Implementing Atomic Data through Indirect Learning in Dynamic Netw orks *

Kishori M. Konwar® Peter M. Musiaf Nicolas C. Nicolaou Alexander A. Shvartsmaht

Abstract

Developing middleware services for dynamic distributesteays, e.g., ad-hoc networks, is a challenging task givanstich
services must deal with communicating devices that mayajoihleave the system, and fail or experience arbitrary del@ygo-
rithms developed for static settings are often not usablgyimamic settings because they rely on (logical) all-toealhnectivity
or assume underlying routing protocols, which may be unlfid@sn highly dynamic settings. This paper explores itidirect
learningapproach to information dissemination within a dynamidrilisited data service. The indirect learning scheme is used
to improve the liveness of the atomic read/write objectiserin the settings with uncertain connectivity. The servicformally
proved to be correct, i.e., the atomicity of the objects iargnteed in all executions. Conditional analysis of thefpenance
of the new service is presented. This analysis has the paitefibeing generalized to other similar dynamic algorithnunder
the assumption that the network is connected, and assuraampnable timing conditions, the bounds on the duratiorhef t
read/write operations of the new service are calculatedally, the paper proposes a deployment strategy wheregntliearning
leads to an improvement in communication costs relativefiregious solution.

Keywords:Distributed algorithms, atomic objects, dynamic netwogesformance

1 Introduction

Distributed middleware services for dynamic systems maat @iith communicating devices that may fail, join, or vaknily
leave the system, and experience arbitrary delays in meskdiyery. A common design approach in such settings isve tie
participating network nodes periodically exchange thagal state information with the goal of approximating thelbgll state of
the system and ensuring progress of local computationofeaice of a service implemented in this way depends on tragir
update of the local state at each node, hence requiringclbghll-to-all communication, which can be quite expeasivfhe
communication cost associated with all-to-all commundzatan be reduced by minimizing the number of bits in the mgs$2],
or by limiting the communication by assigning to each sead@oper subset of the nodes to communicate with [11]. Sut¢haods
can lead to good results in static environments, howevérdtitty is diminished in highly dynamic networks. A wea&ss of all-
to-all gossip is its reliance on the existence of point-biapconnectivity. This is an important limitation, sincedynamic systems
such as ad-hoc and mobile networks, maintenance of routfogmation is prohibitively expensive, where significantaunt of
power, memory, and communication are needed to keep thaegdables up to date [18, 9, 19, 20]. Furthermore, routirgjqurols
provide a general solution and are oblivious to the data flfgpecific applications, which results in unnecessary camoation
burden. On the other hand, in the absence of a routing semeipeedictable progress can be ensured in algorithms demeod
all-to-all gossip.

In this paper we incorporate an indirect learning protocithin a distributed algorithm implementing atomic objewaith the
purpose of enhance its effectiveness in dynamic networks.at@orithm is based on/&180 [15] and it ensures atomicity in all
executions while tolerating node departures, joins, faguand message loss. Data objects are replicated to ensuheability.
To maintain consistency in the presence of small and trahsi@nges, the algorithm useanfigurationconsisting ofquorumsof
locations. To accommodate larger and more permanent cbatigealgorithm supporteconfiguration by which the configura-
tions are modified. All decisions regarding the locallyiatitd operations on the replica are made by examining thed &tate.
In order to update the local state and ensure operationdgégrRRMBO relies on point-to-point connectivity and uses all-to-all
gossip to periodically exchange information about theestditreplicas. Our goal is to enable progress of data accesstigns

*This work is supported in part by the NSF Grants 9988304, 2121and 0311368.
tDepartment of Computer Science & Engineering, University efiicticut, 371 Fairfield Rd., Unit 2155, Storrs CT 06269AUS
fComputer Science and Atrtificial Intelligence Laboratory,dglachusetts Institute of Technology, Cambridge, MA 0213AU

(reads and writes) as long as there are quorums in activegawafions whose nodes are connected, either directly dneictty,
and without relying on routing protocols.

Contributions. We present an atomic service for read/write objects in dyoamtworks that incorporates an indirect learning
mechanism designed to take advantage of the semanticsadtidow within the service to effectively disseminate objeplica
information among participating nodes. We call the new atlgom ATILA (atomicity through indirect learning algorithm). The
dynamic settings considered include mobile ad-hoc netsv(MANETS), and we do not assume an underlying routing paitoc
or all-to-all direct connectivity.

The algorithm implements indirect learning through locaggjp and it achieves improvements in liveness in dynanticoré
settings at the expense of higher memory consumption. hmgiing indirect gossip requires each node to maintain timaie
of the state of every other participating node. This infaiorais included in the state messages that are exchangedret
direct neighbors only. We first present a general solutian ithoblivious to the communication structure or existesiceuting
protocols. This solution trades service liveness for ingfficy in memory and communication cost, however allowswipations
that improve its performance. In this presentation we disane example of one such optimization.

We formally prove that AlILA implements atomic objects. The performance of read andwperations of the service is
affected by the properties of the service deployment grafiiere the edges are direct communication links betweensndtie
give probabilistic analysis estimating the duration oftf@aite operations; we also analyze possible savings ihmersmessage
bit. Of independent interest, we believe that our analygis@ach can be generalized to other algorithms that useiqsor

For lack of space, the formal code specification using Iipufiput Automata notation [16] appears in [12].

Related work. Dynamic distributed systems with an unknown and possiblyounded number of participants that may join,
voluntarily leave, and fail, are becoming increasingly coom. Problems that often need to be solved in these settifisdie
leader election [17], consensus [13], and maintenancersfistent memory [3].

Group communication servicd&CS) [1] are important building blocks in distributed srss and can be used to implement
shared memory abstractions. However, communication reddor group maintenance limits the utility of common GCBs i
dynamic environments such as MANETS. Here the mobility ale®results in frequent group membership changes and group
maintenance becomes an expensive task requiring high caioation overhead and energy consumption [10].

The GEOQUORUMS approach of [3] uses stationafgcal points implemented by mobile nodes, to provide atomic shared
read/write memory where consistency is maintained by ugirggums of focal points. However this service relies on tela
ability of geocasthat can deliver messages to specific geographic locatidmes earlier RMBO service [15] was developed for
dynamic overlay networks, where messages are routed atidatha The specification of RMBO trades mathematical simplicity
for practicality, and while the successive refinements [/,48] improved this service’s usability each still religs automatic
all-to-all connectivity.

Overlay networks provide the ability to transparently eoatessages atop diverse communication structures. Nodesco
nicate using virtual point-to-point channels with the hefgrouting protocols. Many routing algorithms for ad-hoaamnobile
networks have been proposed, e.g., DSDV [19], TORA [18], DgRand AODV [20]. However, routing protocols have the fol-
lowing drawbacks: (i) Maintenance of overlay routes in egst where nodes join, migrate, depart, and fail, is expensiterms
of processing, memory consumption, and communicationitiaddlly, if the devices are mobile, then the topology o tietwork
may change frequently and the new virtual routes have to dsa@ated often in order to maintain integrity of the oagrhet-
work. (ii) Routing protocols are oblivious to the semanti€the communication among the participating nodes. Hethege may
be substantial redundancy in communication. In the netsvtrt are sensitive to throughput, increased communicéatioden
may have adverse effects on the performance of the routgayigims themselves and on the message-passing apptisatio

Document structure. In Section 2 we present the model and definitions. We desoribalgorithm in Section 3. The proof
of atomicity is given in Section 4 (for lack of space the pmafe not stated). Probabilistic performance analysisasgmted
in Section 5 and the deterministic analysis in Section 6. @felude in Section 7. For presentation reasons we presefilth
proofs and the complete code of the algorithm in the attaepeendix.

2 System Model and Definitions

We assume a message-passing model with asynchronous goecesth unique identifiers. We denote byhe set of node
identifiers need not be finite). Processors may join, crash, and voilynkeave the system.

Processors communicate via point-to-point, direct, alssommous channels. A processor can send a message to anattes-p
sor if a direct link between the processors exists. In sgfgtymicity) proofs we do not make any assumptions aboutehgth
of time it takes for a message to be delivered. To evaluat®mpeance of the algorithms, we assume that either messages a
delivered in bounded time or not delivered at all. The nodebthe point-to-point communication links form thervice deploy-
ment graph The deployment graph may change over time, as nodes jgiayg@nd fail during the computation. In performance
analysis we also assume that the graph is connected.

We denote by’ the set otonfiguration identifiersFor eache € C we define: (iimember&), a finite subset of node identifiers,
(i) read-quorumge), a set of finite subsets afiemberge), and (iii) write-quoruméc), a set of finite subsets ofiembergc). We

require that for evenR € read-quorums(c), and evenyiV € write-quorums(c), R N W # (. No intersection requirement is
imposed on the sets of members or on the quorums from distimdtgurations.

We defineC;, = CU{Ll}andCy = C U {L, £} to be the partially ordered sets, such that< candresp.L < ¢ < 4,
for ¢ € C. We define the se€CMap, the set of configuration maps, as the set of mapping> C.. In any sequence i@Map,
the symbol L represents an unknown configuration andepresents obsolete configuration that has been removediefive
Usable to be the subset of'Map such thatem € Usable iff the pattern occurring irem consists of a prefix of finitely manys,
followed by an element of’, followed by an infinite sequence of elementgof in which all but finitely many elements arte.
We defineTruncated to be the subset o Map such thatem € Truncated iff the pattern occurring irem consists of a prefix
of finitely many+s, followed by a finite number of elements frath followed by an infinite sequence df. We definetruncate
to be a unary operation amn € CMap that removes all configuration identifiers that appear afterfirst L in ¢m. Finally, we
defineupdateto be a binary operation onn,cm’ € CMap that updates any element ém with the corresponding element in
cm/ if that element is greater according to the partial oder

3 The Algorithm

We now present the algorithm implementing a dynamic atorjeai service using an indirect learning protocol. The atgm
is based on RMBO [15] and its refinements in [7, 4], and we call the new algonitATILA (atomicity through indirect learning
algortihm). The service is defined for a single object — gitkeat atomicity is preserved under composition a completeesh
memory is implemented by composing multiple instances efsérvice. The pseudocode of the algorithm appears in Fdure
and 2.

read() or write(v) operation at nodé&

e RW-Start: Nodes resets its local structures pertaining to the read/write operations, suep-asnfigs, op-Nums. Also, it notes that a
read or a write operation was initiated.

e RW-Phase-1a: Node: increments its local phase number and updatepffiems set with the new information. A snapshot of the
information stored irconfigs andp Nums is recorded irp-configs andop-pNums. At this point node sets out to query configurations
found in op-configs for the most recentag andvalue information. Next, sends{RW la, tag, val, configs, world, pNums) message
to all known participants of the service, i.@orld.

e RW-Phase-1b:Upon receipt of d RW la, t, v, ¢, w, pn) message from, nodej compares its local knowledge (local state values) with
the information included in the message. For instance if its leegls strictly smaller thart, then it updates itsag with ¢ and value
with v. Also, it updates itgonfigs, world, andpNums. Next, j replies toi with (RW1b, tag, val, configs, world, pNums).

e RW-Phase-1c: Upon receipt of an = (RW1b,t, v, c,w,pn) message frony, nodei updates its state based on comparison of the
values of its local state with the related information found in the message.cltontains configurations previously unknown:tdhen
the current phase is restarted.

e RW-Phase-2a:Node: comparesn.pn and op-pNums to check if at least one read quorum of each configuration foung-inonfigs
has an adequately recent state informatiori ¢ife. has at least learned the phase number fodbm RW-Phase-14 If so then the
first phase is complete +is now in the position of the highest tag. At this point nadsets out to propagate to the members of
configurations found irvp-configs the most recentag and value information. Nodei increments its phase number and updates its
pNums with the new information, it also records current values®@ifigs andp Nums in op-configs andop-p Nums. Next,i broadcasts
(RW 2a, tag, val, configs, world, pNums) message wher&g andvalue depend on whether it isr@ad or awrite operation: in the case
of aread, they are just equal to the localg andwvalue; in the case of avrite, they are a newly chosen tag, andhe value to write.

e RW-Phase-2b: If node j receives a RW2a,t, v, c,w,pn) message from, it updates its state accordingly, and responds waith
(RW 2b, tag, val, configs, world, pNums).

e RW-Phase-2c:Same aRkRW-Phase-1c

e RW-Done: If node i can determine that at least one write quorumalbfconfigurations inop-configs has an adequately recent state
information of: (i.e. has at least learned the phase numbeérfafm RW-Phase-23, then theread or write operation is complete and
the tag is marked confirmed. If it isr@ad operation, nodé returns its current value to client. Nodenarks that the operation is how
terminated. At this point new read/write operation may be initiate at node

Figure 1. Description of the phases of thead andwrite protocols.

In order to ensure fault tolerance, object data is replitatieseveral nodes. The algorithm usgsrum configurationso
maintain consistency. Configurations can be modified orfiyharoughreconfiguration Main parts of the algorithm deal with
communication with replicas during read and write operatj@nd the removal of the obsolete configurations usimgiguration
upgradeoperations. Network topology may change during the lifetofithe service, where links may be created and consequently
destroyed. However, if the service deployment graph maigigs connectivity, then our algorithm is eventually atugoropagate
the replica information throughout the system and allovireet communication with the replicas during individuakoations.
Participant Information. Each participant maintains thalueand the associatadg of the object being replicated. Thags
are used to totally order write operations with respect thedher and all read operations with respect to the writetisforms
the basis for the proof of atomicity (Section 4). Each nod@tains a set of node identifiensprld, representing the nodes that are

locally known to have joined the service, and the configarainformation stored in variablevonfigs of type CMap (Section 2).
Each node usgshase number logically timestamp the messages it sends to other nodiisating the “freshness” of the
state conveyed in the messages. The phase number of a nodeciménted following an “important” event at a node, such as
the start of a new phase of a read or a write, or a configurafigmagde operation. Most importantly, phase numbers aretosed

implement indirect learning as discussed later in thisisecttach node maintains a matrix of phase numbepfyums where
rows and columns are indexed by node identifiers, henceziésisjworld| x |world|. The variablepNums|i][j] represents the
most recent phase information knownitabout another participating nogeThis means thathas learned the replica information
known toj whenj's phase number was equal pdums[i][j]. The variablepNums|[j][k], for somej, k € world andi # j,
represents the most recent phase number knowalout the phase of nodethat is known tgj. Each of these variables reflects
the latest information locally known at a node, but not neagly the most up-to-date global information.

Each node also maintains two records used to store information atheubhgoing operations. Recowsd is used to keep track
of the phases of read and write operations. The followingdief op are initialized when a new phase of a read or write operation
is initiated: op-configs records the value ofonfigs, op-Nums records the value gf Nums, and op-ace, initially), records the
identifiers of the nodes that contain adequately currentimétion regarding's state. Similarly, recordpg is used to keep phase
information of the configuration upgrade operation, whbeefieldsupg-configs, upg-Nums andupg-acc are defined analogously
to the fields ofop record. In addition, theypg record contains fieldipg-target containing the index of the configuration being
upgraded. (The phases of read, write, and configuratioratipas are discussed later in this section).

Information Propagation and Indirect Learning. Periodically, and following certain events, any non-fdifgarticipant of the
service sends state messages to all nodes found in itsdee&l. These messages include sender’s current values@fval,
configs, world, andpNums. Although a node attempts to send messages to all nodesuiniitd, only the messages addressed to
the nodes with a direct connection may be delivered, allratiessages may be lost. (In a practical implementation cséinéce,

a node may use timeouts or other means of failure detectistofpsending messages to the nodes without a direct coanecti
This does not affect the safety.)

We now narrate the update process based on an example of agaesshange between two non-failed service participants,
say: andj. Wheni receives message frojrit compares values of variables comprising its state ag#iesnformation included
in the message. Assume that nadeceives message = (tag, val, configs, world, pNums) from j. If m.tag > tag then node
1 updates its tag withn.tag and the value withn.val. Next, node; includes in itsworld any new identifiers found im.world.
For each new node identifier, matpNumsis extended with a new column and a new row, intitalized t@gzeNodei also sets
its configs to update(configs, m.configs).

The last step updates the phase information, whe@mpares its phase matrix with the one in the sender’s messdadis
update captures the indirect learning process. Fdr,dle m.world, if m.pNums[k][¢] > pNums[k][{], thenj knows that: has
learned about a higher phase numbef.oTherefore, wheneven.pNums[k|[¢] > pNums[k][¢] theni assigngyNums[k][{] —
m.pNums[k][£].

Observe that all bookkeeping information (except for valgenonotonically growing with each update, i.e., a tag idatpd
only when the arriving tag is larger, nodes are only addethi¢asbrid set, and the phase number information is updated if the
incoming phase number information is more recent than wisadware of. Therefore, if some noéldearns thai’'s phase number
is p, thenk has learned of a tag (resp. value) of the replica that is at &sarecent as whéis phase number was Phase numbers
are updated either following a receipt of a message dirdaiy & or indirectly from some other node. Thusiifs performing
some operation ang is its current phase number thenpiVums[k][i] > p, theni can deduce that learned the information
that is at least as recent as the information communicateddojts worid in phasep. (Finally, if the service deployment graph
is connected and the network is reasonably well-behaved, ékentuallyi will (indirectly) learn thatk (indirectly) learned the
information disseminated hy)

Joining. Nodes join the service by sending a join request to the nodwsded by the user (“seeds”). Our well-formedness
assumption is that when the set of seed nodes is empty, tleeprodessing the join request is the “creator” of a new objéct
an active participant of the service receives a join reqii@stl add sender’s identifier to its locavorld set and reply with a state
message. The joinee becomes operaticetiie), when a response message to the join-request is received.

Read and Write Operations. The read and write operations are conducted in two phased-{gare 1): The first phase called
RW-Phase-1 or queryphase, is identical for both operations. In this phase tiiaior of the operation queries the replica owners
in order to obtain the most recetaty and the associatedhlue The second phase is callByV-Phase-2 or propagationphase.

In case of a read, the initiator of this operatipmopagateghe information learned in thgueryphase. Since the aim of the write
operation is to change the value of the replica, ingrepagationphase the newagis created which is strictly larger than the one
discovered during thgqueryphase and the new value is associated with this tag. Thigimtarmation that is propagated to the
replica owners.

The termination point of each phase is determined only #iftemode conducting this operation can certify that at least
guorum of replica owners from each active quorum set ha®reigl to (directly or indirectly) to its latest phase infation.

cfg-upgrade(k) at nodei (similar to the phases of read/write operations):

e UPG-Phase-1aNode: chooses an indek, such thak is a configuration identifier that ends the prefix of the sequence of cwafigns
known to:, where there are zero or more configurations up to sémmat have been marked as removed, and all configurations with
index? + 1 to k are active. Next; increments is phase number and updatesiams with the new information, it also records current
values ofconfigs andpNums in upg.configs andupg.pNums. A messageU PGla, tag, val, configs, world, pNums) is sent byi to
all nodes in itsworld.

e UPG-Phase-1bif nodej receives aU PG1la, t, v, c, w, pn) message from, it performs all necessary updates based on the information
contained the message, and replieswoth (U PG1b, tag, val, configs, world, pNums).

e UPG-Phase-2ailf nodes receivesn = (UPG1b, t,v, c, w, pn) message fronj, it updates its state accordingly. If based on the latest
m.pn it can determine that at least one read and one write quorum of eafiguration in upg.configs has an adequately recent state
information ofi (i.e. has at least learned the phase numbeéfraim UPG-Phase-13 then the first phase is complete. Themcrements
its phase number, updatgd/ums and records current values ednfigs andpNums in upg.configs andupg.pNums. Nodei sends a
(UPG2a, tag, val, configs, world, pNums) message to all members of it®rid.

e UPG-Phase-2b: If node j receives a(UPG2a,t,v,c,w,pn) message from, it updates its state and replies tavith message
(UPG2b, tag, val, configs, world, pNums).

e UPG-Done:If nodei receives §U PG2b, t, v, ¢, w, pn) message and if from that messagmn determine that at least one write quorum
of configuratiornc(k) has an adequately recent state informatioi(0€. has at least learned the phase numbefroin UPG-Phase-23
then the upgrade operation is complete. Néodwarks all configurations with identifier smaller thams removed.

Figure 2. Description of the phases of tleenfiguration upgradgrotocol.

Reconfiguration and Configuration Upgrade. The reconfiguration is performed in two steps (see Figureh&ravithese steps
are similar to ones performed by the write operation). Faistew configuration is chosen by the members of the mosttrecen
configuration. This is handled by an external service, ddlecon as in [15]. Then obsolete configurations are removed using
the configuration upgrad®peration. This operation upgrades a configuration at a hgdemoving every configuration with a
smaller index from itsonfigs variable. Once a configuration has been upgraded, it is nsdge for maintaining the data. Note
that we assume that old configurations remain operationltbay are removed. In Section 5 we describe the timing ¢

on configuration viability.

4 Proof of Atomic Consistency

In this section we formally show that/ALA implements atomic objects by applying necessary refinesrmnthe safety proofs
of RAMBO [7]. The challenge here is to show that atomic access to tfexbis ensured when indirect mechanism is used. In
the following discussion we present the lemmas that reduiredification and only a brief discussion of the remainingreas
leading up to the main theorem. The omitted details may beddn the optional appendix.

4.1 Definitions and notation.

In the rest of the presentation, we consider “good” exeastiaf the algorithm: the assumptions are that the clientesiguare
well-formed requests, i.e., clients follow the protocalsjbining and initiating reconfiguration; clients initeabnly one operation
at a time; clients wait for appropriate acknowledgment®teeproceeding.

We denote byy an arbitrary, good execution of the algorithm. Wedgtandw, be two read or write operations that occur at
nodesi andj respectively, wheré and; are participants of AILA service. Additionally, we assume that completes before,
begins inc. When we do not refer to any ordering of operations wemusedenote an arbitrary read or a write operation. Also let
~ denote the configuration upgrade operation initiated byesaative participant of the service. Before proceeding thithsafety
claims we state additional definitions.

For everyr, thequery-fix (resp. prop-fix) event occurs immediately after tiqeery(resp.prop) phase ofr completes. There-
fore, query-fix point occurs at the point when noddetermines that at least one read quorum of each configariatig-configs
has a sufficiently recent state informationipfvhich happens in phag®W-Phase-2a(Figure 1). A similar relation exists be-
tweenprop-fix andRW-Done. For every configuration upgrade operatigrthecfg-upg-query-fix andcfg-upg-prop-fix events are
defined analogously.

Next we introduce history variables. First, theery-cmap () is a mapping:N — C., initially undefined. It is set in the
query-fix step ofr, to the value ofbop-configs in the pre-state. The history variabjeop-cmap () is defined analogously for the
propagation phase of operatian The query-phase-start(), initially undefined, is defined in thguery-fix step ofr, to be the
unique earlier event at which the collection of query resulas started and not subsequently restarted (the lasbiimec set is
assigned). This is either irRW-Start step of a read or a write operation, oRRV-Phase-1cstep. The evergrop-phase-start(r)
is defined analogously, but with respect to the propagati@se.

For every read or write operatianat nodei, we define the history variableg () to be the value ofag, when thequery-fix
event occurs forr at nodei. If 7 is a read operation thefag() is the largest tag that nodeencounters during the query phase.

If 7 is a write operationtag () is the new tag that is chosen bjor performing the write. Similarly, for a configuration upgle
operationy at nodei, we definetag(y) to be the tag at node(i.e., tag;) when thecfg-upg-query-fix event occurs, that is, the
largest tag encountered at nadduring the query phase of

The history variableemoval-set (), is defined for the configuration upgrade operatjoit is a subset o, initially undefined,
and records the configuration identifiers of configuratidwag &re marked for removal (whose identifiers are less lesstlie value
of upg-target for v.) The history variablén-transit, defined as a set of all messages that are sent by any partioiithe service.

Finally for any operationr we define the history variablg(r, k), for k € N, as a subset of, initially undefined. It is set
in the query-fix step ofr, for eachk such thatquery-cmap(7)(k) € C, to an arbitraryR € read-quorums(c(k)) such that
R C op-acc in the pre-state, wher€k) € C. Similarly we defind¥ (, k), for k € N, to be a subset df, initially undefined and
set during theprop-fix step ofr, for eachk such thaprop-cmap(7)(k) € C, to an arbitraryy € write-quorums(c(k)) such that
W C op-accinthe pre-state. Similarly we defi(, £), W1 (v, £), Wa(~) for any configuration upgrade operationR(~, ¢) and
Wi(v,) are set in thefg-upg-query-fix step ofy, for each? € removal-set(~y), to an arbitraryR € read-quorums(c(¢)) (resp.
W e write-quorums(c(£)), such thatR C upg-acc(resp.W C upg-acc) in the pre-stateWs(v) is set in thecfg-prop-query-fix
of ~ to arbitraryW € write-quorums(c(k)) such that? C upg-acc in the pre-state, wher€k) € C is the target ofy.

Note that the only updates on tléMap in various places in the system are allowed via tpeateandtruncateoperations.
Hence, in any state of the executi@Mapthat is a part of a message that is in transityfigs;, op-configs,, query-cmap(r),
prop-cmap (), andupg-configs;, for somei € I and any operatiorm, always has thé&sableproperty. Moreover, £Mapthat
appears asp-configs,, query-cmap(m) or prop-cmap(n), for somei € I and any operationr that has initiated a read/write
operations which has not terminated yet, always hasthecated property. (These properties are easily described as anari
on the service, however such formal presentation is omitted this discussion.)

Phase guarantees. Lemmas presented in this section discuss the effects ofycaret propagation phases of read/write and
configuration upgrade operations. In more detail, we deedhie information flow that must occur during these phaseddw
operation completion. We show that if nodlénitiates a phase of a read/write or a configuration upgramasion and if there
exists a specific sequence of message exchanges that sthdads at, then if that phase terminatesis in possession of the
most recent tag and its value cannot be smaller than wkia¢w at the start of the phase. Moreover, we show that corafiigur
information and value of the tag at each node that partiegbat the examined communication sequence has specificriespe
Our claims are based on the following observation: A nodel ske most recent state information that includes its cordipn
information, value and tag, and phase information of aNiserparticipants. By the specification of the algorithne tkeceiver

of this message can only increaseditg and increment the phase information in any cell of its phasaber matrix. Also,
the configuration information is updated only with a moreergcone. This means that nodes may learn about configuration
information, tag, and phase information of other partinigandirectly.

Note, the casg = i is treated uniformly with the case whejeZ i. This is because, in theTALA, communication from a loca-
tion to itself is treated uniformly with communication beten two different locations. First, we consider howtginformation
is propagated in the query phase of the configuration upgrpdeation. Since the flow of information in the propagatibage is
analogous to that in the query phase of the configuratiomaga@goperation, we compress two lemmas into one.

Lemma 4.1 Suppose that afg-upg-query-fix(k); (resp. cfg-upg-prop-fix(k);) event for configuration upgrade operation
occurs in executiony and k' € removal-set(y). Supposej € R(v,k') U Wi(y,k') (reps. j € Wa(y)). Then there ex-
ists a sequence of identifie(s, , ..., ¢,) where for all1 < h < n each:, € I, and the corresponding message sequence

<mL11L2, e M .,an_M>, wheret; = 1, = i and that there is; = j, for somel < h < n . Such that: () The

messagen,, ,, is sent after thefg-upgrade(k); (resp.cfg-upg-query-fix(k);) event ofy. (ii) Each message:,,, ., ., is sent after
m,, _, ., 1S received. (iii) The message,, , ., is received before thefg-upg-query-fix(k); (resp.cfg-upg-prop-fix(k);) event of
7. (iv) In any state afteyj receivesm,, .., configs(£); # L forall £ < k. (v) tag(vy) > t, wheret is the value otag; in any
state beforg sends message,; ., .-

Next, we consider how thiag information is propagated in the query phase of the read aitd wperation. Again, since the
flow of information in the propagation phase is analogous&b in the query phase, we compress two lemmas into one.

Lemma 4.2 Suppose that guery-fix; (resp. prop-fix;) event for a read or write operatiom occurs ina. Legk,k’ € N.
Supposeguery-cmap(m)(k) € C andj € R(m, k) (resp. prop-cmap(w)(k) € C andj € W(n,k)). Then there ex-
ists a sequence of identifiefs,, ..., ¢,) where for alll < h < n each., € I, and the corresponding message sequence
<me2, e Mg .,mL%M>, where:; = 1, = i and that there is; = j, for somel < h < n. Such that: (i) The
messagen,, ,, is sent after theyuery-phase-start(r) (resp. prop-phase-start(7)) event. (ii) Each message,, ., , is sent after
my, ., IS received. (iii) The message,, , . is received before thguery-fix (resp. prop-fix) event ofr. (iv) If ¢ is the
value of thetag; in any state beforg sendsm,; ., . then: (a)tag(w) > t. (b) If = is a write operation thertag(m) > t.

(V) If configs(¢); # L for all £ < k' (resp. ¢ < k') in any state beforg sendm,; ., . thenquery-cmap(m)(¢) € C (resp.
prop-cmap(m)(£) € C) for somel> k'

Atomicity. We show atomicity using the framework of Lemma 13.16 in [Récall thatx is an arbitrary, good execution of the
algorithm. We need to show that inif all the read and write operations that are invoked conapléten the read and the write
operations can be partially ordered by an orderingnd the following properties are satisfie@®1). < totally orders all write
operations inxv. (P2): < orders every read operationdnwith respect to every write operationdn (P3). for each read operation,
if there is no preceding write operation- then the initial value is returned by this read; else, tlael @peration returns the value
of the unigue write operation immediately preceding itdin(P4): if some operationg;, completes before another operation,
begins ina, thenm, does not precede; in <. If such ordering< can be constructed fer, then the algorithm guarantees atomic
consistency.

We define< in terms of the lexicographic order on tags of operation©bserve tha(P1) to (P3) are essentially immediate.
Lemmas 4.1 and 4.2 stated above and the additional lemmserpeel in [15, 7, 4], which describe the behavior of confitjomna
upgrade operation and read and write operations in any ggacare used to establish the monotonically increasidgioon tags
with respect to non-concurrent read or write operationseflaon the tags we define a partial order on operations arfgt treai
property(P4) is enforced. Therefore, it follows immediately that thes@gduce a partial ordex that meets the necessary and
sufficient requirements for atomic consistency. Hencenthin result follows:

Theorem 4.3 ATILA implements atomic read/write objects.

5 Conditional Analysis of Operation Latency

In this section we examine the operation latency under airtiining assumptions as in the analysis of operationsAm o
presented in [15, 7, 4, 6]. The analysis is done in parts: ¢i)state the connectivity properties of the service deployrgeaph
of ATILA, (ii) we present the new upper bound on the operation lafeanay (iii) we present the expected operation latency in
the case of restricted asynchrony under reasonable assaspf probabilistic behavior of the algorithm. The noyedf our
analysis as compared to the type of analysis done in [15,6],id that here we use a more realistic assumption on theidorat
message delivery. The previous analysis assumed that sdlages were delivered within a fixed time interval; insteagasume
a probability distribution on the delivery time of messagéth finite variance.

ATILA is specified as a nondeterministic algorithm for asynchusnenvironments with arbitrary message delays and node
crashes, departures, and new nodes joining. In such dyremimnments it is hard to quantify the speed of informafionpa-
gation throughout the known universe of nodes. For the med analysis, we restrict asynchrony, resolve the noaragtism
of the algorithm, and impose constraints sufficient to gui@mthat the universe is connected.

Assumptions. Assumex is an admissible timed execution antla finite prefix ofa. Let/time(a’) denote the time of the last
eventina’. Let a be atimed admissible executidhen we say that is ana’-normal execution if (i) no message sentanafter
o’ is lost, and (i) if a message is sent at timia «, it is delivered within bounded time (unknown to the papants).

For the purpose of latency analysis, we restrict the sengattern of the service participants: we assume that eadatssen
messages at the first possible time and at regular interfalstliereafter, as measured by the local clock, and each notle wil
immediately send messages to all of its immediate neightodisving: (i) receipt of a join request, (i) new configuia is
discovered, and (iii) receipt of a message that indicatasghase information of any node has changed. Also, the eond-and
locally controlled events occur just once, and are assumbd tnstantaneous.

As with all quorum-based algorithms, operational livendsgends on all the nodes in some quorums remaining activeisLe
denote byt(c) the time at the end of the installation of configuratiorObserve that we can always specify such a time by using
the well-known axioms of time passage actions [14]. Also,dsaote by’ the next configuration that has been installed after
configurationc. We say that an executiam is (o’,e;r)-configuration-viabldf for every installed configuration, there exists a
read-quorump, and a write-quorumiy’, such that no process R U W fails or departs before timaax{t(c') + 7, £time(a’) +
e + 7}, wherer is the time required to markas obsolete by the first configuration upgrade operatioruhgtades configuration
with index higher than that of We say that execution satisfieq o', 7)-recon-spacingf after o/, at least time- elapses between
the event that reports the new configuratioand any following event that proposes the new configuratiorin other words,
aftera’, when the system stabilizes, reconfigurations are not smugnt. Executiomn is said to satisfy{«’, ¢)-join-connectivity
if after o/, for any two nodes that both have joined the system at tisuech that > (time(a’), they know about each other by
time ¢ + e. Executionu satisfies«/, 7)-recon-readines# after o/, everyrecon(c) event proposing a new configuration includes
a nodei in ¢ only if 4 joined at least time- ago. This, in conjunction witlia’, e)-join-connectivity ensures that all the nodes in
active configurations are aware of each other.

Operation liveness depends on the connectivity propertiieservice deployment graph, hence we require that therpash
between any two nodes (consisting of nodes and edges). Weedleé connectivity property on the service deploymentiyraf
as a timing assumptiofn’)-connectivity This means that the nodes and the direct communicatios hmky fail, but in such a
way that the connectivity assumption is not violated.

Analysis. Now we provide analysis that estimates the duration of reegp(write) operation when reconfiguration is present.
To make this estimate more realistic we provide minimum rigniestrictions on spacing of certain events in the systeth an
delays on message delivery. One way of carrying out the tiondl analysis is to assume fixed bounds on the delivery tifad!

messages as in [15, 7, 4, 6]. However, imposing rigid timiogrias on the asynchronous behavior of the assumed modsi¢phy
deployment) is too restrictive often far from reality. A reaealistic approach is to assume certain probabilityidigiion on the
delivery time of the messages. Unfortunately, such prditaiistribution may be difficult to determine for a complaigorithm

as ATILA. Under expected conditions, i.e., where the rate at whiclesgoin, leave, or fail and the reconfiguration of the system
is not very high, we may estimate the mean delay or the stdriiasiation on message delivery delay.

For the purpose of analysis we consider a non-faulty pagiti of the service, nodethat locally initiates a read (resp. write)
operation. As described in Section 3, read (resp. writejaifmns consist of two phases. During each phase nodgst be able
to deduce from examination of its state that all members tdeagt one read-quorum (resp. write-quorum) of each coratgur
found in op-configs, has a good estimate g6 state, which is a condition to reach the fix point of the eatrphase.

In the analysis that follows, we consider a subgraph of theice deployment graphs that is induced by members of active
configurations. LetD represent the diameter of this graph. Now, consider somefaitaad quorum memberj, such that the
length of the communication path betweeand; is D. Note that new nodes may join the service at any time and ahetiye
participant. If a new node joined only gtand is included as a member of a configuration installed imthe reconfiguration,
then the diameteP will increase. Therefore, we are interested in estimatirgtime required to complete a single phase of the
read (resp. write) operation in a situation when new nodestfe service and become members of new configuration dthiag
following reconfiguration attempt.

Suppose that the mean time required for a message delivemgde any two nodes 54 with finite variances 42 and the
mean time of a new member being inducted into the quorukgiand with finite variance z2. Also, we assume thaty < Ap.
Meaning that on an average it takes less time for a messagedslivered from its source to its destination than the tioreaf
new configuration to be proposed and installed (a reconfigurattempt), for examplé to 12 (a timing assumption used in the
analysis of RmBO algorithms in [15, 7, 4]). It is noteworthy that in a situatieshere the system is undergoing a rapid change or
behaving perversely then the above parameters may notibeabst easily or reliably.

To simplify the analysis notationally we assume the follogvhotations. Let = pg,p1,--- ,pp = j be a sequence of non-
failed nodes and lett and B be two pointers, such tha# initially points top, and B initially points topp. PointerA represents
the farthest node along the communication path fggrto pp that has a good estimate #d state. Pointe points to the quorum
member that is currently farthest froin

The following argument is based on the position of thesetposralong the path which help us model the performance & re
(or write). Next, we estimate the duration of a read (or Writperation that is initiated byin the presence of reconfiguration,
according from the knowledge about the first two momentsaeif tistributions. We assume that messages are exchantyeedne
adjacent nodes in the communication path within some ranalmount of time according to some probability distributibng
with the first two moments as mentioned above. Since the figroation is in progress, new nodes that join at the end of the
i = po,p1,--- ,pp = j Which would result in a longer path= po,p1,--- ,p;,pj+1, - ,pp Wherepp (i.e. pointerB) is a
few steps further away from; (i.e.,p;+1,--- ,pp are the newly joined nodes). The new arrivals will join at thg at the rate
governed by some other probability distribution, but witle first twvo moments known to us. For the pointewe denote by
X; the random variable that represents the random amount efféliowing the same unknown distribution, to jump from goin
pe—1 10 pe. We also assume that the random variables X, . . . are identically and independently distributed. Clearlg, vave
E(X;) = A4 andVar (X;) = 042 for £ € N. Similarly, we define a set of random variablés Yz, . . . that are independently
and identically distributed according to some distribatsach thatt (Y;) = Ag andVar (Y;) = op? for £ = 1,2,. .., whereY,
represents the random amount of time the poiftdakes to jump from the poinb + ¢ — 1 to D + ¢£. As mentioned before, we
assume thak 4 < A, i.e., on average the pointdrjumps more frequently than pointé.

Definition 5.1 We say that pointeA “catches up” with pointerB by timet if 3n,m € N, n,m > D, such thatp > m + D and
Z1gzgn X < E1g£ng€ <t
The following Lemma quantifies the time required to performead/write operation, with high probability, under cemtai

normalbehavior, which is explained in greater detail below. liiely, the expected time of completion of a read/write @pien
is sharply concentrated under certain reasonable weblmehexecution of AILA.

Lemma 5.2 Suppose initially pointed points at poinipy and pointerB points at the poinpp then A catches up wittB by time
DAz with high probability.

AB—Aa
Now in the case of AILA, we assume that the average time of delivering a point-totpeessage i& times smaller than the
average time of a new configuration being proposed and ledtalypically, the range of is somewhere between 1 to 12. where

the pointerA, at any timet, represents node that is aware of the initiation of the @i/ operation (by nodé and closest to the
node pointed to byB which represents the quorum member that is currently fartihem:. Here the distance between two nodes
is measured in terms of the length of the shortest path (plgssiany) between the two nodes in the communication grapérevh
each edge has unit weight. Therefore, the time of delivaipgint-to-point message sy = *TB where\ is the average time of
of a new being configured and installed. From Lemma 5.2 welsettie read/write operation takggas— = fPAL — kL
to complete with high probability We say that an ev&rdccurs with high probability to mean thBt[£] = 1 — O(n~®) for some
constanty > 0. whereD is the diameter of the communication graph induced by theugqus.

8

The deterministic upper bound. Under assumptions stated above we consider the followinrgtwease scenario. Leéte the
node that initiates a read or a write operation, we denogahthithe progress of the first pointer in the above analysishéstart
of the operation, lej be the node farthest from this distance is at most the diameter of the service depdoyrgraph at the
time wheni initiates its operation, this is referred to as the secondtpo Soon aftef initiates its operation, new nodes join the
service. The first new node connectgtand each new node may join at the last node that joined th&csea essence the nodes
that joined the service form a line. By tieconspacing assumption a new node may become a member of theaméixpration
at leastl 2d time after it joined the service.

Theorem 5.3 Leta be aa’-normal execution of thATILA that satisfiega’, 7)-recon-spacinghen a read/write operation takes
O(N) time to complete since its invocation, whév¥ds the number of nodes present at the time of invocation ajpleeation and
T > eN, for some constant

Proof. This is clear by the existence of a sequence of identifigrs.., . 5) of the participating nodes inTALA , that respects the
conditions of Lemma 4.1. O

6 Analysis of communication cost inATILA

Now, we describe a scenario where the message bit cost cadtgpdé ATILA is less than the one of &1BO and yet the
necessary redundancy in the case of direct link failureasiged. Such a scenario can occur in a wide class of mobikesgs
The message bit cost complexity is the total cost of sendhiagridividual bits across the links, governed by some coxttfan.

The RamBO algorithm involves point-to-point perpetual dissemioatof information which eventually helps to infer liveness
of the protocol. However, such approach is obviously wastehen nodes are separated by long geographical distaies.
assume that communication within the local area networkssis expensive than in wide area networks. A more reasonable
solution to the above problem is to reduce the communicati@n long distances, hence reducing the total messagedit co

Consider the following grouping. Let the participants of gervice be divided into disjoint groups based on their ipnay
in terms of cost/reliability of communication among the aedFor each group we define a non-empty subset to which we refe
as therepresentative®sf the group. Within a group nodes communicate using thé¢oadll gossip protocol, however only the
nodes designated as representatives may communicatethgthrepresentatives in the different groups. In thisisgtiie indirect
learning protocol allows a reduction of message bit costpierity. (The set of representatives may be agreed upory w@sin
arbitrary consensus service, and handled in a similar fiua®ATILA does the configuration reconfiguration.) Note that in this
setting the correctness issues are vacuously satisfied —akyénopose a communication policy that restricts certaidesfrom
sending messages to certain other nodes.

Notation. We denote the set of all nodes that are participating in thecgeby/ and letN = |U{|. Leti andj be any two
non-failed participants of the service, hericg € Y. The cost function which represents the cost of sending aagesbetween
any pair of nodes it is defined ag : U x U/ — R™*. Hence (i, j) denotes the cost of sending a message from néalg. We
assume that(i,i) = 0 andx(i,j) = x(J,¢) and thaty(-, -) satisfies the triangle inequality. Thid,) is a metric space with
the metricy.

We partition/ into groupsGi, Go, - - - ,Gm, such thatG, C U, U™, G, = U andG, NG, =Pforl <. # ./ < m. We
also require thati,j € G,, x(4,j) < d and that for somé& < . # ./ < m there is a pair of nodes € G, andj € G,» such
that x(i,j) > d, for an appropriately chosesi Finally, for every groupj, we define a subsef, C G,, which we call the
representativesf G,.

Analysis of message cost. Next, we compare the communication cost complexities ofRa®B0O and ATiLA and show that
the use of indirect gossip can lead to substantial cost gaviNote that the following analysis does not account forctbet per
message bit contributed by the maintenance of the overlayonke on which RamMBO relies on for message routing. Also, observe
that proposed here partitioning is based on the commuaitabst involved between each pair of nodes and hence isajdram
the point of view of the distance function. L&tbe partitioned inton groups, as previously described. To simplify the analysis
we assume that all groups are of equal sigg, = g, and that the size of representative subgroups also hakszeial, | = ¢, for
alll <. < m.

The gossip messages imRBO have the form(tag, val, configs, world, pnum;, pnum ;). Clearly,|world|=|U|= N. There-
fore, the size of a messagedAs+ N x §, whereA represent the constant size of the remaining message cemiscend is the
size of a node identifier. Hence, the size of each messagenNy.

Now we compute the message bit cost complexity OfLA . We begin by considering the following two cases: First, sages
exchanged between a non-representative nodes are of te(foy, val, configs, world, pNumsli][i], pNums][i][j]). Second,
messages sent out by a representative node are of the(fagnval, configs, world, pNums). Observe that in the first case the
size of a a message@¥(N) and in the second case itG& N?).

The following equation compares the communication bit clexipy per a single round of gossip inTALA, left hand side, and
RAMBO, right hand side.

g*m(A 4 SN) + 1M=L (A 4 §(N2 + N)) + £(g — O)ym(A + §(N? + N)) < N2(A + 6N) = O(N?)

On left hand side, the first term is the bit complexity of thesssges exchanged inside all of thegroups, second term is the
bit complexity of the communication between all represtvea, and the third term is the bit complexity of messageharged
between the representatives and the rest of the group, ¢orgraup.

Observe thay, m, and/ have the following relationshipss = N/g and thatl < ¢ < g. Clearly ATILA benefits wher!
is small with respect tg. Therefore, under the assumption that the cost of commiimicavithin a group is cheaper, then if
¢ < logg andm < v/N then the message bit cost complexity is minimized forA, i.e. when the number of groups is not
very large and AILA can take advantage of reducing the number of bits sent ogendbensive links — between different groups.
Otherwise, RMBO has the lesser message complexity than.A. However, the liveness of theARBO depends on the fact that
links between the nodes do not fail and messages are notnitdbfidelayed.

7 Conclusions

In this work we investigate an indirect learning mechanisithivww a consistent replicated object service for dynamisvoeks
that do not support automatic routing. We provide an algorithat implements atomic read/write objects where theqipating
nodes communicate with their direct neighbors only, thusailmg the need for a global routing protocol. The indirkeerning
approach, as presented in this work, has the potential ofngakore robust other algorithms that, for example, empliby a
to-all gossip as means for information exchange. The dlyoic development presented here is formally proved toantae
atomicity in all executions. The indirect learning protbatbows operations to progress as long as the underlyingaré&tremains
connected. We also presented a novel analysis of the opeshlatency under reasonable assumptions about the neassliagery
time. Lastly, we considered scenarios where our algoriteipshreduce messaging costs. A distributed implementatidhe
algorithm presented here is underway. Experiments withirttpgementation will provide further insight into the bel@vof
algorithms using the indirect learning approach and theathpf our approach on communication costs in ad-hoc netswvork

References

[1] Special issue on group communication servic@smmunications of the ACN9(4), 1996.

[2] J.-C.Bermond, L. Gargano, A. A. Rescigno, and U. Vacckest gossiping by short messagesAltomata, Languages and Programming
pages 135-146, 1995.

[3] S. Doley, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. Geogms: Implementing atomic memory in ad hoc networksProc. of
17th International Symposium on Distributed Computinages 306320, 2003.

[4] C. Georgiou, P. Musial, and A. Shvartsman. Long-lived RAMB®ading knowledge for communication. Froc. of 11th Collog. on
Structural Information and Communication Complexpggges 185-196, 2004.

[5] C. Georgiou, P. Musiat, and A. Shvartsman. Developing a considtemain-oriented distributed object service.Rroc. 4th IEEE Int-|
Symposium on Network Computing and Applicatigagies 149-158, July 2005.

[6] S. Gilbert. RAMBO II: Rapidly reconfigurable atomic memory for dynic networks. Master’s thesis, MIT, August 2003.

[7] S. Gilbert, N. Lynch, and A. Shvartsman. RAMBO II: Rapidly refignrable atomic memory for dynamic networks.Rroc. of Interna-
tional Conference on Dependable Systems and Netwpakges 259-268, 2003.

[8] V. Gramoli, P. Musiat, and A. Shvartsman. Operation liveness inreadhc distributed atomic data service with efficient gossip manage-
ment. InProc. 18th International Conference on Parallel and Distributed CompuBgstemsAugust 2005.

[9] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc leg®networks. IKluwer Academic

[10] 1. Keidar, J. B. Sussman, K. Marzullo, and D. Dolev. Moshe:réup membership service for waSCM Trans. Comput. Sys20(3):191—
238, 2002.

[11] S. Khuller, Y. Kim, and Y. Wan. On generalized gossiping and ticaating, 2003.

[12] K. Konwar, P. Musial, N. Nicolaou, and A. Shvartsman. Impletirgnatomic data through indirect learning in dynamic networks, 2005.
http://www.cse.uconn.edu/ ~ piotr/pubs/TRs/KMNSO06.ps

[13] L. Lamport. The part-time parliamemMACM Transactions on Computer Systei§(2):133-169, 1998.
[14] N. Lynch. Distributed Algorithms Morgan Kaufmann Publishers, 1996.

[15] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable atomiamoey service for dynamic networks. Proc. of 16th International
Symposium on Distributed Computjmmges 173-190, 2002.

[16] N.Lynch and M. Tuttle. Hierarchical correctness proofs fotriisited algorithms. Technical report, 1987.

[17] N. Malpani, J. L. Welch, and N. Vaidya. Leader election algorithorsnfiobile ad hoc networks. IBIALM '00: Proceedings of the 4th
international workshop on Discrete algorithms and methods for mobile atingpand communicationpages 96-103. ACM Press, 2000.

[18] V.D. Park and M. S. Corson. A highly adaptive distributed routitggpathm for mobile wireless networks. Rroc. of IEEE INFOCOM
April 1997.

10

[19] C. E. Perkins and P. Bhagwat. Highly dynamic destination-seeuekedistance-vector routing (dsdv) for mobile computersPioc. of
ACM SIGCOMM August 1994.

[20] C.E. Perkins and E. M. Royer. Ad hoc on-demand distance veatting. InProc. of IEEE WMCSAFebruary 1999.

11

Appendix
7.1 A. Atomic Consistency ofATILA

In this section we present the omitted details of proofs witeas presented in Section 4.

Definitions. We introduce another operation that allowed on &ap. It is a binary function orC'y, for anyc,¢’ € Cy,
defined byeztend(c, ') = ¢’ if ¢ = L andc’ € C, andextend(c,¢’) = c otherwise.

Configuration map invariants. Invariants are the properties of the algorithm that are itmeyery state of any good execution.
Here we state two invariants. The first invariant descrihegfatterns of”, 1, and+ values that may occur in configuration maps
in various places in the system in any state. The varialpdesconfigs is defined similarly asp-configs and is used to maintain
the list of configurations used during the configuration aplgroperation.

Invariant 1 [Inv. 4.3.3in [7]] Letcm be a CMap that appears as one of the following: (i) The: component of some message
in in-transit. (i) configs; for anyi € I. (iii) op-configs; for some: € I that has initiated a read/write operations which has
not terminated yet. (ivjuery-cmap(m) or prop-cmap(w) for any operationr. (v) upg-configs;, for somei € I that initiated
configuration upgrade operation which has not terminated Yaencm € Usable.

Invariant 1 ensures that the configuration map in each ofistedl places has th8sable property, which describes the patten
of configurations. The next invariant strengthens Invdriaand states additional properties of tB®aps that are used for read
and write operations.

Invariant 2 [Inv. 4.3.4 in [7]] Let cm be a CMap that appears a®p-configs; for somei € I that has initiated a read/write
operations which has not terminated yet, or@gry-cmap(m) or prop-cmap(w) for any operationr. Thencm € Truncated.

Invariant 2 ensures that the configuration map used duriag aad write operations has no gaps in it, i.e. hashheicated
property. Upon detection of a gap in the local configuraticeppmthe operation is restarted as to take advantage of the new
configuration information.

Omitted proofs of referenced Lemmas.

Lemma 7.1 Suppose that afg-upg-query-fix(k); event for configuration upgrade operation occurs in« and k' €
removal-set(y). Suppose € R(v, k') U Wi (v, k).
Then there exists a sequence of identifigis..., t,) where for alll < h < n eachy, € I, and the corresponding message

sequencs{vnmm .. .‘,mbn_l,Ln>, wherer; = 1, = i and that there ig;, = j, for somel < h < n . Such that;

) mL}*L,L}‘L+17 .
1. The message,, ., is sent after thefg-upgrade(k); event ofy.

2. Each message.,, ., ., is sent aftem,,_, ., is received.

3. The message,, , ., is received before thefg-upg-query-fix(k); event ofy.
4. In any state aftej receivesn,, .., configs({); # L forall £ < k.

5. tag(7y) > t, wheret is the value otag; in any state beforg sends message,

g’
Proof. The phase number discipline implies the existence of theimeld sequence of messages

My gy e s Mg g s s M1,
For Part 4, individually consider ea¢hin the range2 < h < n. The precondition oéfg-upgrade(k) implies that, when the
cfg-upgrade(k); event ofy occurs,configs(¢); # L for all ¢ < k. Therefore, each node whose identifier is found in the sexpien

(t25...,tn), Which includes; = j, setsconfigs(¢); # L for all £ < k when it receives the messagg, ,,,,. Monotonicity of
configs,, for eachl < h < nincludingj, ensures that this property persists forever.

For Part 5, consider eadhin the rangel < h < n — 1. Lett,, be the value otag,, in any state before, sends message
My, 0., Lett;, be the value otag,, in the state just after, sendsm,, ., .,. Thent, <t , by monotonicity. Hence,
t, <t, . Thetag component ofn,, _,,, isequaltot; , by the code fosend. Sincei receives this message before the

cfg-upg-query-fix(k);, it follows thattag(~) is set byi to a value> t¢. O

Next, we consider the propagation phase of a configuratignaaie.

Lemma 7.2 Suppose that afg-upg-prop-fix(k); event for a configuration upgrade operatigrnoccurs ina. Suppose thaf €
Wa(y).
Then there exists a sequence of identifigss..., c,) where for alll < h < n eachy;,, € I, and the corresponding message

sequenc<m“,b27 . ..7an71,Ln>, where.; = 1, = i and that there ig;, = j, for somel < h < n . Such that:

’ mbﬂ’bﬁ+1 b
1. The message.,, ., is sent after thefg-upg-query-fix(k); event ofy.

2. Each message.,, ., ,, is sent aftem,,_, ., is received.

3. The message,,, ., is received before thefg-upg-prop-fix(k); event ofy.

12

4. In any state aftey receivesn,. .., tag; > tag(7).

Proof. The phase number discipline implies the existence of theimeld sequence of messages
Myygy - 7mL;17L;L+1a s My g0y -
For Part 4, whery receivesm,. ., it setstag; to be> tag(y). Monotonicity oftag; ensures that this property persists in
later states. O

Next, we consider the query phase of read/write operations.

Lemma 7.3 Suppose that ajuery-fix; event for a read or write operatiomr occurs ina. Legk, k' € N. Suppose
query-cmap(m)(k) € C andj € R(w, k).
Then there exists a sequence of identifigss..., ¢,) where for alll < h < n eachy;,, € I, and the corresponding message

sequence<m“7b2, o .,an_17Ln>, wherer; = 1, = 7 and that there ig;, = j, for somel < h < n . Such that;

7mL}'L,L}1+17 .
1. The message,, ., is sent after thejuery-phase-start(m) event.
2. Each message.,, ., ., is sent aftem,,_, ., is received.
3. The message,, , ,, is received before thguery-fix event ofr.
4. Iftis the value of theag ; in any state beforg sendSin i then:
(@) tag(m) > t.
(b) If 7 is a write operation therag(r) > t.

5. If configs(¢),; # L for all ¢ <k’ in any state beforg sendm,, ., ., thenquery-cmap(w)(¢) € C for somel > K.
Proof. The phase number discipline implies the existence of theimeld sequence of messages
mL],LQ’"'?mL};’,L;"_'_l)'"7mL7171,Ln .

For Part 4, individually consider ea¢hin the rangel < h < n. Thetag component of message,, .»+1 is at least as great
as thetag component in the message,, , ,». Hence, in the message,, , ., and during the query phase ®hode: receives a
tag> t¢. Thereforetag(m) > t. Also, if 7 is a write, the effects of thguery-fix imply thattag(w) > ¢.

Finally, we show Part 5. In then component of message,; .; em(€) # L forall £ < k. Then by the code akcv code

eachh, whereh < h < n, sets itsconfigs(¢), # L for all ¢ < £/, from the property otonfigs,_, and the code ofend action.
Hence, we conclude that: component of message,,, , ., hasem(¢) # L forall ¢ < k’. Thereforejruncate(cm) () = cm(¥)
forall ¢ < k', sotruncate(cm) # 1 forall ¢ < k'

Let em’ be the configuration mapztend (op.configs,, truncate(em)) computed by:i during the effects of theecv event
for m,, ,,.,. Sincei does not resetp.acc to () in this step, by definition of thguery-phase-start(r) event, it follows that
em! € Truncated, andem/ is the value ofop. configs; just after therecv step.

Fix ¢,0 < ¢ < k’. We claim thatem’(¢) # L. We consider cases:

1. op.configs(f); # L just before theecv step. Then the definition afrtend implies thatem’ # L, as needed.

2. op.configs(f); = L just before therecv step andtruncate(cm)(¢) € C. Then the definition ofeztend implies that

em/(€) € C, which implies thatm/(¢) # L, as needed.

3. op.configs(); = L just before theecv step andtruncate(cm)(¢) ¢ C. Sincetruncate(cm))(¢) # L, it follows that
truncate(cm)(£) ¢ C. By the case assumptionp.configs(¢); = L just before therecv step. Since by Invariant 2,
op.configs; € Truncated, it follows thatop.configs(¢') = L before therecv step. Then by definition ofztend, we have
thatem/(¢) = L while em/(€) € C. This implies thatm’ ¢ Truncated, which contradicts the fact, already shown,that
em’ € Truncated. So this case cannot arise.

Since this argument holds for &) 0 < ¢ < k/, it follows thatem/(¢) # L for all ¢ < k’. Sinceem/(¢) # L forall ¢ < K/,
Invariant 1 implies thatm’ € Usable, which implies by definition ofUsable thatcm/(¢) € C for somel¢ > k’. That is,
op.configs;(¢) € C for somel > k' immediately after theecv step. This implies thajuery-cmap(7)(¢) € C for somel > &/,
as needed. O

And finally, we consider the propagation phase of read antwperations.

Lemma 7.4 Suppose that arop-fix; event for a read or a write operatiom occurs ina. Supposerop-cmap(r)(k) € C and
j e W(m, k).
Then there exists a sequence of identifigss..., c,) where for alll < h < n eachy;, € I, and the corresponding message

sequenc{mwz, ey, .,anfl,Ln>, where.; = 1, = i and that there ig;, = j, for somel < h < n . Such that:

L
1. The message,,, ,, is sent after the-phase-start(m) event.
2. Each message,, ., ., is sent aftem,, , ,, is received.

13

3. The message,,, ., is received before therop-fix event ofr.
4. In any state aftey receivesn,. .., tag; > tag(m).
5. If configs(€); # L for all £< k' in any state beforg sendsn,_ ., ,, thenprop-cmap(w)(¢) € C for somel>k'.

Proof. The phase number discipline implies the existence of theimeld sequence of messages

Mogigy ooy Mg ap ey My g0,

For Part 4, indiv+idually consider ea¢hin the rangel < h < n. Lett, be the value of aag at nodeh just beforeh receives
m,, .., andt; afterh receivedm,, , ,,. From the code ofecv we know thatt) > t;. Itis easy to see thaf, > ¢, hence
ti;; > tq1. Letm,, ,,.tag be thetag field of messagen,, ,,. Sincem,, ,, is sent after th@rop-phase-start(m) event, which is not
earlier than theuery-fix;, it must be thatn,, ,,.tag > tag(w). Therefore, by the effects of thecv, just afterj receivesn,, ..,
tag; > m,, .,-tag > tag(m). Then monotonicity ofag, implies thattag; > tag(r) in any state aftey receivesn,. ...

For Part 5, the proof is analogous to the proof of part 5 of Len3. In fact, it is identical except for the final conclusion
which now says thagrop-cmap () (¢) € C for somel > k' O

Using the above lemmas in conjunction with those presemt§d 4] we arrive at the main result of this work.
Theorem 7.5 ATILA implements atomic read/write objects.

Proof.[(sketch) Follows that of Theorem 5.4.3 of [6], where the above Lemihas7.2, 7.3, and 7.4 are used in place of Lemmas
4.4.1,4.4.2,4.4.3, and 4.4.4in [6] respectively. O

14

7.2 B. Complete Specification oATILA

In this section we present the complete code listing ofLA algorithm, which includes the following published impreve
ments [7, 4, 5]. Recall that in [7] a new rapid reconfiguratsenvice is proposed that allows removal of multiple configjons
during a single configuration upgrade operation. In [4] agitimed version of the RMBO service is presented, where explicit
leave protocol and incremental gossip mechanism improxfenpeance of the service by substantially reducing the nemaimd
size of state messages exchanged byReader-Writerautomata. Finally, an efficient implementation of a muljemb RaMBO
service is presented in [5]. The user groups all of the rélabgects into a domain, which is maintained by a single imstaf the
RamMBO algorithm per participating node. Note that the same teples used to extendsBo to the domain-RMBO are used
to extend specification of ALA to the domain-AILA. Also, the methods used to show that domaismR 0 implements atomic
read/write objects can be used to show that the same is tidenodin-ATILA .

The IOA specification of AlLA components is in the following order: (i) first we present doeéer component, (ilReader-
Writer component follows, and (i) we conclude with the specifimatof theReconcomponent.

Domains:
1, a set of processes
D, a set of domains
Xa, a set of object identifiers from domadhwhered € D
V., @ set of legal values of objegtfrom domaind, wherex € X, andd € D
C, a set of configurations, each consisting of members, read-qspamd write-quorums

Input:
join(rambo, J)a4,;, J afinite subsetof — {i},: € I, suchthatifi =i thenJ =0,d € D
read(z)q,i, 1 € [,z € X4, d € D
write(z,v)qq, vEV,i €I, € Xq,d € D
recon(c,c')a,i, ¢,c’ € C,i € members(c),i € I,d € D
leaveqq, i € I,d € D
failgs, i€ I,de D

Output:
join-ack(rambo)g,;, i € I,d € D
read-ack(z,v)qs,v € V,i€ I,z € Xq,d € D
write-ack(z)q,:, i € I, € Xq,d € D
recon-ack(b)a,i, b € {ok,nok},i€ I, d€ D
report(c)a,i,c € C,i€ I, d€ D

Figure 3. RAMBO,: External signature.

15

Signature:
Input:

join(rambo, J)4,;, J afinite subsetof — {i},d € D
join-ack(r)q,i, r € {recon,rw}, d € D

leaveq;, d € D
h”dJﬂiG.D

State:

Output:
send(join)a,i,;, j € I — {i},d € D
join(r)a,, r € {recon,rw},d € D
join-ack(rambo)q,;, d € D

status € {idle, joining, active}, initially idle
child-status € {recon,rw} — {idle, joining, active}, initially everywheredle

hints C I, initially 0
failed, a Boolean, initiallyfalse

Transitions:
Input join(rambo, J)4.;
Effect:
if =failed then
if status = idle then
status < joining
hints «— J

Input join-ack(r)a,;
Effect:
if —failed then
if status = joining then
child-status(r) < active

Input leave, ;
Effect:
failed < true

Input fail ; ;
Effect:
failed < true

Output join(r)aq,:
Precondition:

—failed

status = joining

child-status(r) = idle
Effect:

child-status(r) < joining

Output join-ack(rambo)g,;
Precondition:

—failed

status = joining

Vr € {recon, rw} : child-status(r) = active
Effect:

status < active

Output send(join)q,;,;
Precondition:

—failed

status = joining

j € hints
Effect:

none

Figure 4. Joinery ;: Signature, state, and transitions

16

Signature:

Input:
read(z)a,i, ¢ € Xq,d € D
write(z,v)q,,v € V,z € Xq,d € D
new-config(c, k)q,i, c € C,k € NT,d € D
recv(join)d,j,i,j cl— {Z}, de D

recv(mg)d,ji,me€ M,j €I,z € Xq,d €D

join(rw)d,i, de D
leaveq s, d € D
failg,;, d € D

Internal:
query-fix(x)a,;, ¢ € Xq,d € D
prop-fix(x)a,:, * € Xq,d € D
cfg-upgrade(k)q,i, k € NT,d € D
cfg-upg-query-fix(k)a:, k € N,d € D
cfg-upg-prop-fix(k)a,:, k € N,d € D
cfg-upgrade-ack(k)q,;, k € N,d € D

State: o
status € {idle, joining, active}, initially idle

world, a finite subset of , initially 0
leave-world, a finite subset of , initially 0
departed, a finite subset of , initially ¢

value(z) € Vy, x € Xg, initially Vz € X : value(x) = (vo)q
tag € X — T, initially Vz € Xg : tag(z) = (0, o)

Output:

configs € CMap, initially configs(0) = co, configs(k) = Lfork > 1

tgpnum1 € N, initially 0
igpnum?2 € I x I — N, initially everywhered

pnuml € Xq — N, initially Vz € Xq : pnumi(z) =0

join-ack(rw)q;, d € D

read-ack(z,v)q,i,v € V,z € Xq,d € D
write-ack(z)a,:, * € Xq,d € D
send(mz)a,j, meM,j €I, x € Xq,d €D

pnum2 € I x I x X4 — N, initially Vz € X4,Vj,k € I, wherej #i Ak # i : pnum2(j,k,x) =0

failed, a Boolean, initiallyfalse

op(x), an array of records (one for each object X) with fields:

type € {read, write}

phase € {idle, query, prop, done}, initially idle

pnum € N

configs € CMap

acc, a finite subset of
value € V,

upg, a record with fields:
phase € {idle, query, prop}, initially idle
pnum(z) € N,Vz € Xq4 : pnum(z) =0
configs € CMap
acc(x), a finite subset of, Vz € X4
target € N

1g € IGMap, initially Vk € I:
ig(k).w-known = 0

ig(k).w-unack = 0
ig(k).d-known = ()
ig(k)y.d-unack = 0
ig(k).p-ack =0

Figure 5. Reader-Writeg ;: Signature and state

17

Input join(rw)g,; Input recv(join)a, ;i Output join-ack(rw)g ;

Effect: Effect: Precondition:
if =failed then if =failed then —failed
if status = idle then if status # idle then status = active

if 4 = 4o then world «— world U {j} Effect:
status < active none
else Input fail; ;
status < joining Effect:
world «— world U {i} failed «— true

Figure 6. Reader-Writej ;: Join-related and failure transitions

Input recv({(W, D, obj, v, t, cm, igns, ignr, pnc))q,j,;
Effect:
if —failed A status # idle then
status «— active
world — world UW

Output send({W, D, obj, v, t, cm, igns, ignr, pnc)) i, ; departed «— departed U D

Precondition: pnum2 «— max(pnum?2, pnc)
—failed 19(7) .w-known «— ig(j).w-known U W
status = active ig9(j).w-unack — ig(j).w-unack — W

T € Xyg 19(j).d-known «— ig(j).d-known U D
j € (world — departed) 19(j).d-unack «— ig(j).d-unack — D
W = world — ig(j).w-known if ignr > ig(j).p-ack then
D = departed — ig(j).d-known 1g9(j) - w-known «—
(obj, v, t) = 19(7) .w-known U ig(j) . w-unack
(z, value(z), tag(z, 7)) 19(j) .w-unack — world — ig(j).w-known
(em, igns,ignr, pnc) = 19(j).d-known «—
(configs, igpnum1 (x), igpnum(z, 7), pnum?2) 19(j).d-known U ig(j).d-unack
Effect: 19(7).d-unack «— departed — ig(j).d-known

igpnuml «— igpnuml + 1

Input recv(leave)q ; ;
Effect:
if —failed A status = active then
departed «— departed U {j}

Output send(leave)q,; ;
Precondition:
j € leave-world
Effect:
leave-world «— leave-workd — {j}

19(j).p-ack — igpnumi
if t > tag(obj) then
(value(obj), tag(obj)) — (v,1)
configs — update(configs,cm)
fork € world Nx € X4 do
pnum?2(i, k, z) «— max(pnum2(-, k,z))
if op(z).phase € {query, prop} then
if pnum2(k,i,xz) > op(z).pnum then
op(z).configs —
extend(op(z).configs, truncate(cm))
if op(z).configs € Truncated then
op(z).acc — op(z).acc U {j}
else
pnuml(x) «— pnuml(z) + 1
op(z).acc — 0
op(z).configs — truncate(configs)
if upg.phase € {query, prop} then
if pnum2(k, 1, x) > upg.pnum(z) then
upg.acc(oby) — upg.acc(z) U {k}

Figure 7. Reader-Writey. Transitions of send and receive actions

18

Input leave, ; Internal query-fix(z)q ;

Effect: Precondition:
if # failed then —failed
failed «— true status = active
departed «— departed — {i} op(z).type € {read, write}
leave-world < world — departed op(z).phase = query
Vk € N,c € C: (op(z).configs(k) = c)
Input new-config(c, k)4, = (3R € read-quorums(c) : R C op(z).acc)
Effect: Effect:
if =failed N status # idle then if op(z).type = read then
configs(k) < update(configs(k), c) op(z).value — value(x)
else
Input read(z)q,; value(x) — op(z).value
Effect: tag(z) < (tag(zx).seq+ 1,1)
if —failed A status # idle then pnuml (x) «— pnuml () + 1
pnuml (z) «— pnuml (z) + 1 op(z).pnum — pnuml (z)
op(z).pnum «— pnumi () op(z).phase < prop
op(z).type «— read op(z).configs «— truncate(configs)
op(z).phase «— query op(z).acc — 0
op(z).cmp «— truncate(cmap)
op(z).acc — 0 Internal prop-fix(z)q,;
Precondition:
Input write(z,v)q,; —failed
Effect: status = active
if —failed A status # idle then op(z).type € {read, write}
pnuml (z) < pnuml(z) + 1 op(z).phase = prop
op(z).pnum «— pnuml(z) Vk € N,c € C : (op(z).configs(k) = ¢)
op(z).type < write = (W € write-quorums(c) : W Cop(z).acc)
op(z).phase < query Effect:
op(z).cmp «— truncate(cmap) op(z).phase = done
op(z).acc — 0
op(z).value — v Output read-ack(z, v)q,;
Precondition:
Internal restart(z)q ; —failed
Precondition: status = active
—failed op(z).type = read
status = active op(z).phase = done
op(z).phase # idle v = op(z).value
Effect: Effect:
pnuml (z) «— pnuml (z) + 1 op(z).phase = idle
op(z).pnum «— pnuml ()
op(z).configs «— truncate(configs) Output write-ack(z)q,;
op(z).acc — 0 Precondition:
—failed

status = active

op(z).type = write

op(z).phase = done
Effect:

op(z).phase = idle

Figure 8. Reader-Writey. Transitions pertaining to read/write operations and to le ave and new configuration
notification actions

19

Internal cfg-upgrade(k)a,;
Precondition:
—failed
status = active
upg.phase = idle
configs(k) € C
Vi e N,l < k: configs(l) # L
Effect:
forall z € X4 do
pnuml (z) «— pnuml (z) + 1
upg.pnum(x) «— pnuml ()
upg.acc(z) «— 0
upg.phase < query
upg.configs «<— configs
upg.target «— k

Internal cfg-upgrade-ack(k)q.;
Precondition:

—failed

status = active

upg.target = k

VieN,l <k: configs(l) =+
Effect:

upg.phase = idle

Internal cfg-upg-query-fix(k)a,:
Precondition:

—failed

status = active

upg.phase = query

upg.target =k

Vi e N,I < k : upg.configs(l) € C

= 3R € read-quorums(upg.configs(l)) :
W € write-quorums(upg.configs(l)) :

RUW C upg.acc(z),Vz € Xq
Effect:
forall z € X4 do
pnuml (z) «— pnuml (z) + 1
upg.pnum(x) — pnuml (x)
upg.acc(z) «— 0
upg.phase «— prop

Internal cfg-upg-prop-fix(k)q,:
Precondition:
—failed
status = active
upg.phase = prop
upg.target = k

IW € write-quorums(upg.configs(k + 1)) :

W C upg.acc,Vr € Xq4
Effect:
forleN:[l < kdo
configs(l) «— +

Figure 9. Reader-Writeg;: Configuration-Management transitions

Input:
init(v)d,k,ei, VEV, 1 € members(c),d € D
leaveg,;, ¢ € members(c),d € D
failq s, 1 € members(c), d € D

Output:
decide(v)q,k,c,i, VEV, 1 € members(c), d € D

Figure 10. Congk, ¢, d): External signature

Input:

join(recon)gq ;,i€I,d€ D

recon(c, c')a,i, ¢, €C, i € members(c), d€ D
leave;, i € I,d € D

fail;,s e I,de D

Output:

join-ack(recon)q;,i € I,d € D
recon-ack(b)a,i, b € {ok,nok},i € I,d € D
report(c)qs,c € C,i€I,de D
new-config(c, k)4,;, c€EC, k€ENT, i€, deD

Figure 11. Recon ;: External signature

20

Signature:
Input:
join(recon)q ;,d € D
recon(c,c’)q,i,¢, ¢ € C,i € members(c),d € D
decide(c)k,q4,i,c € C,k € NT,d € D
recv({config, ¢, k))a ;i c € C, k € N,
i € members(c),j € I —{i},d € D
recv((init,c,c’, k))a,ji ¢, ¢’ € C, k € NT,
i,J € members(c),j #1i,d € D
leavey ;, d € D
failg,i,d € D

State:

status € {idle, active}, initially idle.

rec-cmap € CMap, initially rec-cmap(0) = co
andrec-cmap (k) = L forall k # 0.

did-new-config C NT, initially (

reported C C, initially ()

Output:
join-ack(recon)q ;,d € D
new-config(c, k)q4,;,c € C,k € NT,d € D
init(c,c')q ki, ¢, ¢’ € C,k € NT,

i € members(c),d € D
recon-ack(b)q,;, b € {ok,nok},d € D
report(c)q i, c € C,d € D
send({config, ¢, k))q,;,;,c € C,k € NT,

j € members(c) — {i},d € D
send((init,c, ', k))q,,5,¢, ¢’ € C,k € NT,

1,7 € members(c), j #1i,d € D

op-status € {idle, active}, initially idle

op-outcome € {ok, nok, L}, initially L

cons-data € (NT — (C x C)), initially everywhereL
did-init C NT, initially ()

failed, a Boolean, initiallyfalse

Figure 12. Recon ;: Signature and state

21

Input join(recon)q ;
Effect:
if =failed N status = idle then
status < active

Output join-ack(recon)g ;
Precondition:

—failed

status = active
Effect:

none

Output new-config(c, k)q4,;
Precondition:

—failed

status = active

rec-cmap(k) = ¢

k ¢ did-new-config
Effect:

did-new-config « did-new-config U {k}

Output send({config, c, k))q.q,;
Precondition:
—failed
status = active
rec-cmap(k) = ¢
Effect:
none

Input recv({config,c,k))q, ;i
Effect:
if =failed A status = active then
rec-cmap(k) «— ¢

Output report(c)q,;
Precondition:
—failed
status = active
¢ = rec-cmap (k)
Ve >k : rec-cmap(€) = L
c & reported
Effect:
reported — reported U {c}

Input recon(c, ¢’)q,;
Effect:
if ~failed A status = active then
op-status < active

letk = max({¢ : rec-cmap(€) € C})
if ¢ = rec-cmap(k) A cons-data(k + 1) = L then

cons-data(k + 1) «— (c,c’)
op-outcome «— L

else
op-outcome «— nok

Output init(¢') g k,c,i
Precondition:
—failed
status = active
cons-data(k) = (c, c’)

if k> 1thenk — 1 € did-new-config

k & did-init
Effect:
did-init — did-init U {k}

Output send((init, ¢, ¢/, k))q,q,;
Precondition:
—failed
status = active
cons-data(k) = (c,c’)
k € did-init
Effect:
none

Input recv({init, c,c’, k))q
Effect:
if =failed then
if status = active then
if rec-cmap(k — 1) = L then
rec-cmap(k — 1) — ¢
if cons-data(k) = L then
cons-data(k) «— (c,c’)

I

Input decide(c’) g,k c,i
Effect:
if =failed then
if status = active then
rec-cmap (k) «— ¢’
if op-status = active then
if cons-data(k) = (c,c’) then
op-outcome «— ok
else
op-outcome «— nok

Output recon-ack(b)q,;
Precondition:
—failed
status = active
op-status = active
op-outcome = b
Effect:
op-status = idle

Input fail;
Effect:
failed «— true

Figure 13. Recon ;: Transitions.

22

