
Counting Networks and Multi-Processor

Coordination

James Aspnes * Maurice Herlihy t Nir Shavit $

Abstract

Many fundamental multi-processor coordination

problems can be expressed aa counting problems:

processes must, cooperate to assign successive val-

ues from a given range, such as addresses in mem-

ory or destinations on an interconnection net-

work. Conventional solutions to these problems

perform poorly because of synchronization bot-

tlenecks and high memory contention.

Motivated by observations on the behavior of

sorting networks, we offer a completely new ap-

proach to solving such problems. We introduce a

new class of networks called counting networks,

i.e., networks that can be used to count. We give

a counting network construction of depth Iogz n

using n log2 n “gates, ” Based on this construc-

tion, we provide coordination algorithms that

avoid the sequential bottlenecks inherent to for-

mer solutions, and have subst ant i all y lower con-

tention.

Finally, to show that counting networks are

*Carnegie Mellon University.
t D&taf Equipment Corporation, Cambridge Research

Lab.
i MIT Lab. for Computer Science. Supported by ONR

contract NOOO14-91-J-1O46, NSF grant CCR-S915206,

DARPA contract NOO014-89-J-198S, and by a Rothschild
postdoctoral fellowship. A large part of this work was per-
formed while the author was at IBM’s Almaden Research
Center.

not merely mathematical creatures, we provide

experimental evidence that they outperform con-

ventional synchronization techniques under a va-

riety of circumstances.

1 Introduction

Many fundamental multi-processor coordination

problems can be expressed as counting problems:

processors collectively assign successive values

from a given range, such as addresses in memory

or destinations on an interconnection network. In

this paper, we offer a completely new approach

to solving such problems, by introducing count-

ing networks, a new class of networks that can be

used to count.

Counting networks, like sorting networks [2, 4,

5], are constructed from simple two-input two-

output computing elements called baiancers, con-

nected to one another by wires. However, while

an n input sorting network sorts a collection of n

input values only if they arrive together, on sep-

arate wires, and propagate through the network

in lockstep, a counting network can count any

number N >> n of input values even if they ar-

rive at arbitrary times, are distributed unevenly

among the input wires, and propagate through

the network asynchronously.

Figure 2 provides an example of an execution

of a 4-input, 4-output, counting network. A bal-

ancer is represented by two dots and a vertical

Permission to copy without fee all or part of this material is granted line (see Figure 1). Intuitively, a balancer is just
provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the

pubhcation and its date appear, and notice is given that copying IS by

permission of the Association for Computing Machinery. To copy other-

wise, or to republish, requires a fee and/or specific permission.

@ 1991 ACM 089791-397-3/91/0004/0348 $1.50

348

a toggle mechanism 1, repeatedly send[ing the in-

puts it receives, one to the left and one to the

right. It thus balances the number of values on

its output wires. In the example of Figure 2, in-

put values arrive on the network’s input lines one

after the other. For convenience we have num-

bered them by the order of their arrival (these

numbers are not used by the network). As can

be seen, the first input (numbered 1) enters on

line 2 and leaves on line 1, the second leaves on

line 2, and in general, the Nth value will leave on

line N mod 4. (The reader is encouraged to try

this for him/herself.) Thus, if on the ith output

line the network assigns to consecutive outputs

the numbers i, i + 4, i + 2.4, . . . it is counting the

number of input values without actually passing

them all through a shared computing element!

Counting networks achieve a high level of

throughput by decomposing interactions among

processes into pieces that can be performed in

parallel. This decomposition has two perfor-

mance benefits: It eliminates serial bottlenecks

and reduces memory contention. In practice,

the performance of many shared-memory algo-

rithms is often limited by conflicts at certain

widely-shared memory locations, often called

hot spots [19]. Reducing hot-spot conflicts has

been the focus of hardware architecture design

[1, 8, 12, 14, 11] and experimental wcmk in soft-

ware [3, 9, 10, 16, 20].

Counting networks are also non-blocking: pro-

cesses that undergo halting failures or delays

while using a counting network do not prevent

other processes from making progress. This

property is important because existing shared-

memory architectures are themselves inherently

asynchronous; process step times are subject to

timing uncertainties due to variations in instruc-

tion complexity, page faults, cache misses, and

operating system activities such as preemption

or swapping.

We show a depth Iogz n construction of a

counting network, using n log2 n balancers, and

argue that our construction produces low levels

1It is easy to implement a balancer using a Compare U

Swap, Test O Set, or a randomized consensus primitive.

of contention; we feel that many other concurrent

shared-memory algorithms would benefit from a

similar contention analysis.

To illustrate the utility of counting networks,

we show how to construct highly concurrent

implementations of two common data struc-

tures: shared counters and producer/consumer

buffers. A shared counter is simply an ob-

ject that issues the numbers 1 to n in response

to n requests by processes. Shared counters

are central to a number of shared-memory syn-

chronization algorithms (e.g., [6, 12, 15, 20]).

A producer/consumer bufler is a data struc-

ture in which items inserted by a pool of pro-

ducer processes are removed by a pool of con-

sumer processes. Compared to conventional

techniques such as spin locks or semaphores,

our counting network implementations provide

higher throughput, less memory contention, and

better tolerance for failures and delays.

Our analysis of the counting network con-

struction is supported by experiment. In the

appendix, we compare the performance of sev-

eral implementations of shared counters and pro-

ducer/consumer buffers on an eighteen-processor

Encore MultiMax. When the level of concurrency

is sufficiently high, the counting network imple-

mentations outperform conventional implemen-

tations based on spin locks, sometimes dramati-

cally.

In summary, counting networks represent a

new class of concurrent algorithms. They have a

rich mathematical structure, they provide effec-

tive solutions to important problems, and they

perform well in practice. We believe that count-

ing networks have other potential uses, for ex-

ample as interconnection networks [21] or as load

balancers[18], and that they deserve further at-

tention.

2 Networks that Count

2.1 Counting Networks

Counting networks belong to a larger class of

networks called balancing networks, constructed

349

from wires and computing elements called bal-

ancers, in a manner very similar to that in which

comparison networks [5] are constructed from

wires and comparators. We begin by describing

balancing networks.

A balanceris a computing element with two in-

put wires and two output wiresz (see Figure 1).

Tokens repeatedly arrive on one of the balancer’s

input wires, at arbitrary times, and are repeat-

edly output on its output wires. Intuitively, one

may think of a balancer as a toggle mechanism,

that given a stream of input tokens, repeatedly

sends one token to the upper output wire and

one to the lower, effectively balancing the num-

ber of tokens on its output wires. We denote by

xi, i E {O, 1 } the number of input tokens ever re-

ceived on the balancer’s ith input wire, and sim-

ilarly by yi, i c {O, 1} the number of tokens ever

output on its ith output wire. Throughout the

paper we will abuse this notation and use xi (y~)

both as the name of the ith input (output) wire

and a count of the number of input tokens re-

ceived on the wire.

Let the state of a balancer at a given time be

defined as the collection of tokens on its input

and output wires. We can now formally state the

safety and liveness properties of a balancer:

1.

2.

3.

4.

In any state, ZO+Z1 ~ yo+yl (i.e. a balancer

never creates output tokens).

Given any finite number of input tokens m =

co+ Z1 to the balancer, it is guaranteed that

wltnm a nm~e amoun~ 01

a quiescent state, that is,

Z1 = yo + yl = m (i.e.

swallows input tokens).

In any quiescent state, y.

lm/2j.

—––,., , C .1 L

“ time, it will reach

one in which X. +

a balancer never

= [m/21 and yl =

In any quiescent state the set of input tokens

and output tokens are the same.

2 In Figure 1 as well as in the sequel, we adopt the

notation of [5] and and draw wires as horizontal lines with

balancem stretched vertically.

A balancinq network of width w is a collec-

tion of balan~ers, where output wires connected

to input wires, having w designated input wires

Zo, xl, .,, ZW_l (which are not connected to out-

put wires of balancers), w designated output

wires y., yl, . . . yW – 1 (similarly unconnected), and

containing no cycles. Let the state of a network

at a given time be defined as the union of the

states of all its component balancers. The safety

and liveness of the network follow naturally from

the above network definition and the properties

of balancers, namely, that it is always the case

that ~~=~1 xi ~ ~~=~1 yi, and for any finite se-

quence of m input tokens, within finite time the

network reaches a quiescent state, i.e. one in

It is important to note that we make no as-

sumptions regarding the timing of token transi-

tions from balancer to balancer in a balancing

network— its behavior can be viewed as a com-

pletely asynchronous process, and is defined in

the usual way by a schedule.

To give the reader a feeling of what the above

abstraction might represent, consider an imple-

ment ation on a shared memory multiprocessor.

A balancing network is implemented as a shared

data structure, where balancers are records and

wires are pointers from one record to another.

Each of the machine’s asynchronous processors

runs a program that repeatedly traverses the data

structure from some input pointer to some out-

put pointer, each time shepherding a new token

through the network.

We define the depth of a balancing network to

be the maximal depth of any wire, where the

depth of a wire is defined as O for a network in-

put wire, and max(depth(zo), depth(zl)) + 1 for

the output wires of a balancer having input wires

X. and xl.

A counting network of width w is a is a bal-

ancing network whose outputs y., . . . yW _l have

the following additional step property in quies-

cent states:

In any quiescent state, O ~ y~ – yj ~ 1

for any i < j.

350

Figure 1: A Balancer.

To illustrate this property, consider an execu-

tion in which tokens traverse the network sequen-

tially, one completely after the other. Figure 2

shows such an execution on a COUNTER[4] net-

work which we will define formally in Section 3.

As can be seen, the network moves input to-

kens to output tokens in increasing order modulo

w. Balancing networks having this property are

called counting networks, because we can easily

construct from them counters which count the to-

tal number of tokens that have passed through, or

are currently in, the network. Counting is done

by adding a “local counter” to each output wire i,

so that tokens coming out of that wire are consec-

utively assigned numbers i, i+ w, i+2w, . . . i+(gi -

l)w. (This application is described in greater de-

tail in Section 4.)

The step property can be defined in a number

of ways which we will use interchangeably. The

connection between them is stated in the foHow-

ing lemma:

Lemma 2.1 If go, VW-l is a sequence of

non-negative integers, the following statements

are all equivalent:

1,

2.

3.

Foranyi <~, l~y~–yj~O.

Either ~i = ~j for all i, ~, or there exists

some c such that for any i < c and j > c,

?Ji-lJj=l.

If m = ~~.~l Y;, Yi = (q.

It is the third form of the step prc)perty that

makes counting networks usable as cc,unters.

The requirement that the outputs of a qui-

escent counting network have the step property

output

1357

246

might appear to tell us very little about the be-

havior of a counting network during an asyn-

chronous execution, but in fact it is surprisingly

powerful. The reason is that even in a state in

which many tokens are passing through the net-

work, if no new tokens arrive the network must

eventually settle into a quiescent state. This

fact constrains the behavior of the network, and

makes it possible to prove such important prop-

erties as the following:

Lemma 2.2 Suppose that in a given execution,

a counting network with outputs yo, . . . yW_l is

in a state where m tokens have entered the net-

work and m’ tokens have left it. Then there exist

non-negative integers di, O ~ i < w, such that

~~=” di = m - m’ and Y, + d, = [=1.

2.2 Counting vs. Sorting

Given a balancing network and a comparison net-

work, we will say that they are isomorphic if

one can be constructed from the other by replac-

ing balancers by comparators or vice versa. The

counting network in this paper is isomorphic to

the Bitonic sorting network of Batcher [4]. To

see that constructing counting networks is a chal-

lenging task, consider the following theorem:

Theorem 2.3 If a

then its isomorphic

but not vice versa.

balancing network counts,

comparison network sorts,

Proof: The balancing net works isomorphic to

the EVEN-ODD or INSERTION sorting networks

[5] are not counting networks.

To prove the other direction, we construct a

mapping from the comparison network transi-

351

inputs outputs

14 -15 -15 ,5
T

3
431

26 -26
w . 26

26
5

3 37
T w w 37

57 47
762

-4 q
w

Figure 2: A sequential execution of a COUNTER[4] counting network.

tions to the isomorphic balancing network tran-

sitions, so that if the balancing network counts,

the comparison network sorts.

By the O-1 principle [5], a comparison network

which sorts all sequences of O’s and 1’s correctly

sorts all sequences. Take any arbitrary sequence

of O’s and 1‘s as inputs to the comparison net-

work, and for the balancing network place a to-

ken on each O input wire and no token on each 1

input wire. If we run both networks in lockstep,

the balancing network will simulate the compar-

ison network.

On every gate where two O’s meet in the com-

parison network, two tokens meet in the balanc-

ing network, so two O’s leave on each wire in the

comparison net work, and both tokens leave in the

balancing net work. On every gate where two 1‘s

meet in the comparison network, no tokens meet

in the balancing network, so two 1‘s leave on each

wire in the comparison network, and no tokens

leave in the balancing network. On every gate

where a O and 1 meet in the comparison network,

the O leaves on the lower wire and the 1 on the

upper wire, while in the balancing network the

token leaves on the lower wire, and no token on

the upper wire.

If the balancing network is a counting network,

i.e., it has the step property, then the comparison

network must have sorted the input sequence of

O’s and 1’s. ■

2.3 Verifying That a Network Counts

The O-1 law for comparison net works allows one

to verify a supposed sorting network by testing it

on a relatively small range of possible executions,

namely, those generated by input sequences of ze-

roes and ones. Does a similar law exist for count-

ing net works? The answer is mixed: on the one

hand, it is possible to show that a counting net-

work can be tested by considering only a finite

subset of its infinitely many possible executions.

On the other hand, the size of that finite subset is

dependent on the network’s depth, and therefore

may be very large.

We first prove that in testing a network, one

need only consider sequential executions, that is,

executions in which tokens enter and leave the

network one completely after the other.

Theorem 2.4 If a balancing network maintains

the step property in all sequential executions, ii

maintains it in all executions.

Thus the problem of testing a supposed count-

ing network is reduced from examining all pos-

sible executions to examining all sequential exe-

cutions, The problem can be reduced further by

regarding the network as a finite-state automa-

ton. Suppose we have a width-w network with a

total of m balancers. If the network is quiescent,

we can describe its state completely by specify-

ing for each balancer which of its outputs the

next token to arrive will appear on; thus the net-

work has at most 2m reachable quiescent states.

352

If we consider only sequential executions, we can

treat the network as a finite-state machine whose

states are the quiescent states and whose transi-

tions correspond to running a token through the

network starting at some input-stage balancer.

In this representation, an execution may be de-

scribed by specifying the sequence of input-stage

balancers on which the tokens are introduced.

Lemma 2.5 Let b be a sequence of input tokens

of length n which takes the network from a reach-

able state q back to the same state q. Then if the

network counts all sequences of up to 2n -I-2* to-

kens, the length of b is a multiple ofw and exactly

‘b[tokens leave on each output wire.7

Based on the above lemma, we can now prove

that

Theorem 2.6 If a width-w balancing network

with m balancers counts in all sequential execu-

tions in which up to 3. 2m tokens pass through

the network, it is a counting network.

Proof: By Theorem 2.4 it is enough to show

that the network guarantees the step property

in sequential executions. Thus we may regard

the network as a finite-state machine as in the

preceding lemma.

Consider an input sequence a of length greater

than 2m. By the Pigeonhole Principal there ex-

ists some subsequence b of length at most 2m such

that a = aobal and the state of the network af-

ter a. and aob is the same. Thus we can remove

b without affecting the behavior of the network

on aoal. Since Lemma 2.5 tells us that b con-

tributes an equal number of tokens to each out-

put, the net work’s output on aobal wil 1 have the

step property if and only if its output on aoal

does. Repeating such contractions will eventu-

ally yield an input sequence of length less than

2m, for which the network guarantees the step

property. ■

Finally, we give a lower bound on the number

of tokens required by a test as in Thecmem 2.63

3A ~i~la ~Ounter ~xmple can be constructed having

auY width, not just a power of 2.

Let us construct a would-be counting network of

the following form. Take two counting networks

of width w, labeling their outputs as a. . . . aw _ 1

and bo , . . bw _ 1, respectively. Combine the two

networks by running a balancer between a. and

bw -1 and a second balancer between b. and a~- 1.

Now construct a k stage periodic balancing net-

work of width 2W by joining k copies of the above

network, the outputs of each stage connected to

the corresponding inputs of the next. We can

now prove that:

Lemma 2.7 A periodic balancing network with

k stages, constructed as above, will count in all

executions involving up to 0(2~w) tokens, but is

not a counting network.

3 A Bitonic Counting Network

Counting networks, of course, would not be in-

teresting if we could not exhibit an example of

one. In this section we describe how to construct

a counting network whose width is any power of

2. The layout of this network is isomorphic to

Batcher’s Bitonic sorting network [4, 5], though

its behavior and correctness arguments are com-

pletely different. We give an inductive construc-

tion, as this will later aid us in proving its cor-

rectness.

Define the width w balancing network

MERGER[tU] as follows. It has two sequences of

inputs of length w/2, x and x’, and a single se-

quence of outputs y, of length w. MERGER[WJ

will be constructed to guarantee that in a quies-

cent state where the sequences x and x) have the

step property, v will also have the step property,

a fact which will be proved in the next section.

We define the network MERGER[W] inductively

(see example in Figure 3). Since w is a power of 2,

we will repeatedly use the notation 2k in place of

w . When k is equal to 1, the MERGER[2k] net-

work consists of a single balancer. For k > 1,

we construct the h’fERGER[2k] network from 2

MERGER[k] networks and k balancers. Using a

MERGER[k] network we merge the even subse-

quence ZO, X2,..., x~_z of x with the odd sub-

sequence x$, x~, . . . X~_l (i.e. the input to the

353

X.

xl

x2

x3

X4

x5

x6

x7

Figure 3: A MERGER [8] balancing network.

MERGER[k] network is ZO, . . .zk_2, z\, . . ,~j_l)

while with a second MERGER[k] network we

merge the odd subsequence of z with the even

subsequence of z’. Call the outputs of these two

MERGER [k] networks z and z’, The final stage of

the network combines .z and z’ by sending each

pair of lines .zi and z; into a balancer whose out-

puts yield y2~ and y2~+l.

The MERGER[W] network consists of log w lay-

ers of w/2 balancers each. This MERGER[W] net-

work guarantees the step property on its out-

puts only when its odd and even input subse-

quences also have the step property— but we can

guarantee this by providing those inputs as the

outputs of smaller counting networks. We de-

fine COUNTERIW] to be the network constructed

by passing the outputs from two COUNTERIW/2]

networks into a MERGER[W] network, where the

induction is grounded in the COUNTER[l] net-

work which contains no balancers and simply

passes its input directly to its output. This

construction gives us a network consisting of

(’08~+1) layers each consisting of w/2 balancers.

3.1 Proof of Correctness

In this section we show that COUNTERIW] is a

counting network. Before examining the network

itself, we present some simple lemmas about the

step property.

Lemma 3.1 If a sequence has the step property,

then so do all its subsequences.

Yo

y]

y2

y3

y4

y5

y6

y7

Lemma 3.2 If Zo, xk_l has the step prop-

erty, then

kf2–1

[1

k-1

E
xz~ = ~ xi/2 and

i=zO i=o

k/2–l Ik–1 I

i=O Li=o J

Lemma 3.3 Let xo,z~_l and ye,. ... yk_l

be arbitrary sequences having the step property.

Lemma 3.4 Let zo,z!~_l and ~o,...,yk_~

be arbitrary sequences having the step property.

If ~~~~ xi = ~~~~ Yi + 1, then there exists a
unique j, (I < j < k, such that xj = yj + 1, and

xi=y~fori#j, O<i <k.

We now show that the MERGER[W] networks

preserves the step property.

Lemma 3.5 If MERGER[2k] is quiescent, and its

input$ xo, . . .,xk-l an dx~, ..., x~_l both have

the step properiy, then its outputs yo, yzk_~

have the step property.

Proofi We argue by induction on log k.

If 2k = 2, MERGER[2k] is just a balancer, so its

outputs are guaranteed to have the step property

by the definition of a balancer.

If2k>2,1etzo, ..., Zk_ 1 be the outputs of

the first MERGER[k] subnetwork, which merges

354

the even subsequence of x with the odd subse-

quence of x’, and let z~,z~_l be the out-

puts of the second. Since z and x’ have the

step property by assumption, so dlo their even

and odd subsequences (Lemma 3.1), and hence

so do z and .Z1 (induction hypothesis]. Further-

more, ~ zi = [~ xi/21 + & Z~/2J and ~ Z: =

[~ zi/2J + [~ x~/21 (Lemma 3.2). A straight-

forward case analysis shows that ~ zi and ~ z;

can differ by at most 1.

We claim that O ~ yi – yj ~ 1 for any i < j.

If~~i = ~z(, then Lemma 3.3 implies that

Zi = ,zj for O < i < k/2. After the final layer of

balancers,

Yi – Yj = ‘Li/2J – ‘b/2j 9

and the result follows because z has the step

property. Similarly, if ~ ~i and ~ Z(differ by

one, Lemma 3.4 implies that Zi = .zl~for O ~ i <

k/2, except for a unique j such that ~j and z; dif-

fer by one. The difference O ~ yi – y:i ~ 1 for any

i < j can be expressed as the difference between

earlier and later terms either of z or of z’, and the

result follows because these two sequences both

have the step property. ■

The proof of the following theorem is now im-

mediate.

Theorem 3.6 In any quiescent state, the out-

puis of COUNTERIW] have the step property.

4 Applications

We illustrate the utility of counting networks by

constructing highly concurrent implementations

of three common data structures: shared coun-

ters, producer/consumer buffers, and barriers. In

Section 5 we give some experimental evidence

that that counting network implementations have

higher throughput than conventional implemen-

tations when contention is sufficiently high.

4.1 Shared Counter

A shared counter [6, 12, 7, 15, 20] issues the num-

bers O ton – 1 in response to the first n requests it

receives. To construct the counter, start with an

arbitrary width-w counting network. Associate

an integer cell Ci with the ith output wire. Ini-

tially, ci holds the value i. A process requests a

number by traversing the counting network, Af-

ter it exits the network on wire i, it atomically

adds w to the value of Ci and returns ci’s previous

value.

Lemma 2.2 implies that:

Lemma 4.1 Let x be the largest number yet re-

turned by any operation on the counter. Let S

be the set of numbers less than x which have not

been returned by any operation on the counter.

Then

1.

2.

9.

4.2

The size of S is no greater than the number

of operations still in progress.

Ify~S, then YZ x–wISI.

Each number in S will be returned by some

operation in time A . d + AC, where d is the

depth of the network, A is the maximum gate

delay, and AC is the maximum time to up-

date a cell on an output wire.

Producer/Consumer Buffer

A producer/consumer buffer is a data structure

in which items inserted by a pool of m pro-

ducer processes are removed by a pool of m con-

sumer processes. The buffer algorithm used here

is essentially that of Gottleib, Lubachevsky, and

Rudolph [12]. The buffer is an n-element circu-

lar array. There are two m-process counting net-

works, a producer network, and a consumer net-

work. A producer starts by traversing the pro-

ducer network, leaving the network with value

i. It then atomically inspects the ith buffer ele-

ment, and, if it is 1, replaces it with the produced

item. If that position is full, then the producer

waits for the item to be consumed (or returns

an exception). Similarly, a consumer traverses

the consumer network, exits on wire j, and if the

jth position holds an item, atomically replaces

it with -L. If there is no item to consume, the

consumer waits for an item to be produced (or

returns an exception).

355

Lemma 2.2 implies that:

Lemma 4.2 Suppose m producers and m’ con-

sumers have entered a producerlconsumer bufler

built out of counting networks of depth d and

maximum gate deiay A. Assume that the time to

update each bi once a process has lefl the count-

ing network is negligible. Then if m < m’, ev-

ery producer leaves the network in time 2dA and

the network reaches a quiescent state, Similarly

if m 2 m’, every consumer leaves the network

in time 2dA and the network reaches a quiescent

state.

5 Performance

The following is a summary of the more complete

performance analysis provided in the full paper.

We consider the performance of the network

when each processor is assigned a fixed input

wire, ensuring that the number of input tokens

that can arrive simultaneously at an input wire

is bounded. The network saturation S is defined

to be the expected number of tokens at each bal-

ancer. For the COUNTER network, S = 2n/wd.

The network is oversaturated if S > 1, and un-

dersaturat ed if S <1. This measure is motivated

by the assumption that in a sufficiently long com-

putation, tokens are likely to be spread through

the network in an approximately uniform distri-

bution.

Define the contention at a balancer at a given

time to be the number of tokens pending on its in-

put wires. An oversaturated network represents

a full pipeline, hence its throughput is dominated

by the per-balancer contention, not by the net-

work depth, If a balancer with S tokens makes

a transition in time A(S), then approximately w

tokens emerge from the network every A(S) time

units, yielding a throughput of w/A(S). A is an

increasing function whose exact form depends on

the particular architecture, but similar measures

of degradation have been observed in practice to

grow linearly or worse [3, 16]. The throughput of

an oversaturated network is therefore maximized

by choosing w and d to minimize S, bringing it

as close as possible to 1.

The throughput of an undersaturated net-

work is dominated by the network depth, not

by the per-balancer contention, since the net-

work pipeline is partially empty. Every 0(1/S)

time units, w tokens leave the network, yielding

throughput O(WS). The throughput of an un-

dersaturated network is therefore maximized by

choosing w and d to increase S, bringing it as

close as possible to 1.

We implemented several data structures em-

ploying counting net works, as well as more

conventional implementations using spin locks

(which can be considered degenerate counting

net works of width one). These implement at ions

were done on an Encore Multimax, using Mu1-T

[13], a parallel dialect of Lisp. The spin lock is

a simple “test-and-test-and-set” loop [17] written

in assembly language, and provided by the Mul-

T run-time system. Each balancer is protected

by a single spin lock.

We compare four shared counter implementa-

tions, counting networks of widths 16, 8, and 4,

and a conventional spin lock implement at ion. For

each network, we measured the elapsed time nec-

essary for a 220 (approximately a million) tokens

to traverse the network, controlling the level of

concurrency.

The width- 16 network has 80 balancers, the

width-8 network has 24 balancers, and the width-

4 network has 6 balancers. In Figure 4 the hori-

zontal axis represents the number of processes ex-

ecuting concurrently. The vertical axis represents

the elapsed time (in seconds) until all 220 to-

kens had traversed the network. With no concur-

rency, the networks are heavily undersaturated,

and the spin lock’s throughput is the highest by

far. As saturation increases, however, so does the

throughput for each of the networks. The width-

4 network is undersaturated at concurrency lev-

els less than 6. As the level of concurrency in-

creases from 1 to 6, saturation approaches 1,

and throughput increases as the elapsed time de-

creases. Beyond 6, saturation increases beyond

1, and throughput eventually starts to decrease.

The other networks remain undersaturated for

the range of the experiment; their throughputs

continue to improve. Notice that as the level of

356

70

60

50

~ 40

~.-
-30

20

10

0

-. .

o 10 20
concurrency (num. of proc.)

Figure 4: Shared Counter Implementations

concurrency increases, the spin lock’s throughput

degrades in an approximately linear fashion.

I spin I 21 4

H

8

time (sees) I 57.74 I 17.51 I 10.44 14.25

Figure 5: Producer/Consumer Buffer l[mplemen-

t ations

5.1 Producer/Consumer Buffers

Next, we compare the performance of

As a final control, we tested a circular buffer

protected by a single spin lock, a structure that

permits no concurrency between producers and

consumers. Figure 5 shows the time in seconds

needed to produce and consume 220 tokens. Not

surprisingly, the single spin-lock implementation

is much slower than any of the others. The width-

2 network is heavily oversaturated, the bitonic

width-4 network is slightly oversaturated, while

the others are undersaturated.

6 Acknowledgments

several

producer/consumer buffers. Each im plementa-

tion has 8 producer processes and 8 consumer

processes. We consider buffers with networks of

width 8, 4, and 2. The width-2 implementation is

simply a pair of counters protected by spin locks.

Orli Waarts made many important remarks and

observations. Our thanks to Heather Well, Eli

Gafni and Shanghua Teng for helpful discussions,

The first and third authors also wish to thank

David for being quiet during phone calls.

357

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

A. Agarwal and M. Cherian. Adaptive Backoff

Synchronization Techniques 16th Symposium on

Computer Architecture, June 1989.

M. Ajtai, J. Komlos and E. Szemeredi. An

O(n log n) sorting network. In Proceedings of the

15th ACM Symposium on the Theory of Com-

puting, 1-9, 1983.

T.E. Anderson. The performance implications

of spin-waiting alternatives for shared-memory

multiprocessors. Technical Report 89-04-03,

University of Washington, Seattle, WA 98195,

April 1989. To appear, IEEE Transactions on

Parallel and Distributed Systems.

K.E. Batcher. Sorting networks and their ap-

plications. In Proceedings of A FIPS Joint Comp-

uter Conference, 32:338-334, 1968.

T.H. Cormen, C.E. Leiserson, and R. L. Rlvest.

Introduction to Algorithms. MIT Press, Cam-

bridge MA, 1990.

C.S. Ellis and T.J. Olson. Algorithms for paral-

lel memory allocation. Journal of Parallel Pro-

gramming, 17(4):303–345, August 1988.

E. FreudenthsJ and A. Gottlieb Process Coor-

dination with Fetch-and-Increment In Proceed-

ings of the ith International Conference on Ar-

chitecture Support for Programming Languages

and Operating Systems, April 1991, Santa Clara,

California. To appear.

G.H. Pfister et al. The IBM research parallel

processor prototype (RP3): introduction and ar-

chitecture. In International Conference on Par-

allel Processing, 1985.

D. Gawlick. Processing ‘hot spots’ in high

performance systems, In Proceedings COMP-

CON’85, 1985.

J. Goodman, M. Vernon, and P. Woest. A set of

efficient synchronization primitives for a large-

scale shared-memory multiprocessor. In %d In-

ter-national Conference on Architectural Support

for Programming Languages and Operating Sys-

tems, April 1989.

A. Gottlieb, R. Grishman, C.P. Kruskal, K.P.

McAuliffe, L. Rudolph, and M. Snir. The

NYU ultracomputer - designing an mimd paral-

lel computer. IEEE Transactions on Computers,

C-32(2):175-189, February 1984.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. Gottlieb, B.D. Lubachevsky, and L. Rudolph.

Basic techniques for the efficient coordination

of very large numbers of cooperating sequen-

tial processors. ACM Transactions on Pro-

gramming Languages and Systems, 5(2):164–

189, April 1983.

D. Kranz, R. Halstead, and E. Mohr. “Mul-

T, A High-Performance Parallel Lisp”, ACM

SIGPLAN ’89 Conference on Programming Lan-

guage Design and Implementation, Portland,

OR, June 1989, pp. 81–90.

C.P. Kruskal, L. Rudolph, and M. Snir. Efficient

synchronization on multiprocessors with shared

memory. In Fifth ACM SIGA CT- SIGOPS Sym-

posium on Principles of Distributed Computing,

August 1986.

L. Lamport. A new solution of Dijkstra’s concur-

rent programming problem. Communications of

the ACM, 17(8):453-455, August 1974.

J.M. Mellor-Crummey and M.L. Scott. Algo-

rithms for scalable synchronize ation on shared-

memory multiprocessors. Technical Report

Technical Report 342, University of Rochester,

Rochester, NY 14627, April 1990.

L. Rudolph, Decentralized cache scheme for an

MIMD parallel processor. In 11th Annual Com-

puting Architecture Conference, 1983, pp. 340-

347.

D. Peleg and E. Upfal. The token distribution

problem. In .27th IEEE Sympostum on Founda-

tions of Computer Science, October 1986.

G.H. Pfister and A. Norton. ‘hot spot’ con-

tention and combining in multistage intercon-

nection networks. IEEE Transactions on Comp-

uters, C-34(11):933–938, November 1985.

H .S. Stone. Database applications of the fetch-

and-add instruction. IEEE Transactions on

Computers, C-33(7):604-612, July 1984.

U. Vishkin. A parallel-design distributed-

implementation (PDDI) general purpose com-

puter. Theoretical Computer Science, 32:157-

172, 1984.

358

