
Linearizable Counting Networks1

Maurice Herlihy * Nir Shavit 1 Orli Waarts

November 16, 1991

replied the businessman. “1 count them and recount them. It is difficult but
I am a man who is naturally interested in matters of consequence.”

•

— Antoine de Saint-Exupéry, The Little Prince

0

1A preliminary version of this work appeared in the Proceedings of the 32 — nd Annual 5ymposium on
Foundations of Computer Science, San Juan, Puerto Rico, October 1991 pp. 526-535. [51

Digiti Equipment Corpotation, Cambridge Research Lab.
1MIT Lab. for Computer Science. Supported by ONR contract N00014-91-)-1046, NSF grant CCR

8915206 DARPA contracts N00014-S9-J-1988 and N00014-87-K-0825 and by a Rothschild postdoctoral
fellowship.

Stanford University. Supported by the NSF’ grant CCR-8814921 and by ONR contract N00014-$8-K-
0166.

w

Abstract

The counting problem requires ii asynchronous processors to assign themselves suc
cessive values. A solution is linearizable if the order of the values assigned reflects the
real-time order in which they were requested. Lineasizable counting lies at the heart
of concurrent timestamp generation as well as concurrent implementations of shared
counters, FIb buffers, and similar data structures.

We consider solutions to the linearizable counting problem in a multiprocessor ar
chitecture in which processors communicate by applying read-modify-write operations
to a shared memory. Linearizable counting algorithms can be judged by three crite
ria: the memory contention produced, whether processors are required to wait for one
another, and how long it takes a processor to choose a value (the latency). A solution
is ideal if it has low contention, low latency, and it eschews waiting. The conventional
software solution, where processes synchronize at a single variable, avoids waiting and
has low latency but has high contention. In this paper we give two new counting
network constructions one with low latency and low contention, but that requires
processors to wait far one another, and one with low contention and no waiting, but
that has high latency. Fisaily, we prove that these trade-oils are inescapable: au ideal
lineasizable counting algorithm is impossible. Since ideal non-linearizable counting al
gorithms exist, these results establish a substantial complexity gap between linearizable
and non-linearizable counting.

Keywords: counting networks) contention, linearizability, wait-free synchxoniza
tion.

1

1 Introduction
In the counting problem, asynchronous concurrent processors repeatedly assign themselves
successive values, such as integers or locations in memory. The limearizable counting problem
requires that the order of the values assigned reflects the real-time order in which they were
requested. For example, jfk values are requested, then values 0. . k — 1 should be assigned,
and if processor P is assigned a value before processor Q requests one, then P’s value must
be less than Q’s. Linearizable counting lies at the heart of a number of basic problems, such
as concurrent time-stamp generation, concurrent implementations of shared counters, FIFO
buffers, and similar data structures (e.g. [7, 11, 17, 25)).

The requirement that the values chosen reflect the real-time order in which they were
requested is called linearizability [14]. The use of linearizable data abstractions greatly sim
plifies both the specification and the proofs of multiple instruction/multiple data (MTMD)
shared memory algorithms. As discussed in more detail elsewhere [14], the notion of lineariz
ability generalizes and unifies a number of ad-hoc correctness conditions in the literature,
and it is related to (but not identical with) correctness criteria such as sequential consistency
[18] and strict serializability [21].

Linearizable counting algorithms can be judged by three criteria:

• Contention: Because of limitations on processor-to-memory bandwidth, performance
suffers when too many processors attempt to access the same memory location at the
same time. Such hot-spot” contention is well-documented, and has been the subject
of extensive research both in hardware [2, 10, 11, 16, 22] and in software [3,8,9,20,25].

• Latency: The time needed to choose a value is strongly affected by the number of
variables a processor must access. We will show that (not surprisingly) there is an
inherent (inverse) relationship between the maximum contention at a variable and the
number of variables accessed.

• Waiting: Algorithms that require later processors to wait for earlier processors are not
robust — the failure or delay of a single processor will result in halting or delays in
non-faulty processors. All else being equal, it is preferable to choose algorithms that
ensure that some processes make progress even when others halt in arbitrary locations.

Informally speaking, a linearizable counting algorithm is ideal if it has low contention, low
latency, and it eschews waiting. In this paper, we will show that no ideal linearizable counting
algorithm exists, but that it is possible to satisfy any two out of the three criteria.

First, consider the naive solution in which all ii processors increment a single shared
variable using a read-modify-write ‘ operation. This algorithm has low latency (a single
variable), it eschews waiting (the read-modify-write is assumed to be atomic), but very

‘A read-modify-write operation [11] atomically reads the value of a memory location, modifies it, writes
it back, and returns the location’s old value.

2

high contention. (For more complete documentation of the performance problems of the
single-variable solution see Anderson et al. [3] and Graunke and Thakkar [12]. Also see the
experimental results described below.)

Elsewhere 14], we have proposed Jow-contention solutions to the (non-linearizable) count
ing problem based on a new class of data structures called counting networks. In this paper,
we show how counting networks can be adapted to solve linearizable counting. We first
give a construction that employs a counting network of depth O(Iogn). This construction
has low contention and low latency, but it requires processes to wait for one another. We
then give a two alternative counting network constructions that do not require waiting. The
first employs a network of depth O(n), and it guarantees that some non-halted processor
makes progress. The second employs a network of depth 0(n2), and it guarantees that every
non-halted processor makes progress.

Finally, we prove that these trade-offs are a fundamental aspect of linearizable counting:
any low-contention network that does not rely on waiting must have depth f(n), where u is
the number of processes. Since nou-linearizable counting does have ideal so1utions [4] with
low contention, polylogarithmic depth, and no waiting, this result establishes a substantial
complexity gap between linearizable and non-linearizable counting.

Li Background
A counting network, like a sorting network [6], is a directed graph whose nodes are simple
computing elements called balancers, and whose edges are called wires. Each token (input
item) enters on one of the network’s w n input wires, traverses a sequence of balancers, and
:eavcs on an output wire. Unlike a sorting network, a w input counting network can count
any number N > to of input tokens even if they arrive at arbitrary times, are distributed
unevenly among the input wires, and propagate through the network asynchronously.

Figure 2 shows a four-input four-output counting network. Intuitively, a balancer (see
Figure 1) is just a toggle mechanism that repeatedly alternates in sending tokens out on its
output wires, Figure 2 shows an example computation in which input tokens traverse the
network sequentiay, one after the other. For notational convenience, tokens are labeled in
arrival order, although these numbers are not used by the network. In this network, the
first input (numbered 1) enters on wire 2 and leaves on wire 1, the second leaves on wire
2, ar:d so on. (The reader is encouraged to try this for him/herself.) Thus, if on the i-th
output wire the network assigns to consecutive output tokens the values ii + 4, i + 2 4,...,
it is counting the number of input tokens without ever passing them all through a shared
computing elementl

Counting networks achieve a high level of throughput by decomposing interactions among
processors into pieces that can be performed in parallel, effectively reducing memory con
tention. in [4], two 0(log2n) depth counting network designs were presented. Aharonson
and Attiya [1] have recently proved several fan-out and cyclicity properties of such networks,
and Kiugermar and Plaxton [15] have shown an explicit network construction of depth

3

“log n) for some small constant c, and an existential proof of a network of depth
Q(log n).

Unfortunately, all known counting network constructions [1, 4, 15] are not ilnearizable.
It is even possible for a processor to shepherd two tokens through a network, one after
the other, and by suitable overtaking, have the second token receive the lesser value. Can
counting networks solve linearizable counting?

1.2 Overview

In Section 3, we propose a simple data structure, called a WAITING-FILTER, which trans
forms any low-contention non-linearizable counting protocol into a low-contention lineariz
able counting protocol. The resulting protocol, however, requires that later processors wait
for earlier processors to complete, implying that the failure or delay of a single processor
will produce halting or delay in the other, non-faulty processors. Nevertheless, we give ex
perimental evidence that in the absence of such timing anomalies, the transformed protocol
performs as well as the original.

in Section 4, we present two linearizable counting protocols that do not require processors
to wait for one another. Each of these protocols uses two counting networks: a standard
non-linearizable counting network, and a ‘filter” network. in the first SKEW network each
token traverses an average of 0(n) balancers, but an individual token may be forced along
an infinite path if it is infinitely often overtaken. The second REVERSE-SKEW network
construction guarantees that every token emerges after traversing 0(n2) balancers, hence
starvation is impossible. If implemented directly in terms of balancers, these filter networks
would have infinite size, so we give a simple technique for “folding” these infinite networks
onto finite data structures.

In Section 5, we prove that the tradoffs among our constructions is inherent. In any
low-contention linearizable counting network, a token must traverse an average of Q(n) gates
before taking a value. In [15] it was shown that there exist width ii non-linearizable counting
networks in which each token traverses at most 0(logn) balancers. Our results therefore
establish a substantial complexity gap between the class of linearizable and non-linearizable
counting networks — in other words, linearizability comes at a cost.

2 A Brief Introduction to Counting Networks
in this section we provide an introduction to counting networks. A more complete discussion
of the properties of counting networks can be found in [1, 4].

Counting networks belong to a larger class of networks called balancing networks, con
structed from wires and computing elements called balancers. A batancer is a computing
element with two input wires, delloted as the north and south wires (and indexed by 0 and
1), and two output wires, similarly named. Tokens arrive on the balancer’s input wires at
arbitrary times and are output on its output wires. Intuitively, one may think of a balancer
as a toggle mechanism, that given a stream of input tokens, repeatedly sends one token to

4

Input outputr______
Yoj 2 I 75421 357

y=[Xo;XJ 53 246

Figure 1: A Balancer.

the left output wire and one to the right, effectively balancing the number of tokens that
have been output on its output wires. We denote by z1, i c {O, 1} the number of input
tokens ever rec&ved on the balancer’s i-th input wire, and similarly by Yt, C {O, l} the
number of tokens ever sent on its i-tb output Wire. Throughout the paper we will abuse this
notation and use x1 (y) both as the name of the i-th input (output) wire and a count of the
number of tokens received on the wire.

Let the state of a balancer at a given time be defined as the collection of tokens on its
input and output wires. For the sake of clarity we will assume that tokens are all distinct.
We denote by the pair (t, b), the state transition in which the token t passes from an input
wire to an output wire of the balancer b.

We can now formally state the safety and liveness properties of a balancer:

1. In any state x0 + x1 yo + y (i.e. a balancer never creates output tokens).

2. Given any finite number of input tokens nt = x0 + z1 to the balancer, it is guaranteed
that within a finite amount of time, it will reach a qinescent state, that is1 one in
which the sets of input and output tokens are the same. In any quiescent state,
10 + Xj = 110 + Ih = m.

3. in any quiescent state, o = [m/21 and y’ = [ni/2j

A balancing network of width in is a collection of balancers, where output wires are
connected to input wires, having vi designated input wires xo, z1, .., x_i (which are not
connected to output wires of balancers), w designated output wires yo,1’,, ••,Yw—i (also un
connected), and containing no cycles. Let the state of a network at a given time be defined
as the union of the states of all its component balancers. The safety and liveness of the
network follow naturally from the above network definition and the properties of balancers,
namely, that it is always the case that x. ET y, and for any finite sequence of
In inpat tokens, within finite time the network reaches a quiescent state i.e. one in which

= Tn.

It is important to note that we make no assumptions about the timing of token tran
sitions from balancer to balancer in the network — the network’s behavior is completely
asynchronous. Although balancer transitions can occur concurrently, it is convenient to
model them using an interleaving semantics in the style of Lynch and Tuttle [19]- An ez
ecution of a network is a finite sequence s, e1, 1•• e s,. or infinite sequence 3, e1,

-.

5

of alternating states and balancer transitions such that for each (si, c+1, s+i), the transi
tion e1 carries state 3 to 3j4. A schedule is the subsequence of transitions occurring in
an execution. A schedule is valid if it is induced by some execution, and complete if it is
induced by an execution which results in a quiescent state. A schedule s is sequentid if for
any two transitions e, = (t1, b.) and ej = (ti, b1) where t and t3 are the same token, then
all transitions between them also involve that token. In other words, tokens traverse the
network one completely after the other.

In a MIMD shared memory multiprocessor, a balancing network is implemented as a data
structure, where balancers are records and wires are pointers from one record to another.
Each of the machine’s n asynchronous processors runs a program that repeatedly traverses
the data structure, each time shepherding anew token through the network (see the following
Subsection 2.1). The limitation on the number of concurrent processors translates into a
limitation on the number of tokens coucurrenty traversing the network:

—

We define the depth of a balancing network to be the maximal depth of any wire, where
the depth of a wire is defined as 0 for a network input wire, and max6{o..i}(depth(x) -f 1)
for the output wires of a balancer having input wires z1, i E {O..1}.

A counting network of width w is a balancing network whose outputs Va, ,
y.,_j have the

step property in quiescent states:

0 y
—

< 1 for any i <j.

To illustrate this property, consider an execution in which tokens traverse the network se
quentially, one completely after another. Figure 2 shows such an execution on the BIT0NIC[4]
network defined in L41 As can be seen, the network moves input tokens to output wires in
increasing order modulo w. A balancing network having this property is called a counting
network, because it can easily be adapted to count the number of tokens that have entered the
network. Counting is done by adding a ‘local counter” to each output wire i, so that tokens
coming out of that wire ale consecutively assigned the numbers ii -4- in, i — 2w, 1 + (y — 1)in.
The number i * w Ic assigned by the counter at the end of output wire i to the k-th token
exiting on it, is called the tokens value. We can now state the following simple yet useful
!emma:

Lemma 2.1. When a token takes a value v, then there are at most n — 1 values less than
v that are yet untalcen.

Proof: Suppose otherwise. A value is missing if no token has taken it. If we let the network
quiesce, then all vaiues less than v will be taken. Therefore every missing value corresponds
to a token traversing the network, and the claim follows because there are at most n tokens
in the network.

6

inputs OutPutS

15

26

37

4

Figure 2: A sequential execution of an input sequence to a BITONIC{4] network.

Note that when a token takes v, it may not yet be determined which token will take which
of the lower values.

Define the traversal interval of a token through the network to be the time interval
tenLer tezjj from the moment it entered the balancing network and until it exited it.

A counting network is linearizable ii for any two tokens a and b with traversal
intervals t:1] and t1’rii1 f ç1, < tnte? then vatue(a) < valte(b).

Though outside the scope of this paper, this definition can easily be shown to meet the
linearizability definition of [14]. 2

2.1 Implementing a Counting Network
In this paper, we assume that counting networks are implemented on a multiprocesser in
which processors communicate by applying read-modifrj-wñte operations to a shared mem
ory- The counting network is implemented as a data structure in memory. A balancer is
represented as a record with the following fields: toggle is a boolean value (initially True)
and north and south are pointers which reference either other balancers, or counter cefls.
Processors shepherd tokens through the network by executing the code shown in Figure 3.
Each processor toggles the baiancer’s state by calling fctch&comptement, which atomically
complements the toggle field and returns the old value. Based on the toggle state, it goes to
the north or south successor. When it encounters a counter, it atomically increments it by w
and returns the oM value. Note that balancers use only bounded size memory, but counters,
by definition, do not.

2lrformaljy, this would asnount to showing that the history of all procesaor’ requests (of valtes and
replies is equivalent to a sequential history which Ls consistent with all non-concurrent pairs of request-reply
events.

431

762 i::

7

halancer = [toggle: boolean, north, south: pointer]
traverse(b: pointer) returns(integer)

loop until counter(b)
state := fetch&complement(b.toggle)
if state

then b b.north
else b : bsouth
end if

end loop
v fetch&add(b.state,w)
return v
end traverse

Figure 3: Code for Traversing a Counting Network of width w

3 The Waiting Filter
We begin by proposing a solution with low contention and low latency, but that requires
processors to wait for one another. The key idea is smp1e: each token exiting the network
simply waits for a token to take the next lower value. This solution is therefore not robust,
since a failure or delay by one processor will force halting or delays in other, non-faulty
processors. Nevertheless, contention is low, since every processor waits on a separate location.

We use two component data structures. The first is a non-linearizable counting network
of arbitrary width (e.g., the bitonic or periodic networks 4), and the other is a WAITING-
FILTER of width n. Informally, the WAITING-FILTER is a kind of barrier, to be traversed
after the non-linearizable network, where each token waits for the tokens with lower values
to “catch up.” A token leaves the filter only when ail lower values have been assigned,
guaranteeing that every token that enters the network later will receive a higher value.
More precisely, a WAITING-FILTER is an n-element array of boolean values, called phase
bits, where indexing starts from 0. Define the function phase(v) to be (v/n)’ mod 2. We
construct the new network by having tokens first traverse the counting network and then
access the WAITING-FlutER. When a token exits the non-linearizable countirg network with
value v it awaits its predecessor by going to location (v—I) mod n in the filter, and waiting
for that location to be set to phase(v — 1). When this event occurs, it notifies its successor
by setting location v to phase(v), and then it returns its value.

Lemma 3.1. Whem token p with value v sets its phase bit, evny token that takes a lesser
value has also set its phase bit.

Proof: Assume by way of contradiction that p is the token of lowest value v to violate this
property. It must have seen location v — 1 mod n in the filter set to phase(v

— 1), a value

S

that could only have been written by the token with value v — 2km — 1, for some /c > 0. In
particular, a token with value v — ii — 1 could not have yet written its phase bit, and thus
by assumption, neither could any token with one of the n values v — n - V — 1. By the
step property of the non-linearizable counting network, since a token with value v exited the
network, there must be at least n + 1 tokens currently traversing the network or past the
network and before the phase change, that will take on the values v — n—i, v—n, - - - ,v —1.
Since by definition there can be at most n tokens concurrently in the construct, we have a
contradiction.

Corollary 3.2. The WAITING-FILTER is a limearizable counter.

3.1 Performance
We now make a brief digression to explore the perforuance of the WAITING-FILTER, in a
cache-consistent architecture, the WAITING-FILTER has very low contention, since each po
sitior, is concurrently read by only one processor and written by only one processor. Waiting
for a location to change va]ue does not produce memory contention, since the waiting pro
cessor simply rereads the value in its cache, and does not need to access the shared memory
until the cache is invalidated.

To explore how the waiting filter performs in practice, we compare the performance of
a bitonic counting network with and without the WAITING-FILTER. As a control, we also
compare the performance of a conventional spin lock, implemented by an in-line compiled
“test&test&set” 24] loop. These implementations were done in C on an Encore Multimax.

For each network, we measured the elapsed time necessary for a 220 (approximately a
million) tokens to traverse the network, controlling the level of concurrency. In Figure 4,
the horizontal axis represents the number of processes executing concurrently. When con
currency is i, each processor runs to completion before the next one starts. The number of
concurrent processes increases until all sixteen processes execute concurrently. The vertical
axis represents the elapsed time (in seconds) until all 220 tokens have traversed the network.
Each poirt on each curve represents the same amount of work.

At low leve]s of concurrency, the spin lock outperforms the networks, but as concurrency
increases, the spin lock’s throughput diminishes dramatically, while the networks’ through-
puts eventually increase. The throughputs of the linearizable and non-linearizable networks
are essentially the same.

4 Linearizable Counting Without Waiting
In this section, we present two lineañzable counting protocols with low contention that do
not require processes to wait for one another. Just as in the waiting construction given
in the previous section. each token traverses a non-linearizable counting network followed
by a “fllter” network. The first protocol is mon-blocking: it guarantees that some token
always emerges after the system as a whole has taken a bounded number of steps, but it

9

36-

32-

28-

24

20

16

12

8

4

.4
10 12 14 16

Figure 4: Shared Counter Implementations

aI]ows individual tokens to run forever without taking a value (starvation).
construction is wait-free: it guarantees that every token emerges after taking a
of steps (no starvation). Both networks have high latency, with depth Q(n).

4.1 The Skew Network

The second
fixed number

Our first construction is based on the SKEW filter, a balancing network illustrated in the
right-hand-side of Figure 5 (for now, ignore the empty balancers and the numeric labels). A

singlo
variable

Unearizable
bilonic[4]

non-l{nearizable
bitonict4]

0 4
I I I
2 8

10

y. 1y5,..

Figure 5: Skew Network and Folding

V2 V5

yo,y41..

SKEw-LAYER network is an unbounded size balancing network consisting of a sequence of
balancers b, for U i. For , both input wires are network input wires. For all b, the north
output wire is a network output wire and the south output wire is the north input wire
for b1÷1. A SKEw balancing network with a layer depth of d, is constructed by layering d
SKEw-LAyER networks so that the i-th output wire of one is the i-th input wire to the next.
We say that a balancer b has layer i if it belongs to the i-Ui SKEW-LAYER component.

This filter is combined with a non-linearizable couiting network as follows. Each token
first traverses the non-linearizable counting network, and then uses the resulting value as
the index of its input wire into the infinite SKEW filter network. For brevity, we refer to
these two data structures as the combined SKEW network, even though the ensemble is not,
strictly speaking, a counting network.

The correctness of our constructions is based on the following technical lemma, easily
proven by aduction on the number of balancers in a balancing network.

Lemma 4.1, For any balancing network, if exactly c tokens enter on each input vyire, then
exactly c tokens will arrive at each input wire of each balancer.

Corollary 4.2. In any execution where no more than c tokens enter on any input wire,
there ar never more than c tokens on any wire.

3Layer depth 5houId nor be confused with depth, which is infinitc for SKEW.

n
yQ

V1

Skew Network

V3 V,

Folded 5kew Network

11

The capacity c of an execution in which it tokens concurrently traverse a network is defined
to be the maximal number of tokens that arrive on any input wire. Let the capacity c of
a network be the maximum capacity over all executions. Corollary 4.2 implies that in a
network with capacity c, no more than c tokens arrive on any internal or output wire during
an execution involving it tokens.

In the SKEW filter, the capacity c is 1, that is, at most one token enters/exits on each
of a balancer’s input/output wires. We can thus define the toggle state of a balancer to be
the number of tokens it has output. Let a northwest barrier starting in balancer bk be a
sequence of balancers bk , bo, all in toggle state 2, where the north input wire of every
b is the south output wire of b1._1, and where be’s north input is wire 0. It immediately
follows from Lemma 4.1 that any token that approaches a balancer in a northwest barrier
will be diverted below the harrier, effectively protecting all wires behind the harrier from
late-arriving tokens.

Lemma 4.3. If a token p exits a balance,’ 6 on its south wire, then there is a northwest
harder starting from 6.

Proof: By induction on i, the number of the wire on which p exited south from a balancer
b. For i = 1 the result is immediate. Otherwise, assume the claim for i — 1. Since p exited
on the b’s south wire, another token must already have visited b. By Lemma 4.1, one of the
two tokens must have come from b’s north input wire, the south output wire of a preceding
balancer. hence it must have eted south on wire i — 1. The result now follows from the
induction hypothesis.

Lemma 4.4. Let q be a token that enters the filter after token p has taken a value. Jig
traverses a higher numbered wire than p at layer k, them it does so at all layers greater than
k.

Proof: Assume otherwise. Then, p’s path and q’s must cross. The only way two paths
can cross in the SKEW filter is if they traverse a common balancer. By Lemma 41, each
balancer is visited by only two tokens and since p got there first (i.e in toggle state 0), p
must exit on the north wire, and q on the south.

Corollary 4.5. Let q be a token that enters the filter after token p has taken a value. If p
and q pass through a common balancer, then q will take a higher value than p.

Lemma 4.6. The protocol ensures that the outputs of the SKEW filter have the step property
ill any quiescent state.

Proof: in a quiescent state, all 0 k tokens entering the combined network must have
exited. By definition, the outputs of the non-linearizabie counting network part have the
step troperty. This implies that exactly k tokens have arrived on the k lower-numbered
input wires of the SKEW filter. By simple induction on the layers of the SKEw filter, if k
tokens enter on the k lower input wires, they will exit on the k lower output wires.

12

Lemma 4.7. If processors u,ge a non-linearizable counting network to choose their input
wires, then for a SKEW filter of layer depth ci, where ci > n — 1, for any two tokens a and b
with traversal intervals jte.t0xjt and ift < t,_ then value(a) < vatue(b).

Proof: We argue inductively that this property is preserved among all tokens that have
entered the SKEw filter network on wires less than or equal to k. When k = 0, the result is
immediate, so assume the result for wires less than Ic > 0.

We prove the result for wires less than or equal to Ic by way of contradiction. Assume
that token p exits the network, and token q then enters the network and exits with a value
less than p’s. Lemma 4.4 implies that q entered the fitter on a lower numbered wire than
p. The inductive hypothesis implies therefore that p enters the filter on wire Ic. There are
two cases to consider: (1) p leaves some balancer b on its south wire, and (2) p !eaves every
balancer on its north wire.

In the first case, Lemma 4.3 implies that there is a northwest barrier extending from b
to wire 0, and the token q must he diverted south (below the barrier) to higher numbered
lines. Lemma 4.4 implies therefore that q will take a value greater than p’s a contradiction.

In the second case, if k it — 1 = ci, then p goes north until it reaches wire 0, and the
resu’t is immediate. Otherwise, ilk> n—i, then p goes north on n—i balaucers, and hence
gets value k — it + 1. Since k > it — 1, Lemma 2.1 applied to the non-linearizable counting
network implies that at least Ic — it + 1 tokens must have entered the SKEW filter on lines
less than Ic and left it before p entered. Therefore, since by Lemma 4.1 only one token can
exit on a given output wire of the filter, there exists a token r that exited the network before
p entered the filter, and took a value k — it. It follows that r exits the network before
q entered it, and by the induction hypothesis, it took a lesser value than q, since otherwise
we would have a linearizabitity violation among the first k — 1 lines. But in this case, q’s
value must be smaller than p’s value Ic — n-f 1 and greater than r’s value of k — a
contradiction.

Theorem 4.8. This protocol solves linearizable counting if the SKEW filter has layer depth
greater than or equal ton—i.

Proof: The outputs of the combined SKEw network satisfy the step property in quiescent
states (Lemma 46). The proof that the network is hnearizable follows from Lemma 4.7 since
for any token entering the combined network, its traversal interval through the Skew filter is
a subinterval of its traversal interval through the whole network.

Although the combined SKEW network permits starvation, the average traversal path length
is 0(n).

Lemma 4.9. The average number of balancers traversed by any token in the SKEW filter is
—2.

13

Proof: in any quiescent state, k tokens have entered and exited the network on the lower
numbered Ic wires. There are k wires of 2n — 2 balancers each, yielding an average path
length of 2n — 2.

4.2 The Reverse-skew Network
Our second filter is the combined REVERSE-SKEW network. A REVERSE-LAYER network is
the mirror image of the SKEW-LAYER. it consists of a sequence of balancers b, for 0 .

For b0 both output wires are network output wires. For all b. i > 0, the south output
wire is a network output wire, and the north output wire is the south input wire for b_1.
A REVERSE-SKEW network of layer depth d is constructed by layering ii REVERSE-LAYER
networks so that the i-th output wire of one is the i-th input wire to the next. The protocol
is the same as before: each token traverses the non-linearizable counting network and uses
its output vaue to choose the input wire into the REVERSE-SKEW filter.

Theorem 4.10. The protocol solves knearizable counting if the non-linearizable counting
network has width in and the REVERSE-SKEW filter has layer depth greater than or equal to
[(n-1)/2]w-1.

The proof of this theorem is omitted because it is nearly identical to that of Theorem 4.8.
It uses one additional observation, which is: Lemma 2.1 implies that there is no violation of
linearizabflity between any two tokens that enter the filter on input wires that are of distance
greater than F(m

— 1)121w — 1. Therefore, the northwest barrier created when some token
exEts the network, need only protect against tokens that entered on input wires that are less
than (n — i)/2w apart from its filter input wire.

The following lemma shows that the REVERSE-SKEW protocol is wait-free.

Lemma 4.11. The number of balancers traversed by any token in the REvERSE-SKEwfilter
is at most 2[(n

— 1)/21w + n —3.

Proof: Note that a token can exit on the south end of at most ftn —1)/lw—-i balancers.
The number of the output wire on which a token exits is at most n — 1 smaller than the
number of the token’s input wire in the filter, and therefore, a token can exit on the north
end of at most n — I + a — 1)/21w — 1 balancers, and the claim follows.

As in Lemma 4.9, the average number of balancers traversed by any token in the REVERSE-
SKEW filter is 2[(n

— 1)/21w —2. Note that if c = 1 then it = wand the depth of the network
is 0(n’).

14

4.3 Implementing an Infinite Network
We now show how to represent the infinite SKEW filter using a finite network. (The con
struction for the REvERSE-SKEw filter is omitted, since it is nearly identical.) We first define
a coordinate system for identifying balancers. Each balancer is denoted b1, where i ranges
from 0 to infinity and j ranges from 0 to d — 1111 a network of layer depth d. Balance b0
is the first balancer whose north output wire is on row i, ba_ is the last balancer on row
i (equivalently, whose north output wire is on row i), and bj,j is balancer on layer j and on
row i.

A folded SKEW filter network is a to width by d depth array of multibalancers c1 Each
coo has two input wires, cio, i > 0, has one input wire, and each cia.i has one output wire.
For 0 S i 5 in and 0 < < ci there is one wire from cj to ci,-ij, where index arithmetic
is mod to; and for 0 5 i < w and 0 < d —1, there is also one wire from tij to ciji.

The rnultibalancer c11 simulates each of the balancers 6d, b+2 The folding of a
SKEW network of layer depth d = 4 into a folded network with to = 4 and d = 4 is iUustrated
in Figure 5.

Like a balancer, a multibalancer can also be represented as a record with toggle, north] and
south flelds. The north and south fields are still pointers to the neighboring muitibalancers
or counters, but the toggle component is more complex, since it encodes the toggle states of
an infinite number of balancers. The following theorem shows that this infinite sequence has
a simple structure.

Theorem 4.12. Let s0, s,,.. be the toggle states of bçj, in SKEW (the ones
represented by a multibalancer ci,). If there are m 5 n tokens traversing the SKEW filter,
then there are at most 2m + 2 values of k such that 3k Sk+1.

Proof: We argue by induction on rn the number of tokens concurrently traversing the
network. Let N be the total number of tokens that are traversing or have completed travers
ing the network. If rn = 0, the SKEw network is quiescent, implying that the first LN/2i
balancers have been visited by 2 tokens, the next by N mod 2 tokens, and the rest by no
tokens. Assume the result for in — 1 tokens concurrently traversing the network, and con
sider the situation where there are in tokens traversing it. Choose any traversing token, run
it to completion, and let 4 be the new toggle state of balancer b1÷. By the induction
hypothesis, there are at most 2m values of k such that 4 $ 4. The result follows because
with the addition of one more token, there are at most two k values such that 3k # sk+1 and
4

Since the number of concurrently traversing tokens in is always bounded by ii, we have
that:

Corollary 4.13. There are at most 2n + 2 values of lv such that 3k

15

The toggle component of the multibalancer cj can therefore be treated as a set containing
(at most) 2n + 2 pairs (k, 3k) such that b1+kj b÷(k_I), and an additional pair of
(O,so). This set could be implemented with a short critical section (which introduces a small
likelihood of blocking) or it could be implemented without blocking using read-modify-write
operations as discussed elsewhere [13J.

5 Lower Bounds
We now show that it is impossible to construct an ideal linearizable counting algorithm,
one with low contention, low latency, and without waiting. We give two results. The fiçst
concerns counting networks: first, any non-trivial4non-waiting linearizable counting network
must have an infinite number of balancers, implying that the “folding” structure employed
in the previous section’s filter constructions is, in a sense, inescapable. The second concerns
linearizable counting in general: in any non-waiting protocol, whether based on counting
networks or not, contention and latency are inversely related.

The lower bound on the number of balancers is not as alarming as it sounds, since we
have shown it is po6sible to “fold” an infinite number of balancers into a simple finite data
structure. The time bound is more significant: in a low-contention non-waiting network,
any processor must traverse an average of 0(n) balancers before choosing a value. There
exist non-linearizable counting networks with polylogarithmic depth 1, 4, 15], and therefore
non-waiting linearizable counting networks will always have lower throughput than their
non-waiting non-linearizabte counterparts.

5.1 Lower Bounds on Sbe
We first show that the only non-waiting linearizable counting network of finite width is
the trivial one consisting of a single balancer. Given a nontrivial finite counting network,
we construct an execution in which a. later token overtakes an earlier token, resulting in
non-linearizable behavior.

Theorem 5.1. There is no non-blocking finite-width linearizable cotntimg network of width
greater than two.

Proof: We assume such a network and derive a contradiction. Let b be the last balancer
on wire w — 1. Scud w tokens 7k, ‘‘, Pw—1 sequentially through the network where each p
enters on input wire i. If a token arrives at balancer b, halt it on b’s input wire, otherwise
let it proceed until it takes a value. Lemma 4.1 implies that there is exactly one token øn
each input wire of b.

One of the halted tokens on b’s input wires is Pw—1 To see why, consider the state of the
network before Pw-I enters. At least one token is halted before b. Hall halted tokens resume
their traversals then the step property implies that exactly one token will have emerged on

4The tñtai cmrnting network consists of a single balancer.

16

each of the wires 0,... ,w —2, and none on w —1. Thus Pw—t must exit on wire w —1 and
therefore is halted on one of b’s input wires.

Now let Pw—1 resume its traversal, taking a value less than rn—i (since there is at least one
more halted token on the input wires to 6), and send w more tokens Qo, q.i sequentially
through the network, where each qi enters on input wire i. As before, if a token arrives at
balancer 5, halt it on b’s input wire, otherwise let it proceed until it taices a value. Each qi
follows the same path as p, and by similar reasoning, two qi are halted before b, one being
q,,_1. The remaining w —2 > 0 tokens will each take values greater than w — 1. If qw—i
resumes its traversal, it will be the second token to visit 6, hence it will take to — 1, violating
linearizability.

We have shown a slightly stronger result. In the execution we constructed, no token
overtakes another on a single wire, and therefore there is no non-trivial finite linearizable
counting network even under the additional constraint that the wires between balancers are
first-in-first-out.

Corollary 5.2. Any input wire of a linearizable counting network can be used only a bounded
ninnber of times.

Proof: Suppose otherwise. The step property requires that each output wire of an infinite-
width network be traversed no more than once in any finite execution. Consider a sequential
execution in which token p enters on input wire i, runs uninterruptedly through the network,
and emerges after ci steps on output wire j. If we run 2” additional tokens sequentially from
input wire i, then the last token will follow exactly the same path as p, since the state of
each balancer along the path will have been reset. Now two tokens have traversed output
wire j, violating the step property.

5.2 Lower Bounds on Time
In this section, we prove some fundamental lower bounds for any linearizable counting pro
tocol that does not use waiting, whether or not it relies on counting networks. A protocol
is defined as follows: each processor applies read-modify-write operations to a sequence of
variables and then chooses a value. A processor may choose the next variable based on the
values of earlier variables, but some processor must decide after a finite number of steps (no
waiting). The protocol’s latency is the maximum number of variables any processor visits
before choosing its value. A protocol is quiescent if no processor is in the process of choosing
a value. In the protocols given so far, the variables correspond to balancers, and the latency
corresponds to the network depth.

A path is a sequence of variables. In any protocol state, processor p has preferred path
u if p would traverse ii if it were run in isolation until choosing a value. If p would choose
value v, then v is its preferred value. Define the capacity c of the protocol to be the maximal

17

number of processes that access any particular variable in any execution. If c is high, so
is the maximum number of concurrent accesses to a variable, so Capacity is a measure of
potential contention.

Consider a linearizable counting protocol for n processors with capacity c.

Lemma 5.3. in any qtiescent state, the preferred path for any token p must traverse at
least [(n — l)/(c —1)] variables.

Proof: Consider the following execution. Suppose the protocol is in a quiescent state and

— 1 is the last value taken. For each processor q distinct from p, run q in isolation until
either

1. q is about to choose value k.

2. q is about to access a variable in p’s preferred path.

We c!aim the first case cannot occur. Since the protocol is in a quiescent state, all values
less than i have been taken and therefore any processor that starts the protocol and runs
uninterruptedly must choose i. If p and q can both run to comp)eton without accessing a
common variable, they will both choose i, a contradiction. Therefore q’s path must eventually
intersect p’s preferred path.

By hypothesis, no more than c — 1 processors can access any variable along p’s path.
Since every process’s path must intersect p’s path somewhere, the path must include R —

1)/(c — 1)] distinct variables.

Theorem 5.4. Any linearizable counting protocolforn processes and capacity c has latency
fl(/c).

Proof: It is enough to show that in any sequential execution, every processor traverses at
least [(n — 1)/(c — 1)] variables, Initially, the protocol is quiescent, and Lemma 5.3 implies
that the first processor traverses at least [n/c] — 1 variables. After each processor chooses
a value, the protocol returns to a quiescent state, and the same argument applies.

If we define a low-contention algorithm to be one where c is constant, then any iow
contention linearizabie counting protocol has linear latency.

This theorem has further implications for counting networks. Elsewhere, [& we have
shown that the set of balancers traversed by a set of tokens in a counting network does not
depend on how transitions are interleaved, which implies:

Corollary 5.5. In any execution of a counting network, the average number of balancers
traversed &y every token is fl(n/c).

18

6 Conclusion
The following joke circulated in Italy during the 1920’s and 30’s.

Mussolini ctaims that the ideal citizen is intelligent, honest, and Fascist. Un
fortunately, no one is perfect, which explains why everyone one meets is either
intelligent and Fascist but not honest, honest and Fascist but not intelligent, or
honest and intelligent but not Fascist.

The ideal linearizable counting algorithm has low contention, low latency, and does not
require waiting. Unfortunately, Theorem 5.4 shows that no ideal algorithms exist. The best
algorithms one can devise either have low latency and no waiting but high contention (like
the single shared variable), low contention and low latency but require waiting (like the
WAITING-FILTER), or low contention and no waiting but high latency (like the SKEw and
REVERSE-SKEW filters).

7 Acknowledgments
We thank Cynthia Dwork, Serge Plotkin, and Vaughan Pratt for their many constructive
comments.

19

References
[1] E. Aharonson and H. Attiya. Counting networks with arbitrary fan out. Iii Praceedings of

the 3 Symposium on Discrete Algorithms, Orlando, Florida, to appear January 1992. Also,
Technical Report 679, The Technion, June 1991.

21 A. Aggarwal and M. Cherian Adaptive backoff synchxoniiation techniques. 16th Symposium
on Computer Architecture, June 1989.

[3] T.E. Anderson. The performance implications of sprn-waitrng alternatives for shared-memory
multiprocessors. Technical Report 89-04-03, University of Washington, Seattle, WA 98195
April 1989. To appear, IEEE Transactions on Parallel and Distributed Systems.

[4] J. Aspnes, M.P. ilerlihy, and N. Shavit. Counting networks and multi-processor coordina
tion. In Proceedings of the 23n1 Annual Symposium on Theory of Computing, May 1991, New
O:leans, Louisiana. •

5J M.P. Herlihy, N. Shavit, and 0. Waarts. Linearizable Counting Networks. In Proceedings of
the 32’ Annual Symposium on Fotndations of Computer Scie?2ce, San Juan, Puerto 111cc,
October 1991, pp. 526-535.

c6j TM. Cormen, CE. Leiserson, and IL L. Rivest. Introduction to Algorithms. MIT Press,
Cambridge MA, 1990.

[7] CS. Ellis and T.J. Olson. Algorithms for parallel memory allocation. Journal of Parallel
Programming, 1T(4):303—345, August 1988.

[8] D. Cawlick. Processing ‘hot spots in high performance systems. In Proceedings COMPCON’85,
1985.

[9] J. Goodman, M. Vernon, and P. Woest. A set of efficient synchronization primitives for a
large-scale shared-memory multiprocessor. In Proceedings of the 3n International Conference
on Architectural Support for Programming Languages and Operating Systems, April 1989.

flU] A. Cottlieb, R. Grishman, Cl’. Kruskal, K.P. McAuliffe, L. Rudolph, and M. Snir. The NYU
ultracomputer — designing an MIMD parallel computer. IEEE Transactions on Computers,
C-32(2):175—189, February 1984.

[11] A. Cottlieb, B.D. Lubachevsky, and L. Rudolph. Basic techniques for the efficient coordi
nation of very large numbers of cooperating sequential processors. ACM Transactions on
Programming Languages and Systems, 5(2):164—189, April 1983.

12] C. Craunke and S. Thakka.r, Synchronization algorithms for shared.memory multiprocessors.,
IEEE Computer, 23(6):60—70 June 1980.

1131 M.P. Herllhy. A methodology for implementing highly concurrent data structures. In Pro
ceedings of the Second ACM SICPLAN Symposium on Principles and Practice of Parallel
Programming, pages 197—206, Seattle, WA. March 14-16 1990.

20

i’i M.P. Herlihy and SM. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463—492, Juiy 1990.

[15] M. Klugerman and C. Greg Plaxton, Small-Depth Counting Networks. In preparation, MIT-
LOS/UT at Austin, October 1991.

[16] C.P. Kruskal, L. Rudolph, and M. Snir. Efficient synchronization on multiprocessors with
shared memory. In Fifth ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Compiaing, August 1986.

[17] L. Laiuport. A new solution of Dijkstra’s concurrent programming problem. Communications
of the ACM 17(8):453-.455, August 1974.

I8j L. Lamport. How to make a multiprocessor computer that correctLy executes multiprocess
programs. IEEE Transaction, on Computers, C-28(9), September 1979

[19) NA. Lynch and MR. Tuttle. ilierarchical Correctness Proofs for Distributed Algorithms.
In Sixth ACM SICACT-SIGOPS Symposium on Principles of Distributed Computing, August
1987, pp. 137—151. Full version available as MIT Technical Report MIT/LCS/TR387.

[20] SM. Metlor-Crummey and ML. Scott. Algorithms for scalable synchronization cm shared-
memory multiprocessors. Technical Report Technical Report 342, University of Rochester,
Rochester, NY 14627, April 1990.

[21] CR. Papadimitriou. The serializability of concurrent database updates. Joiwnd of the ACM,
26(4):631-653, October 1979.

[22] OR. Plister et a]. The IBM research parallel processor prototype (ItP3): introduction and
architecture. In International Conference on Paralici Processing, 1985.

[23] OH. Pfister and A. Norton. ‘hot spot’ contention and combining in multistage interconnection
networks. IEEE Transactions on Computers, C-34(11):933—938, November 1985.

[24] L. Rudolph, Decentralized cache scheme for an MIMD parallel processor. In 11th Annual
Computing Architecture Conference, 1983, pp. 340-347.

[25] H.S. Stone. Database applications of the fetch-and-add instruction. IEEE Th.znsactions on
Computers, C-33(7):604—612, July 1984.

21

