
Implementing Atomic Data through Indirect Learning in Dynamic Netw orks ∗

Kishori M. Konwar† Peter M. Musiał† Nicolas C. Nicolaou† Alexander A. Shvartsman† ‡

Abstract

Developing middleware services for dynamic distributed systems, e.g., ad-hoc networks, is a challenging task given that such
services must deal with communicating devices that may joinand leave the system, and fail or experience arbitrary delays. Algo-
rithms developed for static settings are often not usable indynamic settings because they rely on (logical) all-to-allconnectivity
or assume underlying routing protocols, which may be unfeasible in highly dynamic settings. This paper explores theindirect
learningapproach to information dissemination within a dynamic distributed data service. The indirect learning scheme is used
to improve the liveness of the atomic read/write object service in the settings with uncertain connectivity. The service is formally
proved to be correct, i.e., the atomicity of the objects is guaranteed in all executions. Conditional analysis of the performance
of the new service is presented. This analysis has the potential of being generalized to other similar dynamic algorithms. Under
the assumption that the network is connected, and assuming reasonable timing conditions, the bounds on the duration of the
read/write operations of the new service are calculated. Finally, the paper proposes a deployment strategy where indirect learning
leads to an improvement in communication costs relative to aprevious solution.

Keywords:Distributed algorithms, atomic objects, dynamic networks, performance

1 Introduction

Distributed middleware services for dynamic systems must deal with communicating devices that may fail, join, or voluntarily
leave the system, and experience arbitrary delays in message delivery. A common design approach in such settings is to have the
participating network nodes periodically exchange their local state information with the goal of approximating the global state of
the system and ensuring progress of local computation. Performance of a service implemented in this way depends on the prompt
update of the local state at each node, hence requiring (logical) all-to-all communication, which can be quite expensive. The
communication cost associated with all-to-all communication can be reduced by minimizing the number of bits in the message [2],
or by limiting the communication by assigning to each sendera proper subset of the nodes to communicate with [11]. Such methods
can lead to good results in static environments, however their utility is diminished in highly dynamic networks. A weakness of all-
to-all gossip is its reliance on the existence of point-to-point connectivity. This is an important limitation, since in dynamic systems
such as ad-hoc and mobile networks, maintenance of routing information is prohibitively expensive, where significant amount of
power, memory, and communication are needed to keep the routing tables up to date [18, 9, 19, 20]. Furthermore, routing protocols
provide a general solution and are oblivious to the data flowsof specific applications, which results in unnecessary communication
burden. On the other hand, in the absence of a routing serviceno predictable progress can be ensured in algorithms depending on
all-to-all gossip.

In this paper we incorporate an indirect learning protocol within a distributed algorithm implementing atomic objectswith the
purpose of enhance its effectiveness in dynamic networks. Our algorithm is based on RAMBO [15] and it ensures atomicity in all
executions while tolerating node departures, joins, failures, and message loss. Data objects are replicated to ensuresurvivability.
To maintain consistency in the presence of small and transient changes, the algorithm usesconfigurationconsisting ofquorumsof
locations. To accommodate larger and more permanent changes, the algorithm supportsreconfiguration, by which the configura-
tions are modified. All decisions regarding the locally initiated operations on the replica are made by examining the local state.
In order to update the local state and ensure operation liveness, RAMBO relies on point-to-point connectivity and uses all-to-all
gossip to periodically exchange information about the state of replicas. Our goal is to enable progress of data access operations

∗This work is supported in part by the NSF Grants 9988304, 0121277, and 0311368.
†Department of Computer Science & Engineering, University of Connecticut, 371 Fairfield Rd., Unit 2155, Storrs CT 06269, USA.
‡Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

1

(reads and writes) as long as there are quorums in active configurations whose nodes are connected, either directly or indirectly,
and without relying on routing protocols.

Contributions. We present an atomic service for read/write objects in dynamic networks that incorporates an indirect learning
mechanism designed to take advantage of the semantics of thedata flow within the service to effectively disseminate object replica
information among participating nodes. We call the new algorithm ATILA (atomicity through indirect learning algorithm). The
dynamic settings considered include mobile ad-hoc networks (MANETS), and we do not assume an underlying routing protocol
or all-to-all direct connectivity.

The algorithm implements indirect learning through local gossip and it achieves improvements in liveness in dynamic network
settings at the expense of higher memory consumption. Implementing indirect gossip requires each node to maintain an estimate
of the state of every other participating node. This information is included in the state messages that are exchanged between
direct neighbors only. We first present a general solution that is oblivious to the communication structure or existenceof routing
protocols. This solution trades service liveness for inefficiency in memory and communication cost, however allows optimizations
that improve its performance. In this presentation we discuss one example of one such optimization.

We formally prove that ATILA implements atomic objects. The performance of read and write operations of the service is
affected by the properties of the service deployment graph,where the edges are direct communication links between nodes. We
give probabilistic analysis estimating the duration of read/write operations; we also analyze possible savings in cost per message
bit. Of independent interest, we believe that our analysis approach can be generalized to other algorithms that use quorums.

For lack of space, the formal code specification using Input/Output Automata notation [16] appears in [12].

Related work. Dynamic distributed systems with an unknown and possibly unbounded number of participants that may join,
voluntarily leave, and fail, are becoming increasingly common. Problems that often need to be solved in these settings include
leader election [17], consensus [13], and maintenance of consistent memory [3].

Group communication services(GCS) [1] are important building blocks in distributed systems and can be used to implement
shared memory abstractions. However, communication required for group maintenance limits the utility of common GCSs in
dynamic environments such as MANETS. Here the mobility of nodes results in frequent group membership changes and group
maintenance becomes an expensive task requiring high communication overhead and energy consumption [10].

The GEOQUORUMS approach of [3] uses stationaryfocal points, implemented by mobile nodes, to provide atomic shared
read/write memory where consistency is maintained by usingquorums of focal points. However this service relies on the avail-
ability of geocastthat can deliver messages to specific geographic locations.The earlier RAMBO service [15] was developed for
dynamic overlay networks, where messages are routed automatically. The specification of RAMBO trades mathematical simplicity
for practicality, and while the successive refinements [7, 4, 5, 8] improved this service’s usability each still relies on automatic
all-to-all connectivity.

Overlay networks provide the ability to transparently route messages atop diverse communication structures. Nodes commu-
nicate using virtual point-to-point channels with the helpof routing protocols. Many routing algorithms for ad-hoc and mobile
networks have been proposed, e.g., DSDV [19], TORA [18], DSR[9], and AODV [20]. However, routing protocols have the fol-
lowing drawbacks: (i) Maintenance of overlay routes in systems where nodes join, migrate, depart, and fail, is expensive in terms
of processing, memory consumption, and communication; additionally, if the devices are mobile, then the topology of the network
may change frequently and the new virtual routes have to be recalculated often in order to maintain integrity of the overlay net-
work. (ii) Routing protocols are oblivious to the semanticsof the communication among the participating nodes. Hence,there may
be substantial redundancy in communication. In the networks that are sensitive to throughput, increased communication burden
may have adverse effects on the performance of the routing algorithms themselves and on the message-passing applications.

Document structure. In Section 2 we present the model and definitions. We describeour algorithm in Section 3. The proof
of atomicity is given in Section 4 (for lack of space the proofs are not stated). Probabilistic performance analysis is presented
in Section 5 and the deterministic analysis in Section 6. We conclude in Section 7. For presentation reasons we present the full
proofs and the complete code of the algorithm in the attachedappendix.

2 System Model and Definitions
We assume a message-passing model with asynchronous processors with unique identifiers. We denote byI the set of node

identifiers (I need not be finite). Processors may join, crash, and voluntarily leave the system.
Processors communicate via point-to-point, direct, asynchronous channels. A processor can send a message to another proces-

sor if a direct link between the processors exists. In safety(atomicity) proofs we do not make any assumptions about the length
of time it takes for a message to be delivered. To evaluate performance of the algorithms, we assume that either messages are
delivered in bounded time or not delivered at all. The nodes and the point-to-point communication links form theservice deploy-
ment graph. The deployment graph may change over time, as nodes join, depart, and fail during the computation. In performance
analysis we also assume that the graph is connected.

We denote byC the set ofconfiguration identifiers. For eachc ∈ C we define: (i)members(c), a finite subset of node identifiers,
(ii) read-quorums(c), a set of finite subsets ofmembers(c), and (iii) write-quorums(c), a set of finite subsets ofmembers(c). We

2

require that for everyR ∈ read-quorums(c), and everyW ∈ write-quorums(c), R ∩W 6= ∅. No intersection requirement is
imposed on the sets of members or on the quorums from distinctconfigurations.

We defineC⊥ = C ∪ {⊥} andC± = C ∪ {⊥,±} to be the partially ordered sets, such that:⊥ < c and resp.⊥ < c < ±,
for c ∈ C. We define the setCMap, the set of configuration maps, as the set of mappingN → C±. In any sequence inCMap,
the symbol⊥ represents an unknown configuration and± represents obsolete configuration that has been removed. Wedefine
Usable to be the subset ofCMap such thatcm ∈ Usable iff the pattern occurring incm consists of a prefix of finitely many±s,
followed by an element ofC, followed by an infinite sequence of elements ofC⊥ in which all but finitely many elements are⊥.
We defineTruncated to be the subset ofCMap such thatcm ∈ Truncated iff the pattern occurring incm consists of a prefix
of finitely many±s, followed by a finite number of elements fromC, followed by an infinite sequence of⊥. We definetruncate
to be a unary operation oncm ∈ CMap that removes all configuration identifiers that appear afterthe first⊥ in cm. Finally, we
defineupdateto be a binary operation oncm, cm′ ∈ CMap that updates any element incm with the corresponding element in
cm′ if that element is greater according to the partial orderC±.

3 The Algorithm
We now present the algorithm implementing a dynamic atomic object service using an indirect learning protocol. The algorithm

is based on RAMBO [15] and its refinements in [7, 4], and we call the new algorithm ATILA (atomicity through indirect learning
algortihm). The service is defined for a single object — giventhat atomicity is preserved under composition a complete shared
memory is implemented by composing multiple instances of the service. The pseudocode of the algorithm appears in Figures 1
and 2.

read() or write(v) operation at nodei:
• RW-Start: Nodei resets its local structures pertaining to the read/write operations, such as:op-configs, op-Nums. Also, it notes that a

read or a write operation was initiated.
• RW-Phase-1a: Node i increments its local phase number and updates thepNums set with the new information. A snapshot of the

information stored inconfigs andpNums is recorded inop-configs andop-pNums. At this point nodei sets out to query configurations
found inop-configs for the most recenttag andvalue information. Next,i sends〈RW1a, tag , val , configs,world , pNums〉 message
to all known participants of the service, i.e.world .

• RW-Phase-1b:Upon receipt of a〈RW1a, t, v, c, w, pn〉 message fromi, nodej compares its local knowledge (local state values) with
the information included in the message. For instance if its localtag is strictly smaller thant, then it updates itstag with t andvalue

with v. Also, it updates itsconfigs, world , andpNums. Next,j replies toi with 〈RW1b, tag , val , configs,world , pNums〉.
• RW-Phase-1c: Upon receipt of am = 〈RW1b, t, v, c, w, pn〉 message fromj, nodei updates its state based on comparison of the

values of its local state with the related information found in the message. Ifm.c contains configurations previously unknown toi, then
the current phase is restarted.

• RW-Phase-2a:Nodei comparesm.pn andop-pNums to check if at least one read quorum of each configuration found inop-configs

has an adequately recent state information ofi (i.e. has at least learned the phase number ofi from RW-Phase-1a) If so then the
first phase is complete –i is now in the position of the highest tag. At this point nodei sets out to propagate to the members of
configurations found inop-configs the most recenttag andvalue information. Nodei increments its phase number and updates its
pNums with the new information, it also records current values ofconfigs andpNums in op-configs andop-pNums. Next,i broadcasts
〈RW2a, tag , val , configs,world , pNums〉message wheretag andvalue depend on whether it is aread or awrite operation: in the case
of a read, they are just equal to the localtag andvalue; in the case of awrite, they are a newly chosen tag, andv, the value to write.

• RW-Phase-2b: If node j receives a〈RW2a, t, v, c, w, pn〉 message fromi, it updates its state accordingly, and responds toi with
〈RW2b, tag , val , configs,world , pNums〉.

• RW-Phase-2c:Same asRW-Phase-1c.
• RW-Done: If node i can determine that at least one write quorum ofall configurations inop-configs has an adequately recent state

information ofi (i.e. has at least learned the phase number ofi from RW-Phase-2a), then theread or write operation is complete and
the tag is marked confirmed. If it is aread operation, nodei returns its current value to client. Nodei marks that the operation is now
terminated. At this point new read/write operation may be initiate at nodei.

Figure 1. Description of the phases of theread andwrite protocols.

In order to ensure fault tolerance, object data is replicated at several nodes. The algorithm usesquorum configurationsto
maintain consistency. Configurations can be modified on-the-fly throughreconfiguration. Main parts of the algorithm deal with
communication with replicas during read and write operations, and the removal of the obsolete configurations usingconfiguration
upgradeoperations. Network topology may change during the lifetime of the service, where links may be created and consequently
destroyed. However, if the service deployment graph maintains its connectivity, then our algorithm is eventually ableto propagate
the replica information throughout the system and allow indirect communication with the replicas during individual operations.

Participant Information. Each participant maintains thevalueand the associatedtag of the object being replicated. Thetags
are used to totally order write operations with respect to each other and all read operations with respect to the writes — this forms
the basis for the proof of atomicity (Section 4). Each node maintains a set of node identifiers,world, representing the nodes that are

3

locally known to have joined the service, and the configuration information stored in variableconfigs of typeCMap (Section 2).
Each node usesphase numbersto logically timestamp the messages it sends to other nodes indicating the “freshness” of the

state conveyed in the messages. The phase number of a node is incremented following an “important” event at a node, such as
the start of a new phase of a read or a write, or a configuration upgrade operation. Most importantly, phase numbers are usedto
implement indirect learning as discussed later in this section. Each nodei maintains a matrix of phase numbers,pNums, where
rows and columns are indexed by node identifiers, hence its size is|world | × |world |. The variablepNums[i][j] represents the
most recent phase information known toi about another participating nodej. This means thati has learned the replica information
known toj whenj’s phase number was equal topNums[i][j]. The variablepNums[j][k], for somej, k ∈ world and i 6= j,
represents the most recent phase number known toi about the phase of nodek that is known toj. Each of these variables reflects
the latest information locally known at a node, but not necessarily the most up-to-date global information.

Each nodei also maintains two records used to store information about the ongoing operations. Recordop is used to keep track
of the phases of read and write operations. The following fields ofop are initialized when a new phase of a read or write operation
is initiated: op-configs records the value ofconfigs , op-Nums records the value ofpNums, andop-acc, initially ∅, records the
identifiers of the nodes that contain adequately current information regardingi’s state. Similarly, recordupg is used to keep phase
information of the configuration upgrade operation, where the fieldsupg-configs , upg-Nums andupg-acc are defined analogously
to the fields ofop record. In addition, theupg record contains fieldupg-target containing the index of the configuration being
upgraded. (The phases of read, write, and configuration operations are discussed later in this section).

Information Propagation and Indirect Learning. Periodically, and following certain events, any non-failed participant of the
service sends state messages to all nodes found in its localworld . These messages include sender’s current values of:tag , val ,
configs , world , andpNums. Although a node attempts to send messages to all nodes in itsworld , only the messages addressed to
the nodes with a direct connection may be delivered, all other messages may be lost. (In a practical implementation of theservice,
a node may use timeouts or other means of failure detection tostop sending messages to the nodes without a direct connection.
This does not affect the safety.)

We now narrate the update process based on an example of a message exchange between two non-failed service participants,
sayi andj. Wheni receives message fromj it compares values of variables comprising its state against the information included
in the message. Assume that nodei receives messagem = 〈tag , val , configs ,world , pNums〉 from j. If m.tag ≥ tag then node
i updates its tag withm.tag and the value withm.val . Next, nodei includes in itsworld any new identifiers found inm.world .
For each new node identifier, matrixpNumsis extended with a new column and a new row, intitalized to zeros. Nodei also sets
its configs to update(configs ,m.configs).

The last step updates the phase information, wherei compares its phase matrix with the one in the sender’s message. This
update captures the indirect learning process. For allk, ℓ ∈ m.world , if m.pNums[k][ℓ] > pNums[k][ℓ], thenj knows thatk has
learned about a higher phase number ofℓ. Therefore, wheneverm.pNums[k][ℓ] > pNums[k][ℓ] theni assignspNums[k][ℓ] ←
m.pNums[k][ℓ].

Observe that all bookkeeping information (except for value) is monotonically growing with each update, i.e., a tag is updated
only when the arriving tag is larger, nodes are only added to theworld set, and the phase number information is updated if the
incoming phase number information is more recent than whati is aware of. Therefore, if some nodek learns thati’s phase number
is p, thenk has learned of a tag (resp. value) of the replica that is at least as recent as wheni’s phase number wasp. Phase numbers
are updated either following a receipt of a message directlyfrom k or indirectly from some other node. Thus ifi is performing
some operation andp is its current phase number then ifpNums[k][i] ≥ p, theni can deduce thatk learned the information
that is at least as recent as the information communicated byi to its world in phasep. (Finally, if the service deployment graph
is connected and the network is reasonably well-behaved, then eventuallyi will (indirectly) learn thatk (indirectly) learned the
information disseminated byi.)
Joining. Nodes join the service by sending a join request to the nodes provided by the user (“seeds”). Our well-formedness
assumption is that when the set of seed nodes is empty, the node processing the join request is the “creator” of a new object. If
an active participant of the service receives a join requestit will add sender’s identifier to its localworld set and reply with a state
message. The joinee becomes operational (active), when a response message to the join-request is received.
Read and Write Operations. The read and write operations are conducted in two phases (see Figure 1): The first phase called
RW-Phase-1, or queryphase, is identical for both operations. In this phase the initiator of the operation queries the replica owners
in order to obtain the most recenttag and the associatedvalue. The second phase is calledRW-Phase-2, or propagationphase.
In case of a read, the initiator of this operationpropagatesthe information learned in thequeryphase. Since the aim of the write
operation is to change the value of the replica, in thepropagationphase the newtag is created which is strictly larger than the one
discovered during thequeryphase and the new value is associated with this tag. This is the information that is propagated to the
replica owners.

The termination point of each phase is determined only afterthe node conducting this operation can certify that at leastone
quorum of replica owners from each active quorum set has responded to (directly or indirectly) to its latest phase information.

4

cfg-upgrade(k) at nodei (similar to the phases of read/write operations):

• UPG-Phase-1a:Nodei chooses an indexk, such thatk is a configuration identifier that ends the prefix of the sequence of configurations
known toi, where there are zero or more configurations up to someℓ that have been marked as removed, and all configurations with
indexℓ + 1 to k are active. Next,i increments is phase number and updates itspNums with the new information, it also records current
values ofconfigs andpNums in upg .configs andupg .pNums. A message〈UPG1a, tag , val , configs,world , pNums〉 is sent byi to
all nodes in itsworld .

• UPG-Phase-1b:If nodej receives a〈UPG1a, t, v, c, w, pn〉message fromi, it performs all necessary updates based on the information
contained the message, and replies toi with 〈UPG1b, tag , val , configs,world , pNums〉.

• UPG-Phase-2a:If node i receivesm = 〈UPG1b, t, v, c, w, pn〉 message fromj, it updates its state accordingly. If based on the latest
m.pn it can determine that at least one read and one write quorum of each configuration inupg .configs has an adequately recent state
information ofi (i.e. has at least learned the phase number ofi from UPG-Phase-1a), then the first phase is complete. Then,i increments
its phase number, updatespNums and records current values ofconfigs andpNums in upg .configs andupg .pNums. Nodei sends a
〈UPG2a, tag , val , configs,world , pNums〉message to all members of itsworld .

• UPG-Phase-2b: If node j receives a〈UPG2a, t, v, c, w, pn〉 message fromi, it updates its state and replies toi with message
〈UPG2b, tag , val , configs,world , pNums〉.

• UPG-Done: If nodei receives a〈UPG2b, t, v, c, w, pn〉message and if from that messagei can determine that at least one write quorum
of configurationc(k) has an adequately recent state information ofi (i.e. has at least learned the phase number ofi from UPG-Phase-2a),
then the upgrade operation is complete. Nodei marks all configurations with identifier smaller thank as removed.

Figure 2. Description of the phases of theconfiguration upgradeprotocol.

Reconfiguration and Configuration Upgrade. The reconfiguration is performed in two steps (see Figure 2, where these steps
are similar to ones performed by the write operation). First, a new configuration is chosen by the members of the most recent
configuration. This is handled by an external service, called Recon, as in [15]. Then obsolete configurations are removed using
theconfiguration upgradeoperation. This operation upgrades a configuration at a nodeby removing every configuration with a
smaller index from itsconfigs variable. Once a configuration has been upgraded, it is responsible for maintaining the data. Note
that we assume that old configurations remain operational until they are removed. In Section 5 we describe the timing conditions
on configuration viability.

4 Proof of Atomic Consistency

In this section we formally show that ATILA implements atomic objects by applying necessary refinements on the safety proofs
of RAMBO [7]. The challenge here is to show that atomic access to the object is ensured when indirect mechanism is used. In
the following discussion we present the lemmas that required modification and only a brief discussion of the remaining lemmas
leading up to the main theorem. The omitted details may be found in the optional appendix.

4.1 Definitions and notation.
In the rest of the presentation, we consider “good” executions of the algorithm: the assumptions are that the client requests are

well-formed requests, i.e., clients follow the protocols for joining and initiating reconfiguration; clients initiate only one operation
at a time; clients wait for appropriate acknowledgments before proceeding.

We denote byα an arbitrary, good execution of the algorithm. We letπ1 andπ2 be two read or write operations that occur at
nodesi andj respectively, wherei andj are participants of ATILA service. Additionally, we assume thatπ1 completes beforeπ2

begins inα. When we do not refer to any ordering of operations we useπ to denote an arbitrary read or a write operation. Also let
γ denote the configuration upgrade operation initiated by some active participant of the service. Before proceeding withthe safety
claims we state additional definitions.

For everyπ, thequery-fix (resp.prop-fix) event occurs immediately after thequery(resp.prop) phase ofπ completes. There-
fore,query-fix point occurs at the point when nodei determines that at least one read quorum of each configuration in op-configs

has a sufficiently recent state information ofi, which happens in phaseRW-Phase-2a(Figure 1). A similar relation exists be-
tweenprop-fix andRW-Done. For every configuration upgrade operationγ, thecfg-upg-query-fix andcfg-upg-prop-fix events are
defined analogously.

Next we introduce history variables. First, thequery-cmap(π) is a mapping:N → C±, initially undefined. It is set in the
query-fix step ofπ, to the value ofop-configs in the pre-state. The history variableprop-cmap(π) is defined analogously for the
propagation phase of operationπ. Thequery-phase-start(π), initially undefined, is defined in thequery-fix step ofπ, to be the
unique earlier event at which the collection of query results was started and not subsequently restarted (the last timeop-acc set is
assigned∅). This is either inRW-Start step of a read or a write operation, or inRW-Phase-1cstep. The eventprop-phase-start(π)
is defined analogously, but with respect to the propagation phase.

For every read or write operationπ at nodei, we define the history variabletag(π) to be the value oftag i when thequery-fix

event occurs forπ at nodei. If π is a read operation thentag(π) is the largest tag that nodei encounters during the query phase.

5

If π is a write operation,tag(π) is the new tag that is chosen byi for performing the write. Similarly, for a configuration upgrade
operationγ at nodei, we definetag(γ) to be the tag at nodei (i.e., tag i) when thecfg-upg-query-fix event occurs, that is, the
largest tag encountered at nodei during the query phase ofγ.

The history variableremoval-set(γ), is defined for the configuration upgrade operationγ. It is a subset ofN, initially undefined,
and records the configuration identifiers of configurations that are marked for removal (whose identifiers are less less than the value
of upg-target for γ.) The history variablein-transit , defined as a set of all messages that are sent by any participant of the service.

Finally for any operationπ we define the history variableR(π, k), for k ∈ N, as a subset ofI, initially undefined. It is set
in the query-fix step ofπ, for eachk such thatquery-cmap(π)(k) ∈ C, to an arbitraryR ∈ read-quorums(c(k)) such that
R ⊆ op-acc in the pre-state, wherec(k) ∈ C. Similarly we defineW (π, k), for k ∈ N, to be a subset ofI, initially undefined and
set during theprop-fix step ofπ, for eachk such thatprop-cmap(π)(k) ∈ C, to an arbitraryW ∈ write-quorums(c(k)) such that
W ⊆ op-acc in the pre-state. Similarly we defineR(γ, ℓ),W1(γ, ℓ),W2(γ) for any configuration upgrade operationγ. R(γ, ℓ) and
W1(γ, ℓ) are set in thecfg-upg-query-fix step ofγ, for eachℓ ∈ removal-set(γ), to an arbitraryR ∈ read-quorums(c(ℓ)) (resp.
W ∈ write-quorums(c(ℓ)), such thatR ⊆ upg-acc(resp.W ⊆ upg-acc) in the pre-state.W2(γ) is set in thecfg-prop-query-fix

of γ to arbitraryW ∈ write-quorums(c(k)) such thatW ⊆ upg-acc in the pre-state, wherec(k) ∈ C is the target ofγ.
Note that the only updates on theCMap in various places in the system are allowed via theupdateand truncateoperations.

Hence, in any state of the executionCMap that is a part of a message that is in transit,configsi, op-configsi, query-cmap(π),
prop-cmap(π), andupg-configsi, for somei ∈ I and any operationπ, always has theUsableproperty. Moreover, aCMap that
appears asop-configsi, query-cmap(π) or prop-cmap(π), for somei ∈ I and any operationπ that has initiated a read/write
operations which has not terminated yet, always has theTruncated property. (These properties are easily described as invariants
on the service, however such formal presentation is omittedfrom this discussion.)
Phase guarantees. Lemmas presented in this section discuss the effects of query and propagation phases of read/write and
configuration upgrade operations. In more detail, we describe the information flow that must occur during these phases toallow
operation completion. We show that if nodei initiates a phase of a read/write or a configuration upgrade operation and if there
exists a specific sequence of message exchanges that starts and ends ati, then if that phase terminates,i is in possession of the
most recent tag and its value cannot be smaller than whati knew at the start of the phase. Moreover, we show that configuration
information and value of the tag at each node that participated in the examined communication sequence has specific properties.
Our claims are based on the following observation: A node send the most recent state information that includes its configuration
information, value and tag, and phase information of all service participants. By the specification of the algorithm, the receiver
of this message can only increase itstag and increment the phase information in any cell of its phase number matrix. Also,
the configuration information is updated only with a more recent one. This means that nodes may learn about configuration
information, tag, and phase information of other participants indirectly.

Note, the casej = i is treated uniformly with the case wherej 6= i. This is because, in the ATILA , communication from a loca-
tion to itself is treated uniformly with communication between two different locations. First, we consider how thetag information
is propagated in the query phase of the configuration upgradeoperation. Since the flow of information in the propagation phase is
analogous to that in the query phase of the configuration-upgrade operation, we compress two lemmas into one.

Lemma 4.1 Suppose that acfg-upg-query-fix(k)i (resp. cfg-upg-prop-fix(k)i) event for configuration upgrade operationγ
occurs in executionα and k′ ∈ removal-set(γ). Supposej ∈ R(γ, k′) ∪ W1(γ, k′) (reps. j ∈ W2(γ)). Then there ex-
ists a sequence of identifiers〈ι1, ..., ιn〉 where for all 1 ≤ h ≤ n each ιh ∈ I, and the corresponding message sequence
〈

mι1,ι2 , . . . ,mι
ĥ
,ι

ĥ+1
, . . . ,mιn−1,ιn

〉

, whereι1 = ιn = i and that there isι
ĥ

= j, for some1 < ĥ < n . Such that: (i) The

messagemι1,ι2 is sent after thecfg-upgrade(k)i (resp.cfg-upg-query-fix(k)i) event ofγ. (ii) Each messagemιh,ιh+1
is sent after

mιh−1,ιh
is received. (iii) The messagemιn−1,ιn

is received before thecfg-upg-query-fix(k)i (resp.cfg-upg-prop-fix(k)i) event of
γ. (iv) In any state afterj receivesmι

ĥ−1
,ι

ĥ
, configs(ℓ)j 6= ⊥ for all ℓ ≤ k. (v) tag(γ) ≥ t, wheret is the value oftagj in any

state beforej sends messagemι
ĥ
,ι

ĥ+1
.

Next, we consider how thetag information is propagated in the query phase of the read and write operation. Again, since the
flow of information in the propagation phase is analogous to that in the query phase, we compress two lemmas into one.

Lemma 4.2 Suppose that aquery-fixi (resp. prop-fixi) event for a read or write operationπ occurs inα. Leg k, k′ ∈ N.
Supposequery-cmap(π)(k) ∈ C and j ∈ R(π, k) (resp. prop-cmap(π)(k) ∈ C and j ∈ W (π, k)). Then there ex-
ists a sequence of identifiers〈ι1, ..., ιn〉 where for all 1 ≤ h ≤ n each ιh ∈ I, and the corresponding message sequence
〈

mι1,ι2 , . . . ,mι
ĥ
,ι

ĥ+1
, . . . ,mιn−1,ιn

〉

, whereι1 = ιn = i and that there isι
ĥ

= j, for some1 < ĥ < n. Such that: (i) The

messagemι1,ι2 is sent after thequery-phase-start(π) (resp.prop-phase-start(π)) event. (ii) Each messagemιh,ιh+1
is sent after

mιh−1,ιh
is received. (iii) The messagemιn−1,ιn

is received before thequery-fix (resp. prop-fix) event ofπ. (iv) If t is the
value of thetagj in any state beforej sendsmι

ĥ
,ι

ĥ+1
, then: (a)tag(π) ≥ t. (b) If π is a write operation thentag(π) > t.

(v) If configs(ℓ)j 6= ⊥ for all ℓ ≤ k′ (resp. ℓ < k′) in any state beforej sendmι
ĥ
,ι

ĥ+1
, thenquery-cmap(π)(ℓ) ∈ C (resp.

prop-cmap(π)(ℓ) ∈ C) for someℓ≥k′.

6

Atomicity. We show atomicity using the framework of Lemma 13.16 in [14].Recall thatα is an arbitrary, good execution of the
algorithm. We need to show that inα if all the read and write operations that are invoked complete, then the read and the write
operations can be partially ordered by an ordering≺ and the following properties are satisfied.(P1): ≺ totally orders all write
operations inα. (P2): ≺ orders every read operation inα with respect to every write operation inα. (P3): for each read operation,
if there is no preceding write operation in≺, then the initial value is returned by this read; else, the read operation returns the value
of the unique write operation immediately preceding it in≺. (P4): if some operation,π1, completes before another operation,π2,
begins inα, thenπ2 does not precedeπ1 in ≺. If such ordering≺ can be constructed forα, then the algorithm guarantees atomic
consistency.

We define≺ in terms of the lexicographic order on tags of operationsπ. Observe that(P1) to (P3) are essentially immediate.
Lemmas 4.1 and 4.2 stated above and the additional lemmas presented in [15, 7, 4], which describe the behavior of configuration
upgrade operation and read and write operations in any execution, are used to establish the monotonically increasing order on tags
with respect to non-concurrent read or write operations. Based on the tags we define a partial order on operations and verify that
property(P4) is enforced. Therefore, it follows immediately that the tags induce a partial order≺ that meets the necessary and
sufficient requirements for atomic consistency. Hence, themain result follows:

Theorem 4.3 ATILA implements atomic read/write objects.

5 Conditional Analysis of Operation Latency
In this section we examine the operation latency under similar timing assumptions as in the analysis of operations in RAMBO

presented in [15, 7, 4, 6]. The analysis is done in parts: (i) we state the connectivity properties of the service deployment graph
of ATILA , (ii) we present the new upper bound on the operation latency, and (iii) we present the expected operation latency in
the case of restricted asynchrony under reasonable assumptions of probabilistic behavior of the algorithm. The novelty of our
analysis as compared to the type of analysis done in [15, 7, 4,6] is that here we use a more realistic assumption on the duration of
message delivery. The previous analysis assumed that all messages were delivered within a fixed time interval; instead we assume
a probability distribution on the delivery time of messageswith finite variance.

ATILA is specified as a nondeterministic algorithm for asynchronous environments with arbitrary message delays and node
crashes, departures, and new nodes joining. In such dynamicenvironments it is hard to quantify the speed of informationpropa-
gation throughout the known universe of nodes. For the purpose of analysis, we restrict asynchrony, resolve the non-determinism
of the algorithm, and impose constraints sufficient to guarantee that the universe is connected.
Assumptions. Assumeα is an admissible timed execution andα′ a finite prefix ofα. Let ℓtime(α′) denote the time of the last
event inα′. Let α be atimed admissible executionthen we say thatα is anα′-normal execution if (i) no message sent inα after
α′ is lost, and (ii) if a message is sent at timet in α, it is delivered within bounded time (unknown to the participants).

For the purpose of latency analysis, we restrict the sendingpattern of the service participants: we assume that each sends
messages at the first possible time and at regular intervals of d thereafter, as measured by the local clock, and each node will
immediately send messages to all of its immediate neighborsfollowing: (i) receipt of a join request, (ii) new configuration is
discovered, and (iii) receipt of a message that indicates that phase information of any node has changed. Also, the non-send and
locally controlled events occur just once, and are assumed to be instantaneous.

As with all quorum-based algorithms, operational livenessdepends on all the nodes in some quorums remaining active. Let us
denote byt(c) the time at the end of the installation of configurationc. Observe that we can always specify such a time by using
the well-known axioms of time passage actions [14]. Also, wedenote byc′ the next configuration that has been installed after
configurationc. We say that an executionα is (α′,e,τ)-configuration-viableif for every installed configurationc, there exists a
read-quorum,R, and a write-quorum,W , such that no process inR ∪W fails or departs before timemax{t(c′) + τ, ℓtime(α′) +
e + τ}, whereτ is the time required to markc as obsolete by the first configuration upgrade operation thatupgrades configuration
with index higher than that ofc. We say that executionα satisfies(α′, τ)-recon-spacingif after α′, at least timeτ elapses between
the event that reports the new configurationc and any following event that proposes the new configurationc′. In other words,
afterα′, when the system stabilizes, reconfigurations are not too frequent. Executionα is said to satisfy(α′, e)-join-connectivity
if after α′, for any two nodes that both have joined the system at timet such thatt ≥ ℓtime(α′), they know about each other by
time t + e. Executionα satisfies(α′, τ)-recon-readinessif after α′, everyrecon(c) event proposing a new configuration includes
a nodei in c only if i joined at least timeτ ago. This, in conjunction with(α′, e)-join-connectivity, ensures that all the nodes in
active configurations are aware of each other.

Operation liveness depends on the connectivity property ofthe service deployment graph, hence we require that there isa path
between any two nodes (consisting of nodes and edges). We define the connectivity property on the service deployment graph, G,
as a timing assumption(α′)-connectivity. This means that the nodes and the direct communication links may fail, but in such a
way that the connectivity assumption is not violated.
Analysis. Now we provide analysis that estimates the duration of read (resp. write) operation when reconfiguration is present.
To make this estimate more realistic we provide minimum timing restrictions on spacing of certain events in the system and
delays on message delivery. One way of carrying out the conditional analysis is to assume fixed bounds on the delivery timeof all

7

messages as in [15, 7, 4, 6]. However, imposing rigid timing bounds on the asynchronous behavior of the assumed model (physical
deployment) is too restrictive often far from reality. A more realistic approach is to assume certain probability distribution on the
delivery time of the messages. Unfortunately, such probability distribution may be difficult to determine for a complexalgorithm
as ATILA . Under expected conditions, i.e., where the rate at which nodes join, leave, or fail and the reconfiguration of the system
is not very high, we may estimate the mean delay or the standard deviation on message delivery delay.

For the purpose of analysis we consider a non-faulty participant of the service, nodei, that locally initiates a read (resp. write)
operation. As described in Section 3, read (resp. write) operations consist of two phases. During each phase nodei must be able
to deduce from examination of its state that all members of atleast one read-quorum (resp. write-quorum) of each configuration
found inop-configsi has a good estimate ofi’s state, which is a condition to reach the fix point of the current phase.

In the analysis that follows, we consider a subgraph of the service deployment graphs that is induced by members of active
configurations. LetD represent the diameter of this graph. Now, consider some non-failed quorum member,j, such that the
length of the communication path betweeni andj is D. Note that new nodes may join the service at any time and at anyactive
participant. If a new node joined only atj and is included as a member of a configuration installed in thenext reconfiguration,
then the diameterD will increase. Therefore, we are interested in estimating the time required to complete a single phase of the
read (resp. write) operation in a situation when new nodes join the service and become members of new configuration duringthe
following reconfiguration attempt.

Suppose that the mean time required for a message delivery between any two nodes isλA with finite varianceσA
2 and the

mean time of a new member being inducted into the quorum isλB and with finite varianceσB
2. Also, we assume thatλA < λB .

Meaning that on an average it takes less time for a message to be delivered from its source to its destination than the time for a
new configuration to be proposed and installed (a reconfiguration attempt), for example1 to 12 (a timing assumption used in the
analysis of RAMBO algorithms in [15, 7, 4]). It is noteworthy that in a situation where the system is undergoing a rapid change or
behaving perversely then the above parameters may not be estimable easily or reliably.

To simplify the analysis notationally we assume the following notations. Leti = p0, p1, · · · , pD = j be a sequence of non-
failed nodes and letA andB be two pointers, such that:A initially points top0 andB initially points topD. PointerA represents
the farthest node along the communication path fromp0 to pD that has a good estimate ofi’s state. PointerB points to the quorum
member that is currently farthest fromi.

The following argument is based on the position of these pointers along the path which help us model the performance of a read
(or write). Next, we estimate the duration of a read (or write) operation that is initiated byi in the presence of reconfiguration,
according from the knowledge about the first two moments of their distributions. We assume that messages are exchanged between
adjacent nodes in the communication path within some randomamount of time according to some probability distribution,but
with the first two moments as mentioned above. Since the reconfiguration is in progress, new nodes that join at the end of the
i = p0, p1, · · · , pD = j which would result in a longer pathi = p0, p1, · · · , pj , pj+1, · · · , pD wherepD (i.e. pointerB) is a
few steps further away frompj (i.e., pj+1, · · · , pD are the newly joined nodes). The new arrivals will join at thepD, at the rate
governed by some other probability distribution, but with the first two moments known to us. For the pointerA we denote by
Xi the random variable that represents the random amount of time following the same unknown distribution, to jump from point
pℓ−1 to pℓ. We also assume that the random variablesX1,X2, . . . are identically and independently distributed. Clearly, we have
E (Xℓ) = λA andV ar (Xℓ) = σA

2 for ℓ ∈ N. Similarly, we define a set of random variablesY1, Y2, . . . that are independently
and identically distributed according to some distribution such thatE (Yℓ) = λB andV ar (Yℓ) = σB

2 for ℓ = 1, 2, . . ., whereYℓ

represents the random amount of time the pointerB takes to jump from the pointD + ℓ− 1 to D + ℓ. As mentioned before, we
assume thatλA <λB , i.e., on average the pointerA jumps more frequently than pointerB.

Definition 5.1 We say that pointerA “catches up” with pointerB by timet if ∃n,m ∈ N, n,m > D, such that,n ≥ m + D and
∑

1≤ℓ≤n Xℓ ≤
∑

1≤ℓ≤m Yℓ ≤ t.

The following Lemma quantifies the time required to perform aread/write operation, with high probability, under certain
normalbehavior, which is explained in greater detail below. Intuitively, the expected time of completion of a read/write operation
is sharply concentrated under certain reasonable well-behaved execution of ATILA .

Lemma 5.2 Suppose initially pointerA points at pointp0 and pointerB points at the pointpD thenA catches up withB by time
DλB

λB−λA
with high probability.

Now in the case of ATILA , we assume that the average time of delivering a point-to-point message isk times smaller than the
average time of a new configuration being proposed and installed. Typically, the range ofk is somewhere between 1 to 12. where
the pointerA, at any timet, represents node that is aware of the initiation of the read/write operation (by nodei) and closest to the
node pointed to byB which represents the quorum member that is currently farthest fromi. Here the distance between two nodes
is measured in terms of the length of the shortest path (possibly many) between the two nodes in the communication graph where
each edge has unit weight. Therefore, the time of deliveringa point-to-point message isλA = λB

k
whereλB is the average time of

of a new being configured and installed. From Lemma 5.2 we see that the read/write operation takesDλB

λB−λA
= kDλA

kλA−λA
= kD

k−1

to complete with high probability We say that an eventE occurs with high probability to mean thatPr[E] = 1−O(n−α) for some
constantα > 0. whereD is the diameter of the communication graph induced by the quorums.

8

The deterministic upper bound. Under assumptions stated above we consider the following worst case scenario. Leti be the
node that initiates a read or a write operation, we denote this by the progress of the first pointer in the above analysis. Atthe start
of the operation, letj be the node farthest fromi, this distance is at most the diameter of the service deployment graph at the
time wheni initiates its operation, this is referred to as the second pointer. Soon afteri initiates its operation, new nodes join the
service. The first new node connects toj and each new node may join at the last node that joined the service. In essence the nodes
that joined the service form a line. By thereconspacing assumption a new node may become a member of the next configuration
at least12d time after it joined the service.

Theorem 5.3 Let α be aα′-normal execution of theATILA that satisfies(α′, τ)-recon-spacingthen a read/write operation takes
O(N) time to complete since its invocation, whereN is the number of nodes present at the time of invocation of theoperation and
τ > ǫN , for some constantǫ.

Proof. This is clear by the existence of a sequence of identifiers〈ι1, ..., ιN 〉 of the participating nodes in ATILA , that respects the
conditions of Lemma 4.1. �

6 Analysis of communication cost inATILA

Now, we describe a scenario where the message bit cost complexity of ATILA is less than the one of RAMBO and yet the
necessary redundancy in the case of direct link failure is provided. Such a scenario can occur in a wide class of mobile systems.
The message bit cost complexity is the total cost of sending the individual bits across the links, governed by some cost function.

The RAMBO algorithm involves point-to-point perpetual dissemination of information which eventually helps to infer liveness
of the protocol. However, such approach is obviously wasteful when nodes are separated by long geographical distances.We
assume that communication within the local area networks isless expensive than in wide area networks. A more reasonable
solution to the above problem is to reduce the communicationover long distances, hence reducing the total message bit cost.

Consider the following grouping. Let the participants of the service be divided into disjoint groups based on their proximity
in terms of cost/reliability of communication among the nodes. For each group we define a non-empty subset to which we refer
as therepresentativesof the group. Within a group nodes communicate using the all-to-all gossip protocol, however only the
nodes designated as representatives may communicate with other representatives in the different groups. In this setting the indirect
learning protocol allows a reduction of message bit cost complexity. (The set of representatives may be agreed upon using an
arbitrary consensus service, and handled in a similar fusion as ATILA does the configuration reconfiguration.) Note that in this
setting the correctness issues are vacuously satisfied — we only impose a communication policy that restricts certain nodes from
sending messages to certain other nodes.

Notation. We denote the set of all nodes that are participating in the service byU and letN = |U|. Let i andj be any two
non-failed participants of the service, hencei, j ∈ U . The cost function which represents the cost of sending a message between
any pair of nodes inU is defined asχ : U × U → R

+. Hence,χ(i, j) denotes the cost of sending a message from nodei to j. We
assume thatχ(i, i) = 0 andχ(i, j) = χ(j, i) and thatχ(·, ·) satisfies the triangle inequality. Thus(U , χ) is a metric space with
the metricχ.

We partitionU into groupsG1,G2, · · · ,Gm, such that,Gι ⊆ U , ∪m
ι=1Gι = U andGι ∩ Gι′ = ∅ for 1 ≤ ι 6= ι′ ≤ m. We

also require that∀i, j ∈ Gι, χ(i, j) ≤ d and that for some1 ≤ ι 6= ι′ ≤ m there is a pair of nodesi ∈ Gι andj ∈ Gι′ such
that χ(i, j) > d, for an appropriately chosend. Finally, for every groupGι we define a subsetLι ⊆ Gι, which we call the
representativesof Gι.

Analysis of message cost.Next, we compare the communication cost complexities of theRAMBO and ATILA and show that
the use of indirect gossip can lead to substantial cost savings. Note that the following analysis does not account for thecost per
message bit contributed by the maintenance of the overlay network on which RAMBO relies on for message routing. Also, observe
that proposed here partitioning is based on the communication cost involved between each pair of nodes and hence is general from
the point of view of the distance function. LetU be partitioned intom groups, as previously described. To simplify the analysis
we assume that all groups are of equal size,|Gι| = g, and that the size of representative subgroups also has equal size,|Lι| = ℓ, for
all 1 ≤ ι ≤ m.

The gossip messages in RAMBO have the form〈tag , val , configs ,world , pnumi, pnumj〉. Clearly,|world |= |U|=N . There-
fore, the size of a message is∆ +N×δ, where∆ represent the constant size of the remaining message components andδ is the
size of a node identifier. Hence, the size of each message isO(N).

Now we compute the message bit cost complexity of ATILA . We begin by considering the following two cases: First, messages
exchanged between a non-representative nodes are of the form 〈tag , val , configs ,world , pNums[i][i], pNums [i][j]〉. Second,
messages sent out by a representative node are of the form〈tag , val , configs ,world , pNums〉. Observe that in the first case the
size of a a message isO(N) and in the second case it isO(N2).

The following equation compares the communication bit complexity per a single round of gossip in ATILA , left hand side, and
RAMBO , right hand side.

g2m(∆ + δN) + ℓm(m−1)
2

(

∆ + δ(N2 + N)
)

+ ℓ(g − ℓ)m
(

∆ + δ(N2 + N)
)

≤ N2(∆ + δN) = O(N3)

9

On left hand side, the first term is the bit complexity of the messages exchanged inside all of them groups, second term is the
bit complexity of the communication between all representatives, and the third term is the bit complexity of messages exchanged
between the representatives and the rest of the group, for each group.

Observe thatg, m, andℓ have the following relationshipsm = N/g and that1 ≤ ℓ ≤ g. Clearly ATILA benefits whenℓ
is small with respect tog. Therefore, under the assumption that the cost of communication within a group is cheaper, then if
ℓ ≤ log g andm ≤

√
N then the message bit cost complexity is minimized for ATILA , i.e. when the number of groups is not

very large and ATILA can take advantage of reducing the number of bits sent over the expensive links – between different groups.
Otherwise, RAMBO has the lesser message complexity than ATILA . However, the liveness of the RAMBO depends on the fact that
links between the nodes do not fail and messages are not indefinitely delayed.

7 Conclusions

In this work we investigate an indirect learning mechanism within a consistent replicated object service for dynamic networks
that do not support automatic routing. We provide an algorithm that implements atomic read/write objects where the participating
nodes communicate with their direct neighbors only, thus obviating the need for a global routing protocol. The indirectlearning
approach, as presented in this work, has the potential of making more robust other algorithms that, for example, employ all-
to-all gossip as means for information exchange. The algorithmic development presented here is formally proved to guarantee
atomicity in all executions. The indirect learning protocol allows operations to progress as long as the underlying network remains
connected. We also presented a novel analysis of the operational latency under reasonable assumptions about the message delivery
time. Lastly, we considered scenarios where our algorithm helps reduce messaging costs. A distributed implementationof the
algorithm presented here is underway. Experiments with theimplementation will provide further insight into the behavior of
algorithms using the indirect learning approach and the impact of our approach on communication costs in ad-hoc networks.

References

[1] Special issue on group communication services.Communications of the ACM, 39(4), 1996.

[2] J.-C. Bermond, L. Gargano, A. A. Rescigno, and U. Vaccaro.Fast gossiping by short messages. InAutomata, Languages and Programming,
pages 135–146, 1995.

[3] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. Geoquorums: Implementing atomic memory in ad hoc networks. InProc. of
17th International Symposium on Distributed Computing, pages 306–320, 2003.

[4] C. Georgiou, P. Musial, and A. Shvartsman. Long-lived RAMBO: Trading knowledge for communication. InProc. of 11th Colloq. on
Structural Information and Communication Complexity, pages 185–196, 2004.

[5] C. Georgiou, P. Musiał, and A. Shvartsman. Developing a consistent domain-oriented distributed object service. InProc. 4th IEEE Int-l
Symposium on Network Computing and Applications, pages 149–158, July 2005.

[6] S. Gilbert. RAMBO II: Rapidly reconfigurable atomic memory for dynamic networks. Master’s thesis, MIT, August 2003.

[7] S. Gilbert, N. Lynch, and A. Shvartsman. RAMBO II: Rapidly reconfigurable atomic memory for dynamic networks. InProc. of Interna-
tional Conference on Dependable Systems and Networks, pages 259–268, 2003.

[8] V. Gramoli, P. Musiał, and A. Shvartsman. Operation liveness in a dynamic distributed atomic data service with efficient gossip manage-
ment. InProc. 18th International Conference on Parallel and Distributed Computing Systems, August 2005.

[9] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless networks. InKluwer Academic.

[10] I. Keidar, J. B. Sussman, K. Marzullo, and D. Dolev. Moshe: A group membership service for wans.ACM Trans. Comput. Syst., 20(3):191–
238, 2002.

[11] S. Khuller, Y. Kim, and Y. Wan. On generalized gossiping and broadcasting, 2003.

[12] K. Konwar, P. Musial, N. Nicolaou, and A. Shvartsman. Implementing atomic data through indirect learning in dynamic networks, 2005.
http://www.cse.uconn.edu/ ˜ piotr/pubs/TRs/KMNS06.ps .

[13] L. Lamport. The part-time parliament.ACM Transactions on Computer Systems, 16(2):133–169, 1998.

[14] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[15] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable atomic memory service for dynamic networks. InProc. of 16th International
Symposium on Distributed Computing, pages 173–190, 2002.

[16] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. Technical report, 1987.

[17] N. Malpani, J. L. Welch, and N. Vaidya. Leader election algorithms for mobile ad hoc networks. InDIALM ’00: Proceedings of the 4th
international workshop on Discrete algorithms and methods for mobile computing and communications, pages 96–103. ACM Press, 2000.

[18] V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm for mobile wireless networks. InProc. of IEEE INFOCOM,
April 1997.

10

[19] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-vector routing (dsdv) for mobile computers. InProc. of
ACM SIGCOMM, August 1994.

[20] C. E. Perkins and E. M. Royer. Ad hoc on-demand distance vector routing. InProc. of IEEE WMCSA, February 1999.

11

Appendix

7.1 A. Atomic Consistency ofATILA

In this section we present the omitted details of proofs of lemmas presented in Section 4.

Definitions. We introduce another operation that allowed on theCMap. It is a binary function onC±, for any c, c′ ∈ C±,
defined byextend(c, c′) = c′ if c = ⊥ andc′ ∈ C, andextend(c, c′) = c otherwise.

Configuration map invariants. Invariants are the properties of the algorithm that are truein every state of any good execution.
Here we state two invariants. The first invariant describes the patterns ofC,⊥, and± values that may occur in configuration maps
in various places in the system in any state. The variablesupg-configs is defined similarly asop-configs and is used to maintain
the list of configurations used during the configuration upgrade operation.
Invariant 1 [Inv. 4.3.3 in [7]] Let cm be aCMap that appears as one of the following: (i) Thecm component of some message
in in-transit. (ii) configsi for any i ∈ I. (iii) op-configsi for somei ∈ I that has initiated a read/write operations which has
not terminated yet. (iv)query-cmap(π) or prop-cmap(π) for any operationπ. (v) upg-configsi for somei ∈ I that initiated
configuration upgrade operation which has not terminated yet. Thencm ∈ Usable.

Invariant 1 ensures that the configuration map in each of the listed places has theUsable property, which describes the patten
of configurations. The next invariant strengthens Invariant 1 and states additional properties of theCMaps that are used for read
and write operations.
Invariant 2 [Inv. 4.3.4 in [7]] Let cm be aCMap that appears asop-configsi for somei ∈ I that has initiated a read/write
operations which has not terminated yet, or asquery-cmap(π) or prop-cmap(π) for any operationπ. Thencm ∈ Truncated .

Invariant 2 ensures that the configuration map used during read and write operations has no gaps in it, i.e. has theTruncated

property. Upon detection of a gap in the local configuration map, the operation is restarted as to take advantage of the new
configuration information.

Omitted proofs of referenced Lemmas.

Lemma 7.1 Suppose that acfg-upg-query-fix(k)i event for configuration upgrade operationγ occurs in α and k′ ∈
removal-set(γ). Supposej ∈ R(γ, k′) ∪W1(γ, k′).
Then there exists a sequence of identifiers〈ι1, ..., ιn〉 where for all1 ≤ h ≤ n eachιh ∈ I, and the corresponding message

sequence
〈

mι1,ι2 , . . . ,mι
ĥ
,ι

ĥ+1
, . . . ,mιn−1,ιn

〉

, whereι1 = ιn = i and that there isι
ĥ

= j, for some1 < ĥ < n . Such that:

1. The messagemι1,ι2 is sent after thecfg-upgrade(k)i event ofγ.
2. Each messagemιh,ιh+1

is sent aftermιh−1,ιh
is received.

3. The messagemιn−1,ιn
is received before thecfg-upg-query-fix(k)i event ofγ.

4. In any state afterj receivesmι
ĥ−1

,ι
ĥ
, configs(ℓ)j 6= ⊥ for all ℓ ≤ k.

5. tag(γ) ≥ t, wheret is the value oftagj in any state beforej sends messagemι
ĥ
,ι

ĥ+1
.

Proof. The phase number discipline implies the existence of the claimed sequence of messages
〈

mι1,ι2 , . . . ,mι
ĥ
,ι

ĥ+1
, . . . ,mιn−1,ιn

〉

.

For Part 4, individually consider eachh in the range2 ≤ h ≤ n. The precondition ofcfg-upgrade(k) implies that, when the
cfg-upgrade(k)i event ofγ occurs,configs(ℓ)i 6= ⊥ for all ℓ ≤ k. Therefore, each node whose identifier is found in the sequence
〈ι2, . . . , ιn〉, which includesι

ĥ
= j, setsconfigs(ℓ)j 6= ⊥ for all ℓ ≤ k when it receives the messagemιh−1,ιh

. Monotonicity of
configsh, for each1 ≤ h ≤ n includingj, ensures that this property persists forever.

For Part 5, consider eachh in the range1 ≤ h ≤ n − 1. Let tιh
be the value oftagιh

in any state beforeιh sends message
mιh,ιh+1

. Let t′ιh
be the value oftag ιh

in the state just afterιh sendsmιιh
,ιιh+1

. Thentιh
≤ t′ιh

, by monotonicity. Hence,
tι1 ≤ t′ιn−1

. The tag component ofmιn−1,ιn
is equal tot′ιn−1

, by the code forsend. Sincei receives this message before the
cfg-upg-query-fix(k)i, it follows thattag(γ) is set byi to a value≥ t. �

Next, we consider the propagation phase of a configuration upgrade.

Lemma 7.2 Suppose that acfg-upg-prop-fix(k)i event for a configuration upgrade operationγ occurs inα. Suppose thatj ∈
W2(γ).
Then there exists a sequence of identifiers〈ι1, ..., ιn〉 where for all1 ≤ h ≤ n eachιh ∈ I, and the corresponding message

sequence
〈

mι1,ι2 , . . . ,mι
ĥ
,ι

ĥ+1
, . . . ,mιn−1,ιn

〉

, whereι1 = ιn = i and that there isι
ĥ

= j, for some1 < ĥ < n . Such that:

1. The messagemι1,ι2 is sent after thecfg-upg-query-fix(k)i event ofγ.
2. Each messagemιh,ιh+1

is sent aftermιh−1,ιh
is received.

3. The messagemιn−1,ιn
is received before thecfg-upg-prop-fix(k)i event ofγ.

12

4. In any state afterj receivesmι
ĥ−1

,ι
ĥ
, tagj ≥ tag(γ).

Proof. The phase number discipline implies the existence of the claimed sequence of messages
〈

mι1,ι2 , . . . ,mι
ĥ
,ι

ĥ+1
, . . . ,mιn−1,ιn

〉

.

For Part 4, whenj receivesmι
ĥ−1

,ι
ĥ
, it setstagj to be≥ tag(γ). Monotonicity oftagj ensures that this property persists in

later states. �

Next, we consider the query phase of read/write operations.

Lemma 7.3 Suppose that aquery-fixi event for a read or write operationπ occurs in α. Leg k, k′ ∈ N. Suppose
query-cmap(π)(k) ∈ C andj ∈ R(π, k).
Then there exists a sequence of identifiers〈ι1, ..., ιn〉 where for all1 ≤ h ≤ n eachιh ∈ I, and the corresponding message

sequence
〈

mι1,ι2 , . . . ,mι
ĥ
,ι

ĥ+1
, . . . ,mιn−1,ιn

〉

, whereι1 = ιn = i and that there isι
ĥ

= j, for some1 < ĥ < n . Such that:

1. The messagemι1,ι2 is sent after thequery-phase-start(π) event.
2. Each messagemιh,ιh+1

is sent aftermιh−1,ιh
is received.

3. The messagemιn−1,ιn
is received before thequery-fix event ofπ.

4. If t is the value of thetagj in any state beforej sendsm′
ι
ĥ
,ι

ĥ+1
, then:

(a) tag(π) ≥ t.
(b) If π is a write operation thentag(π) > t.

5. If configs(ℓ)j 6=⊥ for all ℓ≤k′ in any state beforej sendmι
ĥ
,ι

ĥ+1
, thenquery-cmap(π)(ℓ) ∈ C for someℓ≥k′.

Proof. The phase number discipline implies the existence of the claimed sequence of messages
〈

mι1,ι2 , . . . ,mι
ĥ
,ι

ĥ+1
, . . . ,mιn−1,ιn

〉

.

For Part 4, individually consider eachh in the range1 < h < n. Thetag component of messagemιh,ιh+1 is at least as great
as thetag component in the messagemιh−1,ιh. Hence, in the messagemιn−1,ιn

and during the query phase ofπ nodei receives a
tag≥ t. Therefore,tag(π) ≥ t. Also, if π is a write, the effects of thequery-fix imply thattag(π) > t.

Finally, we show Part 5. In thecm component of messagemι
ĥ
,ι

ĥ+1
, cm(ℓ) 6= ⊥ for all ℓ ≤ k′. Then by the code ofrecv code

eachh, whereĥ < h < n, sets itsconfigs(ℓ)h 6= ⊥ for all ℓ ≤ k′, from the property ofconfigsh−1 and the code ofsend action.
Hence, we conclude thatcm component of messagemιn−1,ιn

hascm(ℓ) 6= ⊥ for all ℓ ≤ k′. Therefore,truncate(cm)(ℓ) = cm(ℓ)
for all ℓ ≤ k′, sotruncate(cm) 6= ⊥ for all ℓ ≤ k′.

Let cm′ be the configuration mapextend(op.configsi, truncate(cm)) computed byi during the effects of therecv event
for mιn−1,ιn

. Sincei does not resetop.acc to ∅ in this step, by definition of thequery-phase-start(π) event, it follows that
cm′ ∈ Truncated , andcm′ is the value ofop.configsi just after therecv step.

Fix ℓ, 0 ≤ ℓ ≤ k′. We claim thatcm′(ℓ) 6= ⊥. We consider cases:
1. op.configs(ℓ)i 6= ⊥ just before therecv step. Then the definition ofextend implies thatcm′ 6= ⊥, as needed.
2. op.configs(ℓ)i = ⊥ just before therecv step andtruncate(cm)(ℓ) ∈ C. Then the definition ofextend implies that

cm′(ℓ) ∈ C, which implies thatcm′(ℓ) 6= ⊥, as needed.
3. op.configs(ℓ)i = ⊥ just before therecv step andtruncate(cm)(ℓ) /∈ C. Sincetruncate(cm))(ℓ) 6= ⊥, it follows that

truncate(cm)(ℓ) /∈ C. By the case assumption,op.configs(ℓ)i = ⊥ just before therecv step. Since by Invariant 2,
op.configsi ∈ Truncated , it follows thatop.configs(ℓ′) = ⊥ before therecv step. Then by definition ofextend , we have
that cm′(ℓ) = ⊥ while cm′(ℓ) ∈ C. This implies thatcm′ /∈ Truncated , which contradicts the fact, already shown,that
cm′ ∈ Truncated . So this case cannot arise.

Since this argument holds for allℓ, 0 ≤ ℓ ≤ k′, it follows thatcm′(ℓ) 6= ⊥ for all ℓ ≤ k′. Sincecm′(ℓ) 6= ⊥ for all ℓ ≤ k′,
Invariant 1 implies thatcm′ ∈ Usable, which implies by definition ofUsable that cm′(ℓ) ∈ C for someℓ ≥ k′. That is,
op.configsi(ℓ) ∈ C for someℓ ≥ k′ immediately after therecv step. This implies thatquery-cmap(π)(ℓ) ∈ C for someℓ ≥ k′,
as needed. �

And finally, we consider the propagation phase of read and write operations.

Lemma 7.4 Suppose that aprop-fixi event for a read or a write operationπ occurs inα. Supposeprop-cmap(π)(k) ∈ C and
j ∈W (π, k).
Then there exists a sequence of identifiers〈ι1, ..., ιn〉 where for all1 ≤ h ≤ n eachιh ∈ I, and the corresponding message

sequence
〈

mι1,ι2 , . . . ,mι
ĥ
,ι

ĥ+1
, . . . ,mιn−1,ιn

〉

, whereι1 = ιn = i and that there isι
ĥ

= j, for some1 < ĥ < n . Such that:

1. The messagemι1,ι2 is sent after thev-phase-start(π) event.
2. Each messagemιh,ιh+1

is sent aftermιh−1,ιh
is received.

13

3. The messagemιn−1,ιn
is received before theprop-fix event ofπ.

4. In any state afterj receivesmι
ĥ−1

,ι
ĥ
, tagj ≥ tag(π).

5. If configs(ℓ)j 6=⊥ for all ℓ<k′ in any state beforej sendsmι
ĥ
,ι

ĥ+1
, thenprop-cmap(π)(ℓ) ∈ C for someℓ≥k′.

Proof. The phase number discipline implies the existence of the claimed sequence of messages
〈

mι1,ι2 , . . . ,mι
ĥ
,ι

ĥ+1
, . . . ,mιn−1,ιn

〉

.

For Part 4, individually consider eachh in the range1 < h < n. Let th be the value of atag at nodeh just beforeh receives
mιh−1,ιh

andt′h afterh receivedmιh−1,ιh
. From the code ofrecv we know thatt′h ≥ th. It is easy to see thatt′n ≥ t1, hence

t′ι
ĥ

≥ t1. Let mι1,ι2 .tag be thetag field of messagemι1,ι2 . Sincemι1,ι2 is sent after theprop-phase-start(π) event, which is not
earlier than thequery-fixi, it must be thatmι1,ι2 .tag ≥ tag(π). Therefore, by the effects of therecv, just afterj receivesmι

ĥ−1
,ι

ĥ
,

tagj ≥ mι1,ι2 .tag ≥ tag(π). Then monotonicity oftagj implies thattagj ≥ tag(π) in any state afterj receivesmι
ĥ−1

,ι
ĥ
.

For Part 5, the proof is analogous to the proof of part 5 of Lemma 7.3. In fact, it is identical except for the final conclusion,
which now says thatprop-cmap(π)(ℓ) ∈ C for someℓ ≥ k′. �

Using the above lemmas in conjunction with those presented in [7, 4] we arrive at the main result of this work.

Theorem 7.5 ATILA implements atomic read/write objects.

Proof.[(sketch)] Follows that of Theorem 5.4.3 of [6], where the above Lemmas7.1, 7.2, 7.3, and 7.4 are used in place of Lemmas
4.4.1, 4.4.2, 4.4.3, and 4.4.4 in [6] respectively. �

14

7.2 B. Complete Specification ofATILA

In this section we present the complete code listing of ATILA algorithm, which includes the following published improve-
ments [7, 4, 5]. Recall that in [7] a new rapid reconfigurationservice is proposed that allows removal of multiple configurations
during a single configuration upgrade operation. In [4] a long-lived version of the RAMBO service is presented, where explicit
leave protocol and incremental gossip mechanism improve performance of the service by substantially reducing the number and
size of state messages exchanged by theReader-Writerautomata. Finally, an efficient implementation of a multi object RAMBO

service is presented in [5]. The user groups all of the related objects into a domain, which is maintained by a single instance of the
RAMBO algorithm per participating node. Note that the same techniques used to extend RAMBO to the domain-RAMBO are used
to extend specification of ATILA to the domain-ATILA . Also, the methods used to show that domain-RAMBO implements atomic
read/write objects can be used to show that the same is true ofdomain-ATILA .

The IOA specification of ATILA components is in the following order: (i) first we present theJoiner component, (ii)Reader-
Writer component follows, and (iii) we conclude with the specification of theReconcomponent.

Domains:
I, a set of processes
D, a set of domains
Xd, a set of object identifiers from domaind, whered ∈ D

Vd,x, a set of legal values of objectx from domaind, wherex ∈ Xd andd ∈ D

C, a set of configurations, each consisting of members, read-quorums, and write-quorums

Input:
join(rambo, J)d,i, J a finite subset ofI − {i}, i ∈ I, such that ifi = i0 thenJ = ∅, d ∈ D

read(x)d,i, i ∈ I, x ∈ Xd, d ∈ D

write(x, v)d,i, v ∈ V , i ∈ I, x ∈ Xd, d ∈ D

recon(c, c′)d,i, c, c′ ∈ C, i ∈ members(c), i ∈ I, d ∈ D

leaved,i, i ∈ I, d ∈ D

faild,i, i ∈ I, d ∈ D

Output:
join-ack(rambo)d,i, i ∈ I, d ∈ D

read-ack(x, v)d,i, v ∈ V , i ∈ I, x ∈ Xd, d ∈ D

write-ack(x)d,i, i ∈ I, x ∈ Xd, d ∈ D

recon-ack(b)d,i, b ∈ {ok, nok}, i ∈ I, d ∈ D

report(c)d,i, c ∈ C, i ∈ I, d ∈ D

Figure 3. RAMBOd: External signature.

15

Signature:
Input:

join(rambo, J)d,i, J a finite subset ofI − {i}, d ∈ D

join-ack(r)d,i, r ∈ {recon, rw}, d ∈ D

leaved,i, d ∈ D

faild,i, d ∈ D

Output:
send(join)d,i,j , j ∈ I − {i}, d ∈ D

join(r)d,i, r ∈ {recon, rw}, d ∈ D

join-ack(rambo)d,i, d ∈ D

State:
status ∈ {idle, joining, active}, initially idle

child-status ∈ {recon, rw} → {idle, joining, active}, initially everywhereidle

hints ⊆ I, initially ∅
failed , a Boolean, initiallyfalse

Transitions:
Input join(rambo, J)d,i

Effect:
if ¬failed then
if status = idle then
status ← joining

hints ← J

Input join-ack(r)d,i

Effect:
if ¬failed then
if status = joining then
child-status(r)← active

Input leaved,i

Effect:
failed ← true

Input faild,i

Effect:
failed ← true

Output join(r)d,i

Precondition:
¬failed
status = joining

child-status(r) = idle

Effect:
child-status(r)← joining

Output join-ack(rambo)d,i

Precondition:
¬failed
status = joining

∀r ∈ {recon, rw} : child-status(r) = active

Effect:
status ← active

Output send(join)d,i,j

Precondition:
¬failed
status = joining

j ∈ hints

Effect:
none

Figure 4. Joinerd,i: Signature, state, and transitions

16

Signature:
Input:

read(x)d,i, x ∈ Xd, d ∈ D

write(x, v)d,i, v ∈ V , x ∈ Xd, d ∈ D

new-config(c, k)d,i, c ∈ C, k ∈ N
+, d ∈ D

recv(join)d,j,i, j ∈ I − {i}, d ∈ D

recv(mx)d,j,i, m ∈M , j ∈ I, x ∈ Xd, d ∈ D

join(rw)d,i, d ∈ D

leaved,i, d ∈ D

faild,i, d ∈ D

Output:
join-ack(rw)d,i, d ∈ D

read-ack(x, v)d,i, v ∈ V , x ∈ Xd, d ∈ D

write-ack(x)d,i, x ∈ Xd, d ∈ D

send(mx)d,i,j , m ∈M , j ∈ I, x ∈ Xd, d ∈ D

Internal:
query-fix(x)d,i, x ∈ Xd, d ∈ D

prop-fix(x)d,i, x ∈ Xd, d ∈ D

cfg-upgrade(k)d,i, k ∈ N
+, d ∈ D

cfg-upg-query-fix(k)d,i, k ∈ N, d ∈ D

cfg-upg-prop-fix(k)d,i, k ∈ N, d ∈ D

cfg-upgrade-ack(k)d,i, k ∈ N, d ∈ D

State:
status ∈ {idle, joining, active}, initially idle

world , a finite subset ofI, initially ∅
leave-world , a finite subset ofI, initially ∅
departed , a finite subset ofI, initially ∅
value(x) ∈ Vx, x ∈ Xd, initially ∀x ∈ Xd : value(x) = (v0)x

tag ∈ X → T , initially ∀x ∈ Xd : tag(x) = (0, i0)
configs ∈ CMap, initially configs(0) = c0, configs(k) = ⊥ for k ≥ 1
igpnum1 ∈ N, initially 0
igpnum2 ∈ I × I → N, initially everywhere0
pnum1 ∈ Xd → N, initially ∀x ∈ Xd : pnum1 (x) = 0
pnum2 ∈ I × I ×Xd → N, initially ∀x ∈ Xd, ∀j, k ∈ I, wherej 6= i ∧ k 6= i : pnum2 (j, k, x) = 0
failed , a Boolean, initiallyfalse

op(x), an array of records (one for each objectx ∈ Xd) with fields:
type ∈ {read, write}
phase ∈ {idle, query, prop, done}, initially idle

pnum ∈ N

configs ∈ CMap

acc, a finite subset ofI
value ∈ Vx

upg , a record with fields:
phase ∈ {idle, query, prop}, initially idle

pnum(x) ∈ N, ∀x ∈ Xd : pnum(x) = 0
configs ∈ CMap

acc(x), a finite subset ofI, ∀x ∈ Xd

target ∈ N

ig ∈ IGMap, initially ∀k ∈ I:
ig(k).w-known = ∅
ig(k).w-unack = ∅
ig(k).d-known = ∅
ig(k)k .d-unack = ∅
ig(k).p-ack = 0

Figure 5. Reader-Writerd,i: Signature and state

17

Input join(rw)d,i

Effect:
if ¬failed then
if status = idle then
if i = i0 then
status ← active

else
status ← joining

world ← world ∪ {i}

Input recv(join)d,j,i

Effect:
if ¬failed then
if status 6= idle then
world ← world ∪ {j}

Input faild,i

Effect:
failed ← true

Output join-ack(rw)d,i

Precondition:
¬failed
status = active

Effect:
none

Figure 6. Reader-Writerd,i: Join-related and failure transitions

Output send(〈W, D, obj, v, t, cm, igns, ignr, pnc〉)d,i,j

Precondition:
¬failed
status = active

x ∈ Xd

j ∈ (world − departed)
W = world − ig(j).w-known

D = departed − ig(j).d-known

〈obj, v, t〉 =
〈x, value(x), tag(x, j)〉
〈cm, igns, ignr, pnc〉 =
〈configs, igpnum1 (x), igpnum2 (x, j), pnum2 〉

Effect:
igpnum1 ← igpnum1 + 1

Input recv(leave)d,i,j

Effect:
if ¬failed ∧ status = active then
departed ← departed ∪ {j}

Output send(leave)d,i,j

Precondition:
j ∈ leave-world

Effect:
leave-world ← leave-workd − {j}

Input recv(〈W, D, obj, v, t, cm, igns, ignr, pnc〉)d,j,i

Effect:
if ¬failed ∧ status 6= idle then
status ← active

world ← world ∪W
departed ← departed ∪D
pnum2 ← max(pnum2 , pnc)
ig(j).w-known ← ig(j).w-known ∪W
ig(j).w-unack ← ig(j).w-unack −W
ig(j).d-known ← ig(j).d-known ∪D
ig(j).d-unack ← ig(j).d-unack −D
if ignr > ig(j).p-ack then
ig(j).w-known ←

ig(j).w-known ∪ ig(j).w-unack

ig(j).w-unack ← world − ig(j).w-known

ig(j).d-known ←
ig(j).d-known ∪ ig(j).d-unack

ig(j).d-unack ← departed − ig(j).d-known

ig(j).p-ack ← igpnum1

if t > tag(obj) then
(value(obj), tag(obj))← (v, t)

configs ← update(configs, cm)
for k ∈ world ∧ x ∈ Xd do
pnum2 (i, k, x)← max(pnum2 (·, k, x))
if op(x).phase ∈ {query, prop} then
if pnum2 (k, i, x) ≥ op(x).pnum then
op(x).configs ←

extend(op(x).configs, truncate(cm))
if op(x).configs ∈ Truncated then

op(x).acc ← op(x).acc ∪ {j}
else

pnum1 (x)← pnum1 (x) + 1
op(x).acc ← ∅
op(x).configs ← truncate(configs)

if upg.phase∈{query, prop} then
if pnum2 (k, i, x)≥upg.pnum(x) then
upg.acc(obj)← upg.acc(x) ∪ {k}

Figure 7. Reader-Writeri: Transitions of send and receive actions

18

Input leaved,i

Effect:
if 6= failed then
failed ← true

departed ← departed − {i}
leave-world ← world − departed

Input new-config(c, k)d,i

Effect:
if ¬failed ∧ status 6= idle then
configs(k)← update(configs(k), c)

Input read(x)d,i

Effect:
if ¬failed ∧ status 6= idle then
pnum1 (x)← pnum1 (x) + 1
op(x).pnum ← pnum1 (x)
op(x).type ← read

op(x).phase ← query

op(x).cmp ← truncate(cmap)
op(x).acc ← ∅

Input write(x, v)d,i

Effect:
if ¬failed ∧ status 6= idle then
pnum1 (x)← pnum1 (x) + 1
op(x).pnum ← pnum1 (x)
op(x).type ← write

op(x).phase ← query

op(x).cmp ← truncate(cmap)
op(x).acc ← ∅
op(x).value ← v

Internal restart(x)d,i

Precondition:
¬failed
status = active

op(x).phase 6= idle

Effect:
pnum1 (x)← pnum1 (x) + 1
op(x).pnum ← pnum1 (x)
op(x).configs ← truncate(configs)
op(x).acc ← ∅

Internal query-fix(x)d,i

Precondition:
¬failed
status = active

op(x).type ∈ {read, write}
op(x).phase = query

∀k ∈ N, c ∈ C : (op(x).configs(k) = c)
⇒ (∃R ∈ read-quorums(c) : R ⊆ op(x).acc)

Effect:
if op(x).type = read then

op(x).value ← value(x)
else

value(x)← op(x).value
tag(x)← 〈tag(x).seq + 1, i〉

pnum1 (x)← pnum1 (x) + 1
op(x).pnum ← pnum1 (x)
op(x).phase ← prop

op(x).configs ← truncate(configs)
op(x).acc ← ∅

Internal prop-fix(x)d,i

Precondition:
¬failed
status = active

op(x).type ∈ {read, write}
op(x).phase = prop

∀k ∈ N, c ∈ C : (op(x).configs(k) = c)
⇒ (∃W ∈ write-quorums(c) : W ⊆op(x).acc)

Effect:
op(x).phase = done

Output read-ack(x, v)d,i

Precondition:
¬failed
status = active

op(x).type = read

op(x).phase = done

v = op(x).value
Effect:

op(x).phase = idle

Output write-ack(x)d,i

Precondition:
¬failed
status = active

op(x).type = write

op(x).phase = done

Effect:
op(x).phase = idle

Figure 8. Reader-Writeri: Transitions pertaining to read/write operations and to le ave and new configuration
notification actions

19

Internal cfg-upgrade(k)d,i

Precondition:
¬failed
status = active

upg .phase = idle

configs(k) ∈ C

∀l ∈ N, l < k : configs(l) 6= ⊥
Effect:

for all x ∈ Xd do
pnum1 (x)← pnum1 (x) + 1
upg .pnum(x)← pnum1 (x)
upg .acc(x)← ∅

upg .phase ← query

upg .configs ← configs

upg .target ← k

Internal cfg-upgrade-ack(k)d,i

Precondition:
¬failed
status = active

upg .target = k

∀l ∈ N, l < k : configs(l) = ±
Effect:

upg .phase = idle

Internal cfg-upg-query-fix(k)d,i

Precondition:
¬failed
status = active

upg .phase = query

upg .target = k

∀l ∈ N, l < k : upg .configs(l) ∈ C

⇒ ∃R ∈ read-quorums(upg .configs(l)) :
∃W ∈ write-quorums(upg .configs(l)) :
R ∪W ⊆ upg .acc(x), ∀x ∈ Xd

Effect:
for all x ∈ Xd do
pnum1 (x)← pnum1 (x) + 1
upg .pnum(x)← pnum1 (x)
upg .acc(x)← ∅

upg .phase ← prop

Internal cfg-upg-prop-fix(k)d,i

Precondition:
¬failed
status = active

upg .phase = prop

upg .target = k

∃W ∈ write-quorums(upg .configs(k + 1)) :
W ⊆ upg .acc, ∀x ∈ Xd

Effect:
for l ∈ N : l < k do

configs(l)← ±

Figure 9. Reader-Writerd,i: Configuration-Management transitions

Input:
init(v)d,k,c,i, v∈V , i ∈ members(c), d ∈ D

leaved,i, i ∈ members(c), d ∈ D

faild,i, i ∈ members(c), d ∈ D

Output:
decide(v)d,k,c,i, v∈V , i∈members(c), d ∈ D

Figure 10. Cons(k, c, d): External signature

Input:
join(recon)d,i, i∈I, d∈D

recon(c, c′)d,i, c, c′∈C, i ∈ members(c), d∈D

leavei, i ∈ I, d ∈ D

faili, i ∈ I, d ∈ D

Output:
join-ack(recon)d,i, i ∈ I, d ∈ D

recon-ack(b)d,i, b ∈ {ok, nok}, i ∈ I, d ∈ D

report(c)d,i, c ∈ C, i ∈ I, d ∈ D

new-config(c, k)d,i, c∈C, k∈N
+, i∈I, d∈D

Figure 11. Recond,i: External signature

20

Signature:
Input:

join(recon)d,i, d ∈ D
recon(c, c′)d,i, c, c

′ ∈ C, i ∈ members(c), d ∈ D
decide(c)k,d,i, c ∈ C, k ∈ N

+, d ∈ D
recv(〈config, c, k〉)d,j,i, c ∈ C, k ∈ N

+,
i ∈ members(c), j ∈ I − {i}, d ∈ D

recv(〈init, c, c′, k〉)d,j,i, c, c′ ∈ C, k ∈ N
+,

i, j ∈ members(c), j 6= i, d ∈ D
leaved,i, d ∈ D
faild,i, d ∈ D

Output:
join-ack(recon)d,i, d ∈ D
new-config(c, k)d,i, c ∈ C, k ∈ N

+, d ∈ D
init(c, c′)d,k,i, c, c′ ∈ C, k ∈ N

+,
i ∈ members(c), d ∈ D

recon-ack(b)d,i, b ∈ {ok, nok}, d ∈ D
report(c)d,i, c ∈ C, d ∈ D
send(〈config, c, k〉)d,i,j , c ∈ C, k ∈ N

+,
j ∈ members(c)− {i}, d ∈ D

send(〈init, c, c′, k〉)d,i,j , c, c′ ∈ C, k ∈ N
+,

i, j ∈ members(c), j 6= i, d ∈ D

State:
status ∈ {idle, active}, initially idle.
rec-cmap ∈ CMap, initially rec-cmap(0) = c0

andrec-cmap(k) = ⊥ for all k 6= 0.
did-new-config ⊆ N

+, initially ∅
reported ⊆ C, initially ∅

op-status ∈ {idle, active}, initially idle

op-outcome ∈ {ok, nok,⊥}, initially ⊥
cons-data ∈ (N+ → (C × C)), initially everywhere⊥
did-init ⊆ N

+, initially ∅
failed , a Boolean, initiallyfalse

Figure 12. Recond,i: Signature and state

21

Input join(recon)d,i

Effect:
if ¬failed ∧ status = idle then
status ← active

Output join-ack(recon)d,i

Precondition:
¬failed
status = active

Effect:
none

Output new-config(c, k)d,i

Precondition:
¬failed
status = active

rec-cmap(k) = c
k /∈ did-new-config

Effect:
did-new-config ← did-new-config ∪ {k}

Output send(〈config, c, k〉)d,i,j

Precondition:
¬failed
status = active

rec-cmap(k) = c
Effect:

none

Input recv(〈config, c, k〉)d,j,i

Effect:
if ¬failed ∧ status = active then
rec-cmap(k)← c

Output report(c)d,i

Precondition:
¬failed
status = active

c = rec-cmap(k)
∀ℓ > k : rec-cmap(ℓ) = ⊥
c 6∈ reported

Effect:
reported ← reported ∪ {c}

Input recon(c, c′)d,i

Effect:
if ¬failed ∧ status = active then
op-status ← active

let k = max({ℓ : rec-cmap(ℓ) ∈ C})
if c = rec-cmap(k) ∧ cons-data(k + 1) = ⊥ then
cons-data(k + 1)← 〈c, c′〉
op-outcome ← ⊥

else
op-outcome ← nok

Output init(c′)d,k,c,i

Precondition:
¬failed
status = active

cons-data(k) = 〈c, c′〉
if k ≥ 1 thenk − 1 ∈ did-new-config

k 6∈ did-init

Effect:
did-init ← did-init ∪ {k}

Output send(〈init, c, c′, k〉)d,i,j

Precondition:
¬failed
status = active

cons-data(k) = 〈c, c′〉
k ∈ did-init

Effect:
none

Input recv(〈init, c, c′, k〉)d,j,i

Effect:
if ¬failed then
if status = active then
if rec-cmap(k − 1) = ⊥ then
rec-cmap(k − 1)← c

if cons-data(k) = ⊥ then
cons-data(k)← 〈c, c′〉

Input decide(c′)d,k,c,i

Effect:
if ¬failed then
if status = active then
rec-cmap(k)← c′

if op-status = active then
if cons-data(k) = 〈c, c′〉 then
op-outcome ← ok

else
op-outcome ← nok

Output recon-ack(b)d,i

Precondition:
¬failed
status = active

op-status = active

op-outcome = b
Effect:

op-status = idle

Input faili
Effect:

failed ← true

Figure 13. Recond,i: Transitions.

22

