects efficiency. We also presented a lower bound for the asynchronous Do-All prob-
lem that involves delays, but no failures. Several aspects of our work are open for future
exploration, not the least of which is the narrowing if the existing gap between the up-
per and lower bounds. Another direction is to characterize the impact of the emulation
efficiency, and the reconfiguration of memory replication, on the upper bounds.

Acknowledgements. The authors thank Lester Lipsky,Alex Russell, and the anonymous
referees for suggestions that helped improve the presentation in this paper.
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