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Abstract

Shared pools and stacks are two coordination structures

with a history of applications ranging from simple pro-

ducer/consumer buffers to job-schedulers and procedure

stacks. This paper introduces elimination trees, a novel form

of diffracting trees that offer pool and stack implementa-

tions with superior response (on average constant) under

high loads, while guaranteeing logarithmic time “determin-

istic” termination under sparse request patterns.
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and Upfal [6, 13], that offer good expected response time un-

der high loads, but very poor performance as access patterns

become sparse (their expected response time becomes linear

in n – the number of processors in the system – as opposed to

that of a “deterministic” queue-lock based pool that is linear

in the number of participating processors). Diffracting trees

[16] have been proposed as a reasonable middle-of-the-road

solution. They guarantee termination within O(log w) time

(where w << n) under sparse access patterns, and rather

surprisingly manage to maintain similar average response

time under heavy loads.

1 Introduction

As multiprocessing breaks away from its traditional number

crunching role, we are likely to see a growing need for highly

distributed and parallel coordination structures. A real-time

application such as a system of sensors and actuators will

require fast response under both sparse and intense activity

levels (typical examples could be a radar tracking system or

a traffic flow controller). Shared pools and stacks are two

structures that offer a potential solution to such coordina-

tion problems, with a history of applications ranging from

simple producer/consumer buffers to job-schedulers [6] and

procedure stacks [17]. A poot (also called a pile [13], global

pool [6] or a producer/consumer buffer) is a concurrent data-

type which supports the abstract operations: enqueue (e) –

adds element e to the pool, and dequeue (* ) – deletes and

returns some element e from the pool. A stack is a pool with

LIFO ordering.

The literature offers us a variety of possible pool imple-

mentations. On the one hand there are queue-lock based

solutions such as of Anderson [I] and Mellor-Crummey and

Scott [8], which offer good performance under sparse access

patterns, but scale poorly since they offer little or no poten-
tial for parallelism in high load situations. On the other hand

there are wonderfully simple and effective randomized zuor-k-

pde and job-stealtng techniques of Rudolph, Slivkin-Allaluf
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1.1 Our results

This paper introduces elimination trees, a novel form of

diffracting trees that offers pool and stack implementations

with the same O(log w) termination guarantee under sparse

patterns, but with far superior response (on average con-

stant) under high loads. Our empirical results show that

unlike diffracting trees, and in spite of the fact that elimina-

tion trees offer a “deterministic” guarantee of coordination,l

they scale like the “probabilistic” methods [13], providing

improved response time as the load on them increases.

In a manner similar to diffracting trees, elimination trees

are constructed from simple one-input two-output comput-

ing elements called ehrnination balancers that are connected

to one another by wires to form a balanced binary tree with a

single root input wire and multiple leaf output wires. While

diffracting trees route tokens, elimination trees route both

tokens and arttt-tokens. These arrive on the balancer’s in-

put wire at arbitrary times, and are output on its output

wires. The balancer acts as a toggle mechanism, sending

tokens and anti-tokens left and right in a balanced manner.

For example, in the case of a stack implementation, the bal-

ancer can consist of a single bit, with the rule that tokens
toggle the bit and go to the O or 1 output wire according to

its old value, while anti-tokens toggle the bit and go left or

right according to its new value. Now, imagine that stack

locations are placed at the leaves of the tree, and think of

tokens as enqueue requests and anti-tokens as dequeue re-

quests. Figure 1 shows a width four tree after 3 enqueues

(tokens) and a dequeue (anti-token) have completed. The

reader is urged to try this sequence with toggles initially 0.

The state of the balancers after the sequence is such that

1They guarantee that a dequeue operat]on on a non-empty queue

wdl always succeed
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if next a token will enter it will see O and then 1 and end

up on wire gZ, whiIe if the next to enter is an anti-token it

will get a 1 and then a O and end up on wire VI, finding the

value to be deleted, In fact, our tree construction is a novel

form of a countzng network [3] based counter, that allows

decrement (anti-token) operations in addition to standard

increment (token) operations.

However, this simple approach is bound to fail since the

toggle bit at root of the tree will be a hot-spot [9, 10] and

a sequential bottleneck that is no better than a centralized

stack implement ation. The problem is overcome by placing

a dz~r-actirzg prvsrn [16] structure in front of the toggle bit

inside every balancer. Pairs of tokens attempt to “collide”

on independent locations in the prism, diffracting in a co-

ordinated manner one to the O-wire and one to the l-wire,

thus leaving the balancer without ever having to toggle the

shared bit. This is not a problem since in any case after both

toggled it, the bit would return to its initial state. This bit

will only be accessed by processors that did not succeed in

colliding, and they will toggle it and be directed as before.

Our first observation is that the stack behavior will not

be violated if pairs of anti-tokens, not only tokens, are

diffracted. The second, more important fact, is that it will

continue to work if collisions among a token and an anti-

token result in the “elimination” of the pair, without requir-

ing them to continue traversing the tree! In other words,

a token and anti-token that meet on a prism location in

a balancer can exchange enqueue/dequeue information and

complete their operation without having to continue through

log w balancers. In fact, our empirical tests show that un-

der high loads, most tokens and anti-tokens are eliminated

within two levels, Of course, the tree structure is needed

since one could still have long sequences of enqueues only.

We compared the performance of elimination trees to

other known methods using the Proteus Parallel Hardware

Simulator [7] in a shared memory architecture similar to the

Alewife machine of Agarwal et al. [2]. We found that elimina-

tion trees scale substantially better than all methods known

to perform well under sparse loads, including queue-locks,

soft ware combining trees [4] and diffract ing trees, They are

inferior to the probabilistic techniques of [6, 13] (though in

many cases not by much), especially for job dist ribut ion ap-

plications where a typical processor is the dequeuer of its
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latest enqueue. However, our empirical evidence suggests

that elimination trees provide up to a factor of 30 better re-

sponse time than [13] under sparse loads. Finally, we present

evidence that our new elimination balancer design offers a

more scalable diffracting balancer construction even in cases

where no collisions are possible.

In summary, we believe eltmtnation trees offer a new ap-

proach to produce/consume coordination problems. This

paper presents shared memory implementations of elimina-

tion trees, and uses them for constructing pools and almost-

LIFO stacks. We are currently developing message passing

versions.

2 Pools

A pool (also called a pile [13], centralized “pool” [6] or a

producer/consumer buffer) is a concurrent data-type which

supports the abstract operations: enqueue (e ) – adds ele-

ment e to the pool, and dequeue (*) - deletes and returns

some element e from the pool. Assume for simplicity that all

enqueued elements e are unique. A pool is a relaxation of a

FIFO-queue: apart from the queue’s basic safety properties,

no causal order is imposed on the enqueued and dequeued

values. However, it is required that:

PI

P2

an enqueue operation always succeeds, and

a dequeue operation succeeds if the pool is non-empty,

that is, if the number of enqueue operations ever com-

pleted is greater or equal to the number of dequeue op-

erations ever started.

A successful operation is one that is guaranteed to return

an answer within finite (in our construction, bounded) time.

Note that the decentralized techniques of [13] and [6] imple-

ment a weaker “probabilistic” pool definition, where condi-

tion P2 is replaced by a randomized guarantee that dequeue

operations succeed.

2.o.1 Elimination Trees

Our pool implementation is based on the abstract notion of

an elimination tree, a special form of the diffracting tree data

structures introduced by Shavit and Zemach in [16]. Our

5’5



formal model follows that of Aspnes, Herlihy, and Shavit [3]

using the I/O-automata of Lynch and Tuttle [11]. An elim-

zrratzon balancer is a routing element with one input wire

x and two output wires yO and Y1, Tokens and anti-tokens

arrive on the balancer’s input wire at arbitrary times, and

are output on its output wires. Whenever a token meets an

anti-token inside the balancer, the pair is eliminated and the

tokens are never output. We slightly abuse our notation and

denote by Zt and .z~ the number of tokens and anti-tokens

ever received, and by y: and y: the number of tokens and

anti-tokens ever output on the zth output wire. The balancer

must guarantee:

Quiescence Given afinite number ofinput tokens and anti-

tokens, it will reach a quiescent state, that is, a state

m which all the tokens and anti-tokens that were not

paired off and eliminated exited on the output wires.

Pool Balancing In any quiescent state, if x~ > ZF then for

every output wire t, y! > Y:.

Let POOLIW] be a binary tree of elimination balancers

with a root input wire x and w designated output wires:

YO, Y1, . . . y~–1, constructed inductively by connecting the

outputs of an elimination balancer to two PO OL[w/2] trees.

We extend the notion of quiescence and pool balancing to

trees in the natural way, claiming that

Lemma 2.1 The outputs yo, . . . yW_l of POOLIWJ sattsfy the

pool balanczng property m any quzescertt state.

Proofi The proof is by induction on w. When w = 2 this

follows directly from the balancer definition. Assume the

claim for PO OLIW/2] and let us prove it for PooL[to]. If

the number of tokens entering the root balancer of PooL[to]

is greater or equal to the number of anti-tokens, then, by

definition this property is kept on the output wires of the

root balancer, and by the induction hypothesis on the output

wires of both POOL[w/2] trees. ❑

On a shared memory multiprocessor, one can implement an

elimination tree as a shared data structure, where balancers

are records, and wires are pointers from one record to an-

other. Each of the machine’s asynchronous processors can

run a program that repeatedly traverses the data structure

from the root input pointer to some output pointer, each

time shepherding a new “token” or “anti-token” through the

network. Constructing a pool object from a PO OLIW] tree is

straightforward: each tree output wire is connected to a se-

quentially accessed “local” pool (a simple spin-lock protected

queue will do). A process performs an enqueue operation by
shepherding a token “carrying” the value the down the tree.

If the token reaches the output wire, the associated value

is enqueued in the small pool connected to that wire. The

deq ueue operation is similarly implemented by carrying an

anti-token through the network. If this anti-token collides

with a token in a balancer, the dequeuing process returns the

token’s value. Otherwise it exits on a wire and performs a

dequeue operation on the anti-token’s local pool. Naturally

if the local pool is empty the dequeuing process waits until

the pool is filled and then access it. The elimination tree

is thus a load-balanced coordination medium among a dis-

tributed collection of pools. It differs from elegant random-

ized constructions of [6, 12, 13] in its deterministic deq ueue

termination guarantee and in performance. While work in

an individual balancer is relatively high, each enq ueue or

deq ueue request passes at most log w balancers both under

high and under low loads. This is not the case for [12, 13, 6]

which provides exceptionally good behavior at high loads

but can guarantee only an an expected fl(n ) behavior under

sparse access patterns.

2.1 Elimination Balancers

The scalable performance of our pool constructions depends

on providing an efficient implementation of an elimination

balancer.

Diffracting balancers were introduced in [16]. Our shared

memory construction of a diffracting elimination balancer,

apart from providing a mechanism for token/anti-token elim-

ination, also improves on the performance of the original

diffracting balancer design. While a regular diffracting bal-

ancer [16] is constructed from a single prism array and a

toggle bit, the elimination balancer we use in our pool con-

struction (see lefthand side of Figure 2) has a sequence of

prism arrays and two toggle bits, one for tokens and one for

anti-tokensz. Each of the toggle bit locations is protected

by an MCS-queue-lock [8]. A process shepherding a token

or anti-token through the balancer decides on which wire to

exit according to the value of the respective token or anti-

token toggle bit, O to the left and 1 to the right, toggling the

bit as it leaves. The toggle bits effectively balance the num-

ber of tokens (resp. anti-tokens) on the two output wires,

so that there is in any quiescent state at most one token

(resp. anti-token) more on the O output wire than on the I

wire. The reader can easily convince herself that this suf-

fices to guarantee the pool-balancing property. However, if

many tokens were to attempt to access the same toggle bit

concurrently, the bit would quickly become a hot spot. The

solution presented in [16] is to add a prtsm array in front of

each toggle bit. Before accessing the bit, the process shep-

herding the token selects a location 1 in the prism uniformly

at random, hoping to “collide’) with another token which se-

lected 1. If a collision occurs, then the tokens “agree” among

themselves that one should be “diffracted” left and the other

right (the exact mechanism is described in the sequel), with-

out having to access the otherwise congested toggle bit. If

such a diffracting collision does not occur, the process tog-

gles the bit as above and leaves accordingly. As proved in

[16], the combination of diffracted tokens and toggling to-

kens behaves exactly as if all tokens toggled the bit, because

if any two diffracted tokens were to access the bit instead,

after they both toggled it the bit state would anyhow re-

turn to its initial state. The same kind of prism could be

constructed for anti-tokens.

The key to our new constructions is the observation that

for data structures which have complementary operations

(such as enqueues and dequeues), one can can gain a sub-

stantial performance benefit from having a joined prism for

‘The two separate toggle Iocatlons are an artifact of the pool-

balancing property. In our stack construction }n SectIon 3 the ehmma.

tlon balancer uses a single toggle bit for both tokens and anti-tokens
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Figure 2: The structure of POCJ and Stack elimination balancers

both tokens and anti-tokens. In addition to toggling and

diffracting of tokens and anti-tokens, if a collision between

a token and anti-token occurs in the shared prism, they can

be “eliminated” (exchanging the complementary informa-

tion among themselves) without having to continue down

the tree. We call this an eliminating collision. Unlike with

diffracting collisions, if the eliminating collision had not oc-

curred, each of the token and anti-token toggle bits would

have changed. Nevertheless, the combination of toggling,

diffracting and elimination preserves the elimination bal-

ancer’s correctness properties,3 which by Lemma 2.1 guar-

antees pool-balancing. As can be seen from Table 1, at high

levels of concurrency as many as half the tokens and anti-

tokens can be eliminated on the first tree level alone, and

only an eight are not toggled after passing the second level!

The size of (number of locations in) the prism array has

critical influence on the efficiency of the node. If it is too

high, tokens will miss each other, lowering the number of

successful eliminations, and causing contention on the toggle

bits. If it is too low, to many processes will collide on the

same prism entry, creating a hot-spot. Unlike the single

prism array of [16], we found it more effective to pass a token

through a series of prisms of decreasing size, thus increasing

the chances of a collision. This way, at high contention levels

most of the collisions will occur on the larger prisms while

at low levels they happen on the smaller ones. 4

Figure 3 gives the code for traversing an elimination bal-

ancer (the code executed by an anti-token is almost sym-

metrical). Apart from reading and writing memory, it uses

a hardware

● register-t omemory~wap(addr ,val) operation, and a

● comparemd_awap (addr, old, new), an operation which

checks if the value at address addr is equal to old, and

if so, replaces it with new, returning TRUE and otherwise

FALSE.

3’Th,s M easy to am and prove for the pool type balancer which has

two separate toggle bits, but harder for the single-blt stack balancers

to be presented m the sequel

4We are currently testing reactive methods where prism width M

varied dynamically m response to contention level

Our implementation also uses standard AquireLock and

ReleaseLock procedures to enter and exit the MCS queue-

lock [8].

Initially, processor p announces the arrival of its token at

node b, by writing b and its token type to locat ion~]. It

then chooses a location in the Prisml array uniformly at

random (note that randomization here is used only to load

balance processors over the prism, and could be eliminated in

many cases without a significant performance penalty) and

swaps its own PID for the one written there. If it read a PID

of an existing processor q (i.e. not-.empt y (him) ), p attempts

to collide with q. This collision is accomplished by perform-

ing two compare-and-swap operations on the location ar-

ray. The first clears p’s entry, assuring no other processor

will collide with it during it collision attempt (this elimi-

nates race conditions). The second attempts to mark q’s

entry as “collided with p,” notifying q of the collision type:

BY-TOKEN or BY-ANTI.TOKEN. If both compare-and-swap oper-

ations succeed, the collision is successful, and p decides based

on collision type to either diffract through the right output

wire or to be eliminated. If the first compare-and-swap fails,

it follows that some other processor r has already managed

to collide with p. In that case p diffracts through the left

output wire or is eliminated, depending on the type of the

processor that collided with it. If the first succeeds but the

second fails, then the processor with whom p was trying to

collide is no longer at balancer b, in which case p resets its

Location entry to empty, and having failed to “collide with”

another processor, spins on location [p] waiting for another

processor to “collide with it.” If during spin times no col-

lision occurs, p restarts the whole process at the next level

Prismz and so on. If p has traversed all the prism levels with-

out colliding, it acquires the lock on the toggle bit, clears its

element, toggles the bit and releases the lock. If p’s element

could not be erased, it follows that p has been collided with,

in which case p releases the lock without changing the bit

and diffracts or is eliminated accordingly. In case of an elim-
znattng collzston, token and anti-token can exchange values

in the following way.

their Location entry

it has to eliminate an

Tokens write the value they carry in

instead of just writing TOKEN. When

anti-token. a token writes its value in



Location: shared array[l . .EUMPROCS] ;

Function TokenTraverse(b: ptr to balancer) returns (ptr to balancer or ELI141EhTED) ;

Location [mypid] := (b ,TOKEIJ) ;

/* Part 1 : attempt to collide ~ith another token on k prism levels */

for i:=l to k do

place := random(l ,size-i) ;

him := register_ to_memory_swap (Prism-i [place] ,mypid) ;

if not_empty(him) then

(his. b,his-type) := Location [him] ;

if (his-b = b) and (his_type = TOKEN or his_type= AETI-TOKEII) then

if compare .and-swap(Locat ion[mypid] , (b ,TOKEIi) , EHPTY) then

if compare-and-swap (Location [him] , (b, his-type) , BY_ TOKE!J) then

return (b-> OutputUire[l] or ELIFIIriATED if his.type = A~TI-TOKEIJ)

else

Location [mypid] := (b, TOKEE) ;

else

return (b-> Output Wire[O] or EL IHIIi’ATED if Location [mypid] = BY_ AETI_TOKEIJ)

repeat b->Spin times I*

if Lo cat ion [mypidl

if Location [mypid]

/. part ‘2 access toggle the

AquireLock(b->TokenLock) ;

wait in hope of

= BY-TOKEN then

= BY-AHTI-TOKEN

bit */

being collided with */

return b-> OutputWire [0] ;

then return ELIMINATED;

if compare_ and-swap (Location [mypid] , (b ,TDKEE) , EMPTY) then

i : = b-> TokenToggle;

b-> TokenToggle := Mot(i) ;

ReleaseLock (b-> TokenLock) ;

return b-> OutputUire[i] ;

else

ReleaseLock (b-> TokenLock) ;

return (b-> OutputUire [0] or ELIMINATED if Location [mypid] = BY-AIiTI-TOKEli)

Figure 3: Traversing an eliminating balancer- the token’s code

the anti-token’s Location entry instead of BY-TOKEN. Finally,

when it eliminates a token, an anti-token gets the value from

the token’s Location entry. In the full paper we prove by

induction on the length of the computation that the above

code implements an elimination balancer.

2.2 Performance

We evaluated theperformance of our elimination freebased

pool construction relative to other known methods by run-

ning a collection of benchmarks on a simulated 256 proces-

sors distributed-shared-memory machine similar to the MIT

Aletui~e machine [2]of Agarwal et, aL Our simulations were

performed using Proteus a multiprocessor simulator devel-
oped by Brewer, Dellarocas, Colbrook and Weihl [7]. Our

preliminary results include several synthetic benchmarks.

2.2.1 Produce-Consume benchmark

We begin by comparing under high loads various deter-

ministic pool constructions which are known to guarantee

good enqueue /dequeue time when the load is low (sparse

access patterns). In the produce-consume benchmark each

processor alternates enqueueing a new element in the pool

and dequeuing a value from the pool. We ran this bench-

mark varying the number of processors participating in the

simulation during 106 cycles, measuring: latency, the aver-

age amount of time spent per produce and consume opera-

tion, aud throughput, the number of produce and consume

operations executed during 106 cycles.

In preliminary tests we found that the most efficient pool

implementations are attained when using shared counting

to load balance and control access to a shared array (see

Figure 4).

We thus realized the centralized pool given in Figure 4,

when the NQcounter and DQcounter are implemented using

two counters of the following type:

MCS The MCS lock of [8], whose response time is lin-

ear in the number of concurrent requests. Each pro-

cessor locks the shared counter, increments it, and

then unlocks it. The code was taken directly from

the article, and implemented using atomic operations:

register-t omemory=wap and compare-and_swap oper-

ations.

CTree Fetch&lnc using an optimal depth combining tree,

whose response time is logarithmic in the maximal num-

ber of processors. An implementation of the software
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Pool: array[l , .M] of elements ; - initially set to HULL --- M must be chosen optimally
NQcounter, DQcounter: integer; -initially set to O

Procedure Enqueue(el: elements) ; Function Dequeue ( ) returns elements;
i := Tetch-and-increment (IiQcounter) ; i;= fe<tch_and- increment (DQcounter) ;

repeat repeat
flag:= compare-and. siiap(Pool[i] ,NULL, el) ; repeat el := Pool [i] until el <> NULL;

until flag= TRUE; flag := compare-and-swap (Pool [i] ,el ,MULL) ;

until flag= TRUE;

return el;

Figure 4: A pool based on a shared counting.

combining tree protocol of Goodman et al. [4], modified

according to [5], Optimal width means that when n

processors participate in the simulation, a tree of width

n/2 will be used.

DTree ADiffracting Tree ofwidth 32, using the optimized

parameters of [16], whose response time is logarithmic

in w = 32 which is smaller than the maximal number
of processors.

and compare it to :

ETree A pooL[32] elimination tree based pool, whose re-

sponse time is logarithmic in w = 32 which is smaller

than the maximal number of processors. The root node

and its children contain two prisms of size 32 and 8 for

the root and 16 and 4 its the children. All other nodes

cent ain only a single prism of size 2. The spin is equal

to 32,16,8,4 and 2 for balancers at depths 0,1,2,3,4 and

5 respectively.

From Figure 5 we learn that diffracting and elimination

trees provide the most scalable high load performance. How-

ever, as the level of concurrency increases, the diffracting tree

manages only to keep the average latency constant, while the

average latency in the elimination tree decreases due to the

increased numbers of successful eliminating collisions taking

place on the top levels of tree. The effect on the throughput

is impressive: up to 2.5 times more requests are answered

by the elimination tree! The fraction of eliminated tokens at

the root varies between 44.7~o when only 16 processors are

participating and up to 49.7% for 256 processors. In fact, as

can be seen from Table 1, most enqueue/dequeue requests

never reach the lower level balancers, and the expected num-

ber of balancers traversed (including the pool at the leaf) for

16 processors is 3.14 nodes (38.9’70 of the request access the

leaf pools) and for 256 processors 2.082 (only 8,95% of the

request, eventually access the pools at the leaves).

2.2.2 Counting Benchmark

Our new multi-layered prism approach is slightly more costly

but scales better than the original single prism construc-

tion of [16]. As can be seen from Figure 6, when running

a benchmark of fetch tYincrewaent operations where no elimi-

nating collisions can occur, the DTREE[32] and DTREE[64]

with original single Prism balancers outperform a DTREE[32]

with our new multi-layered balancers in almost all the levels

45000

40000

~ 35000

; 30000
- 25000

~ 20000

; 15000.—

g 10000

5000

Throughput

) , I 1 1 Y I

,/ 1
Dtree-32+M d &

/b.. Cs -+-
/ ~ee-n .~.

/ Dtree_-3A x
/“ Dtree-64 + -

01 1 1 1 1 1 I

o 50 100 150 200 250 300
Processors

Figure 6: Counting benchmark

of concurrency which could be incurred in the 256 processor

produce-consume benchmark (on average each DTREE[32]

has 128 or so concurrent enqueues). However, unlike our the

multi-layered balancer constructions, they do not continue

to scale well at higher levels of concurrency.

2.2.3 Response time benchmark

The randomized workpiles method of Rudolph, Silvkin-

Allalouf and Upfal (RSU) [13] and later improvements by

Liiling and Monien [12] are surprisingly simple:

RSU Processors enqueue task in a private task queue. Be-

fore dequeuing a task, every processor flips a coin and

executes a load balcmcingprocedure with probability 1/1

where 1 is the size of its private task queue. Load bal-

0 16 procs 256 procs

m

Table 1: Fraction of tokens eliminated per tree level
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Figure 5: Produce-Consume: Throughput and Latency graphs

ancing is achieved by first choosing a random processor

and then moving tasks from the longer task queue to

the smaller so as to equalize their sizes.

We note that under high loads, and especially in applica-

tions such as job-distribution where each process performs

both enqueues and dequeues, these methods are by far su-

perior to elimination trees and all other presented methods

(The 10-queens benchmark of Figure 7 is a lesser example of

RSU’s performance. 5, However, asweknow from theoreti-

cal analysis, their drawback is the rather poor @(n) expected

latency when there are sparse access patterns by producers

and consumers that are trying to pass information from one

to the other, as could happen say, in an application coordi-

nating sensors and actuators.

The righthand side of Figure 7 shows the results of an

experiment attempting to evaluate (in a synthetic setting

of course) how much this actually hampers performance, by

measuring the average latency incurred by a deq ueue oper-

ation trying to find an element to return. We do so by run-

ning a 256 processor machine in which n/2 processors are

enqueuers and n/2 are dequeuers where n varies between 2

and 256. Each one of the enqueuing processors repeatedly

enqueues an element in the pool and waits until the ele-

ment has been dequeued by come dequeuing process. Each

time we measured the time elapsed between the beginning

of the benchmark until 2560 elements were dequeued, and

normalized by the number of dequeue operations per pro-

cess. Note that because of the way it is constructed, there

is no real pipelining of enqueue operations, and this bench-

mark does not generate the high work-load of the produce-

consume benchmark for large numbers of participants.

As can be seen, RSU does indeed have a drawback since it

is almost 100 times slower than the queue-lock and 30 times

slower than an elimination tree for sparse access patterns.

This is mostly due to the fact that the elimination tree even

without eliminating collisions will direct tokens and anti-

tokens to the same local piles within O(log w) steps. RSU

51nltially one processor, generates 10 tasks of depth 1 slmultane.

ously Each one of n processor repeatedly dequeues a task and lf

the task’s depth 1s smaller than 3 it waits work = 8000 cycles and

enqueue 10 new tasks of depth increased by one

reaches a crossover point when about a quarter of all local

piles are being enqueued into. In summary, elimination tlees

seem to offer a reasonable middle-of-the-way response time

over all ranges of concurrency.

3 Almost Stacks

Many applications in the literature that benefit by keep-

ing elements in LIFO order would perform just as well if

LIFO would be kept among all but a small fraction of op-

erations. LIFO-based scheduling will not only eliminate in

many cases excessive task creation, but it will also prevent

processors from attempting to dequeue and execute a task

which depends on the results of other tasks [17]. Blumofe

and Leiserson [6] provide a scheduler based on a version of

the RSU algorithm having LIFO-ish behavior on a local level.

We present here a construction of an almost stack. The full

paper, following Herlihy and Wing’s well accepted notion

of linearizability for specifying concurrent data structures,

provides a formal definition of ~-linearizablity, a variant of

linearizablity that captures the notion of “almostness” by al-

lowing a certain fraction of concurrent operations to be out-

of-order. 6 An almost stack implementation is one whose

operations are c-linearizable to some sequential LIFO order-

ing.

3.1 Elimination Stacks

A stack elirmnation balancer is a pool elimination balancer

with the additional requirement that:

Gap Step Property In any quiescent state O s (g: – y:) –

(Y: –Y!) <1

In other words, any surplus of tokens over anti-tokens on the

balancers output wires is distributed so that there is a gap

of no more than one token on wire O relative to wire 1 in any

quiescent state. Clearly, the gap step property implies the

pool ba[ancing property on the balancer’s output wires,

‘Thk? notion 1s remotely related to <.seriahzabllty [14], wh]ch al.

lows individual database read transactions to return partially incon-

sistent states
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Figure 7: Comparison between RSU and Elimination pool

We design STACK[tO] as a counting tree [16] (a special

case of the structure with regular token routing balancers

replaced by token fanti-token routing Stack elimination bal-

ancers. For w a power of two, STACK[2k] is just a root

balancer connecting to two STACK[k] trees with the out-

put wires yo, yl, ..., Yk–1 of the tree hanging from wire “O”

re-designated as the even output wires YO,Y2, . . . . y2~–2 of

STACK[2k], and the wires of the tree extending from the

root’s “l” output wire re-designated as the odd output wires

Yl, Y3, . . .. Y2l–l.

Lemma 3.1 A STACK[W] tree constructed from stack elim-

ination balancers has the gap step property on its output

wires, that is, in any quiescent state:

OS(Y!– Y:)–(L!; -Y; )<l

foranyi <j.

In fact, the STACK[UJ] tree is a novel form of a counting

tree/network [3, 16], that allows both increment (token) and

decrement (anti-token) operations.

Proof: Follows from the step property for counting trees

(Theorem 5.5 of [16]) by replacing the step property (on

tokens) for regular balancers by the gap step property (on

token/anti-token difference) for stack elimination balancers.

■

An atmost-stackis constructed as with the pool data struc-

ture by placing sequential “local stacks” at the leaves of a

STACK [W] tree. It follows from Lemma 3.1 (and the reader

is encouraged to try it out) that:

Corollary 3.2 -In any sequential execution the STACK[W]

based construction is a LIFO stack.

3.2 Eliminating Stack Balancer

One can modify the pool elimination balancer construction

from the former section so that it satisfies the gap step prop-

erty. Instead of accessing two different toggle bits, both to-

kens and anti-tokens use the same toggle bit NqD@oggle. If

a token does not collide in the prisms, it toggles NQDQtoggle

and chooses an output wire according to the old value of the

bit. An anti-token also toggles NQDqtoggle, but it chooses

an output wire according to the new value of NQDQtoggle.

In this way, the anti-tokens behave as if they “trace” the last

inserted token.

Theorem 3.3 The eliminating stack balancer satisfies the

gap step property.

Proofl (Sketch) Assume first that no collision occurs in

the balancer. We prove that the that every history of the ac-

cesses to NQD@oggle satisfies the property. We do so by in-

duction on the length of the computation history. If history h

contains only token transitions or only anti-token transitions

then the property holds trivially. If h consists of transitions

of both token types, there must be at least one token transi-

tion t and one anti-token access at which followed one other

in the history. Let us define h’ to be the history h without t

and at. Since following t and at the NQDQtoggle bit remains

in the same state it was before these transitions accessed it,

h’ is possible history of the access to NqDqtoggle and by

induction hypothesis satisfies the step property. Now, since

both tand at have been directed to the same output wire, h

also satisfies the balancing property. Finally, since colliding

tokens either disappear or are distributed equally between

the output wires, the step property is satisfied. ■

The performance of the almoet-stack is similar to that of

the pool and is not presented for lack of space.

Given a pool implementation, let E(e) and D(e) respec-

tively denote an enqueue operation of e and a dequeue oper-

ation returning e. Let + be the real time order between the

operations (OP1 + OPZ iff OPI has terminated before 0P2

has started). We say that D(z) in history h is unlineariz-

able if there are E(y), E(z) such that E(z) -+ E(y) ~ D(r)

and either D(y) does not exist in h or l)(y) exists in h and

E(X) - E(y) ~ D(Z) ~ D(y), We empirically tested the
~-linearizability of our almost-stack implementation,

We ran the producer-consumer benchmark when each pro-

cessor after traversing a node, waits a random number of

cycles between O and W = O, 1000, 10000, 100000 until 2000
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Figure 8: Produce-Consume: Percentage of unlinearizable

Dequeue operations

dequeue operations were executed. The data presented is

the fraction of unlinearizable dequeue operations, ones that

return values that are inconsistent with alinearizable LIFO

ordering of events. The results are in given in Figure 8. The

y-axis shows thepercentage ofunlinearizable dequeue opera-

tions Note that fortightly synchronized executions (w= O),

our implementation is linearizable to that of a stack at al-

most all levels of concurrency.

4 Conclusions and Further Research

Elimination trees represent a new class of concurrent algo-

rithms that we hope will prove an effective alternative to the

concurrent pool and stack algorithms in the literature.

There is clearly room for experimentation on real machines

and networks. Given the hardware fetch-and-complement

operation to be added to the Sparcle chip’s set of colored

load/store operations, one will be able to implement a shared

memory elimination-tree in a wait-free manner, that is, with-

out any locks. Our plan is to test such “hardware supported”

elimination-tree performance. We also plan to develop bet-

ter measures or methods for setting the tree parameters such

as prism size and balancer spin.
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