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Abstract

A Simple (constructive Computability Theorem

for wait-free ~omputation

In modern shared-memory multiprocessors, processes

can be halted or delayed without warning by inter-

rupts, pre-emption, or cache misses. In such environ-

ments, it is desirable to design synchronization proto-

cols that are wait-free: any processes that continues

to run will finish the protocol in a fixed number of

steps, regardless of delays or failures by other pro-

cesses.

Not all synchronization problems have wait-free so-

lutions. In this paper, we give a new, remarkably

simple necessary and sufficient combinatorial condi-

tion characterizing the problems that have wait-free

solutions using shared read/write memory.

We associate the range of possible input and out-

put values for any synchronization problem with a

high-dimensional geometric structure called a simpli-

cial complex. We show that a synchronization prob-

lem has a wait-free solution if and only if its input

complex can be continuously “stretched and folded”

to cover its output complex. The key to the new theo-

rem is a novel “simplex agreement” protocol, allowing

processes to converge asynchronously to a common

simplex of a simplicial complex. The proof exploits a

number of classical results from algebraic and combi-

natorial topology.
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I Introduction

A deczsion task is an input/output problem where N

asynchronous processes start with input values, com-

municate either by shared memory or by message-

passing, and halt with output values. Much research

in this area has focused on identifying combinatorial

conditions characterizing when such tasks are solv-

able. In the late 80’s, Biran, Moran and Zaks [4]

provided a pioneering graph theoretic characteriza-

tion for decision tasks in an asynchronous message-

passing system in which only a single processor could

fail. This result was not substantially improved until

early 1993, when three independent research teams,

Borowsky and Gafni [5], Saks and Zaharoglou [13],

and the present authors [11], succeeded in applying

new combinatorial techniques to models that allow

more than one failure. Saks and Zaharoglou used

point-set topology and a form of Brouwer’s fixed point

theorem for the k-dimensional ball to prove that the

longstanding open problem of wait-free k-set agree-

ment [7] is unsolvable for k ~ N – 1. E,orowsky and

Gafni used a novel simulation method and a variant

of Sperner’s Lemma to prove k-set agreement impos-

sible with any number of faults t > k. The present

authors presented a general topological characteriza-

tion of t-faulty computation, and used it to derive im-

possibility results for both k-set agreement and the

well-known renaming problem of Attiya et al. [3].

Our earlier characterization, however, has two lim-

itations. First, the condition is not stated directly

in terms of the task’s input/output specification. In-

stead, it characterizes solvability in terms of the topo-

logical properties of an associated “full information

complex,” a geometric realization of a family of con-

current executions. Second, the sufficient condition

is existential rather than constructive –– one cannot

easily derive an algorithm for a particular solvable

task.

In this paper, we show that if we restrict our at-
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tention to the wazt-fr~e case, where up to N – 1
processes can fail (or delay arbitrarily), then there

is a remarkably concise necessary and sufficient con-

dition for solvability. This new condition ilmproves

our earlier characterization in two ways: first, it pro-

vides a clean and intuitive mathematical condition

for computability, stated solely in terms of a task’s

input/output specification, and second, the theorem

is constructive: thecombinatorialp ropertycharacter-

izing solvability can be used directly to construct an

algorithm.

2 Model

A collection of N sequential processes communicate

by reading and writing variables in shared memory.1

In modern shared-memory multiprocessors, processes

can be halted or delayed without warning by inter-

rupts, pre-emption, or cache misses. In such environ-

ments, it is desirable to design synchronization proto-

cols that are wait-free: any processes that continues

to run will finish the protocol in a fixed number of

steps, regardless of delays or failures by other pro-

cesses. To capture the formal properties of such en-

vironments, we make no fairness assumptions about

processes. Up to N – 1 out of N processes can halt,

or display arbitrary variations in speed. In particular,

one process cannot tell whether another has halted or

is just running very slowly. “

Elsewhere [11], we introduced a model in which

task specifications are given using standard geometric

formalisms from undergraduate-level algebraic topol-

ogy. (Most of our technical definitions are taken from

Spanier [14].) An initial or final state of a process

is modeled as a vertex, Z, a point in some high-

dimensional Euclidian space. Each vertex is labeled

with a process id id(ti) and a value value(ii) (either

input or output). A set of mutually compatible initial

or final states is modeled as a simplex, the convex hull

of a set of affinely-independent vertexes labeled with

distinct process identifiers. Geometrically, a simplex

is just the higher-dimensional analogue of a solid tri-

angle or tetrahedron. The complete set of possible

initial and final states are represented by sets of sim-

plexes called simplzcial complexes (or complexes),
Complexes have a dual nature: they are combina-

torial objects (sets of sets of vertexes) as well as geo-
metric or topological objects (point sets in Euclidian
space). We use An to denote a (combinatorial) com-
plex, and IAn I to denote its (geometric) point-set in

Euclidian space. Similarly, we use Sn to denote an

10ur results also apply to message-passingsystems in which
fewer than half the processes can fail [1].

(n+ 1)-process simplex, and lSn I its underlying point

set. The number n is called the dimenszon of the

simplex or complex. A simplex’s set of identifiers is

denoted by tds(Sn ).

A simpliczal map p : An ~ l?” carries vertexes to

vertexes such that every simplex in d“ maps to a
simplex in W. Any simplicial map defines a piece-
wise linear map [p I : Idm I ~ If?n 1. A simplicial

map is color preserving if id(p(i7) ) = id(;). Hence-

forth, unless explicitly stated otherwise, all simpli-

cial maps are assumed to be color preserving. The

star of simplex Sm in complex Cn, written st (Sm ),
is the union of all lT~ I such that Sm C T~. The

open star, written & (S~ ), is the interior of the

star. If Sm = (3’0, ...,&) and T1 = (;o, . . ..~)

are simplexes whose vertexes are affinely indepen-

dent, their Join, Sm . T1, is the (m+ 1 + I)-simplex
(so,..., Fm, [o, G)., G).

A subdiwsion of a complex An is a complex l?” with

a map L carrying vertexes of Bn to points of Idn I such

that (1) if Sn is a simplex of B’ there is some sim-

plex Tn E An such that ~(Sn) c \Tn [, and (2) the

piece-wise linear map ILI : [Bn I ~ Idn I is a homom-

orphism. If Sm is a simplex of I?n, carrzer(Sn ) is

the unique smallest Tt such that Sm C ITL 1. A subdi-

vision Bn is chromattc if for all Sm in W, ids(S’” ) C

ids ( carrier(Sm )). A simplicial map p : f?n -+ (T be-

tween subdivisions of An is carrier preserving if for

all Sm E W, carrzer(Sm ) = carrier(p(Sm)).

A task specification is given by an input complex

Z“, an output complex On, and a map A carrying

each input simplex of Z?’ to a set of simplexes of On.

This map associates with each initial state of the sys-

tem (an input simplex) the set of legal final states

(output simplexes). When m < n, A(Sm) indicates

the legal final states in executions where only m + 1

out of n + 1 processes take steps (the rest fail before

taking any steps). A solutaon to a task is a protocol

in which the processes communicate by reading and

writing a shared memory, and eventually halt with

mutually compatible decision values. A wait-free so-

lution is one which tolerates the failure of up to n out

of n + 1 processes.

For example, in the renaming task [3], n + 1 pro-

cesses with unique names from a large name space

must choose unique names from a smaller name space.

Figure 1 shows all the possible final states of the

renaming task where three processors must choose

unique names from an output space of four names.

As shown, this particular complex is topologically

equivalent to a torus. A task specification is shown

schematically in Figure 2, in the form of a relation

between simplexes of an input complex (shown here

as a triangulated 2-sphere), and an output complex
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Figure 1: Output Complex for 3-Process Renaming with 4 Names

(shown here as a triangulated torus).

We are now ready to state our main theorem in its

entirety.

Theorem 2.1 A clecaston task (IV, 0“, A) has a

wait-free solutton ustng read- wrtte memory if and

only tf there exists a chromattc subcltuiston u(IV ] with

a color-preserving simplzcial map p : Q(IY ) ~ (T’

such that for each szmplez Sm Ln u(2Y ), A(Sm ) c

A(carrzer(S~)).

This theorem is illustrated schematically in Figure 3

Informally, this theorem states that wait-free compu-

tation in read/write memory preserves topology. The

simplicial map p induces a continuous (piece-wise lin-

ear) map \p I on the underlying point sets such that for

each input simplex Sm, lpl([Sml) C lA(Sm)l. A task

is therefore solvable if and only if the input complex

can be continuously “stretched” and “folded” so that

each input simplex is carried into its corresponding

set of output simplexes. This theorem has intrigu-

ing parallels to the classical simplicial approximation

theorem [14] [5.4.8], which states that any continuous

map 1A” I -+ Il?n I can be approximated by a simplicial

map from some subdivision of Jn to W.

For example, Figures 4 ancl 5 show two simple

tasks, one solvable and the other not. The first

task, 2-process consensus, is not solvaLble, because

two simplexes in the connected input complex must

be mapped to distinct connected components of the

output complex. The second task, callled 2-process

almost-consensus, is solvable. Although there is no

simplicial map directly from the input to the output

complex, subdividing the l-simplex marked (PO, Q1 )

does admit a map. A corresponding protocol appears

in Figure 6.

3 Strategy

The necessity of Theorem 2.1 follows from earlier

work. If a protocol exists, the subdivision is induced

by the “coherent family of spans” constructed in our

earlier paper [11], or by closely related constructions

in [5, 13].

In this paper, we focus on sufficiency, construct-

ing an explicit algorithm given the subdivision and

the simplicial map. The basic intuition is that solv-

ing a decision task is really a form of approximate

agreement [2, 8, 9, 10, 12], in which processes may

start out preferring vertexes “far apart” on the output

‘The 2-process consensus task requires processes with in-

puts in the range {O, 1} to agree on one of their input values
as a common output.
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Figure 2: A Task Specification

Figure3: The Main Theorem
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Input Complex Output Complex A definition

Po QO Po m ,

~-] : ~:,,

Q1 PI Q1 P1

Figure4: Two Process Consensus

Input Complex Output Complex A definition

Po QO Po Qo

Q1 P1 Q1 P1 ~-

Subdivided
Input Complex

Po QO

n

,.:::.,
‘w’ ,fi:.,,,,

Q1* .jj$

PO* .&

,::ff. ;:~:,
..... ,+:,,

Q1 P1

~ definition

L
~(PO)=PO ~(Ql)=QI

~(Pl)=Pl ~(Po*)=Pl

jl(QO)=QO ~(Ql*)=QO

Figure5: Two Process Almost-Consensus

Procedure almost-consensus for P Procedure almost-consensus for Q

initially input[p] = nil initially input[P] = nil

input[pl := P’s input input[Q] := Q’s input

if my input is 1 then return 1 if my input 1s O then return O

if input[Q] != 1 then return O if lnput[P] != O then return 1

return 1 I* vertex PO* *I return O I* vertex QI* *I

Figure6: Protocols for Two Process Almost-Consensus
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$M?W3 ~’&f

Figure7: Simplex Agreement

complex, but after a process of negotiation eventually

converge to the vertexes of a single output simplex.

More formally:

Definition 3.1 The simplex agree-

ment task (Xn, On, A) has arbitrary input complex

In, output complex 0“ = c(2T ), a chromatic subdi-

vision of Zn, and for all input simplexes Sm, A(Sm)

is the set of rn-simplexes in a(Sm ).

Simplex agreement task is shown schematically in

Figure 7. Given the necessity of Theorem 2.1, any

algorithm that solves simplex agreement for an arbi-

trary chromatic subdivision of P is a universal algo-

rithm. Our construction proceeds as follows.

We introduce the standard chromatic subdivision

of a complex Z“, denoted X(In), and the zterated

standard chromatic subdivision # (Zn ). This

subdivision is a color-preserving analogue of the

classical barycentric subdivision.

Simplex agreement on x(2”) is solved by the

‘(participating-set” algorithm of Borowsky and

Gafni [6]. Simplex agreement on xk (Zn ) is solved

by iterating that algorithm k times.

● If o(7Y ) is an arbitrary chromatic subdivision of

P, then there e~i~t~ an integer K mch that if

k > K, there is a carrier-preserving simplicial

map r#I : Xk(Zn) -+ o(P).

Putting these results together, we have a universal

algorithm. If the subdivision u and simplicial map p

are given, then the value of k and the simplicial map

# maybe computed off line. The processes first solve

simplex agreement on ,yk (Zn ). A process that chooses

vertex ; then chooses as its output value p(~(i?)).

4 Standard Chromatic Subdi-

vision

Let the simplex S“ = (.?.,. ... F’n), where id(;i) =

Pi, and $acei (Sn ) the subsimplex of S’n including all

vertexes but ~i.

Definition 4.1 In the standard chromatic subdivg-

szon of Sn, denoted X(Sn ), each n-simplex has the

form {(PO, So), . . . . (Pn, Sri)}, where Si is a subsim-

plex of Sn, such that (1) Pi E ids(Si), (2) for all Si

and S’j, one is a subsimplex of the other, and (3) if

Pj E ids(Si), then Sj ~ Si.

The first and second subdivisions of S2 are shown in

Figure 8. Applying the standard chromatic subdivi-

sion repeatedly yields a subdivision Xk (Sn ). Apply-

ing it to every simplex in a complex Cn yields. the

complex Xk (C”).

To show that x(S” ) is a subdivision of Sn, we

construct an explicit homeomorphism L : Ix(sn)l +
lSm1. Assume inductively that there exist homom-

orphisms Li : lX@cei(S~))l ~ lface,(Sn ) 1. Let

s~=(i’o, ..., F’n),b = ~~=o(;i/(n + 1) the barycen-

ter of S“, and 6 any value such that O < 6 < l/n.
Define

{

~i({~i, q) If Sk ~ ~~CC;(S~)

‘(( Pi’ Sk)) = (1 +d)b– d~i If Sk=Sn.

Because ~ is a homeomorphism (proof omitted):

Lemma 4.1 x(S” ) w a subdivision of S“.

The mesh of a complex is the maximum diameter of

any simplex. By analogy with the classical barycen-

tric subdivision:
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second subdivision ...

Figure 8: Standard Chromatic Subdivisions

Lemma 4.2 For sufjictently small d,

mesh(X(Sn)) < fich’am(S”).

Lemma 4.2 implies that by taking sufficiently large k,

mesh (Xk (Zn )) can be made arbitrarily small.

We refer to the vertexes (Pi, Sn ) as the central ver-

texes of the subdivision.

5 Simplex Agreement

Lemma 5.1 There exists a wait-free solution to s~m-

plez agreement with input complex Zn and output

complex ,y(Zn), the standard chromatic subdivision.

Proofi Each process Pi must choose a subsimplex

of S; of Sn such that (1) Pi E Zds(Si), (2) for all

S~ and Sj, one is a subset of the other, and (3) if

Pj E ids (Si), then Sj ~ S’i. This is exactly the par-

ticipating set problem of Borowsky and Gafni [6], and

their simple wait-free solution appears in Figure 9. ■

Lemma 5.2 There exists a wait-free solution to szm-

plex agreement with input complex Z“ and output

complex ,xh (Zn), the iterated standard chromatic sub-

division for any k >0.

Proofi Figure 10 shows an iterated version of the

participating set algorithm. ■

6 Arbitrary Chromatic Subdi-

visions

Our main combinatorial result is to show that if
a(Sm ) is an arbitrary chromatic subdivision of S’m,
then there exists a K such that for all k ~ K, there
is a color and carrier-preserving simplicial map:

d : x~(s”) + o-(s~).

As a first step, we show that given a subdivision of
a simplex, the result of “perturbing” a vertex within
its carrier by a sufficiently small distance is still a
subdivision.

Definition 6.1 Let a(S” ) be a subdivision of Sn.
An e-perturbation of a(Sn ) is a complex u’(Sn ) with

a color and carrier-preserving simplicial map t :

u(Sn ) a a’ (Sn ), bijective on vertexes, such that for

all V, Ifl– ~(ti)l < c.

Theorem 6.1 If a(Sn ) is a subdivision of S’n, then

there exists e > 0, such that any c-perturbation of

U(Sn ) is also a subdivision of Sn.

Henceforth, all perturbations are assumed to

be subdivisions. Note that mesh (a’(Sn )) ~

mesh(a(Sn)) + 2c.
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Initially: f[il = n+2; view_f [j] = null for j in {i. .n+l}; S = empty;

procedure participating-set(i: process id; f: shared array);

repeat

f [i] := f[i]-l;

for j := 1 to n+l do view-f[j] := f[j] od;

S := {j I view_f[jl -@ f[il};

until ISI y= f[il;

return S;

end participating-set;

Figure 9: The Participating Set Algorithm.

f[l. .k][O. .n], S[i. .k][O. .n], input[O. .n]: shared array;

Initially for all r in {1..k} f[r][i] = n+2;

S[r][i] = empty;

procedure simplex-agree(l: process_i.d;

my_vertex: vertex value;

k: refinement);

input[i] := my_vertex;

for r :=ltokdo

S [r] [i] := participating-set(i,f[r]);

ifr=i

then vertex[j,l] := <i,{input[kl I k in S[j,ll}>

else vertex[j,r] := <i,<vertex[k,r-1] I k in S[j,r]}>

return(mu(phi(vertex(i,k) )));

Figure 10: The Iterated Participating Set Algorithm.
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Definition 6,2 Two chromatic subdivisions p(Sn )

and c7(S” ) are independent if, for every F in p(Sn ),

and every {o, . . . FL in a(S”) such that ~d(~,) # lc/(F)

for O ~ r’ < k, F is affinely independent of ,70, . . . . ;~.

Theorem 6.2 If p(S7’ ) and a(Sn ) are chromatw

sulrdivzslons of S“, then p(S’l ) hus an c-perturbutlon

independent of a(,$” ),

Definition 6.3 If 1 : a(S”) + o’(S” ) is an c-

perturbation, and @ : A + cT(S”) a simplicial map,

the composition @ = @ o L is called an ~-perturbation

of (,b.

Lemma 6.3 (Spanier 2.1.2!5) ~ set of w?rtezes

UO, . . . . J,,, belong to a cornrnon rn-simplex lf and only

lf

1=0

Definition 6.4 Let 1? be a colored complex, and C

a subcomplex of .8. The part~ul chromat~e subdivi-

sion ~ (B, C) is defined as follows: each simplex in

\ (C, B) has the form C ~ 1?, where C: E \ (C) and

carr~er(C, Y(C)) B c .4?. The iteratecl partial chro-

matic subdivision y~ (f?, C) is defined inductively.

Lemma 6.4 If 4: A + B ls u color-preseru!rzg slrn -

plzclal map, then thrre crests a color-p resrrulng s~m -

pllctal map @ :~(A) + ,y(f?, C).

Proof: Let car-ner-(;, y (A)) = X ~ 1’, where X is

the largest face of the carrier such that 4(.Y ) E C.

If d(ti) < ids(y), define @( ii) = ~(;), and otherwise,

define ~(;) to be the unique central vertex of x (@(.%”))

with the same id as U.

We first check that @ is simplicial on simplexes

,V = (;O,. ... ii’~) where #(carr~er(Sm, ,y(J))) E C.

The

simplexes carrwr(;o, ,Y(A)), . . . carrkr(sm, Y(A)) are

ordered by inclusion (in some orcler), and so are the

simplexes .Y, = #(carrier(Fl, y(d))), and any set of

central vertexes labeled with distinct colors spans a

simplex.

It remains to note that if #(S~ ) is a simplex, and

Sm . Z E x(A), where 4(Z) @ C, then ~(Sm ~ vu) =

@(S~ ) . ~(;) is also a simplex. ■

A simple inductive argument yielcls:

Lemma 6.5 If ~ : A + ~ M a color-preserwng sirrL-

plictcd map, then there exists a color-preserving sLnL-

pllcial map * : #(A) --+ \t(B, C), for all t ~ O.

Theorem 6.6 If a(S” ) LS an arb~t)c~rg chromatle

subdlrrwon of ,?n, then there exists a A_ such that

for all k ~ I<, there M a culr~~t-prese]vi)zg simpl~clul

171azr:

@ : ,~~(s”)+ a(s~).

Proof: We first argue inductively by dimension n.

When 71 = O, the property is trivial, so assume in-

ductively that we have such a map tbr all faces of

y~(sn).
We next given an inductive construction for ex-

tending this map into the interior of ~k (Sn). We

have a three-part induction hypothesis. For each r’

between O ancl n,

1

2

3

There is a subdivision z, (Sn ), independent of

a(Sn ), with a color and carrier-preserving simpli-

cial map @t : ~t’(S’ ) + r~(Sn) for some t, > 0.

Ti (Sn ) contains a subcomplex A?J with a color

ancl carrier-preserving simplicial map ~~ : -l’.. +

a(sn).

Every simplex T c r, (Sn ) can be expressed as

.1-. l;, .1- ~ 1’,, dm (~Y) > i, and for every Z E .Y

and ~C 1’, ~E;t (~i(~), a(S’’ )).

111 the base case, when i = O, 10 = ~, .!70 = k.

The first condition is satisfied because Theorem 6.2

ensures that lk (Sn ) has an c-perturbation ~o(S” ) in-

dependent of u(S” ). The remaining conditions are

vacuous.

For the induction step, assume the hypothesis for

i – 1. Let Y~– 1 be the largest complex containing

only vertexes not in .l’~_ J. The open stars of the

vertexes in u(S” ) form an open cover for IS” 1. Be-

cause ri - 1(Sn ) and a(Sn ) are independent, every sim-

plex in 1“ c Y,- 1 has an open cover by sets of the

form ;t (F’, a(S” )) where zct(t;) 6 ds(l”-). Because

IYI is compact, this open cover has a Lebesgue num-

ber. Let ~,- 1 be the minimum of the Lebesgue num-

bers for for all such Y (which exists because Yi _ 1

is finite). Choose q large enough to ensure that

mesh(,y~(Y, _l)) < Ai_l/9. Let /, = (?,–.l + q. By

Lemma 6.4, we can extencl ~i- 1 to a simplicial map

w : y~’(s~)-+ y~(7’i-l(s~),2J,_l)

Pick E < A,-I/9. By Theorem ~,2, there exists

Ti (,5’”), an e-perturbation of yq(~,_l (Sn ), Yi– J) inde-

pendent of u(S” ), and ~, : yel (Sn) -+ T, (S”), an

e-perturbation of V. This perturbation adcls at most

2~,_l/9 to the diameter of any simplex in Y,–1:

2&-1 Ai_~
mesh(~, (Y~_l)) < rnesh(Xy(Yk_-l)) + —r S ~.
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For every simplex T“ in ~i (S”), Tn = .1- }“, where

.Y E ~, (.l’i-l) (a perturbation of ,Yi-1), and 1“ E

Ti(yt–l).

charn( U st(j,l’”)) ~ 3. mesh(~l(~l-l)) < ~~-1.

jcl’

Because ~,- 1 is a Lebesgue number, there is some

.7 c a(Sn ) such that the star of every vertex in Y lies

in & (F, a(S’z)). In particular, for at, least one ti E Y,

id(7) = d(j). Let .Yi be the largest complex con-

taining only these ii together with vertexes of Xi_ 1.

Define d~ : .%’i -+ cT(S”) to send i 6 .?i-l to ~,-l(i),

ancl each remaining Z7 to its matching F. This map is

color and carrier-preserving by construction. If Xm is

a simplex in .I?i, Xm = [1 ~V, where U has the prop-

erty given above, and V c .I’t – 1. By the induction

hypothesis,

u c n ;t (W; ),U(STZ)).

Jc{’

By construction,

u c n ;t (~i(ti), u(s~)),

d ~ u

so @, is sirnplicial by Lemma 6.3.

The desired map ~ is the composition of 4. and

tin ■
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