
Dynamic Load Balancing
with Group Communication

(Extended Abstract)

S. DOLEV
Ben-Gurion University, Israel

R. SEGALA
Università di Bologna, Italy

A. SHVARTSMAN
University of Connecticut and MIT, USA

Abstract

This work considers the problem of efficiently performing a set of tasks
using a network of processors in the setting where the network is subject to
dynamic reconfigurations, including partitions and merges. A key challenge
for this setting is the implementation of dynamic load balancing that reduces
the number of tasks that are performed redundantly because of the reconfigu-
rations. We explore new approaches for load balancing in dynamic networks
that can be employed by applications using a group communication service.
The group communication services that we consider include a membership
service (establishing new groups to reflect dynamic changes) but does not in-
clude maintenance of a primary component. For the n-processor, n-task load
balancing problem defined in this work, the following specific results are ob-
tained.

For the case of fully dynamic changes including fragmentation and
merges we show that the termination time of any on-line task assignment al-
gorithm is greater than the termination time of an off-line task assignment
algorithm by a factor greater than n=12.

We present a load balancing algorithm that guarantees completion of all
tasks in all fragments caused by partitions with work O(n+ f �n) in the pres-
ence of f fragmentation failures.

We develop an effective scheduling strategy for minimizing the task exe-
cution redundancy and we prove that our strategy provides each of the n pro-
cessors with a schedule of Θ(n1=3) tasks such that at most one task is per-
formed redundantly by any two processors.

Keywords
Load balancing, scheduling, dynamic networks, group communications.

1



2 Sirocco 6

Network

P1 P2 P3 Pn�� �
. . .

s s sss Input/Output Ports

Figure 1: The distributed system and its input/output setting

1 Introduction

The problem of performing a set of tasks in a decentralized setting where the com-
puting medium is subject to failures is one of the fundamental problems in dis-
tributed computing. This problem has been studied in a variety of setting, e.g., in
shared-memory models [16] and message-passing models [11, 8]. In this work we
consider this problem in the partitionable distributed setting where the computa-
tion can take advantage of group communication services and where the proces-
sors have to perform the tasks efficiently even if they have to resort to scheduling
the tasks in isolation due to network partition.

Group communication services can be used as effective building blocks for
constructing fault-tolerant distributed applications [1]. The services enable the ap-
plication components at different processors to operate collectively as a group, us-
ing the service to multicast messages. For applications involving coherent data, it
is important to know when a processor has a view of the current group member-
ship that is primary. Maintaining a primary group is one of the most sophisticated
tasks of the group communication service. In a dynamic network environment the
primary group will at times include only a portion of the distributed system. Thus
in the cases where the computation has to be carried out in the primary group, only
a fraction of the computation power of the distributed system is effectively used.
However, there are settings in which any group of processors may meaningfully
carry on with the computation irrespective of any other groups. For example, this
is the case when a set of tasks, whose effects are idempotent, i.e., executing a task
more than once yields identical results, needs to be performed in a distributed sys-
tem. A simple example of this occurs when a collection of print servers is charged
with the task of printing a set of reports. In a more dramatic setting suggested
in [11], the tasks may consist of shutting a set of valves on a nuclear reactor.

In this work we investigate a new approach whose goal is to utilize the re-
sources of every component of the system during the entire computation. We con-
sider the problem in the following setting: a set of tasks must be performed by a



Dynamic Load Balancing with Group Communication 3

distributed system (the tasks to be performed by the system may be submitted via
the input ports. To simplify our presentation, we assume that the set of tasks has al-
ready been submitted). Group communication is used to coordinate the execution
of the tasks. The requests for the tasks’ results are submitted via the input/output
ports. Once the results are known, the processors respond (see Figure 1). The main
point in prescribing such input/output setting is that requests for results may be
submitted externally to any processor. Our focus is on the investigationof effective
load balancing schemes that lead to efficient execution of the set of tasks in such
settings. Thus, we suggest a best effort approach, namely, an approach in which ev-
ery processor that receives a request for results will eventually be able to respond
with the complete set of results.

Our contributions. We study the problem of performing a set of tasks reliably and
in parallel using multiple processors in the setting of message-passing processors
that are interconnected by a network, which is subject to partitions and merges.
We seek distributed solutions to the problem and we assume that computation is
more expensive than communication. This assumption forces us to seek solutions
that are more efficient than the trivial solutions, in which each processor performs
each task. To assess the efficiency of solutions we use the complexity measure of
work that accounts for each task performed by the processors including the tasks
that are performed redundantly.

Our distributed system model, in addition to the processors and the network,
includes a set of input/output ports accessible to the processors. In this model we
enable a client of the required computation to query any processor for results. This
makes it mandatory, even for isolated processors, to be able to provide the results
of the computation regardless of whether any other processors may already have
the results. In other words, in this setting it is no longer sufficient to know that each
of the tasks have been performed. It is also necessary for each processor to learn
the results. In this paper we present the following results.� We show in Section 3 that developing efficient solutions for our model is

difficult. For the problem of performing n tasks on n processors we present
a linear (in the number of processors) lower bound for the worst case com-
petitive ratio of the termination time of any on-line algorithm relative to an
off-line algorithm. This competitive ratio is for the adversary that may cause
arbitrary partitions and merges of the original network. We make no specific
assumptions about the group communication service used.� The linear lower bound result suggests that to achieve more efficient load
balancing, we need to limit the power of the adversary. In Section 4 we con-
sider a setting with a restricted adversary that can dynamically cause frag-
mentation failures, i.e., the adversary can partition any existing connected
component into two or more smaller components. We present and analyze
an algorithm that relies on a group communication service. For this setting



4 Sirocco 6

our load balancing algorithm for n processors guarantees completion in all
network fragments, and with the total work O(n+ f �n) in the presence of
any f fragmentation failures. Note that this result also holds if we consider
processor stop-failures since stopped processors can be modeled by isolat-
ing such processors from all other groups of processors.� The linear lower bound for the competitive ratio also shows that an on-line
algorithm cannot do much better than the trivial solution in which every pro-
cessor behaves as if it is a singleton and executes the entire set of tasks. With
this in mind, in Section 5 we present an effective scheduling strategy for
minimizing the task execution redundancy. We prove that for n processors
and n tasks it is possible to schedule Θ(n1=3) tasks for each processor with at
most one overlap in task executions. This means that using our algorithm,
any two isolated processors can each perform up to n1=3 tasks such that if
the processors are merged into a group after n1=3 such steps, then there is at
most one task that is performed redundantly by the two processors.

Related work. Group communication services have become important as build-
ing blocks for fault-tolerant distributed systems. Such services enable processors
located in a fault-prone network to operate collectively as a group, using the ser-
vices to multicast messages to group members. Examples of group communication
services are found in Isis [5], Transis [9], Totem [19], Newtop [12], Relacs [2], Ho-
rus [21] and Ensemble [4]. Examples of recent work dealing with primary groups
are [7, 17]. An example of an application using a group communication service
for load balancing is by Fekete, Khazan and Lynch [13]. To evaluate the effective-
ness of partitionable group communication services, Sussman and Marzullo [24]
proposed a measure (cushion) precipitated by a simple partition-aware application.
Babaoglu et al. [3] study systematic support for partitionawareness based on group
communication services in a wide range of application areas, including applica-
tions that require load balancing. The main focus of the paper is the simplicity of
implementing any load balancing policy within the group membership paradigm
rather than the study of balancing policies that lead to good performance.

Our definition of work follows that of Dwork, Halpern and Waarts [11]. Our
fragmentation model of failures creates a setting, withineach fragment, that is sim-
ilar to the setting in which the network does not fragment but the processors are
subject to crash failures. Performing a set of tasks in such settings is the subject
of [6, 8, 11, 15], however the analysis is quite different when work in all fragments
has to be considered.

Our distributed problem has an analogous counterpart in the shared-memory
model of computation, called the collect problem. The collect problem was orig-
inally abstracted by Saks, Shavit and Woll [22] (it also appears in Shavit’s Ph.D.
thesis). Although the algorithmic techniques are different, the goal of having all



Dynamic Load Balancing with Group Communication 5

processors to learn a set of values is similar.

In Section 2 we present the problem and define our model, measures of efficiency
and the group communication service. A lower bound on the competitive ratio is
presented in Section 3. An algorithm for the fragmentation model is presented and
analyzed in Section 4. Task scheduling algorithms for minimizing redundant work
are in Section 5. The proofs omitted in this extended abstract are contained in the
full technical report [10].

2 Problem Statement and Definitions

A distributed system consists of n processors (P1;P2; : : : ;Pn) connected by com-
munication links. Each processor Pi has a unique identifier. In Section 3 and Sec-
tion 5 we assume that the identifiers are in the set f1;2; : : : ;ng. At any given time
a communication link may be operational or faulty. Faulty communication links
can partition the system into several connected components. The recovery of the
links may merge separated connected components into a single component. Link
failures and recoveries trigger group membership activity to establish eventually a
group for every connected component. The group membership service is used by
the processors in the group to coordinate load balancing of task execution.

A set of tasks T is to be executed by the distributed system. Processors receive
T from input ports and communicate T to their group members. (Thus at the start
of the computation, T is known to all processors.) For the sake of simplicity of
presentation we assume that the number of tasks in T is exactly n, the number of
processors in the system. Our results naturally extend to any c �n number of tasks
(c > 1) by either creating task groups of c tasks in each group, or considering c
instances of the problem.

2.1 Performance Measures

The algorithms that we present in this paper are asynchronous. However, in order
to study the performance of an asynchronous algorithm, we measure properties
that are independent of time, and we study time bounds under some additional as-
sumptions on the timings of the messages that are sent. In this paper we define a
round based measure of the total work performed by the processors, and we study
performance under the assumption that messages are delivered within time 1.

We define completion and termination times of a computation.

Definition 1 Given a set of processors and a set of tasks, the completion time of
a computation is the minimal time at which every task is executed at least once.



6 Sirocco 6

Definition 2 Given a set of processors and a set of tasks, the termination time of
a computation is the time it takes for every processor to know the task execution
results of all the tasks.

From the above definitions it easy to see that completion time bounds, from
below, the termination time for any computation. Our performance measures are
based on a measure of the number of failures that occur within a computation. For
the algorithm in Section 4 we consider only the fragmentation failures. In this set-
ting, the initial group of n processors is dynamically partitioned by failures into
several fragments. The system begins with the initial fragment containing all n
processors, and each fragmentation failure “splits off” a fragment from an existing
fragment.

Definition 3 For a computation in the fragmentation model that begins with c1
fragments and terminates with c2 fragments define the number of failures f to
be c2 � c1.

Since fragments never merge, the number of fragmentation failures f is at most
n�1. Members of distinct fragments, existing concurrently, cannot communicate,
and our model allows for processors in different fragments to terminate indepen-
dently. Processors spend their lives communicating and working. We structure the
lives of processors in terms of rounds. During a round, a processor may send a
multicast message, receive some messages and perform a task. Within a specific
fragment, each processor is charged for each round of the computation.

Definition 4 For a computation that terminates, we define work to be ∑1�i�n Ri,
where Ri is the number of rounds performed by processor i.

In this work we do not explicitly deal with processor failures. However the
definitions apply to, and the complexity results hold for the model that includes
processor stop-failures. A processor that stops is modeled as a processor that is
isolated from all others in a singleton group. Since a stopped processor does no
work, it cannot increase the work complexity.

2.2 A Group Communication Service

We assume a virtual synchronous (or view synchronous) group communication
service. The service is used to communicate information concerning the executed
tasks once a new group is established. Each connected component of the system
is an independent group that executes the (remaining) tasks in T until the group
is ready to output the final result. During the execution, the group communication
service is used by the processors to notify each other of the results of task execu-
tions. Upon completion of the entire set of tasks the processors in the group supply
the results to any external clients via the input/output ports.



Dynamic Load Balancing with Group Communication 7

The virtual synchronous service (or view synchronous service) that we rely on
provides the following basic operations:

GPSND(message) The GPSND primitive lets a processor multicast a message to
the members of the current group. The messages are guaranteed to be de-
livered unless a group change occurs. Messages are delivered in the same
group they are sent in.

GPRCV(message) The GPRCV primitive enables a processor to receive multicasts
from other processors in the current group view. (We do not require that mes-
sage deliveries are ordered within a view.)

NEWVIEW(hid; seti) The NEWVIEW primitive tells a processor that a dynamic
change caused a new group to be formed and it informs the processor of the
identifier of the new group and the set of the identifiers of the processors in
the group.

The group communication service sufficient for our needs is provided by sev-
eral existing specifications (cf. [2, 9, 21]). In algorithm specification in Section 4
we assume that the group communication service is specified using Input/Output
Automata [18, 20], e.g., as in [7, 14].

3 Competitive Ratio for Dynamic Networks

In a fully dynamic network the system is subject to splits and merges, and the per-
formance of the system may be drastically influenced by the exact pattern of such
dynamic changes. A classical approach for evaluating an algorithm under such
uncertain conditions is the competitive analysis proposed by Sleator and Tarjan
in [23].

In this section we study the competitive ratio for the n-task assignment prob-
lem. The choice of the dynamic changes is a major parameter in computing a lower
bound for the competitive ratio. For example under the assumption that the system
is connected during the entire execution, there exists an optimal on-line (and an
off-line) algorithm with completion and termination time 1. In this algorithm each
processor, Pi, executes the i’th task first and reports the result to the other proces-
sors. In the other extreme when the system consists of n singletons, there exists
an optimal on-line (and off-line) algorithm with completion time 1 and termina-
tion time n. In this algorithm each processor, Pi, first executes the i’th task (thus
the completion time is 1) and then the rest of the tasks (say by the order of their
indices). The optimality of the above algorithms is due to the fact that any off-line
algorithm does not performs better under the same partition pattern.

Next we present a lower bound for the worst case ratio of the termination time
of an on-line task assignment algorithm versus the termination time of an off-line



8 Sirocco 6

task assignment algorithm. Before we present the lower bound let us remark that
it is easy to achieve completion time 1 when the number of the processors that
participate is equal to the number of tasks. Completion time 1 is achieved by every
algorithm in which each processor, Pi, executes the ith task first.

Theorem 1 There exists a group split and merge pattern for which the termination
time of any on-line task assignment algorithm is greater than the termination time
of an off-line task assignment algorithm by a factor greater than n=12.

The linear ratio in the above result shows that an on-line algorithm cannot do
much better than a trivial solution in which every processor behaves as if it is a sin-
gleton group and executes the entire set of tasks. With this in mind, we present in
the next two sections first a scheduling algorithm for network fragmentation fail-
ures, and then a scheduling algorithm that minimizes redundant task executions
even if processors may have to work initially in isolation from one another and
then subsequently be merged into larger groups.

4 Load Balancing and Fragmentations

We now consider the setting with fragmentation failures and present an algorithm
for efficient task scheduling.

4.1 Algorithm AF

We present this algorithm in terms of a protocol that relies on a group communica-
tion service. We call it algorithm AF. The basic idea of the algorithm is that each
processor performs (remaining) tasks according to a permutation until it learns that
all tasks have been performed. The permutations are determined for each group by
a global load balancing rule and are used until a fragmentation leads to a new group
being established. A processor performs a task according to an arbitrary local rule
upon a fragmentations. After the processors exchange their knowledge in a new
view, the global load balancing rule takes over.

We state the algorithm as a protocol that uses the group communication ser-
vice described in Section 2.2. The Input/Output Automata [18, 20] specification
of the algorithm is designed to be compatible with the group communication ser-
vice specification VS service [14].

Task allocation. The set T of the initial tasks is known to all processors. During
the execution each processor i maintains a local set D of tasks already done, a local
set R of the corresponding results, and the set G of processors in the current group.
(The set D may be an underestimate of the set of tasks done globally.) The proces-
sors allocate tasks based on the shared knowledge of the processors in G about the
tasks done. For a processor i, let k be the rank of i in G sorted in ascending order.



Dynamic Load Balancing with Group Communication 9

Our load balancing rule is that processor i performs the task k mod jUj, where U
is the number of remaining tasks.

Algorithm structure. The algorithm code is given in Figure 2 using I/O Au-
tomata notation. The algorithm uses the group communication service to structure
its computation in terms of rounds numbered sequentially within each group view.

Rounds numbered 0 correspond to group reconfigurations. If a fragmentation
occurs, the processor receives the new set of members from the group membership
service. The processor performs one task among those it believes are not done, and
starts the next round. At the beginning of each round, denoted by a round number
Rnd, processor i knows G, the local set D of tasks already done, and the set R of the
results. In each round (Rnd > 0), each processor reports D and R to the members
of G, collects such reports from other processors, updates D and R, and performs
one task according to the load balancing rule.

For generality, we assume that multicast messages may be delivered out of or-
der with respect to the rounds. The set of messages within the current view is saved
in the local variable M. The saved messages are also used to determine when all
messages for a given round have been received. Processing continues until each
member of G knows all results.

When requests for computation results arrive from a port q, each processor
keeps track of this in a local variable requests, and, when all results are known,
sends the results to the port.

4.2 Analysis of Algorithm AF

We now determine the worst-case work of the algorithm as a function of the initial
number of processors n (we are assuming that initially there is a single task per
processor), and of the number of fragmentation failures f . We assume that a failure
causes no more than one new view to be installed at each member of the group that
fragments. We start by showing algorithm termination.

Lemma 1 In algorithm AF, each processor terminates having performed O(n)
tasks and executing O(n) rounds.

We define complete rounds for a view v to be the rounds during which all pro-
cessors in v:set are allocated to tasks in the effect of the GPRCV actions. Lemma 2
shows that in all complete rounds the loads of processors are balanced.

Lemma 2 [Load balancing] In algorithm AF, for each view v, in each round
Rnd > 0, whenever processor i is assigned to a task in the effects of the GPRCV

action (1) for any processor j that is assigned to a task in the same round, Ui =U j,
and (2) no more than djv:setj=Uie processors are allocated to any task.

Lemma 3 In algorithm AF, any processor is a member of at most f + 1 views
during the computation.



10 Sirocco 6

Data types:
T : tasks
R : results
Result : T ! R
M : messages
P : processor ids
G : group ids
views = G�P : group views,

selectors id and set
IO : input/output ports

m 2M
i; j 2 P
v 2 views
E 2 2T

Q 2 2R

s 2 T
round2 N
q 2 IO

States:
T 2 2T , set of n = jT j tasks
D 2 2T , set of done tasks, initially /0
R 2 2R , set of results, initially /0
G 2 2P , group members, initially P
M 2 2M , messages, initially /0
Rnd 2N, round number, initially 0
Phase 2 fsend; receive; stopg,

initially send
requests2 2I O, set of ports, initially /0

Derived variables:
U : T�[fE : h�;�;E;Rndi2Mg,

reported remaining tasks
t : let k be the rank of i in G sorted in

ascending order, then t is the id of the task
whose rank is (k mod jUj) in U sorted by id

Transitions at i:
input REQUESTq;i
Effect:

requests requests[fqg
input NEWVIEW(v)i
Effect:

G v:set
if D 6= T then

s if t 2D
then some task in T�D
else t

R R[fResult(s)g
D D[fsg

M /0
Rnd 0
Phase send

output GPSND(m)i
Precondition:

Phase = send
m = hi;D;R;Rnd+1i

Effect:
Rnd Rnd+1
Phase receive

input GPRCV(h j;Q;E; roundi)i
Effect:

M M[fh j;Q;E; roundig
R R[Q
D D[E
if G= f j : 9Q0 ;E0 :h j;Q0;E0;Rndi 2Mg then

if D 6= T then
R R[fResult(t)g
D D[ftg

if T = \fE : h�;�;E;Rndi2Mg then
Phase stop

else
Phase send

output REPORT(results)q;i
Precondition:

T = D
q 2 requests
results = R

Effect:
requests requests�fqg

Figure 2: Algorithm AF.



Dynamic Load Balancing with Group Communication 11

We call the last round of any view, whether complete or not, the final round of
the view.

Lemma 4 The work of algorithm AF in all zero-numbered and final rounds of all
views v installed during the computation is O(n+ f �n).
Lemma 5 In algorithmAF, in each view v there can be at most one non-final com-
pleted round such that if a processor i is assigned to tasks in the effects of the
GPRCV action, then Ui < jv:setj.
Lemma 6 In algorithm AF, the total work in all views v during non-final com-
pleted rounds with Ui < jv:setj is O(n+ f �n).
Lemma 7 In algorithm AF, the total work in all views v during completed rounds
r with U(r)

i � jv:setj is O(n+ f �n).
Now the main complexity result.

Theorem 2 The termination work of the algorithm is O(n+ f �n).
The result in Theorem 2 is tight.

Theorem 3 The termination work of the algorithm is Ω(n+ f �n).
It is also interesting to note that there are small dynamic fragmentation pat-

terns that leave almost all processors connected in a large group that nevertheless
accounts for most work.

Theorem 4 There is a fragmentation pattern with f � logn= loglogn such that
the largest group has at least n�n= loglogn = Θ(n) processors at all times and
has termination work of Ω(n logn= loglogn).
5 Low Redundancy Task Scheduling

In this section we consider a fully dynamic network where both fragmentations
and merges are possible. Our goal is to produce a scheduling strategy that avoids
redundant task executions in scenarios where there are periods in which processors
work in isolation and then are merged into larger groups. In particular, we seek
solutionswhere the isolated processors can execute tasks independently for as long
as possible such that when any two processors are merged into a larger group, the
number of tasks they have both executed is as small as possible.

Definition 5 For a set of p processors with identifiers fP1; : : : ;Ppg and a set of n
tasks fT1; : : : ;Tng, where p � n, a scheduling scheme S is called [α;β]-redundant
if it provides each processor Pi with a sequence of α tasks si = Ti1; : : : ;Tiα such that
for any si and s j (i 6= j), jfq : Tq in sig\fr : Tr in s jgj � β.



12 Sirocco 6

It is easy to avoid redundant task executions among the tasks performed first
by any processor. One possibility is to begin with a step in which each processor,
Pi, executes the ith task. The first step does not introduce any overlaps in task exe-
cution. Clearly, in the second step we cannot avoid executing tasks that have been
already executed. This means that there will always be pairs of processors such
that at least one task would have been executed by both. Surprisingly, it is possi-
ble to make task scheduling decisions for a substantial number of steps such for
any pair of processors, there is at most one task that is executed by both.

We start with a simple scheduling strategy that extends the simple scheduling
step we described above. In this scheme, a processor Pi is using a schedule si =
Ti1; : : : ;Ti j

; : : :, where Ti j
is the task number i j = (k j + i) mod n. Thus, the scheme

is fully defined by the values of k j, where 1 � j � n. Note that we already fixed
k1 to be zero.

Next we suggest a way to determine the values of k j, 2 � j � n.

The first scheme we present, called the logarithmic scheme, guarantees that
there is at most one overlap. This scheme uses k j = 2 j�1 mod n for every 2 � j �blognc.
Theorem 5 The logarithmic scheme is [Θ(logn);1]-redundant.

It turn out that the number of tasks that can be executed while at most one task
execution overlaps is greater than Θ(logn). In Figure 3 we present a scheme, called
the cubic root scheme, that provides schedules of Θ(n1=3) tasks for the processors
with only one overlap. An important observation used for the design of our algo-
rithm is the following observation: to guarantee at most one overlap, the difference
between every kx and ky must be distinct.

Definitions: let K j be a set of j indices k1;k2; � � � ;k j (that were chosen so far). Let D j
be the set consisting of two integers, d[kl;km] and d[km;kl ] for each possible pair
of elements, km and kl in K j , where d[kx;ky] is defined to be (ky� kx) mod n.

Initialization: In the beginning K1 includes only the element 0 and D1 is assigned by
the empty set.

Step, calculating k j: The algorithm choosesk j < n=2 to be the smallest value such that
k j paired with any element ky of K j�1 does not introduce an element d[k j;ky] 2
D j�1 or d[ky;k j ] 2 D j�1.

Termination Condition: no k j is found in Step.

Figure 3: Scheduling Tasks with One Overlap.

Theorem 6 If and only if the difference between every kx and ky is distinct then
the number of overlaps is at most one.



Dynamic Load Balancing with Group Communication 13

In general, to guarantee at most l overlaps the number of pairs, kx, ky, with the
same difference should be no more than l�1.

Theorem 7 The cubic root scheme is [Θ(n1=3);1]-redundant.

The schemes presented in this section allow the processors to schedule tasks in
isolation. This is the case when the processors find themselves in singleton groups.
We now suggest a way to use the scheme when groups are merged or when larger
groups are formed initially. Processors within a group identify the overlapping task
executions and agree which is the single processor within the group that executes
each such task. The processors will continue to execute the tasks in their (“sin-
gleton”) schedule that are not executed by other processors in the group. Thus, in
case the system is partitioned into singletons, at most one overlap between every
two processors is achieved for Θ(n1=3) steps and still no redundant task execution
exists within a group.

6 Concluding Remarks

We considered the problem of dynamic load balancing in networks subject to re-
configurations, and we have presented three new directions in the investigation of
load balancing with group communication. First, we have shown that in the pres-
ence of fully dynamic changes no on-line algorithm can do much better than the
trivial solution in which every processor behaves as if it is a singleton and executes
all tasks. This led us to examine the last two scenarios. For fragmentation failures
we presented an algorithm that guarantees completion with total work O(n+ f �n),
where f is the number of fragmentation failures. Finally, for the case of fully dy-
namic reconfigurations we presented a scheduling strategy for minimizing the task
execution redundancy between processors that can schedule Θ(n1=3) tasks with at
most one overlap of task execution for any two processors.

Acknowledgments: We thank Nancy Lynch and Dahlia Malki for several discus-
sions that motivated parts of this work. We also thank Chryssis Georgiou for help-
ful comments.

References

[1] Comm. of the ACM, Special Issue on Group Communication Services, vol. 39, no. 4,
1996.

[2] O. Babaoglu,R. Davoli and A. Montresor. “Group Membership and View Synchrony
in Partitionable AsynchronousDistributed Systems: Specification,” in Operating Sys.
Review, 31(2):11-22, April 1997.



14 Sirocco 6

[3] O. Babaoglu, R. Davoli, A. Montresor and R. Segala, “System support for partition-
aware network applications”, in Proc. of the 18th Int-l Conference on Distributed
Computing Systems, May 1998.

[4] M. Hayden, doctoral thesis, Cornell University, 1999.

[5] K.P. Birman and R. van Renesse, Reliable Distributed Computing with the Isis
Toolkit, IEEE Computer Society Press, Los Alamitos, CA, 1994.

[6] B. Chlebus, R. De Prisco and A. Shvartsman, “Performing tasks on restartable
message-passing processors”, in Proc. of the 11th Int-l Workshop on Distr. Alg.
(WDAG’97), pp. 99–114, 1997.

[7] R. De Prisco, A. Fekete, N. Lynch and A. Shvartsman, “A Dynamic View-Oriented
Group Communication Service”, in Proc. of the ACM Symp. on Principles of Dis-
tributed Computing, 1998.

[8] R. De Prisco, A. Mayer, and M. Yung, “Time-Optimal Message-Efficient Work Per-
formance in the Presence of Faults,” in Proc. 13th ACM Symp. on Principles of Dis-
tributed Comp., pp. 161-172, 1994.

[9] D. Dolev and D. Malki, “The Transis Approach to High Availability Cluster Com-
munications”, Comm. of the ACM, vol. 39, no. 4, pp. 64–70, 1996.

[10] S. Dolev, R. Segala and A. Shvartsman, Dynamic Load Balancing with Group
Communication, MIT Lab for Computer Science Tech. Report, MIT-LCS-TM-588,
September 18, 1998.

[11] C. Dwork, J. Halpern, O. Waarts, “Performing Work Efficiently in the Presence of
Faults”, SIAM J. on Computing, 1994;prelim. vers. appeared as Accomplishing Work
in the Presence of Failures in Proc.11th ACM Symposiumon Principles of Distributed
Computing, pp. 91-102, 1992.

[12] P. Ezhilchelvan, R. Macedo and S. Shrivastava “Newtop: A Fault-Tolerant Group
Communication Protocol” in Proc. of IEEE Int-l Conference on Distributed Comput-
ing Systems, 1995, pp 296–306.

[13] A. Fekete, R. Khazan and N. Lynch, “Group Communication as a base for a Load-
Balancing, Replicated Data Service”, in Proc. of the 12th International Symposium
on Distributed Computing, 1998.

[14] A. Fekete, N. Lynch, and A. Shvartsman, “Specifying and Using a Partitionable
Group Communication Service,” Proc. of the 16th Annual ACM Symp. on Principles
of Distributed Computing, pp. 53-62, 1997.

[15] Z. Galil, A. Mayer, and M. Yung, “Resolving Message Complexity of Byzantine
Agreement and Beyond,” in Proc. 36th IEEE Symposium on Foundations of Com-
puter Science, 1995, pp. 724–733.

[16] P. Kanellakis and A. Shvartsman, Fault-TolerantParallel Computation, Kluwer Aca-
demic Publishers, 1997.

[17] E. Y. Lotem, I. Keidar, and Danny Dolev, “Dynamic Voting for Consistent Primary
Components,” Proc. of the 16th Annual ACM Symp. on Principles of Distributed
Computing, pp. 63-71, 1997.

[18] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, San Mateo, CA,
1996.



Dynamic Load Balancing with Group Communication 15

[19] L.E. Moser, P.M. Melliar-Smith, D.A. Agarawal, R.K. Budhia and C.A. Lingley-
Papadopolous, “Totem: A Fault-Tolerant Multicast Group Communication System”,
Comm. of the ACM, vol. 39, no. 4, pp. 54-63, 1996.

[20] N.A. Lynch and M.R. Tuttle, “An Introduction to Input/Output Automata”, CWI
Quarterly, vol.2, no. 3, pp. 219-246, 1989.

[21] R. van Renesse, K.P. Birman and S. Maffeis, “Horus: A Flexible Group Communi-
cation System”, Comm. of the ACM, vol. 39, no. 4, pp. 76-83, 1996.

[22] M. Saks, N. Shavit and H. Woll, “ Optimal time randomized consensus – making re-
silient algorithms fast in practice”, in Proc. of the 2nd ACM-SIAM Symp. on Discrete
Algorithms, pp. 351-362, 1991.

[23] D. Sleator and R. Tarjan, “Amortized Efficiency of List Update and Paging Rules,”
CACM 28, pp. 202-208, 1985.

[24] J. Sussman and K. Marzullo, “The Bancomat Problem: An Example of Resource Al-
location in a Partitionable AsynchronousSystem”, in Proc of 12th Int-l Symp. on Dis-
tributed Computing, 1998.

Prof. Shlomi Dolev is in the Department of Mathematics and Computer Science, Ben-
Gurion University, Beer-Sheva, 84105, Israel. Email: dolev@cs.bgu.ac.il. Part of
this research was done while visiting the Laboratory of Computer Science at MIT.

Prof. Roberto Segala is in the Dip. di Scienze dell’Informazione, Università di Bologna,
Italy. Email: segala@cs.unibo.it.

Prof. Alexander Allister Shvartsman de Charzewice is in the Dept. of Computer Sci-
ence and Engineering, 191 Auditorium Rd., U-155, University of Connecticut, Storrs,
CT 06269, USA. He is also a Research Associate at the Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Email:
alex@cse.uconn.edu. Part of this work was supported by a grant from the GTE Lab-
oratories.


