Dynamic L oad Balancing
with Group Communication
(Extended Abstract)

S. DOLEV
Ben-Gurion University, Israel

R. SEGALA
Universita di Bologna, Italy

A. SHVARTSMAN
University of Connecticut and MIT, USA

Abstract

Thiswork considers the problem of efficiently performing a set of tasks
using a network of processorsin the setting where the network is subject to
dynamic reconfigurations, including partitions and merges. A key challenge
for this setting is the implementation of dynamic load balancing that reduces
the number of tasksthat are performed redundantly because of the reconfigu-
rations. We explore new approachesfor load balancing in dynamic networks
that can be employed by applications using a group communication service.
The group communication services that we consider include a membership
service (establishing new groupsto reflect dynamic changes) but doesnot in-
clude maintenance of aprimary component. For the n-processor, n-task load
balancing problem defined in this work, the following specific results are ob-
tained.

For the case of fully dynamic changes including fragmentation and
merges we show that the termination time of any on-line task assignment al-
gorithm is greater than the termination time of an off-line task assignment
algorithm by afactor greater than n/12.

We present aload balancing algorithm that guarantees completion of all
tasksin all fragments caused by partitions with work O(n+ f - n) in the pres-
enceof f fragmentation failures.

We develop an effective scheduling strategy for minimizing the task exe-
cution redundancy and we prove that our strategy provides each of the n pro-
cessors with a schedule of ©(n1/3) tasks such that at most one task is per-
formed redundantly by any two processors.

Keywords
Load balancing, scheduling, dynamic networks, group communications.

1

2 Sirocco 6

Input/Output Ports

(Networ k)

Figure 1: The distributed system and itsinput/output setting

1 Introduction

The problem of performing a set of tasksin adecentralized setting where the com-
puting medium is subject to failures is one of the fundamental problemsin dis-
tributed computing. This problem has been studied in avariety of setting, e.g., in
shared-memory models[16] and message-passing models[11, 8]. Inthiswork we
consider this problem in the partitionabl e distributed setting where the computa-
tion can take advantage of group communication services and where the proces-
sors have to perform the tasks efficiently even if they haveto resort to scheduling
the tasksin isolation due to network partition.

Group communication services can be used as effective building blocks for
constructing fault-tol erant distributed applications[1]. The services enable the ap-
plication components at different processorsto operate collectively asagroup, us-
ing the service to multicast messages. For applicationsinvolving coherent data, it
isimportant to know when a processor has a view of the current group member-
ship that isprimary. Maintaining a primary group isone of the most sophisticated
tasks of the group communication service. In adynamic network environment the
primary group will at timesinclude only a portion of the distributed system. Thus
inthe cases where the computation hasto be carried out in the primary group, only
afraction of the computation power of the distributed system is effectively used.
However, there are settingsin which any group of processors may meaningfully
carry on with the computation irrespective of any other groups. For example, this
isthe case when a set of tasks, whose effects areidempotent, i.e., executing atask
more than once yieldsidentical results, needsto be performed in adistributed sys-
tem. A simpleexample of thisoccurswhen a collection of print serversis charged
with the task of printing a set of reports. In a more dramatic setting suggested
in [11], thetasks may consist of shutting a set of valves on anuclear reactor.

In this work we investigate a new approach whose goal is to utilize the re-
sources of every component of the system during the entire computation. \We con-
sider the problem in the following setting: a set of tasks must be performed by a

Dynamic Load Balancing with Group Communication 3

distributed system (the tasks to be performed by the system may be submitted via
theinput ports. To simplify our presentation, we assume that the set of taskshasal-
ready been submitted). Group communication is used to coordinate the execution
of the tasks. The requests for the tasks' results are submitted via the input/output
ports. Once the results are known, the processorsrespond (see Figure 1). Themain
point in prescribing such input/output setting is that requests for results may be
submitted externally to any processor. Our focusison theinvestigationof effective
load balancing schemes that lead to efficient execution of the set of tasksin such
settings. Thus, we suggest abest effort approach, namely, an approach inwhich ev-
ery processor that receives arequest for resultswill eventually be able to respond
with the complete set of results.

Our contributions. We study the problem of performing a set of tasksreliably and
in parallel using multiple processorsin the setting of message-passing processors
that are interconnected by a network, which is subject to partitions and merges.
We seek distributed solutionsto the problem and we assume that computation is
more expensive than communication. This assumption forces us to seek solutions
that are more efficient than thetrivial solutions, in which each processor performs
each task. To assess the efficiency of solutionswe use the complexity measure of
work that accounts for each task performed by the processors including the tasks
that are performed redundantly.

Our distributed system model, in addition to the processors and the network,
includes a set of input/output ports accessible to the processors. In this mode we
enable aclient of therequired computationto query any processor for results. This
makes it mandatory, even for isolated processors, to be able to provide the results
of the computation regardless of whether any other processors may aready have
theresults. In other words, in thissettingitisno longer sufficient to know that each
of the tasks have been performed. It is aso necessary for each processor to learn
the results. In this paper we present the following results.

o We show in Section 3 that developing efficient solutions for our modd is
difficult. For the problem of performing n tasks on n processors we present
alinear (inthe number of processors) lower bound for the worst case com-
petitiveratio of the termination time of any on-lineagorithm relativeto an
off-linealgorithm. Thiscompetitiveratioisfor theadversary that may cause
arbitrary partitionsand merges of the original network. We make no specific
assumptions about the group communi cation service used.

o Thelinear lower bound result suggests that to achieve more efficient load
balancing, we need to limit the power of the adversary. In Section 4 we con-
sider a setting with a restricted adversary that can dynamically cause frag-
mentation failures, i.e., the adversary can partition any existing connected
component into two or more smaller components. We present and analyze
an agorithm that relies on a group communication service. For this setting

4 Sirocco 6

our load balancing algorithm for n processors guarantees completion in all
network fragments, and with the total work O(n+ f - n) in the presence of
any f fragmentation failures. Note that thisresult also holdsif we consider
processor stop-failures since stopped processors can be modeled by isolat-
ing such processors from all other groups of processors.

o Thelinear lower bound for the competitiveratio also showsthat an on-line
algorithm cannot do much better than thetrivial solutioninwhich every pro-
cessor behaves asif itisasingletonand executestheentire set of tasks. With
thisin mind, in Section 5 we present an effective scheduling strategy for
minimizing the task execution redundancy. We prove that for n processors
and ntasksit is possibleto schedule ©(n'/3) tasksfor each processor with at
most one overlap in task executions. This means that using our agorithm,
any two isolated processors can each perform up to n*/3 tasks such that if
the processors are merged into agroup after n'/3 such steps, then thereisat
most onetask that is performed redundantly by the two processors.

Related work. Group communication services have become important as build-
ing blocks for fault-tolerant distributed systems. Such services enable processors
located in a fault-prone network to operate collectively as a group, using the ser-
vicesto multicast messages to group members. Examples of group communication
servicesarefoundinlsis[5], Transis[9], Totem[19], Newtop [12], Relacs[2], Ho-
rus[21] and Ensemble[4]. Examples of recent work dealing with primary groups
are [7, 17]. An example of an application using a group communication service
for load balancing is by Fekete, Khazan and Lynch [13]. To evaluate the effective-
ness of partitionable group communication services, Sussman and Marzullo [24]
proposed ameasure (cushion) preci pitated by asimpl e partition-awareapplication.
Babaogluet a. [3] study systematic support for partition awareness based on group
communication services in a wide range of application areas, including applica-
tionsthat require load balancing. The main focus of the paper isthe smplicity of
implementing any load balancing policy within the group membership paradigm
rather than the study of balancing policiesthat lead to good performance.

Our definition of work followsthat of Dwork, Halpern and Waarts [11]. Our
fragmentationmodel of failures creates asetting, withineach fragment, thatissim-
ilar to the setting in which the network does not fragment but the processors are
subject to crash failures. Performing a set of tasks in such settings is the subject
of [6, 8, 11, 15], however theanalysisisquite different when work in al fragments
has to be considered.

Our distributed problem has an analogous counterpart in the shared-memory
model of computation, called the collect problem. The collect problem was orig-
inally abstracted by Saks, Shavit and Woll [22] (it aso appears in Shavit's Ph.D.
thesis). Although the algorithmic techniques are different, the goal of having all

Dynamic Load Balancing with Group Communication 5
processorsto learn aset of valuesis similar.

In Section 2 we present the problem and define our model, measures of efficiency
and the group communication service. A lower bound on the competitiveratio is
presented in Section 3. An a gorithm for the fragmentation model ispresented and
analyzed in Section 4. Task scheduling a gorithmsfor minimizing redundant work
arein Section 5. The proofs omitted in this extended abstract are contained in the
full technica report [10].

2 Problem Statement and Definitions

A distributed system consists of n processors (Pp, P», . .., Py) connected by com-
munication links. Each processor B, has a uniqueidentifier. In Section 3 and Sec-
tion 5 we assume that the identifiersareinthe set {1,2,...,n}. At any giventime
a communication link may be operational or faulty. Faulty communication links
can partition the system into several connected components. The recovery of the
links may merge separated connected components into a single component. Link
failuresand recoveriestrigger group membership activity to establish eventually a
group for every connected component. The group membership service isused by
the processors in the group to coordinate |oad balancing of task execution.

A set of tasks T isto be executed by the distributed system. Processorsreceive
T from input portsand communicate T to their group members. (Thusat the start
of the computation, T is known to all processors.) For the sake of simplicity of
presentation we assume that the number of tasksin T is exactly n, the number of
processors in the system. Our results naturally extend to any ¢- n number of tasks
(c > 1) by either creating task groups of c tasks in each group, or considering ¢
instances of the problem.

2.1 Performance Measures

The algorithmsthat we present in this paper are asynchronous. However, in order
to study the performance of an asynchronous algorithm, we measure properties
that are independent of time, and we study time bounds under some additional as-
sumptions on the timings of the messages that are sent. In this paper we define a
round based measure of thetota work performed by the processors, and we study
performance under the assumption that messages are delivered within time 1.

We define compl etion and termination times of a computation.

Definition 1 Given a set of processors and a set of tasks, the completion time of
a computation isthe minimal time at which every task is executed at |east once.

6 Sirocco 6

Definition 2 Given a set of processors and a set of tasks, thetermination time of
a computation is the time it takes for every processor to know the task execution
results of all the tasks.

From the above definitions it easy to see that completion time bounds, from
below, the termination time for any computation. Our performance measures are
based on ameasure of the number of failuresthat occur withinacomputation. For
the algorithmin Section 4 we consider only the fragmentationfailures. In this set-
ting, the initial group of n processors is dynamically partitioned by failures into
severa fragments. The system begins with the initial fragment containing all n
processors, and each fragmentation failure* splitsoff” afragment from an existing
fragment.

Definition 3 For a computation in the fragmentation model that begins with ¢,
fragments and terminates with ¢, fragments define the number of failures f to
bec, —¢;.

Sincefragmentsnever merge, thenumber of fragmentationfailures f isat most
n— 1. Members of distinct fragments, existing concurrently, cannot communicate,
and our model allows for processors in different fragments to terminate indepen-
dently. Processors spend their lives communi cating and working. We structure the
lives of processors in terms of rounds. During a round, a processor may send a
multicast message, receive some messages and perform atask. Within a specific
fragment, each processor is charged for each round of the computation.

Definition 4 For a computation that terminates, we definework tobe 1<y R,
where R; isthe number of rounds performed by processor i.

In this work we do not explicitly deal with processor failures. However the
definitions apply to, and the complexity results hold for the model that includes
processor stop-failures. A processor that stops is modeled as a processor that is
isolated from al others in a singleton group. Since a stopped processor does no
work, it cannot increase the work complexity.

2.2 A Group Communication Service

We assume a virtual synchronous (or view synchronous) group communication
service. The service isused to communicate information concerning the executed
tasks once a new group is established. Each connected component of the system
is an independent group that executes the (remaining) tasksin T until the group
isready to output the final result. During the execution, the group communication
service isused by the processors to notify each other of the results of task execu-
tions. Upon compl etion of the entire set of tasksthe processorsin the group supply
theresultsto any externa clients viathe input/output ports.

Dynamic Load Balancing with Group Communication 7

Thevirtual synchronousservice (or view synchronousservice) that werely on
providesthe following basic operations:

GPSND(message) The GPSND primitive lets a processor multicast a message to
the members of the current group. The messages are guaranteed to be de-
livered unless a group change occurs. Messages are delivered in the same
group they are sent in.

GPRCV(message) The GPRCV primitive enables a processor to receive multicasts
fromother processorsinthe current group view. (Wedo not requirethat mes-
sage deliveries are ordered within a view.)

NEWVIEW({id, set)) The NEwVIEW primitive tells a processor that a dynamic
change caused anew group to beformed and it informsthe processor of the
identifier of the new group and the set of theidentifiers of the processorsin
the group.

The group communication service sufficient for our needs is provided by sev-
eral existing specifications (cf. [2, 9, 21]). In agorithm specification in Section 4
we assume that the group communication service is specified using | nput/Output
Automata[18, 20], e.q., asin[7, 14].

3 Competitive Ratio for Dynamic Networ ks

Inafully dynamic network the system is subject to splitsand merges, and the per-
formance of the system may be drastically influenced by the exact pattern of such
dynamic changes. A classical approach for evaluating an agorithm under such
uncertain conditions is the competitive analysis proposed by Sleator and Tarjan
in[23].

In this section we study the competitive ratio for the n-task assignment prob-
lem. The choice of thedynamic changesisamajor parameter in computing alower
bound for the competitiveratio. For example under the assumption that the system
is connected during the entire execution, there exists an optimal on-line (and an
off-line) a gorithm with compl etion and terminationtime 1. In thisa gorithm each
processor, P, executes thei’th task first and reports the result to the other proces-
sors. In the other extreme when the system consists of n singletons, there exists
an optimal on-line (and off-line) algorithm with completion time 1 and termina-
tion time n. In this algorithm each processor, B, first executes thei’th task (thus
the completion time is 1) and then the rest of the tasks (say by the order of their
indices). The optimality of the above algorithmsis dueto thefact that any off-line
algorithm does not performs better under the same partition pattern.

Next we present alower bound for the worst case ratio of the terminationtime
of an on-linetask assignment algorithm versus the termination time of an off-line

8 Sirocco 6

task assignment algorithm. Before we present the lower bound let us remark that
it is easy to achieve completion time 1 when the number of the processors that
participateisequal to the number of tasks. Completiontime 1 isachieved by every
algorithm in which each processor, P, executes theith task first.

Theorem 1 There existsagroup split and merge patternfor whichthetermination
time of any on-linetask assignment algorithmisgreater than theterminationtime
of an off-linetask assignment algorithmby a factor greater than n/12.

The linear ratio in the above result shows that an on-line a gorithm cannot do
much better than atrivial solutioninwhich every processor behavesasifitisasin-
gleton group and executes the entire set of tasks. With thisin mind, we present in
the next two sectionsfirst a scheduling agorithm for network fragmentation fail-
ures, and then a scheduling algorithm that minimizes redundant task executions
even if processors may have to work initialy in isolation from one another and
then subsequently be merged into larger groups.

4 Load Balancing and Fragmentations

We now consider the setting with fragmentationfailures and present an algorithm
for efficient task scheduling.

4.1 Algorithm AF

We present thisalgorithmin termsof aprotocol that relies on agroup communica-
tion service. We cdll it algorithm AF. The basic idea of the algorithm isthat each
processor performs (remaining) tasksaccording to apermutationuntil it learnsthat
all tasks have been performed. The permutationsare determined for each group by
aglobal |oad bal ancing ruleand are used until afragmentation |eadsto anew group
being established. A processor performsatask accordingto an arbitrary local rule
upon a fragmentations. After the processors exchange their knowledge in a new
view, the global load balancing ruletakes over.

We state the algorithm as a protocol that uses the group communication ser-
vice described in Section 2.2. The Input/Output Automata [18, 20] specification
of the algorithm is designed to be compatible with the group communi cation ser-
vice specification vs service[14].

Task allocation. The set T of theinitia tasks is known to all processors. During
the execution each processor i maintainsalocal set D of tasksalready done, alocal
set Rof the corresponding results, and the set G of processorsinthe current group.
(The set D may be an underestimate of the set of tasks done globally.) The proces-
sors allocatetasks based on the shared knowledge of the processorsin G about the
tasks done. For aprocessor i, let k be therank of i in G sorted in ascending order.

Dynamic Load Balancing with Group Communication 9

Our load balancing rule isthat processor i performsthetask k mod |U |, where U
isthe number of remaining tasks.

Algorithm structure. The agorithm code is given in Figure 2 using I/O Au-
tomata notation. The a gorithm uses the group communication service to structure
itscomputation in terms of rounds numbered sequentially within each group view.

Rounds numbered 0 correspond to group reconfigurations. If a fragmentation
occurs, the processor receives the new set of members from the group membership
service. The processor performs onetask among thoseit believesare not done, and
startsthe next round. At the beginning of each round, denoted by a round number
Rnd, processor i knowsG, thelocal set D of tasksaready done, and the set R of the
results. In each round (Rnd > 0), each processor reports D and R to the members
of G, collects such reports from other processors, updates D and R, and performs
one task according to the load balancing rule.

For generality, we assume that multicast messages may be delivered out of or-
der withrespect to therounds. The set of messages withinthe current view issaved
in the loca variable M. The saved messages are also used to determine when all
messages for a given round have been received. Processing continues until each
member of G knowsall results.

When requests for computation results arrive from a port g, each processor
keeps track of thisin alocal variable requests, and, when al results are known,
sends the resultsto the port.

4.2 Analysisof Algorithm AF

We now determine theworst-case work of the algorithm as afunction of theinitial
number of processors n (we are assuming that initially there is a single task per
processor), and of the number of fragmentationfailures f. We assumethat afailure
causes no morethan one new view to beinstalled at each member of the group that
fragments. We start by showing a gorithm termination.

Lemmal In algorithm AF, each processor terminates having performed O(n)
tasks and executing O(n) rounds.

We define compl ete roundsfor aview v to be the rounds during which all pro-
cessorsin v.sat are allocated to tasksin the effect of the GPRcV actions. Lemma 2
showsthat in al complete roundsthe loads of processors are balanced.

Lemma?2 [Load balancing] In algorithm AF, for each view v, in each round
Rnd > O, whenever processor i is assigned to a task in the effects of the GPRCV
action (1) for any processor j thatisassigned toataskinthesameround, U; = Uj,
and (2) no morethan [|v.set|/U;] processors are allocated to any task.

Lemma3 In algorithm AF, any processor is a member of at most f + 1 views
during the computation.

10

Sirocco 6

Data types:

T : tasks

R : results

Result: T — R

M : messages

P : processor ids

G : groupids

views= G x P : group views,
selectorsid and set

10 : input/output ports

States:

T € 27, setof n= |T| tasks

D ¢ 27, set of donetasks, initially 0

Re 2%, set of results, initially 0

G € 27, group members, initially P

M € 2 messages, initially 0

Rnd € N, round number, initially O

Phase € {send, receive, stop},
initially send

requests € 210, set of ports, initially 0

Transitionsat i:
input REQUEST
Effect:
requests < requestsu {q}

input NEWVIEW(V);
Effect:
G «— v.set
if D#T then
s—ifteD
thensometaskin T — D
elset
R — Ru {Result(s)}
D —Du({s}
M~—0
Rnd — 0
Phase — send

output GPSND(m);
Precondition:

Phase = send

m= {i,D,R Rnd+ 1)
Effect:

Rnd — Rnd+1

Phase — receive

me M
i,jeP
V € views
Ec2?
Qe2%
seT
round € N
qe o

Derived variables:
U:T—U{E: (%% E,Rnd) e M},
reported remaining tasks
t: letk betherank of i in G sorted in
ascending order, then t is the id of the task
whoserank is (k mod |U|) in U sorted by id

input GPRCV((], Q, E, round));

Effect:
M —MuU{(j,Q,E,round)}
R—RUQ
D—~DUE
ifG= {] :EIQ’,E’ .
<j7QI7EI7Rnd) € M}then
if D# T then
R — RU{Result(t)}
D — Du{t}
if T=n{E: (x % E,Rnd)
€ M} then
Phase — stop
else
Phase — send

output REPORT(results), ;
Precondition:

T=D

g € requests

results= R
Effect:

requests — requests— {q}

Figure 2:

Algorithm AF.

Dynamic Load Balancing with Group Communication 1

We call thelast round of any view, whether complete or not, the final round of
the view.

Lemma4 Thework of algorithmAF in all zero-numbered and final rounds of all
views v installed during the computationis O(n+ f - n).

Lemma5 InalgorithmAF, ineach viewvthere can be at most onenon-final com-
pleted round such that if a processor i is assigned to tasks in the effects of the
GPRCV action, then U; < |v.sgt|.

Lemma6 In algorithm AF, the total work in all views v during non-final com-
pleted rounds withU; < |v.set| isO(n+ f - n).

Lemma7 InalgorithmAF, thetotal workinall views v during compl eted rounds
rwithU(" > |v.set| isO(n+ f - n).

Now the main complexity result.

Theorem 2 The termination work of the algorithmis O(n+ f - n).
Theresult in Theorem 2 istight.

Theorem 3 The terminationwork of the algorithmis Q(n+ f - n).

It is aso interesting to note that there are small dynamic fragmentation pat-
ternsthat leave aimost al processors connected in alarge group that nevertheless
accounts for most work.

Theorem 4 There is a fragmentation pattern with f < logn/loglogn such that
the largest group has at least n— n/loglogn = ©(n) processors at all times and
has termination work of Q(nlogn/loglogn).

5 Low Redundancy Task Scheduling

In this section we consider a fully dynamic network where both fragmentations
and merges are possible. Our goal isto produce a scheduling strategy that avoids
redundant task executionsin scenarioswherethereare periodsinwhich processors
work in isolation and then are merged into larger groups. In particular, we seek
solutionswheretheisolated processors can execute tasksindependently for aslong
as possible such that when any two processors are merged into alarger group, the
number of tasksthey have both executed is as small as possible.

Definition 5 For a set of p processorswithidentifiers{P,..., Py} andaset of n
tasks{Ty,..., Tn}, where p < n,ascheduling scheme Siscalled [a, B]-redundant
ifit provideseach processor B witha sequenceof a taskss = Tj,, ..., Tj, such that
foranys ands; (i# j), [{q: Tqins}n{r: Trins;}| <B.

12 Sirocco 6

It is easy to avoid redundant task executions among the tasks performed first
by any processor. One possibility isto begin with a step in which each processor,
R, executestheith task. Thefirst step does not introduce any overlapsin task exe-
cution. Clearly, in the second step we cannot avoid executing tasks that have been
already executed. This means that there will always be pairs of processors such
that at least one task would have been executed by both. Surprisingly, it is possi-
ble to make task scheduling decisions for a substantial number of steps such for
any pair of processors, thereis at most one task that is executed by both.

We start with a simple scheduling strategy that extends the simple scheduling
step we described above. In this scheme, a processor P isusing aschedule 5 =
Ty, -, Tij, ..., whereT;, isthetask number i; = (kj +i) mod n. Thus, the scheme

isfully deflned by the vaI ues of kj, where 1 < j < n. Notethat we already fixed
k; to be zero.

Next we suggest away to determinethevaluesof kj, 2< j < n.

The first scheme we present, called the logarithmic scheme, guarantees that
thereis at most one overlap. This scheme usesk; = 21 mod nforevery 2< j <

[logn].

Theorem 5 Thelogarithmic schemeis [©(logn), 1]-redundant.

It turn out that the number of tasksthat can be executed whileat most one task
execution overlapsisgreater than ©(logn). InFigure 3 we present ascheme, called
the cubic root scheme, that provides schedules of ©(n*/3) tasks for the processors
with only one overlap. An important observation used for the design of our algo-
rithmisthefollowing observation: to guarantee at most oneoverlap, thedifference
between every ky and ky must be distinct.

Definitions: let Kj beaset of j indicesky, ko, - - ,K; (that were chosen so far). Let D;
be the set consisting of two integers, d[k;, ky] and d[km, ki] for each possible pair
of elements, kym and k; in Xj, where d[ky, ky] is defined to be (ky — kx) mod n.

Initialization: In the beginning X3 includesonly the element 0 and D; is assigned by
the empty set.

Step, calculatingk;: Thealgorithm choosesk; < n/2to bethe smallest value suchthat
kj paired with any element k, of %j_1 does not introduce an element dk;, k] €
Dj—l or d[ky, kj] S @j—l-

Termination Condition: nok; isfoundin Step.

Figure 3: Scheduling Tasks with One Overlap.

Theorem 6 If and only if the difference between every ky and ky is distinct then
the number of overlapsisat most one.

Dynamic Load Balancing with Group Communication 13

In general, to guarantee at most | overlaps the number of pairs, ky, ky, with the
same difference should be no more than | — 1.

Theorem 7 The cubic root scheme is [@(n'/3), 1]-redundant.

The schemes presented inthis section allow the processors to scheduletasksin
isolation. Thisisthe case when the processorsfind themsel vesin singleton groups.
We now suggest away to use the scheme when groups are merged or when larger
groupsareformed initially. Processorswithin agroupidentify the overlapping task
executions and agree which isthe single processor within the group that executes
each such task. The processors will continue to execute the tasks in their (“sin-
gleton™) schedule that are not executed by other processorsin the group. Thus, in
case the system is partitioned into singletons, at most one overlap between every
two processors is achieved for ©(n*/3) steps and still no redundant task execution
exists within a group.

6 Concluding Remarks

We considered the problem of dynamic load balancing in networks subject to re-
configurations, and we have presented three new directionsin the investigation of
load balancing with group communication. First, we have shown that in the pres-
ence of fully dynamic changes no on-line agorithm can do much better than the
trivial solutioninwhich every processor behavesasif itisasingletonand executes
all tasks. Thisled usto examine thelast two scenarios. For fragmentation failures
we presented an algorithm that guarantees compl etion with total work O(n+ f - n),
where f isthe number of fragmentation failures. Finaly, for the case of fully dy-
namic reconfigurationswe presented a scheduling strategy for minimizing the task
execution redundancy between processors that can schedule ©(n'/3) taskswith at
most one overlap of task execution for any two processors.

Acknowledgments: We thank Nancy Lynch and DahliaMalki for severa discus-
sionsthat motivated parts of thiswork. We a so thank Chryssis Georgiou for help-
ful comments.

References

[1] Comm. of the ACM, Special Issue on Group Communication Services, vol. 39, no. 4,
1996.

[2] O.Babaoglu,R. Davoli and A. Montresor. “ Group Membership and View Synchrony
in Partitionable AsynchronousDistributed Systems: Specification,” in Operating Sys.
Review, 31(2):11-22, April 1997.

14
(3]
[4]
(5]
6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

Sirocco 6

O. Babaoglu, R. Davoli, A. Montresor and R. Segala, “ System support for partition-
aware network applications’, in Proc. of the 18th Int-I Conference on Distributed
Computing Systems, May 1998.

M. Hayden, doctoral thesis, Cornell University, 1999.

K.P. Birman and R. van Renesse, Reliable Distributed Computing with the Isis
Toolkit, IEEE Computer Society Press, Los Alamitos, CA, 1994.

B. Chlebus, R. De Prisco and A. Shvartsman, “Performing tasks on restartable
message-passing processors’, in Proc. of the 11th Int-l Workshop on Distr. Alg.
(WDAG' 97), pp. 99-114, 1997.

R. De Prisco, A. Fekete, N. Lynch and A. Shvartsman, “A Dynamic View-Oriented
Group Communication Service”, in Proc. of the ACM Symp. on Principles of Dis-
tributed Computing, 1998.

R. De Prisco, A. Mayer, and M. Yung, “ Time-Optimal Message-Efficient Work Per-
formancein the Presence of Faults,” in Proc. 13th ACM Symp. on Principles of Dis-
tributed Comp., pp. 161-172, 1994.

D. Dolev and D. Malki, “The Transis Approach to High Availability Cluster Com-
munications’, Comm. of the ACM, vol. 39, no. 4, pp. 64—70, 1996.

S. Dolev, R. Segala and A. Shvartsman, Dynamic Load Balancing with Group
Communication, MIT Lab for Computer Science Tech. Report, MIT-LCS-TM-588,
September 18, 1998.

C. Dwork, J. Halpern, O. Waarts, “Performing Work Efficiently in the Presence of
Faults”, SIAM J. on Computing, 1994; prelim. vers. appeared as Accomplishing Work
inthe Presenceof Failuresin Proc. 11th ACM Symposiumon Principlesof Distributed
Computing, pp. 91-102, 1992.

P. Ezhilchelvan, R. Macedo and S. Shrivastava “Newtop: A Fault-Tolerant Group
Communication Protocol” in Proc. of IEEE Int-I Conferenceon Distributed Comput-
ing Systems, 1995, pp 296—-306.

A. Fekete, R. Khazan and N. Lynch, “Group Communication as a base for a Load-
Balancing, Replicated Data Service”, in Proc. of the 12th International Symposium
on Distributed Computing, 1998.

A. Fekete, N. Lynch, and A. Shvartsman, “ Specifying and Using a Partitionable
Group Communication Service,” Proc. of the 16th Annual ACM Symp. on Principles
of Distributed Computing, pp. 53-62, 1997.

Z. Galil, A. Mayer, and M. Yung, “Resolving Message Complexity of Byzantine
Agreement and Beyond,” in Proc. 36th IEEE Symposium on Foundations of Com-
puter Science, 1995, pp. 724-733.

P. Kanellakisand A. Shvartsman, Fault-Tolerant Parallel Computation, Kluwer Aca-
demic Publishers, 1997.

E. Y. Lotem, |. Keidar, and Danny Dolev, “ Dynamic Voting for Consistent Primary
Components,” Proc. of the 16th Annual ACM Symp. on Principles of Distributed
Computing, pp. 63-71, 1997.

N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, San Mateo, CA,
1996.

Dynamic Load Balancing with Group Communication 15

[19] L.E. Moser, PM. Melliar-Smith, D.A. Agarawal, R.K. Budhia and C.A. Lingley-
Papadopolous, “ Totem: A Fault-Tolerant Multicast Group Communication System”,
Comm. of the ACM, vol. 39, no. 4, pp. 54-63, 1996.

[20] N.A. Lynch and M.R. Tuttle, “An Introduction to Input/Output Automata’, C\WI
Quarterly, vol.2, no. 3, pp. 219-246, 1989.

[21] R.vanRenesse, K.P. Birman and S. Maffeis, “Horus: A Flexible Group Communi-
cation System”, Comm. of the ACM, vol. 39, no. 4, pp. 76-83, 1996.

[22] M. Saks, N. Shavit and H. Woll, “ Optimal time randomized consensus—making re-
silient algorithmsfast in practice”, in Proc. of the 2nd ACM-SIAM Symp. on Discrete
Algorithms, pp. 351-362, 1991.

[23] D. Sleator and R. Tarjan, “Amortized Efficiency of List Update and Paging Rules,”
CACM 28, pp. 202-208, 1985.

[24] J. Sussmanand K. Marzullo, “ The Bancomat Problem: An Example of Resource Al-
locationin aPartitionable AsynchronousSystem” , in Proc of 12th Int-I Symp. on Dis-
tributed Computing, 1998.

Prof. Shlomi Dolev is in the Department of Mathematics and Computer Science, Ben-
Gurion University, Beer-Sheva, 84105, Israel. Email: dol ev@s. bgu. ac. i | . Part of
this research was done while visiting the Laboratory of Computer Scienceat MIT.

Prof. Roberto Segalais in the Dip. di Scienze dell’ Informazione, Universita di Bologna,
Italy. Email: segal a@s. uni bo.it.

Prof. Alexander Allister Shvartsman de Charzewice is in the Dept. of Computer Sci-
ence and Engineering, 191 Auditorium Rd., U-155, University of Connecticut, Storrs,
CT 06269, USA. He is aso a Research Associate at the Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Email:
al ex@se. uconn. edu. Part of thiswork was supported by a grant from the GTE Lab-
oratories.

